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Forgotten and neglected theories of Poincaré

V. I. Arnol’d

Abstract. This paper describes a number of published and unpublished
works of Henri Poincaré that await continuation by the next generations of
mathematicians: works on celestial mechanics, on topology, on the theory
of chaos and dynamical systems, and on homology, intersections and links.
Also discussed are the history of the theory of relativity and the theory of
generalized functions (distributions) and the connection between the Poincaré
conjecture and the theory of knot invariants.
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The list of creators of modern mathematics starts from the names of Newton,
Euler and Poincaré.

Poincaré’s point of view on mathematics was very different from the formalist
ideas of Hilbert or Hardy: mathematical science was for Poincaré an important part
of physics and the natural sciences, rather than the art of permutations of symbols.

Describing mathematical problems (some years before Hilbert’s celebrated list),
Poincaré divided them into two parts: the binary problems (similar to the Fermat
problem, where the answer is a choice between the two possibilities: yes or no),
and the interesting problems, where the progress is continuous, studying first of
all the possibility of variations of the problem (such as variations of the boundary
conditions for a differential equation) and investigating then the influences of these
variations on the properties of the solutions (which would be hidden, if the problem
were formulated as a binary one).

Poincaré followed rather the ideas of Francis Bacon (who claimed that to start
scientific investigations from general axioms and principles is a dangerous and



2 V. I. Arnol’d

damned method, leading to unavoidable mistakes) than the Cartesian theory (say-
ing that conformity to any reality is unrelated to science, which is the art of deducing
corollaries of arbitrary axioms).

Poincaré’s prediction of the most important problems for the coming 20th cen-
tury was: “to study the mathematics needed for the future development of quantum
physics and the theory of relativity.”

Comparing today the influence of Poincaré’s and Hilbert’s problems, one observes
that the mathematics of the 20th century has followed rather Poincaré’s sugges-
tions, be it in the development of topology, created by Poincaré (and being the main
achievement of 20th century mathematics), or of mathematical physics (where we
should mention first and foremost H. Weyl, a student of Hilbert whose contribu-
tions to quantum theory, especially to the discovery of the Schrödinger equation,
have remained unknown to most modern mathematicians), or of the ergodic the-
ory of chaos and of dynamical systems (originating in Poincaré’s works on celestial
mechanics and on ordinary differential equations).

These contributions of Poincaré have been mostly unnoticed by the historians of
science, and I shall describe only a few particular cases.

1. Bifurcation theory. Poincaré’s thesis contained the versal deformation theo-
rem (called by him “Lemma 4”) for holomorphic complete intersections. In modern
mathematics this basic statement of bifurcation theory (developed by Poincaré for
his study of the bifurcations of periodic orbits in the 3-body problem of celestial
mechanics) is usually attributed to Grothendieck, Malgrange and Thom.

Grothendieck and Thom studied this problem for many years in their neighbour-
ing offices at IHES, Bures-sur-Yvette. They never discussed this with each other,
and the relation between their results remained unknown to both of them.

The important difference was that Thom wished to extend the results of the
analytic case to the smooth case. While he did not succeed, he persuaded Malgrange
(who for several years had not believed in this possibility) that the versal deforma-
tion theorem should be true in the smooth case too.

After several years of hard work Malgrange proved Thom’s conjecture, which is
now the celebrated Malgrange theorem, basic for the whole of singularity theory.

However, neither Thom nor Malgrange have ever observed the relations of the
versal deformation theory to Poincaré’s thesis (and to his studies on the bifurcations
of periodic orbits, based on it).

While I was doing a simultaneous translation of Malgrange’s talk on his results
at a session of the International Congress of Mathematicians in Moscow (1966),
I was suddenly stopped by Malgrange, who observed (although he was unable to
understand my Russian words): “you are already translating some sentences which
I have not yet uttered in my talk.”

There was no written text to translate, but he had guessed correctly: the phrases
I used in my “simultaneous” translation did indeed emerge in his talk a few minutes
later.

Anyway, Poincaré’s bifurcation theory was elaborated by the Russian mathemati-
cians Pontryagin and Andronov already in the 1920s and 30s (due to the need to
apply these bifurcations to radiophysics).
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Andronov published (with complete proofs) the theory of the birth of a periodic
motion of a dynamical system under a generic loss of stability of an equilibrium
position, in the case when two eigenvalues of the linearised system cross the imagin-
ary axis, moving from the stable to the unstable complex half-plane.

Andronov’s theorem claims that (depending on the sign of some higher term of
the Taylor series) exactly two generic cases may occur: either the stability of the
equilibrium position is inherited by the new-born limit cycle (whose radius grows
like the square root of the difference between the new value of the parameter and
the value at the stability loss), or else the radius of the domain of attraction, which
decreases like the square root of the difference between the growing parameter value
and the future value at which stability will be destroyed, goes to zero at the moment
of loss of stability.

The first case is called mild stability loss; the new-born periodic motion-attractor
describes small oscillations near the old stationary regime. The second case is called
hard stability loss; the behaviour of the system after this stability loss is very far
from the equilibrium that loses its stability.

The proofs of these results of Andronov on bifurcations of phase portraits were
based on Pontryagin’s extension of Poincaré’s results in the holomorphic case to
the case of smooth systems of differential equations.

Poincaré’s versal deformation Lemma 4 provided an estimate of the degree of a
polynomial form to which the bifurcating system might be reduced by a change of
variables.

The degrees of these polynomials depend on the holomorphic branching of the
analytic implicit functions (in terms of the degree of degeneration of the principal
part). Their estimates form a part of the Newton polyhedron theory, known in
“modern mathematics” under the name of Puiseux, and depending on the complex
continuations of the real functions to which one applies the “Puiseux series” (which
Newton considered as his main contribution to mathematics).

Pontryagin had observed that one can eliminate all the complex variables theory
from these bifurcation studies, proving the corresponding theorems on the birth of
periodic motions for smooth dynamical systems, and Andronov used his results.

In the Poincaré–Pontryagin theory the practical problem of estimating the num-
ber of periodic orbits remains unsolved even in the simple case of perturbations of
the Lotka–Volterra integrable system (in the so-called 16th problem of Hilbert).

In this problem the unperturbed system of differential equations has the form

dx

dt
= x(a + bx + cy),

dy

dt
= y(p + qx + ry). (1)

It has a first integral if the coefficients of the right-hand side satisfy a certain
algebraic equation (a particular example is the Lotka–Volterra case, b = r = 0).

This first integral has the form

H(x, y) = xαyβzγ ,

where z = 1−x−y, for some suitable numbers α, β, γ and suitable linear coordinates
x, y depending on the initial system (1).

To obtain the new-born cycles, the general Poincaré–Pontryagin–Andronov the-
ory suggests studying the first integral variation, produced by variation of the
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dynamical system:

dx

dt
= x(a + bx + cy) + εf(x, y),

dy

dt
= y(p + qx + ry) + εg(x, y). (2)

This variation of the integral H is (in their approximation)

δH(h) = ε

∫
H(x,y)=h

(
∂H

∂x
f +

∂H

∂y
g

)
dt (3)

(integrating along one period of the periodic motion (x(t), y(t)) of the unperturbed
system (1) for which H(x, y) = h).

The difficult part of the theory is to understand the number of zeroes h of
the equation δH(h) = 0: is it bounded for the generic perturbations εf and εg?
The case where the perturbing functions f and g are second-degree polynomials
is needed for Hilbert’s 16th problem on the number of limit cycles of vector fields
whose components are second-degree polynomials.

The answer is still unknown, in spite of the nice theorem (by Khovanskii and
Varchenko): the number of solutions h of the corresponding equation δH(h) = 0 is
bounded in the case of the Hamiltonian unperturbed equations (instead of (1))

dx

dt
= −∂H

∂y
,

dy

dt
=

∂H

∂x
,

where H is a polynomial of known degree in x and y.
The Lotka–Volterra system (1) being non-Hamiltonian, its integral H is generi-

cally a transcendental function, and even in the case of rational numbers α, β and
γ the degree of the corresponding polynomial (and the genus of the corresponding
Abelian integral) are not bounded uniformly, and therefore the versal deformation
theory for these systems of bifurcations of periodic orbits is unknown both in the
smooth and in the holomorphic category, in spite of the fact that the right-hand
sides of the Lotka–Volterra system consist of polynomials of degree 2 (1).

2. Cohomology theory. One other typical example of the discoveries of Poincaré
neglected by the next generations is the invention of cohomology theory.

Kolmogorov, in inventing general cohomology theory in his four short notes in
C. R. Acad. Sci. Paris in 1935, stated that his main inspiration came from Gunther’s
“theory of functions of domains” (which term was used by Gunther to describe his
version of the “theory of distributions” or “theory of generalised functions” used
by him before the twenties to obtain existence and uniqueness theorems for the
differential equations of hydrodynamics).

Kolmogorov explained in his papers that his cohomology theory, a combinato-
rial algebraic theory, is a mathematical version of the general physical ideas of
incompressible fluid flows and of magnetic field potentials and Gaussian linking
numbers. He told me that all these ideas (including Dirac’s δ-function and its
higher-dimensional versions) were explicitly known to Poincaré, but that the few
pages of Poincaré’s exposition of these ideas were understood only by E. Cartan
(whose explanation of these remarks of Poincaré later inspired de Rham’s theo-
rems).
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It is possible that the formal level of rigour of what Poincaré published on
cohomology theory is not exactly what “modern mathematicians” would like. He
claimed, for instance, that the only two methods for teaching fractions is to cut,
at least theoretically, into equal parts either an apple or a round pie; any other
methods lead most students to rules like

1
2

+
1
3

=
2
5

(which is a simpler axiom than Dedekind’s theory of pairs of integers and than the
Grothendieck ring definition).

3. Sobolev equations. The modern attributions of mathematical discoveries
usually follow the name of the last person to find them (America is never called
Columbia).

L. Schwartz told me that Sobolev made a serious mistake, publishing his great
discoveries (on generalised solutions of partial differential equations) in a provin-
cial journal, using a little-known language, and that the main contribution of
Schwartz himself to this theory was a translation of Sobolev’s results (published
by Sobolev in French in C. R. Acad. Sci. Paris) into English in a widely read
journal. Sobolev told me that Schwartz did more, but I would like to repeat
Kolmogorov’s words that the contributions of Poincaré and Gunther (whose student
was Sobolev) should not be forgotten.

At the end of the 1950s Sobolev explained to me his classified results on the
oscillations of the fluid contents of rotating missiles, where he created the theory
of “Sobolev equations” (declassified in 1960).

Today I know that the “Sobolev equation” had been published and studied by
Poincaré in 1910 as the equation of hydrodynamics on rotating planets, in meteo-
rology. At present this Poincaré–Sobolev theory is applied mostly to the theories of
the atmospheres of Jupiter and Venus (in the case of the Earth it is also important,
providing cyclonic activity waves due to the rotation of the Earth).

Sobolev’s theory of Poincaré’s equation was based on a new class of function
spaces, discovered by him: the difference from the standard Hilbert space is the
Lorentzian signature of the quadratic form defining the (Finslerian) metric of this
Sobolev space.

Today these generalised Hilbert spaces are mostly called P-spaces (for Pontrya-
gin, who extended Sobolev’s Lorentzian metrics to the case of any finite number
of negative squares). Pontryagin had some difficulty publishing his results, since
Sobolev’s original paper was classified.

In the last few years the Poincaré–Sobolev theory has been combined (by Babin,
Makhalov and Nikolaenko) with the so-called KAM-theory of quasi-periodic
motions, providing new averaging results in the meteorology of a rotating planet.

4. Principle of relativity. Perhaps the most celebrated rediscovery of Poincaré’s
theories is Einstein’s principle of relativity.

Poincaré had published 10 years earlier, in 1895, a paper “on measurement of
time” in a philosophical journal. There he had clearly explained that the Galilean
or Newtonian notions of absolute space and absolute time have no empirical defi-
nitions, simultaneity being explicitly dependent on the way the clocks are synchro-
nised.
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According to Poincaré, the only scientific way to avoid this theoretical inconven-
ience is to postulate the complete independence of the true laws of nature from the
arbitrariness of the coordinate systems used to describe experiments.

In his paper Poincaré avoided the mathematical formulae (well known to him),
in order not to intimidate the philosophers with no mathematical background.

Minkowski, being a teacher of Einstein and a friend of Poincaré, had early sug-
gested to Einstein that he should study Poincaré’s theory, and Einstein did (though
never referring to this until a 1945 article).

The mathematical part of the “special theory of relativity” was also published
by Poincaré earlier than by Einstein (including the famous formula E = mc2).
However, Poincaré never claimed any priority, meeting Einstein at Solvay confer-
ences and being extremely friendly to him and willing to help him.

5. Lorentz transformations. It is interesting to know that the famous “Lorentz
transformations” of the special theory of relativity were also invented by Poincaré.

This discovery stemmed from Poincaré’s Sorbonne lectures on the theory of
electromagnetic fields and on Maxwell’s equations. In his lectures Poincaré mention-
ed that Lorentz had studied the symmetry group of Maxwell’s system of equations.
Trying to include Lorentz’s answer in his lecture, Poincaré started the proof, but
was unsuccessful.

Some days later he observed that even the simpler theory of infinitesimally small
transformations is strange: the infinitesimal symmetries should form a Lie algebra
and it was not the case in this example.

Calculating further, Poincaré proved that the expected “symmetries” did not
preserve Maxwell’s equations. In the end he decided to solve the symmetries prob-
lem himself. The resulting Lie group (and the Lie algebra of the infinitesimal
symmetries) were included by Poincaré in his course.

When he published his lectures, Poincaré chose for these newly-discovered trans-
formations the name “Lorentz transformations”, as they are known to everybody
today.

It is similarly interesting to know that the “Stokes Lemma”, basic both for
cohomology theory and for Maxwell’s theory of electromagnetic fields, was never
invented nor proved by Stokes. Namely, its discoverer was Sir Thompson, Lord
Kelvin (Stokes had transmitted Thompson’s result to the Cambridge Tripos Com-
mittee, and Maxwell, a student there, therefore called it the “Stokes Lemma”).

Strangely enough, I plagiarised Poincaré’s attribution of his result to Lorentz,
inventing the terms “Maslov index” and “Gudkov’s conjecture” in symplectic topo-
logy and real algebraic geometry.

Maslov told me that the integer I called the “Maslov index” in my report on
his thesis should not be attributed to him, because only its residue modulo 4 had
physical importance in the quasi-classical theory, while my integer was useless.

Gudkov objected that the conjecture (on the divisibility by 16 of a certain topo-
logical invariant of real plane algebraic curves) which I had attributed to him in
my review of his thesis was not conjectured by him, since he was aware of some
counterexamples.

Insisting on the relation of this conjecture to both the differential topology
of 4-manifolds and topological quantum field theory, I persuaded Gudkov that



Forgotten and neglected theories of Poincaré 7

his counterexamples were wrong, and at present Gudkov’s conjecture, proved by
Rokhlin, is one of the main results of real algebraic geometry. This science started
from Hilbert’s 16th problem on the possible disposition of the 11 ovals of a real
projective plane algebraic curve of degree 6. Hilbert claimed that there are only
two possible arrangements of the 11 ovals. Gudkov proved that Hilbert’s statement
was wrong, that there are 3 arrangements (and Gudkov’s conjecture implied the
absence of any other).

It is interesting to note that only two problems (the 13th and the 16th) of
Hilbert’s list, regarded by him as a testament of the 19th century to the 20th
century, are related to topology, which was the most active part of mathematics in
the 20th century.

And, while for plane curves of degree 6 Hilbert proposed a (wrong) answer,
claiming that he had proved it, the possible arrangements of the 22 ovals of a real
projective plane algebraic curve of degree 8 are still unknown even today.

In this problem there are 268,282,855 topologically possible arrangements. Gud-
kov’s conjecture and other restrictions known today reduce this number to about
90 cases. The number of known examples today exceeds 70. I don’t know the latest
upper and lower bounds, but this non-binary problem (in the sense of Poincaré) is
still unsolved (in spite of the fact that the general problem of the possible topo-
logical configurations of the algebraic curves of a given degree is one of the most
fundamental problems of mathematics, similar to the theory of ellipses and hyper-
bolas and much more important than, say, the binary Fermat problem).

6. Publishing Poincaré in Russian. The relativistic theory of Poincaré was
used by the Moscow mathematician Bogolyubov in a very unusual way.

About 1970 I proposed to the Moscow Academy of Sciences editorial board of
the “Classics” series to translate the main works of Poincaré into Russian. Unfortu-
nately, the answer I got from Academician Logunov, a former student of Bogolyubov
— and at the time chief editor of the “Classics” series — was negative. Logunov
wrote: “As you ought to know, the idealistic and Machist ideas of the weak philoso-
pher Poincaré were criticised in the 1909 book Materialism and Empiriocriticism
(by V. I. Lenin). Therefore a Russian edition of any work of Poincaré is impossible.”

My friends suggested a way to overcome Logunov. They explained to me that
the head of the Mathematics Department of the Academy, Bogolyubov, had a very
positive opinion of the works of Poincaré (which he extended himself in his papers on
averaging theory). He also had a very positive opinion of Arnol’d (having published
a book extending a result of Arnol’d). Therefore he might help to persuade Logunov
to publish the collected works of Poincaré in Russian.

I phoned to Nikolai Nikolaevich Bogolyubov, and he immediately invited me to
visit him at his apartment in the Moscow State University building at the Vorob’evy
Gory. There, after reading Logunov’s letter, he said the following clever words.

All three of us, he told me, — Poincaré, myself and you — are not just mathema-
ticians, we are also physicists and even natural scientists.

The approach of a natural scientist to all phenomena, even to such dangerous
phenomena as earthquakes and volcanic eruptions, is pragmatic: he tries to use
even the worse things as a source of new scientific progress (measuring, for example,
parameters of the interior structure of the planet).
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I shall show you now, he continued, how to use for the progress of science even
such a disagreeable phenomenon as the anti-Einsteinism and antisemitism of certain
individuals.

With these words he took a sheet of white paper, headed with all his distinctions:
senior member of the Academy of Sciences, director of the Joint Institute of Nuclear
Research, and so on. And he wrote:
“Dear Anatolii Alexeevich,

Together with professors Arnol’d and Oleinik, I am proposing to publish in the
“Classics” series of the Academy a project of selected works of Poincaré
in three large volumes, including the relativity papers which he published before
Einstein’s... .”

A few weeks later I got from Anatolii Alexeevich Logunov the needed agreement,
and the three volumes appeared in 1972 (including, for example, his New methods
of celestial mechanics, his Analysis situs, topology books and articles, his works
on automorphic functions (remembering that H. Poincaré had been quoted in the
Larousse dictionary of about 1925 as “the author of Fuchsian functions”), and also
his relativity papers).

This edition is accompanied by many comments on the present developments of
Poincaré’s ideas (written by the best modern experts), but no criticism of Einstein
(perhaps expected by Logunov).

7. Averaging theory. It is interesting to know the relation between Bogolyubov’s
averaging theory and that of Poincaré. Nikolai Nikolaevich told me (and had pub-
lished in his books) that while Poincaré had developed the averaging theory for the
Hamilton differential equations (of celestial mechanics), Bogolyubov’s goal was to
extend this theory of Poincaré to general, non-Hamiltonian, dynamical systems.

In preparing the Russian edition of Poincaré’s works, I discovered in his letters
his own description of his averaging theory. He claimed that this theory had been
developed earlier by the Swedish mathematician and astronomer Lindstedt, but
that, upon trying to apply Lindstedt’s general theory to the Hamilton differential
equations of celestial mechanics, he observed some specific (symplectic in mod-
ern terms) properties of the Hamiltonian systems, and therefore he described the
averaging theory for Hamiltonian systems as a specific theory, having its own goals
and techniques.

I must say that the final version of Bogolyubov is clearer and easier in practical
applications than Lindstedt’s original general theory, whose Hamiltonian generali-
sation was published by Poincaré and was dis-Hamiltonised later by Bogolyubov
(unaware, of course, of the works of Lindstedt).

The present theory of averaging of Hamiltonian systems is an enormous develop-
ment of Poincaré’s investigations (of what he had christened “the main problem
of dynamics”). Kolmogorov’s theorem on the persistence of invariant tori under
small perturbations of integrable Hamiltonian systems (1954) is a very important
example.

The last discoveries by M. Herman (a few months before he died) of the differ-
ences between the non-planar celestial mechanics of more than 3 bodies and the
3-body problem, which is the simplest non-integrable case studied by Poincaré,
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should be also mentioned, as well as Sevryuk’s theorem (preceding Herman’s
discoveries) on applications of the same theory of Diophantine approximations on
generic varieties, though Sevryuk did not use it in celestial mechanics applications,
of which he was unaware.

The theory of Diophantine approximations appears in these problems because of
the crucial influence of the resonances between the frequencies of the unperturbed
problems on the evolution of the perturbations.

One of the first observed manifestations of these resonances is the approximate
commensurability of the years of Saturn and Jupiter, the ratio of whose periods is
approximately 5 : 2 (Jupiter’s angular motion is about 299′′ per day, and that of
Saturn about 120′′).

The Poincaré averaging in the case of such a resonance leads to a large “secular
perturbation”, whose period is of order 103 years, but which is still periodic (like the
oscillation of a pendulum) near the unperturbed motion. It leads to the evolution
of the orbit in one direction during several centuries, which would destroy the solar
system if continued forever. Fortunately, it goes in the opposite direction for the
next several centuries, and the system remains planetary.

This interaction between the theory of dynamical systems and the statistics of
Diophantine approximations was discovered by Poincaré, who used it as a basic
tool in his works on celestial mechanics.

8. Kovalevskaya and Poincaré’s non-integrability theorem. I have read
recently in the Encyclopedia of mathematical physics that Poincaré was the author
of the celebrated results of S. Kovalevskaya on the new integrable case of the prob-
lem of rotation of a heavy rigid body, also formulated by him. Both Poincaré’s
contribution and Kovalevskaya’s discovery (for which Poincaré gave her an impor-
tant prize of the Paris Academy of Sciences) are important, but I prefer to explain
correctly what happened.

The problem had been formulated by Weierstrass, who suggested that his student
Kovalevskaya should apply Poincaré’s bifurcation theory of periodic orbits in celest-
ial mechanics to prove the absence of any new analytic first integral in the problem
of rotation of a heavy rigid body (where the previous integrable cases had been
discovered and studied by Lagrange and Euler).

Kovalevskaya was completely unsuccessful: she discovered the impossibility of
applying Poincaré’s method to her problem. In trying to understand the reasons for
her failure, she discovered that it is impossible to prove the conjecture of her teacher
for the following reason: the conjecture is wrong, there exist more integrable cases.

Her success was much greater than if she had confirmed Weierstrass’ conjec-
ture: Kovalevskaya’s case of integrability for the motion of a heavy rigid body
is today the turning point of a large new important “complete integrability” the-
ory of Hamiltonian systems, including such well-known models in mathematical
physics as the Korteweg–de Vries, Schrödinger, and sine-Gordon equations, the
Fermi–Pasta–Ulam numerical study of non-linear wave equations, and so on.

Poincaré never worked on these problems, at least he never mentioned his pre-
vious result in this direction when he evaluated the prize paper of Kovalevskaya.
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What Poincaré had discovered in his works on non-integrability in celestial
mechanics is an extremely important general theory, which he never published,
as far as I know.

The main idea of Poincaré’s non-integrability theorem is his description of the
influence of resonances on the bifurcations of periodic orbits for small generic per-
turbations of integrable systems.

Namely, the peculiar property of the periodic orbits of the integrable Hamiltonian
systems discovered by Poincaré is their appearance in continuous families together
with neighbouring periodic orbits.

For the generic non-integrable systems the periodic orbits are isolated closed
curves (on a constancy level of the Hamilton function). If one finds sufficiently
many such isolated closed curves for some system, then non-integrability would
follow.

In spite of this wonderful discovery of the topological difference between the
integrable and non-integrable cases, Poincaré avoided proving it completely: he
observed that a certain similar approximate property is already sufficient to prove
the impossibility of new analytic first integrals, and therefore published only a
detailed (and long) proof of this weaker result, rather than his great qualitative
topological discovery, from which this weaker result originated.

Modern Russian mathematicians (especially V.V. Kozlov) have recently pub-
lished a Poincaré-style proof of the fact that Kovalevskaya’s case is the only case
where Poincaré’s method does not provide a proof of non-integrability. In this sense
the suggestion of Weierstrass that Kovalevskaya should try to apply Poincaré’s
method was a good idea. However, it was done neither by Kovalevskaya nor by
Poincaré (the influence of whose ideas on this whole area is still crucial).

Many proofs of impossibility in mathematics involve a deeper understanding of
matters than a negative result on impossibility.

The Taylor series of the arctanx function diverges for |x| > 1, and one might
prove this by evaluating the coefficients. However the real reason for divergence
of the series is different: it is the singularity at the imaginary point x = i of the
derivative 1/(1 + x2) of the arctangent function.

Similarly, Abel’s theorem on the impossibility of solving algebraic equations
of degree 5 by radicals is a topological fact. These equations are topologically
unsolvable: no complex function of the same topological ramification as the root
x(a) of the algebraic equation x5 + ax + 1 = 0, can be represented as a finite
combination of radicals and univalent functions.

When proving that some simple behaviour is impossible, one should rather for-
mulate topological qualitative reasons for the impossibility, as a positive statement
about a complexity property of the behaviour of the object of study which makes
it different from any representation whose impossibility one wishes to prove.

Knowing many examples of such “topological impossibility” results, I must men-
tion that even Poincaré did not always formulate his results in this way, knowing
(at least intuitively) much more than he stated explicitly.

As a sad example of this general situation I shall mention results on the topolog-
ical impossibility of computing Abelian integrals of positive genus in elementary
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functions (say, of the elliptic integral

t(X) =
∫ X

0

dx√
x3 + ax + b

or of the elliptic function X(t): topological non-representability in terms of finite
combinations of elementary functions).

In 1963 I attributed to Abel the proof of the fact that no complex function,
topologically equivalent to t(X) or to X(t), is elementary. Unfortunately, Abel
did not publish the proof (nor even the exact formulation) of this impossibility
statement.

I hope that similar topological impossibility theorems will be published soon also
for the integration of differential equations “in quadratures”.

9. The statistics of continued fractions. Returning to the resonance studies
in the works of Poincaré on bifurcations of periodic orbits, I shall mention also some
of his non-mathematical results of great importance.

The statistics of the approximate commensurability of the periods of the motions
in celestial mechanics provides serious difficulties in the study of the longtime
behaviour of a perturbed system: will the Moon collide with the Earth? Will
Jupiter cross the Earth’s orbit?

The arithmetic statistics of random real numbers have been studied in Dio-
phantine approximation theory. The simplest case is the description of continued
fraction approximations

x = a0 +
1

a1 + 1
a2+

1
a3+···

. (4)

Here the question is what approximation x ≈ p/q of an irrational number x by
a rational fraction p/q is possible if q is not too large? For example, the classical
approximation

π ≈ 355
113

provides 6 digits of π ≈ 3.1415929 . . ., and it is known that the continued fraction
approximation (stopping at some ak) provides the best approximation.

But to understand how good it is, one should know how large the “continued
fraction elements” ak are. Stopping before a large ak, one obtains an excellent
approximation

x ≈ a0 +
1

a1 + 1
···+ 1

ak−1

.

But are there large numbers ak in the infinite continued fraction (4)?
For the golden ratio x =

√
5+1
2 = 1.6 . . . all the elements ak are equal to 1.

The statistics of the values of the elements ak for random x is known: the
frequency pn of the element n equals

pn =
1

ln 2
ln

(
1 +

1
n(n + 2)

)
(5)

(so more than 1/3 of the elements ak are equal to 1).
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Poincaré asked whether the observed statistics for the ratios of the measured
periods of motions in celestial mechanics would be similar to these theoretical pre-
dictions (5).

The story of this problem is complicated. The above formula for pn was known to
Gauss, but he never published its proof. The astronomers, following Poincaré, have
confirmed the similarity of the empirical observations to this prediction (H. Gyldén,
“Quelques remarques relativement à la représentation des nombres irrationnels par
des fractions continues”, C. R. Acad. Sci. Paris 107 (1888), 1584–1587).

Later, the Swedish mathematician Wiman published a 250-page article on this
problem (A. Wiman, “Über eine Warscheinlichkeitsaufgabe bei Kettenbruchent-
wickelungen”, Acad. Förh. Stockholm 57 (1900), 589–841), but I was unable to
understand whether he proved (5), so long is his paper.

The first known proof of formula (5) was published by R. O. Kuz’min in 1928. It
is well explained in the nice book by Khinchin (A. Khinchin, Continued fractions,
Nauka, Moscow 1978). Khinchin’s version is based on the Birkhoff ergodic theo-
rem. But Birkhoff’s proof of this theorem (suggested already by Boltzmann and
Poincaré) appeared later than Kuz’min’s article.

Therefore, one should reconsider the papers of Wiman (1900) and Kuz’min
(1928) — do they contain a proof of the ergodic theorem? They needed it for
the system x 7→ (fractional part of 1/x).

Gauss had observed the invariant measure
∫

dx
1+x for this map A : (0, 1) → (0, 1).

Invariance of a measure under the map A is the identity meas(A−1M) = meas(M)

for any measurable set M . Formula (5) corresponds to the set
1

n + 1
6 x <

1
n

,

where the integer part of 1/x is n.
It is well known that Birkhoff’s proof of the ergodic theorem was a byproduct

of his examination of von Neumann’s weaker version of it; it would be interesting
to understand its relations to the works of Poincaré, Wiman and Kuz’min on the
statistics of continued fractions.

10. Poincaré’s last geometric theorem. Among many other interesting ideas
of Poincaré, I shall mention his “last geometric theorem”. The modern formu-
lation of this basic result of symplectic topology was not formally published by
Poincaré, whose paper contains instead the main ideas of a Morse-theoretic proof
of it. Understanding well that these ideas were insufficient for a rigorous proof, he
claimed only that he had verified the result in several hundreds of particular cases,
and that he was leaving the search for a full proof to the coming generations of
mathematicians.

The simplest conjecture of Poincaré in this area was proved a few years after his
death by G.D. Birkhoff: an area-preserving map of a plane annulus onto itself that
rotates the boundary circles in opposite directions has at least 2 fixed points.

The general form (still unproved, as far as I know, in its full generality, but
verified for many hundreds of examples) replaces the annulus by a compact closed
symplectic manifold (the symplectic structure being a closed non-degenerate exter-
ior differential 2-form on a 2n-dimensional smooth manifold).
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The area preservation condition and the boundary rotation condition are replaced
in the general case by the following description of the map of the symplectic mani-
fold M2n onto itself. It should be the time-one diffeomorphism of the phase flow
gt : M2n → M2n defined by a Hamiltonian vector field v on M2n:

dgt(x)
dt

= v(gt(x)), g0(x) = x.

I recall that a Hamiltonian vector field v on a symplectic manifold M2n (with the
symplectic structure ω) is determined by a smooth Hamilton function H : M2n → R
by the formula

ω(v(x), w) = −dH(w)

for any tangent vector w of the manifold M2n at the same point x:

v(x) ∈ TxM2n, w ∈ TxM2n.

In the classical case (of the “Darboux coordinates” p and q) the symplectic
structure is ω = dp ∧ dq and the Hamiltonian vector field defines the Hamilton
differential equations:

dp

dt
= −∂H

∂q
,

dq

dt
=

∂H

∂p
.

Poincaré’s rotation condition is represented in the above general case by the
condition that the Hamilton function H(p, q; t) (depending on the time variable t
as a parameter) is a univalued function, rather than a differential form.

The torus translation corresponding to H(p, q) = p is a counterexample to the
existence of the fixed points (for gt(p, q) = (p, q + t)).

The generalised “Poincaré’s Last Geometric Theorem” claims the existence of at
least m fixed points of the map gt : M2n → M2n determined by a univalued Hamil-
ton function H(p, q; t), where m(M2n) is the Morse number (being the minimal
number of critical points of a smooth function on M2n).

One might consider here either generic (non-degenerate) Morse functions and
maps g, or one might admit arbitrary degeneration (both of the functions in the
definition of the Morse number m and of the fixed points of the symplectomor-
phism g). The conjecture is probably true in both cases (while the two statements
do not follow one from the other).

Poincaré’s original case of an annulus is very close to the case of the 2-torus
M2 = S1 × S1, for which m = 4 (the torus surface representing both sides of the
two-sided annulus).

In this case Poincaré’s conjecture was proved by Birkhoff. Later Arnol’d proved
it for maps g which are not too far from the identity map (on any closed symplectic
manifold).

Conley and Zehnder then proved the conjecture for the 2n-torus M2n = (S1)2n

(where the Morse number is m = 22n, counting the critical points and fixed points
with their natural multiplicities).

Floer extended these results to many Kählerian manifolds (including the genus
g surfaces, where the Morse number is m = 2g + 2).
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There are many useful particular cases (including products of the preceding
manifolds) where the conjecture has been recently proved (mostly using some
Floer-type versions of quantum field theory).

In spite of announcements of proofs of the general conjecture, I am unaware of
any successful proof of it. By the way, in most papers the upper estimate of the
number of fixed points by the Morse number is replaced by the inequality

(number of the fixed points) 6
(
b∗ =

∑
bi

)
in terms of the Betti numbers bi.

The Morse theory inequality m > b∗ is well known, and m = b∗ in many examples
(like tori and the surfaces mentioned above). However the general “Poincaré’s Last
Geometric Theorem” conjecture

(number of fixed points) 6 (Morse number m)

is stronger than the above upper estimate in terms of Betti numbers and should
not be mixed up with it.

11. Perturbation theory and symplectic topology. Returning to Poincaré’s
perturbation theory, which led to all these results in symplectic topology, I shall
mention one more forgotten corollary of his approach.

The influence of a simple resonance on the first approximation of the perturba-
tion theory leads, according to the Poincaré averaging, to a generalised pendulum
“equation of slow and small oscillations near the resonance”. It is a Lagrangian
natural mechanical system whose configuration space is a circle (of the slowly vary-
ing resonant phase), the potential energy being a smooth function on this circle
and the kinetic energy having the standard form ap2 (for some constant a).

This “generalised pendulum” equation can be easily integrated, providing a nice
description of the resonant events (at time scales of order at least

√
1/ε for small

perturbations of order ε).
A similar Poincaré-type problem for the intersection of two resonant zones is far

from being investigated, in spite of its extreme importance for understanding the
influence of resonances on the slow evolution of perturbed systems (with more than
2 degrees of freedom).

Namely, the “pendulum” equation is replaced in the 2-resonance case by a
Lagrangian dynamical system whose configuration space is the 2-torus T 2 = S1×S1.
The potential energy is a smooth function U : T 2 → R.

The kinetic energy is a translation-invariant quadratic form of the tangent vectors
of the torus. It can be written, for suitable coordinates q1, q2 on the torus, in the
form a1q̇

2
1 +a2q̇

2
2 , which may have an arbitrary signature, depending on the system

which we are perturbing.
The above coordinates q1 and q2 are not, in general, the standard angular coor-

dinates on the torus: the torus is described in these terms as

T 2 = R2/(ω1Z + ω2Z),

for some linearly independent vectors ω1, ω2 in the plane R2 with coordinates q1, q2.
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In some cases the kinetic energy is positive definite. In such cases one under-
stands many geometric properties of the generalised pendulum equation (even when
it is not integrable), using the topological methods of global variational calculus.

For instance, there exist closed orbits in any homotopy class of closed curves
on the torus (parallel, meridian and so on), namely, the shortest curve for the
Jacobi–Maupertuis metric is such a closed orbit. One is also able to find “homoclinic
and heteroclinic” orbits of Poincaré (approaching asymptotically a periodic orbit
or two periodic orbits as t → +∞ and as t → −∞).

These topological results are very useful for studying the evolution due to the
resonances, but they are unfortunately missing in the case of the Lorentzian metrics,
where a1a2 < 0.

One might formulate the first questions in this direction as follows.
1) Does there exist (generically) a periodic orbit in any homotopy class of closed

curves on the torus (or at least in most classes, taking into account the possible
variants of the Diophantine approximation properties of the two light-directions
where the kinetic energy vanishes, with respect to the lattice generated by ω1 and
ω2)?

2) Does there exist (generically) a heteroclinic connecting orbit between two
given homotopy classes of asymptotic closed orbits for t → +∞ and t → −∞?

Both the theoreticians and the authors with practical experience have claimed
many times that there should be more instability (and faster “Arnol’d diffusion”)
in the Lorentzian (hyperbolic) case than in the Riemannian (elliptic) case a1a2 > 0.

However, this (natural) conjecture has never been proved, and one is still waiting
for Floer-type homologies and periodic-orbit theorems in the Lorentzian metric
cases.

12. Fruitful mistakes. In preparing the Russian edition of Poincaré’s collected
works, I was obliged to discuss also his mistakes (and the resulting development in
several branches of mathematics).

I shall include in this survey only the two well-known cases: the non-integrability
question in the 3-body problem and the Poincaré conjecture on S3.

The Swedish king Oscar II formulated a crucial problem of celestial mechanics:
knowing or supposing the divergence of the series of perturbation theory, prove the
non-existence of converging approximations in the 3-body problem (for the infinite
time interval where the motion should be approximated).

Poincaré got the prize for his proof of the non-existence of a new analytic first
integral (in the domain of the phase space corresponding to the perturbed Keplerian
elliptic motions).

But these results of Poincaré contradicted the Sundman theory of regularisation
of collisions. Namely, this theory implies the analytic dependence of the solutions
on the initial conditions in some domain of the complex time t axis containing the
whole real time axis (with a neighbourhood of diminishing radius for large |t|).

By the Riemann theorem this neighbourhood is a complex diffeomorphic image
of the (open) unit disc. Parametrising it by this disc, one obtains a representation of
the solutions by functions holomorphic in the disc. Their Taylor series converge
inside the disc, providing a convergent series approximation of the initial solution
along the whole real time axis.
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The contradiction does not invalidate any of Poincaré’s non-integrability results
or proofs. Simply the absence of new analytic integrals does not imply the answer
to the prize problem: it invalidates some perturbation theories, rather than the
existence of any convergent series representation of the solution.

Understanding this, Poincaré spent his prize to buy all the copies of his article
in Acta Mathematika containing the prize result, so that he could rewrite it, have
it printed again, and send the new copies to all the subscribers and libraries.

The resulting new version later became the celebrated New methods of celestial
mechanics. Seeing the story today, I understand that the non-integrability results
of Poincaré (and especially his ideas leading to these results, published by him
only partially) were far more important than the formal “binary problem” of the
Swedish king.

Fortunately, all these famous problems, degrees and prizes (including even the
Hilbert problems, the Nobel Prizes and the Fields medals) have had little influ-
ence on the development of the science, and the works of, say, Weyl and Morse,
Leray and Whitney, Kolmogorov and Pontryagin, Petrovskii and Turing, and
Shannon and Moser represent the best of 20th century mathematics, in spite of
the absence of these names on the Fields list.

The “Poincaré conjecture” was proved by Poincaré as a theorem. However, later
he observed that some of his lemmas were wrong. His mistake lay in confusing
homology and homotopy (for curves).

The results of this serious mistake were wonderful. First, Poincaré created both
homology and homotopy theories, carefully distinguishing them. For example, his
descriptions of monodromy and the theory of automorphic functions are clearly
homotopical, depending on the highly non-commutative properties of the funda-
mental group.

On the other hand, his studies of the ramifications of multiple integrals (known
today as the “Picard–Lefschetz theory” and as the “Gauss–Manin connection”),
especially in his works on the asymptotic expansions of perturbing functions in
celestial mechanics, are purely homological (or even cohomological) works, as well
as his transformation of the “Kronecker characteristic” (generalising the “Sturm
characteristics”) into the notions of the index of a singular point of a vector field,
the degree of a map, intersection rings and linking theory.

Poincaré himself constructed a counterexample to his wrong statement (claim-
ing that a homology sphere is homeomorphic to the true sphere), which he associ-
ated with the dodecahedron and which might be written today in the form of the
Brieskorn sphere E8 in C3:

x3 + y5 + z2 = 0, |x|2 + |y|2 + |z2| = 1.

This exotic (homology) sphere of Poincaré is a predecessor of the 28 Milnor
spheres, which are smooth manifolds homeomorphic to the usual 7-sphere S7 but
pairwise non-diffeomorphic (and hence 27 of them are not diffeomorphic to S7).

Each Milnor sphere is defined in C5 by the system of 3 real equations,

x6k−1 + y3 + u2 + v2 + w2 = 0,

|x|2 + |y|2 + |u|2 + |v|2 + |w|2 = 1.
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To get the 28 exotic spheres one should take k = 1, 2, . . . , 28. Exactly one of the
choices produces a manifold strangely diffeomorphic to the usual sphere S7.

The corrected version of Poincaré’s conjecture states that any closed simply
connected 3-manifold is homeomorphic to the 3-sphere.

The corresponding characterisation of the 2-sphere follows from the classification
of surfaces.

Starting from dimension 5 one should add to the “simply connected” condition
π1(M3) = 0 the conditions that the higher homotopy groups vanish: πk(Mn) = 0
for all k < n. In this case the manifold is homeomorphic to the sphere Sn (“Smale’s
theorem”).

So the mild dimensions (n = 3 and 4) remain the most difficult cases of the
Poincaré problem.

It was announced that the corrected Poincaré conjecture for the sphere S3 was
proved recently by G. Perel’man.

In a Russian official scientific newspaper his result was formulated in the follow-
ing way: “Poincaré proved that any closed path on the two-sphere can be deformed
to the trivial loop of a single point while remaining on the two-sphere. The cel-
ebrated Poincaré problem was to prove that this statement is still true for the
three-dimensional sphere S3. Our young mathematician G. Perel’man has recently
proved it.”

I think that we should write correct descriptions of what is happening, otherwise
the image of mathematics and mathematicians in the eyes of the general public
would be too negative.

One of the last corollaries of the Poincaré conjecture that I have seen in the
library is the following theorem (M. Eisermann, “Vassiliev invariants and the Poin-
caré conjecture”, Topology 43:5 (2004), 1211–1230): the Poincaré conjecture would
follow from the statement that the Vassiliev invariants of knots distinguish any two
different knots.

I hope that the reader has seen many knots and does understand the difficult
mathematical problem of the classification of knots.

In fact, this mathematical problem had been first formulated explicitly by a
physicist, Sir Thompson, Lord Kelvin. His idea had been to explain the Mendeleev
periodic table of chemical elements by some microscopic geometric structure inside
the nuclei of atoms.

Trying to choose a convenient discrete structure, he suggested supposing that it
is a small knot, whose geometric and topological properties are responsible for the
chemical peculiarities of different atoms. So he started to classify knots (studying
plane projections of them with few self-intersections of the projected closed curve).

Even to understand, upon looking at two projections, whether they might
represent the same knot (that is, where one closed space curve can be trans-
formed continuously into the other while remaining free of self-intersections during
the deformation) is a difficult task: such combinatorial problems are close to the
so-called algorithmically unsolvable problems (a celebrated example of an algorith-
mically unsolvable problem is the problem of recognising whether a given finite
system of polynomial equations with integer coefficients has an integer solution).
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For the distinction of knots people invented knot invariants: characteristics of
the projections which are algorithmically computable and which take equal values
on any two representations of the same knot.

The Vassiliev invariants are special knot invariants whose position in the space
of arbitrary knot invariants is similar to the position of the polynomials in the
space of arbitrary functions.

These invariants are closely related to such branches of mathematics as singular-
ity theory, complex integration theory, graph theory, the theory of configuration
spaces, Lie algebras and quantum field theory.

They represented a happy part of the almost uncomputable invariants theory of
knots, but the general pessimistic opinion has been that, for just this reason, they
form too small a part of the complicated world of invariants, insufficient for the
goal of distinguishing different knots.

This new and highly unexpected application of the topological ideas of Poincaré
is restoring the priority of the simplest things: in spite of their unsophisticated
nature, the Vassiliev invariants (invented only 15 years ago) are universal. One
hopes that they contain all the knot invariants (in the sense that any invariant is a
function of the simplest Vassiliev invariants).

This result would never have been possible without the Poincaré conjecture, and
thus without Poincaré’s mistake (of confusing homotopy with homology) which
produced, in the end, these wonderful corollaries.

I think, in general, that the mistakes form an extremely important part of sci-
entific activity; their role is sometimes greater than that of the formal proofs and
dull axioms. One should study the histories of the mistakes of previous generations
of scientists, using their experiences as instructive examples and as sources of new
discoveries. The mistakes of the greatest persons are the most useful.
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