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THE NON-EXISTENT COMPLEX 6-SPHERE

MICHAEL ATIYAH

Dedicated to S.S.Chern, Jim Simons and Nigel Hitchin

Abstract. The possible existence of a complex structure on the
6-sphere has been a famous unsolved problem for over 60 years. In
that time many “solutions” have been put forward, in both direc-
tions. Mistakes have always been found. In this paper I present
a short proof of the non-existence, based on ideas developed, but
not fully exploited, over 50 years ago.

1. Introduction: history of the problem

The fact that the 2-sphere S2 can be identified with the complex
projective line has been known for centuries. In higher dimensions we
have two families of manifolds:

a) the 2n-spheres S2n

b) the complex projective spaces Pn(C)

For n > 1, these have quite different topologies and so cannot be
identified. It remains possible that the 2n-sphere has a complex struc-
ture quite different from that of Pn(C), but if so this cannot have a
Kähler metric.
In the early fifties, topology had made big strides and it was possible,

using Steenrod squares, to eliminate all values of n except 3, namely
the 6-sphere. This has turned out to be a very hard problem which
has resisted determined efforts by the best geometers, most recently
S.S.Chern, who in the last year of his life, made some real progress on
the problem. An excellent account of the problem and of Chern’s work
has been written up by Bryant [13].
The reason why the S6 problem appears so hard is that S6 has a

well-known almost complex structure J(0), which comes from the oc-
tonions, when the 6-sphere is viewed as the unit sphere in the 7-space
of imaginary octonions. This however is not integrable, meaning that
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the operator ∂̄ does not have square zero. This purely algebraic fact
comes ultimately from the non-associativity of the octonions.
Standard topology appears unable to determine whether S6 might

have another almost complex structure J which is integrable. Nothing
in the topologist’s armoury seems available, notably we have no Kähler
metric, which is the usual way that complex structures lead to topology
via Hodge theory. It seems clear that some fundamentally new methods
are needed, but we will first review the standard theory of the 1950s
which sets the context.
In 1953, at a conference in Cornell, Hirzebruch [15] listed a large

number of important problems in Geometry. Many of these were solved
in the subsequent decade, notably those centring round the Hirzebruch-
Riemann-Roch Theorem HRR. A major step was taken by Atiyah-
Singer with the index theorem [8], which shifted the arena from pro-
jective algebraic geometry to differential geometry. In particular, for
complex analytic manifolds, the restriction to Kähler manifolds was
removed. The significance of this was immediately recognised by Ko-
daira who was then able to complete the coarse classification of compact
complex surfaces, including such non-Kähler surfaces as S1

× S3.
Shortly after HRR a major breakthrough in algebraic geometry was

made by Grothendieck [14] with the introduction of K-theory. This
inspired Atiyah-Hirzebruch [6] to develop a topological analogue based
on the Bott periodicity theorem for the unitary group [12], and this K-
theory replaced cohomology as the natural home of index theory. Now
Bott periodicity had counterparts for the orthogonal and symplectic
groups, with period 8 and “semi-period” 4, switching orthogonal and
symplectic. It also applied to spin-manifolds. This naturally tied up
with index theory over the reals [10] where the fundamental operator
is the Dirac operator and the mod 2 invariants appeared as the mod 2
dimensions of the null spaces of skew-adjoint operators [9].
Indices which are integers can be computed via Chern classes as

rational cohomology or integrals. Mod 2 invariants are much more
elusive, except in the lowest dimensions, where they come from the
first and second Stiefel-Whitney classes. However, with KO-theory,
they can be handled effectively.
Let us first re-examine the success of index theory in giving a proof

of HRR for non-Kähler complex manifolds. It hinges on the following
facts:
1.1 The holomorphic Euler characteristic (the arithmetic genus) uses

the integer grading of sheaf cohomology, while the index uses only the
parity of K-theory.
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1.2 When we replace the Dolbeault complex by the single elliptic
operatorD given by adding ∂̄ to its adjoint, with respect to an arbitrary
positive Hermitian metric, the fact that DD∗ does not preserve the
grading is irrelevant. It can be deformed away without affecting the
ellipticity.
1.3 Thus the index only uses the almost complex structure and we

get the integrality of the Todd genus.
1.4 Similarly, using a spin structure in the right dimensions, captures

the KO mod 2 index which is defined as the mod 2 dimension of the
null space of the Dirac operator. For example, in dimension 2, the KO
(spin) mod 2 index goes back to Riemann and was studied in [2].
1.5 Another example in dimension 6 arises from a rank 2 bundle on

the complex projective 3-space. A mod 2 invariant in this situation
was studied in [7].
Recall finally that Atiyah-Singer theory does not use any special

metric, it uses an arbitrary auxiliary Riemannian metric leading to
elliptic operators. Its main theorem is then independent of the metric
and asserts that analytical indices are equal to topological indices. This
applies to both integer and mod 2 invariants. So there is no need to
distinguish between analysis and topology in this whole area. This
provides a new tool whose power so far has only been fully exploited
by Kodaira.
It is this tool, in the mod 2 context, which we will exploit to tackle

the problem of S6. The version of K-theory needed is KR theory,
which was developed in detail in [1], and whose key features will be
recalled in the next section. It was motivated both by real algebraic
geometry and by real differential operators.

2. KR Theory

KR theory is defined for manifolds with an involution, called conju-
gation, as in algebraic geometry. It has a double index notation (p, q),
based on Clifford algebras of quadratic forms of signature (p, q),where
the conjugation is changing the sign of the set of q variables. Suspen-
sion is given by taking the KR-theory with compact supports of the
product with R(p, q). The q variables give the standard suspension
while the p variables give a twisted suspension, in that conjugation
multiplies by −1 in the fibre.
The complex field C has its standard conjugation so that C = R(1, 1).

There is a natural generator b ofKR(1, 1) and the Bott Periodicity The-
orem now asserts that the tensor product with b gives an isomorphism

KR(p, q) ∼= KR(p + 1, q + 1)
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This holds over any space with involution, generalizes to the equivariant
context, and is a powerful theorem despite its apparent simplicity. It
shows that, up to canonical isomorphism, KR(p, q) depends only on
s = p− q and that it is periodic in s with period 8, and semi-periodic
with period 4 if we switch orthogonal and symplectic.
Applied when the base space is a point and (p, q) = (7, 1) we get an

isomorphism

KSp(R6) → KR(7,1)(point) = Z/2

The LHS is the stable homotopy group determined by Bott and the
RHS is given by the algebra of Clifford modules. The homomorphism
is the natural one as described in [3].
The left hand side is just the reduced KSp of S6 and elements of

it are either even or odd (see section 3), and their values under the
isomorphism above are respectively 0 or 1.
There are natural forgetful maps from complex K-theory to KR the-

ory and in dimension 6 the integers go to 0, so a hypothetical complex
structure on S6 would give an even element. But we know one almost
complex structure J(0) which is odd, and crucially we know that

being even or odd is a topological property and so shared by all
almost complex structures (see section 3). This is a contradiction and
so proves

Theorem 2.1. There is no complex structure on the 6-dimensional

sphere

Comments

1. The non-trivial part of the proof (in bold lettering in the text above)
rests on the Atiyah-Singer index theorem, in parallel to the way it was
used by Kodaira
2. Since our invariant was a mod 2 index we had to use KR theory
(designed for such purposes)
3. Hidden in the technical details of KR theory, the mod 2 invariant is
really a mod 4 invariant, with non-trivial “odd” elements being strictly
of order 4 (and not of order 2). An algebraic geometer, working over
the real field knows that one should not distinguish between i and −i
whereas one can distinguish between 1 and −1. Because of the Atiyah-
Singer theory this applies in topology as well (a stronger form of Serre’s
GAGA).
4. For the non-Kähler complex surfaces that Kodaira needed, the nat-
ural metric was not Kähler but had signature (2,2). In our case the
natural 8-manifold is not the octonion space of signature (8,0) but its
Minkowski counterpart with signature (7,1). The 6-sphere then appears
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naturally as the base of the light-cone. This can be compared with the
standard Minkowski space of signature (3,1), where the 2-sphere is
famously the base of the light cone, but there is one important differ-
ence. The quaternions are associative while the octonions are not (this
is purely algebraic and independent of signatures), explaining why the
natural almost complex structure on the 2-sphere is integrable, while
it is not for the 6-sphere.
5. Note that the theorem is a global one. Locally, on the punctured
sphere, it is false. The theorem has to come from some global “coho-
mological” obstruction. In fact, as we have seen, the cohomology is
KR theory.
There are a number of subtleties about almost complex structures

which lurk in the background of note 5 and in the details of KR theory.
These deserve separate treatment in the following section.

3. Almost Complex Structures

Bryant [13] has given a very clear account of the linear algebra and
the associated differential geometry of almost complex manifolds, which
is precisely what we need. The only difference is that, whereas Bryant
works in a Riemannian context, we will work in a Lorentzian one. As
noted in comment 2 of section 2, the 6-sphere is the base of the light
cone in Minkowski space R(7,1) and has a natural conformal structure
but no preferred metric.
The reason this does not cause problems is because the Atiyah-Singer

theory (which relates analysis to topology) does not need a preferred
Riemannian metric. This was precisely why Kodaira was able to handle
complex non-Kähler surfaces.
On S6 the Octonions of signature (7,1) induce an almost complex

structure. In fact, as noted in comment 3 of section 2, we get a con-
jugate pair of almost complex structures. This should be called a real
ACS. Such a conjugate pair can be distinguished locally on a punc-
tured sphere, but this distinction may not persist globally. There are
just 2 topological possibilities: either the distinction is global (called
the even case), with the distinction carrying over the puncture, or it is
not (called the odd case).
The distinction between odd and even elements of KSp(R6) noted

in section 2 does agree with the distinction made above by virtue of
the Atiyah-Singer index theory, which was essentially designed for the
purpose
For real quadrics the real ACS depends in an interesting way on the

signature of the quadratic form. Signature (7,1) leads to an odd real
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ACS while signatures (5,3) and (3,5) lead to the even case of genuine
complex structures on the complex projective 3-space P or its dual
P ∗. This all fits naturally into the twistor theory of S6 where triality
tries to seduce us into believing in a mythical complex structure on S6,
but it is well-known that one of the three groups involved in triality
has to be lifted to spin. This is clear for the algebra of octonions but,
because the obstruction is captured by a topological obstruction in a
KR-group, it cannot be avoided by any deformation.
Our Theorem can now be interpreted as saying that, on the 6-sphere,

any real ACS is of odd type. Hence there is no real ACS of of even
type. An integrable complex structure would define a real ACS of even
type and so cannot exist. The integrability condition is essentially
replaced by an equivalent topological condition. This for the 6-sphere
is precisely what we expected, since there is no local obstruction and
we needed a global cohomological obstruction in an appropriate theory.
That theory is just KR theory.
A short history of the 6-sphere problem follows as section 4.

4. History of the problem

Ehresmann 1947: Introduced the notion of almost complex structure
and showed that the 6-sphere admits an almost complex structure, but
explicitly points out that he does not know whether it has a complex
structure.
Hopf 1947: Proved that S4 and S8 do not admit almost complex struc-
tures.
Kirchhoff 1947: Uses octonions to construct an explicit almost complex
structure on S6.
Eckmann-Frohlicher and Ehresmann-Liberman 1951: Independently
prove that Kirchhoff’s almost complex structure on S6 is not integrable
to a complex structure.
Borel and Serre 1953: Prove that S2n admits an almost complex struc-
ture if and only if n = 1 or 3.
Hirzebruch 1954 and Liberman 1955: Remarks that it is still not known
whether S6 has a complex structure.
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