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Abstract

Descendants of algebraic kingdoms of high dimensions, enchanted by
the magic of Thurston and Donaldson, lost in the whirlpools of the Ricci
flow, topologists dream of an ideal land of manifolds – perfect crystals of
mathematical structure which would capture our vague mental images of
geometric spaces. We browse through the ideas inherited from the past
hoping to penetrate through the fog which conceals the future.

1 Ideas and Definitions.

We are fascinated by knots and links. Where does this feeling of beauty and
mystery come from? To get a glimpse at the answer let us move by 25 million
years in time.

25 × 106 is, roughly, what separates us from orangutans: 12 million years to
our common ancestor on the phylogenetic tree and then 12 million years back
by another branch of the tree to the present day orangutans.

But are there topologists among orangutans?
Yes, there definitely are: many orangutans are good at ”proving” the triv-

iality of elaborate knots, e.g. they fast master the art of untying boats from
their mooring when they fancy taking rides downstream in a river, much to the
annoyance of people making these knots with a different purpose in mind.

A more amazing observation was made by a zoo-psychologist Anne Russon
in mid 90’s at Wanariset Orangutan Reintroduction Project (see p. 114 in [68]).

”... Kinoi [a juvenile male orangutan], when he was in a possession of a
hose, invested every second in making giant hoops, carefully inserting one end
of his hose into the other and jamming it in tight. Once he’d made his hoop,
he passed various parts of himself back and forth through it – an arm, his head,
his feet, his whole torso – as if completely fascinated with idea of going through
the hole.”

Playing with hoops and knots, where there is no visible goal or any practical
gain – be it an ape or a 3D-topologist – appears fully ”non-intelligent” to a
practically minded observer. But we, geometers, feel thrilled at seeing an animal
whose space perception is so similar to ours.
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It is unlikely, however, that Kinoi would formulate his ideas the way we
do and that, unlike our students, he could be easily intimidated into accepting
”equivalence classes of atlases” and ”ringed spaces” as appropriate definitions
of his topological playground. (Despite such display of disobedience, we would
enjoy the company of young orangutans; they are charmingly playful creatures,
unlike the aggressive and reckless chimpanzees – our nearest evolutionary neigh-
bors.)

Apart from topology, orangutans do not rush to accept another human def-
inition, namely that of ”tools”, as of

”external detached objects (to exclude a branch used for climbing a tree)
employed for reaching specific goals”.

(The use of tools is often taken by zoo-psychologists for a measure of ”intel-
ligence” of an animal.)

Being imaginative arboreal creatures, orangutans prefer a broader definition:
For example (see [68]):

● they bunch up leaves to make wipers to clean their bodies without detach-
ing the leaves from a tree;

● they often break branches but deliberately leave them attached to trees
when it suits their purposes – these could not have been achieved if orangutans
were bound by the ”detached” definition.

Morale. Our best definitions, e.g. that of a manifold, tower as prominent
landmarks over our former insights. Yet, we should not be hypnotized by defi-
nitions. After all, they are remnants of the past and tend to misguide us when
we try to probe the future.

Remark. There is a non-trivial similarity between the neurological structures
underlying the behaviour of playful animals and that of working mathematicians
(see [31]).
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2 Homotopies and Obstructions.

For more than half a century, starting from Poincaré, topologists have been
laboriously stripping their beloved science of its geometric garments.

”Naked topology”, reinforced by homological algebra, reached its to-day
breathtakingly high plateau with the following

Serre [Sn+N → SN ]-Finiteness Theorem. (1951) There are at most
finitely many homotopy classes of maps between spheres Sn+N → SN but for
the two exceptions:

● equivi-dimensional case where n = 0 πN(SN) = Z; the homotopy class of a
map SN → SN in this case is determined by an integer that is the degree of a
map.

(Brouwer 1912, Hopf 1926. We define degree in section 4.) This is expressed
in the standard notation by writing

πN(SN) = Z.

● Hopf case, where N is even and n = 2N − 1. In this case π2N−1(SN) contains
a subgroup of finite index isomorphic to Z.

It follows that
the homotopy groups πn+N(SN) are finite for N >> n,

where, by the Freudenthal suspension theorem of 1928 (this is easy),
the groups πn+N(SN) for N ≥ n do not depend on N .

These are called the stable homotopy groups of spheres and are denoted πstn .
H. Hopf proved in 1931 that the map f ∶ S3 → S2 = S3/T, for the group

T ⊂ C of the complex numbers with norm one which act on S3 ⊂ C2 by (z1, z2) ↦
(tz1, tz2), is non-contractible.

In general, the unit tangent bundle X = UT (S2k) → S2k has finite homology
Hi(X) for 0 < i < 4k − 1. By Serre’s theorem, there exists a map S4k−1 → X of
positive degree and the composed map S4k−1 → X → S2k generates an infinite
cyclic group of finite index in π4k−1(S2k).

The proof by Serre – a geometer’s nightmare – consists in tracking a multi-
tude of linear-algebraic relations between the homology and homotopy groups
of infinite dimensional spaces of maps between spheres and it tells you next to
nothing about the geometry of these maps. (See [58] for a ”semi-geometric”
proof of the finiteness of the stable homotopy groups of spheres and section 5
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of this article for a related discussion. Also, the construction in [23] may be
relevant.)

Recall that the set of the homotopy classes of maps of a sphere SM to
a connected space X makes a group denoted πM(X), (π is for Poincaré who
defined the fundamental group π1) where the definition of the group structure
depends on distinguished points x0 ∈ X and s0 ∈ SM . (The groups πM defined
with different x0 are mutually isomorphic, and if X is simply connected, i.e.
π1(X) = 1, then they are canonically isomorphic.)

This point in SM may be chosen with the representation of SM as the one
point compactification of the Euclidean space RM , denoted RM● , where this
infinity point ● is taken for s0. It is convenient, instead of maps Sm = Rm● →
(X,x0), to deal with maps f ∶ RM → X ”with compact supports”, where the
support of an f is the closure of the (open) subset supp(f) = suppx0(f) ⊂ Rm
which consists of the points s ∈ Rm such that f(s) ≠ x0.

A pair of maps f1, f2 ∶ RM → X with disjoint compact supports obviously
defines ”the joint map” f ∶ RM →X, where the homotopy class of f (obviously)
depends only on those of f1, f2, provided supp(f1) lies in the left half space
{s1 < 0} ⊂ Rm and supp(f2) ⊂ {s1 > 0} ⊂ RM , where s1 is a non-zero linear
function (coordinate) on RM .

The composition of the homotopy classes of two maps, denoted [f1] ⋅ [f2],
is defined as the homotopy class of the joint of f1 moved far to the left with f2

moved far to the right.
Geometry is sacrificed here for the sake of algebraic convenience: first, we

break the symmetry of the sphere SM by choosing a base point, and then we
destroy the symmetry of RM by the choice of s1. If M = 1, then there are
essentially two choices: s1 and −s1, which correspond to interchanging f1 with
f2 – nothing wrong with this as the composition is, in general, non-commutative.

In general M ≥ 2, these s1 ≠ 0 are, homotopically speaking, parametrized
by the unit sphere SM−1 ⊂ RM . Since SM−1 is connected for M ≥ 2, the
composition is commutative and, accordingly, the composition in πi for i ≥ 2 is
denoted [f1] + [f2]. Good for algebra, but the O(M + 1)-ambiguity seems too
great a price for this. (An algebraist would respond to this by pointing out that
the ambiguity is resolved in the language of operads or something else of this
kind.)

But this is, probably, unavoidable. For example, the best you can do for
maps SM → SM in a given non-trivial homotopy class is to make them symmet-
ric (i.e. equivariant) under the action of the maximal torus Tk in the orthogonal
group O(M + 1), where k =M/2 for even M and k = (M + 1)/2 for M odd.

And if n ≥ 1, then, with a few exceptions, there are no apparent symmetric
representatives in the homotopy classes of maps Sn+N → SN ; yet Serre’s theorem
does carry a geometric message.

If n ≠ 0,N − 1, then every continuous map f0 ∶ Sn+N → SN is homotopic to
a map f1 ∶ Sn+N → SN of dilation bounded by a constant,

dil(f1) =def sup
s1≠s2∈Sn+N

dist(f(s1), f(s2))
dist(s1, s2)

≤ const(n,N).

Dilation Questions. (1) What is the asymptotic behaviour of const(n,N)
for n,N →∞?
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For all we know the Serre dilation constant constS(n,N) may be bounded
for n → ∞ and, say, for 1 ≤ N ≤ n − 2, but a bound one can see offhand is that
by an exponential tower (1 + c)(1+c)

(1+c)...

, of height N , since each geometric
implementation of the homotopy lifting property in a Serre fibrations may bring
along an exponential dilation. Probably, the (questionably) geometric approach
to the Serre theorem via ”singular bordisms” (see [75], [23],[1] and section 5)
delivers a better estimate.

(2) Let f ∶ Sn+N → SN be a contractible map of dilation d, e.g. f equals the
m-multiple of another map where m is divisible by the order of πn+N(SN).

What is, roughly, the minimum Dmin =D(d,n,N) of dilations of maps F of
the unit ball Bn+N+1 → SN which are equal to f on ∂(Bn+N+1) = Sn+N?

Of course, this dilation is the most naive invariant measuring the ”geometric
size of a map”. Possibly, an interesting answer to these questions needs a more
imaginative definition of ”geometric size/shape” of a map, e.g. in the spirit of
the minimal degrees of polynomials representing such a map.

Serre’s theorem and its descendants underly most of the topology of the
high dimensional manifolds. Below are frequently used corollaries which relate
homotopy problems concerning general spaces X to the homology groups Hi(X)
(see section 4 for definitions) which are much easier to handle.

[Sn+N → X]-Theorems. Let X be a compact connected triangulated or
cellular space, (defined below) or, more generally, a connected space with finitely
generated homology groups Hi(X), i = 1,2, ... . If the space X is simply con-
nected, i.e. π1(X) = 1, then its homotopy groups have the following properties.

(1) Finite Generation. The groups πm(X) are (Abelian!) finitely generated
for all m = 2,3, ....

(2) Sphericity. If πi(X) = 0 for i = 1,2,N − 1, then the (obvious) Hurewicz
homomorphism

πN(X) →HN(X),

which assigns, to a map SN → X, the N -cycle represented by this N -sphere in
X, is an isomorphism. (This is elementary, Hurewicz 1935.)

(3) Q-Sphericity. If the groups πi(X) are finite for i = 2,N −1 (recall that we
assume π1(X) = 1), then the Hurewicz homomorphism tensored with rational
numbers,

πN+n(X) ⊗Q→HN+n(X) ⊗Q,

is an isomorphism for n = 1, ...,N − 2.
Because of the finite generation property, The Q-sphericity is equivalent to
(3’) Serre m-Sphericity Theorem. Let the groups πi(X) be finite (e.g.

trivial) for i = 1,2, ...,N − 1 and n ≤ N − 2. Then
an m-multiple of every (N +n)-cycle in X for some m ≠ 0 is homologous to

an (N + n)-sphere continuously mapped to X;
every two homologous spheres SN+n →X become homotopic when composed

with a non-contractible i.e. of degree m ≠ 0, self-mapping Sn+N → Sn+N . In
more algebraic terms, the elements s1, s2 ∈ πn+N(X) represented by these spheres
satisfy ms1 −ms2 = 0.

The following is the dual of the m-Sphericity.

6



Serre [→ SN ]Q- Theorem. Let X be a compact triangulated space of
dimension n +N , where either N is odd or n < N − 1.

Then a non-zero multiple of every homomorphism HN(X) → HN(SN) can
be realized by a continuous map X → SN .

If two continuous maps are f, g ∶ X → SN are homologous, i.e. if the ho-
mology homomorphisms f∗, g∗ ∶ HN(X) → HN(SN) = Z are equal, then there
exists a continuous self-mapping σ ∶ SN → SN of non-zero degree such that the
composed maps σ ○ f and σ ○ f ∶X → SN are homotopic.

These Q-theorems follow from the Serre finiteness theorem for maps between
spheres by an elementary argument of induction by skeletons and rudimentary
obstruction theory which run, roughly, as follows.

Cellular and Triangulated Spaces. Recall that a cellular space is a
topological space X with an ascending (finite or infinite) sequence of closed
subspaces X0 ⊂X1 ⊂ ... ⊂Xi ⊂ ... called he i-skeleta of X, such that ⋃i(Xi) =X
and such that

X0 is a discrete finite or countable subset.
every Xi, i > 0 is obtained by attaching a countably (or finitely) many i-balls

Bi to Xi−1 by continuous maps of the boundaries Si−1 = ∂(Bi) of these balls to
Xi−1.

For example, if X is a triangulated space then it comes with homeomorphic
embeddings of the i-simplices ∆i →Xi extending their boundary maps, ∂(∆i) →
Xi−1 ⊂ Xi where one additionally requires (here the word ”simplex”, which is,
topologically speaking, is indistinguishable from Bi, becomes relevant) that the
intersection of two such simplices ∆i and ∆j imbedded into X is a simplex ∆k

which is a face simplex in ∆i ⊃ ∆k and in ∆j ⊃ ∆k.
If X is a non-simplicial cellular space, we also have continuous maps Bi →Xi

but they are, in general, embeddings only on the interiors Bi ∖ ∂(Bi), since the
attaching maps ∂(Bi) → Xi−1 are not necessarily injective. Nevertheless, the
images of Bi in X are called closed cells, and denoted Bi ⊂Xi, where the union
of all these i-cells equals Xi.

Observe that the homotopy equivalence class of Xi is determined by that
of Xi−1 and by the homotopy classes of maps from the spheres Si−1 = ∂(Bi)
to Xi−1. We are free to take any maps Si−1 → Xi−1 we wish in assembling a
cellular X which make cells more efficient building blocks of general spaces than
simplices.

For example, the sphere Sn can be made of a 0-cell and a single n-cell.
If Xi−1 = Sl for some l ≤ i−1 (one has l < i−1 if there is no cells of dimensions

between l and i − 1) then the homotopy equivalence classes of Xi with a single
i-cell one-to-one correspond to the homotopy group πi−1(Sl).

On the other hand, every cellular space can be approximated by a homotopy
equivalent simplicial one, which is done by induction on skeletons Xi with an
approximation of continuous attaching maps by simplicial maps from (i − 1)-
spheres to Xi−1.

Recall that a homotopy equivalence between X1 and X2 is given by a pair
of maps f12 ∶ X1 → X2 and f21 ∶ X2 → X1, such that both composed maps
f12 ○ f21 ∶X1 →X1 and f21 ○ f12 ∶X2 →X2 are homotopic to the identity.

Obstructions and Cohomology. Let Y be a connected space such that
πi(Y ) = 0 for i = 1, ..., n − 1 ≥ 1, let f ∶ X → Y be a continuous map and let
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us construct, by induction on i = 0,1, ..., n − 1, a map fnew ∶ X → Y which is
homotopic to f and which sends Xn−1 to a point y0 ∈ Y as follows.

Assume f(Xi−1) = y0. Then the resulting map Bi
f→ Y , for each i-cell Bi

from Xi, makes an i-sphere in Y , because the boundary ∂Bi ⊂ Xi−1 goes to a
single point – our to y0 in Y .

Since πi(Y ) = 0, this Bi in Y can be contracted to y0 without disturbing its
boundary. We do it all i-cells from Xi and, thus, contract Xi to y0. (One can
not, in general, extend a continuous map from a closed subset X ′ ⊂X to X, but
one always can extend a continuous homotopy f ′t ∶ X ′ → Y , t ∈ [0,1], of a given
map f0 ∶ X → Y , f0∣X ′ = f ′0, to a homotopy ft ∶ X → Y for all closed subsets
X ′ ⊂X, similarly to how one extends R-valued functions from X ′ ⊂X to X.)

The contraction of X to a point in Y can be obstructed on the n-th step,
where πn(Y ) ≠ 0, and where each oriented n-cell Bn ⊂ X mapped to Y with
∂(Bn) → y0 represents an element c ∈ πn(Y ) which may be non-zero. (When
we switch an orientation in Bn, then c↦ −c.)

We assume at this point, that our space X is a triangulated one, switch from
Bn to ∆n and observe that the function c(∆n) is (obviously) an n-cocycle in X
with values in the group πn(Y ), which means (this is what is longer to explain
for general cell spaces) that the sum of c(∆n) over the n+2 face-simplices ∆n ⊂
∂∆n+1 equals zero, for all ∆n+1 in the triangulation (if we canonically/correctly
choose orientations in all ∆n).

The cohomology class [c] ∈ Hn(X;πn(X)) of this cocycle does not depend
(by an easy argument) on how the (n − 1)-skeleton was contracted. Moreover,
every cocycle c′ in the class of [c] can be obtained by a homotopy of the map
on Xn which is kept constant on Xn−2. (Two A-valued n-cocycles c and c′,
for an abelian group A, are in the same cohomology class if there exists an
A-valued function d(∆n−1) on the oriented simplices ∆n−1 ⊂ Xn−1, such that
∑∆n−1⊂∆n d(∆n−1) = c(∆n) − c′(∆n) for all ∆n. The set of the cohomology
classes of n-cocycles with a natural additive structure is called the cohomology
group Hn(X;A). It can be shown that Hn(X;A) depends only on X but not an
a particular choice of a triangulation of X. See section 4 for a lighter geometric
definitions of homology and cohomology.)

In particular, if dim(X) = n we, thus, equate the set [X → Y ] of the ho-
motopy classes of maps X → Y with the cohomology group Hn(X;πn(X)).
Furthermore, this argument applied to X = Sn shows that πn(X) = Hn(X)
and, in general, that

the set of the homotopy classes of maps X → Y equals the set of homomor-
phisms Hn(X) →Hn(Y ), provided πi(Y ) = 0 for 0 < i < dim(X).

Finally, when we use this construction for proving the above Q-theorems
where one of the spaces is a sphere, we keep composing our maps with self-
mappings of this sphere of suitable degree m ≠ 0 that kills the obstructions by
the Serre finiteness theorem.

For example, if X is a finite cellular space without 1-cells, one can define the
homotopy multiple l∗X, for every integer l, by replacing the attaching maps of all
(i+1)-cells, Si →Xi, by lki-multiples of these maps in πi(Xi) for k2 << k3 << ...,
where this l∗X comes along with a map l∗X → X which induces isomorphisms
on all homotopy groups tensored with Q.

The obstruction theory (developed by Eilenberg in 1940 following Pontrya-
gin’s 1938 paper) well displays the logic of algebraic topology: the geometric
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symmetry of X (if there was any) is broken by an arbitrary triangulation or
a cell decomposition and then another kind of symmetry, an Abelian algebraic
one, emerges on the (co)homology level.

(See [56] for a comprehensive overview of algebraic and geometric topology.)
Serre’s idea is that the homotopy types of finite simply connected cell com-

plexes as well as of finite diagrams of continuous maps between these are finitary
arithmetic objects which can be encoded by finitely many polynomial equations
and non-equalities with integer coefficients, and where the structural organiza-
tion of the homotopy theory depends on non-finitary objects which are inductive
limits of finitary ones, such as the homotopy types of spaces of continuous maps
between finite cell spaces.

3 Generic Pullbacks.

A common zero set of N smooth (i.e. infinitely differentiable) functions fi ∶
Rn+N → R, i = 1, ...N , may be very nasty even for N = 1 – every closed subset
in Rn+1 can be represented as a zero of a smooth function. However, if the
functions fi are taken in general position, then the common zero set is a smooth
n-submanifold in Rn+N .

Here and below, ”f in general position” or ”generic f”, where f is an element
of a topological space F , e.g. of the space of C∞-maps with the C∞-topology,
means that what we say about f applies to all f in an open and dense subset
in F . (Sometimes, one allows not only open dense sets in the definition of
genericity but also their countable intersections.)

Generic smooth (unlike continuous) objects are as nice as we expect them
to be; the proofs of this ”niceness” are local-analytic and elementary (at least
in the cases we need); everything trivially follows from Sard’s theorem + the
implicit function theorem.

The representation of manifolds with functions generalizes as follows..
Generic Pullback Construction (Pontryagin 1938, Thom 1954). Start

with a smooth N -manifold V , e.g. V = RN or V = SN , and let X0 ⊂ V be
a smooth submanifold, e.g. 0 ∈ RN or a point x0 ∈ SN . Let W be a smooth
manifold of dimension M , e.g. M = n +N .

if f ∶W → V is a generic smooth map, then the pullback X = f−1(X0) ⊂W is
a smooth submanifold in W with codimW (X) = codimV (X0), i.e. M−dim(X) =
N − dim(X0).

Moreover, if the manifolds W , V and X0 are oriented, then X comes with
a natural orientation.

Furthermore, if W has a boundary then X is a smooth submanifold in W
with a boundary ∂(X) ⊂ ∂(W ).

Examples. (a) Let f ∶ W ⊂ V ⊃ X0 be a smooth, possibly non-generic,
embedding of W into V . Then a small generic perturbation f ′ ∶ W → V of
f remains an embedding, such that image W ′ = f ′(W ) ⊂ V in V becomes
transversal (i.e. nowhere tangent) to X0. One sees with the full geometric
clarity (with a picture of two planes in the 3-space which intersect at a line)
that the intersection X = W ′ ∩X0(= (f ′)−1(X0)) is a submanifold in V with
codimV (X) = codimV (W ) + codimV (X0).
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(b) Let f ∶ S3 → S2 be a smooth map and S1, S2 ∈ S3 be the pullbacks of two
generic points s1, s2 ∈ S2. These Si are smooth closed curves; they are naturally
oriented, granted orientations in S2 and in S3.

Let Di ⊂ B4 = ∂(S3), i = 1,2, be generic smooth oriented surfaces in the ball
B4 ⊃ S3 = ∂(B4) with their oriented boundaries equal Si and let h(f) denote
the intersection index (defined in the next section) between Di.

Suppose, the map f is homotopic to zero, extend it to a smooth generic map
ϕ ∶ B4 → S2 and take the ϕ-pullbacks Dϕ

i = ϕ−1(si) ⊂ B4 of si.
Let S4 be the 4-sphere obtained from the two copies of B4 by identifying

the boundaries of the balls and let Ci =Di ∪Dϕ
i ⊂ S4.

Since ∂(Di) = ∂(Dϕ
i ) = Si, these Ci are closed surfaces; hence, the intersec-

tion index between them equals zero (because they are homologous to zero in
S4, see the next section), and since Dϕ

i do not intersect, the intersection index
h(f) between Di is also zero.

It follows that non-vanishing of the Hopf invariant h(f) implies that f is
non-homotopic to zero.

For instance, the Hopf map S3 → S2 is non-contractible, since every two
transversal flat dicks Di ⊂ B4 ⊂ C2 bounding equatorial circles Si ⊂ S3 intersect
at a single point.

The essential point of the seemingly trivial pull-back construction, is that
starting from ”simple manifolds” X0 ⊂ V and W , we produce complicated and
more interesting ones by means of ”complicated maps” W → V . (It is next
to impossible to make an interesting manifold with the ”equivalence class of
atlases” definition.)

For example, if V = R, and our maps are functions on W , we can generate
lots of them by using algebraic and analytic manipulations with functions and
then we obtain maps to RN by taking N -tuples of functions.

And less obvious (smooth generic) maps, for all kind of V and W , come as
smooth generic approximations of continuous maps W → V delivered by the
algebraic topology.

Following Thom (1954) one applies the above to maps into one point com-
pactifications V● of open manifolds V where one still can speak of generic pull-
backs of smooth submanifolds X0 in V ⊂ V● under maps W → V●

Thom spaces. The Thom space of an N -vector bundle V → X0 over a
compact space X0 (where the pullbacks of all points x ∈X0 are Euclidean spaces
RNx = RN ) is the one point compactifications V● of V , where X0 is canonically
embedded into V ⊂ V● as the zero section of the bundle (i.e. x↦ 0 ∈ RNx ).

If X =Xn ⊂W =Wn+N is a smooth submanifold, then the total space of its
normal bundle denoted U⊥ →X is (almost canonically) diffeomorphic to a small
(normal) ε-neighbourhood U(ε) ⊂W of X, where every ε-ball BN(ε) = BNx (ε)
normal to X at x ∈X is radially mapped to the fiber RN = RNx of U⊥ →X at x.

Thus the Thom space U⊥● is identified with U(ε)● and the tautological map
W● → U(ε)●, that equals the identity on U(ε) ⊂ W and sends the complement
W ∖ U(ε) to ● ∈ U(ε)●, defines the Atiyah-Thom map for all closed smooth
submanifold X ⊂W ,

A⊥● ∶W● → U⊥● .

Recall that every RN -bundle over an n-dimensional space with n < N , can
be induced from the tautological bundle V over the Grassmann manifold X0 =
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GrN(Rn+N) of N -planes (i.e. linear N -subspaces in Rn+N ) by a continuous
map, say G ∶X →X0 = GrN(Rn+N).

For example, if X ⊂ Rn+N , one can take the normal Gauss map for G that
sends x ∈ X to the N -plane G(x) ∈ GrN(Rn+N) = X0 which is parallel to the
normal space of X at x.

Since the Thom space construction is, obviously, functorial, every U⊥-bundle
inducing map X → X0 = GrN(Rn+N) for X = Xn ⊂W =Wn+N , defines a map
U⊥● → V● and this, composed with A⊥● , gives us the Thom map

T● ∶W● → V● for the tautological N -bundle V →X0 = GrN(Rn+N).

Since all n-manifolds can be (obviously) embedded (by generic smooth maps)
into Euclidean spaces Rn+N , N >> n, every closed, i.e. compact without bound-
ary, n-manifold X comes from the generic pullback construction applied to maps
f from Sn+N = Rn+N● to the Thom space V● of the canonical N -vector bundle
V →X0 = GrN(Rn+N),

X = f−1(X0) for generic f ∶ Sn+N → V● ⊃X0 = GrN(Rn+N).

In a way, Thom has discovered the source of all manifolds in the world
and responded to the question ”Where are manifolds coming from?” with the
following

1954 Answer. All closed smooth n-manifolds X come as pullbacks of the
Grassmannians X0 = GrN(Rn+N) in the ambient Thom spaces V● ⊃ X0 under
generic smooth maps Sn+N → V●.

The manifolds X obtained with the generic pull-back construction come with
a grain of salt: generic maps are abundant but it is hard to put your finger on
any one of them – we can not say much about topology and geometry of an
individual X. (It seems, one can not put all manifolds in one basket without
some ”random string” attached to it.)

But, empowered with Serre’s theorem, this construction unravels an amazing
structure in the ”space of all manifolds” (Before Serre, Pontryagin and following
him Rokhlin proceeded in the reverse direction by applying smooth manifolds
to the homotopy theory via the Pontryagin construction.)

Selecting an object X, e.g. a submanifold, from a given collection X of
similar objects, where there is no distinguished member X⋆ among them, is a
notoriously difficult problem which had been known since antiquity and can be
traced to De Cael of Aristotle. It reappeared in 14th century as Buridan’s ass
problem and as Zermelo’s choice problem at the beginning of 20th century.

A geometer/analyst tries to select an X by first finding/constructing a ”value
function” on X and then by taking the ”optimal” X. For example, one may go
for n-submanifolds X of minimal volumes in an (n +N)-manifold W endowed
with a Riemannian metric. However, minimal manifolds X are usually singular
except for hypersurfaces Xn ⊂Wn+1 where n ≤ 6 (Simons, 1968).

Picking up a ”generic” or a ”random” X from X is a geometer’s last resort
when all ”deterministic” options have failed. This is aggravated in topology,
since

● there is no known construction delivering all manifolds X in a reasonably
controlled manner besides generic pullbacks and their close relatives;
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● on the other hand, geometrically interesting manifolds X are not anybody’s
pullbacks. Often, they are ”complicated quotients of simple manifolds”, e.g.
X = S/Γ, where S is a symmetric space, e.g. the hyperbolic n-space, and Γ is a
discrete isometry group acting on S, possibly, with fixed points.

(It is obvious that every surface X is homeomorphic to such a quotient, and
this is also so for compact 3-manifolds by a theorem of Thurston. But if n ≥ 4,
one does not know if every closed smooth manifold X is homeomorphic to such
an S/Γ. It is hard to imagine that there are infinitely many non-diffeomorphic
but mutually homeomorphic S/Γ for the hyperbolic 4-space S, but this may be
a problem with our imagination.)

Starting from another end, one has ramified covers X → X0 of ”simple”
manifolds X0, where one wants the ramification locus Σ0 ⊂X0 to be a subvariety
with ”mild singularities” and with an ”interesting” fundamental group of the
complement X0∖Σ0, but finding such Σ0 is difficult (see the discussion following
(3) in section 7).

And even for simple Σ0 ⊂ X0, the description of ramified coverings X → X0

where X are manifolds may be hard. For example, this is non-trivial for ramified
coverings over the flat n-torus X0 = Tn where Σ0 is the union of several flat
(n−2)-subtori in general position where these subtori may intersect one another.

4 Duality and the Signature.

Cycles and Homology. If X is a smooth n-manifold X one is inclined to define
”geometric i-cycles” C in X, which represent homology classes [C] ∈ Hi(X),
as ”compact oriented i-submanifolds C ⊂ X with singularities of codimension
two”.

This, however, is too restrictive, as it rules out, for example, closed self-
intersecting curves in surfaces, and/or the double covering map S1 → S1.

Thus, we allow C ⊂ X which may have singularities of codimension one,
and, besides orientation, a locally constant integer valued function on the non-
singular locus of C.

First, we define dimension on all closed subsets in smooth manifolds with the
usual properties of monotonicity, locality and max-additivity, i.e. dim(A∪B) =
max(dim(A), dim(B)).

Besides we want our dimension to be monotone under generic smooth maps
of compact subsets A, i.e. dim(f(A)) ≤ dim(A) and if f ∶ Xm+n → Y n is a
generic map, then f−1(A) ≤ dim(A) +m.

Then we define the ”generic dimension” as the minimal function with these
properties which coincides with the ordinary dimension on smooth compact
submanifolds. This depends, of course, on specifying ”generic” at each step,
but this never causes any problem in-so-far as we do not start taking limits of
maps.

An i-cycle C ⊂X is a closed subset in X of dimension i with a Z-multiplicity
function on C defined below, and with the following set decomposition of C.

C = Creg ∪C× ∪Csing,

such that
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● Csing is a closed subset of dimension≤ i − 2.
● Creg is an open and dense subset in C and it is a smooth i-submanifold in

X.
C× ∪ Csing is a closed subset of dimension ≤ i − 1. Locally, at every point,

x ∈ C× the union Creg ∪C× is diffeomorphic to a collection of smooth copies of
Ri+ in X, called branches, meeting along their Ri−1-boundaries where the basic
example is the union of hypersurfaces in general position.

● The Z-multiplicity structure, is given by an orientation of Creg and a
locally constant multiplicity/weight Z-function on Creg, (where for i = 0 there
is only this function and no orientation) such that the sum of these oriented
multiplicities over the branches of C at each point x ∈ C× equals zero.

Every C can be modified to C ′ with empty C ′
× and if codim(C) ≥ 1, i.e.

dim(X) > dim(C), also with weights = ±1.
For example, if 2l oriented branches of Creg with multiplicities 1 meet at

C×, divide them into l pairs with the partners having opposite orientations,
keep these partners attached as they meet along C× and separate them from
the other pairs.

No matter how simple, this separation of branches is, say with the total
weight 2l, it can be performed in l! different ways. Poor C ′ burdened with this
ambiguity becomes rather non-efficient.

If X is a closed oriented n-manifold, then it itself makes an n-cycle which
represents what is called the fundamental class [X] ∈ Hn(X). Other n-cycles
are integer combinations of the oriented connected components of X.

It is convenient to have singular counterparts to manifolds with boundaries.
Since ”chains” were appropriated by algebraic topologists, we use the word
”plaque”, where an (i + 1)-plaque D with a boundary ∂(D) ⊂ D is the same as
a cycle, except that there is a subset ∂(D)× ⊂ D×, where the sums of oriented
weights do not cancel, where the closure of ∂(D)× equals ∂(D) ⊂ D and where
dim(∂(D) ∖ ∂(D)×) ≤ i − 2.

Geometrically, we impose the local conditions on D∖∂(D) as on (i+1)-cycles
and add the local i-cycle conditions on (the closed set) ∂(D), where this ∂(D)
comes with the canonical weighted orientation induced from D.

(There are two opposite canonical induced orientations on the boundary
C = ∂D, e.g. on the circular boundary of the 2-disc, with no apparent rational
for preferring one of the two. We choose the orientation in ∂(D) defined by the
frames of the tangent vectors τ1, ..., τi such that the orientation given to D by
the (i+ 1)-frames ν, τ1, ..., τi agrees with the original orientation, where ν is the
inward looking normal vector.)

Every plaque can be ”subdivided” by enlarging the set D× (and/or, less
essentially, Dsing). We do not care distinguishing such plaques and, more gen-
erally, the equality D1 =D2 means that the two plaques have a common subdi-
vision.

We go further and write D = 0 if the weight function on Dreg equals zero.
We denote by −D the plaque with the either minus weight function or with

the opposite orientation.
We define D1 +D2 if there is a plaque D containing both D1 and D2 as its

sub-plaques with the obvious addition rule of the weight functions.
Accordingly, we agree that D1 =D2 if D1 −D2 = 0.
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On Genericity. We have not used any genericity so far except for the defini-
tion of dimension. But from now on we assume all our object to be generic. This
is needed, for example, to define D1 +D2, since the sum of arbitrary plaques is
not a plaque, but the sum of generic plaques, obviously, is.

Also if you are used to genericity, it is obvious to you that
If D ⊂ X is an i-plaque (i-cycle) then the image f(D) ⊂ Y under a generic

map f ∶X → Y is an i-plaque (i-cycle).
Notice that for dim(Y ) = i + 1 the self-intersection locus of the image f(D)

becomes a part of f(D)× and if dim(Y ) = i + 1, then the new part the ×-
singularity comes from f(∂(D)).

It is even more obvious that
the pullback f−1(D) of an i-plaque D ⊂ Y n under a generic map f ∶Xm+n →

Y n is an (i+m)-plaque in Xm+n; if D is a cycle and Xm+n is a closed manifold
(or the map f is proper), then f−1(D) is cycle.

As the last technicality, we extend the above definitions to arbitrary tri-
angulated spaces X, with ”smooth generic” substituted by ”piecewise smooth
generic” or by piecewise linear maps.

Homology. Two i-cycles C1 and C2 in X are called homologous, written
C1 ∼ C2, if there is an (i+1)-plaqueD inX×[0,1], such that ∂(D) = C1×0−C2×1.

For example every contractible cycle C ⊂X is homologous to zero, since the
cone over C in Y = X × [0,1] corresponding to a smooth generic homotopy
makes a plaque with its boundary equal to C.

Since small subsets in X are contractible, a cycle C ⊂ X is homologous to
zero if and only if it admits a decomposition into a sum of ”arbitrarily small
cycles”, i.e. if, for every locally finite covering X = ⋃iUi, there exist cycles
Ci ⊂ Ui, such that C = ∑iCi.

The homology group Hi(X) is defined as the Abelian group with generators
[C] for all i-cycles C in X and with the relations [C1] − [C2] = 0 whenever
C1 ∼ C2.

Similarly one defines Hi(X; Q), for the field Q of rational numbers, by al-
lowing C and D with fractional weights.

Examples. Every closed orientable n-manifold X with k connected compo-
nents has Hn(X) = Zk, where Hn(X) is generated by the fundamental classes
of its components.

This is obvious with our definitions since the only plaques D in X × [0,1]
with ∂(D) ⊂ ∂(X × [0,1]) = X × 0 ∪ X × 1 are combination of the connected
components of X × [0,1] and so Hn(X) equals the group of n-cycles in X.
Consequently,

every closed orientable manifold X is non-contractible.
The above argument may look suspiciously easy, since it is even hard to

prove non-contractibility of Sn and issuing from this the Brouwer fixed point
theorem within the world of continuous maps without using generic smooth or
combinatorial ones, except for n = 1 with the covering map R → S1 and for S2

with the Hopf fibration S3 → S2.
The catch is that the difficulty is hidden in the fact that a generic image of

an (n + 1)-plaque (e.g. a cone over X) in X × [0,1] is again an (n + 1)-plaque.
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What is obvious, however without any appeal to genericity is that H0(X) =
Zk for every manifold or a triangulated space with k components.

The spheres Sn have Hi(Sn) = 0 for 0 < i < n, since the complement to a
point s0 ∈ Sn is homeomorphic to Rn and a generic cycles of dimension < nmisses
s0, while Rn, being contractible, has zero homologies in positive dimensions.

It is clear that continuous maps f ∶ X → Y , when generically perturbed,
define homomorphisms f∗i ∶Hi(X) →Hi(Y ) for C ↦ f(C) and that

homotopic maps f1, f2 ∶ X → Y induce equal homomorphisms Hi(X) →
Hi(Y ).

Indeed, the cylinders C×[0,1] generically mapped to Y ×[0,1] by homotopies
ft, t ∈ [0,1], are plaque D in our sense with ∂(D) = f1(C) − f2(C).

It follows, that the
homology is invariant under homotopy equivalences X ↔ Y for manifolds

X,Y as well as for triangulated spaces.
Similarly, if f ∶Xm+n → Y n is a proper (pullbacks of compact sets are com-

pact) smooth generic map between manifolds where Y has no boundary, then
the pullbacks of cycles define homomorphism, denoted, f ! ∶Hi(Y ) →Hi+m(X),
which is invariant under proper homotopies of maps.

The homology groups are much easier do deal with than the homotopy
groups, since the definition of an i-cycle in X is purely local, while ”spheres
in X” can not be recognized by looking at them point by point. (Holistic
philosophers must feel triumphant upon learning this.)

Homologically speaking, a space is the sum of its parts: the locality allows
an effective computation of homology of spaces X assembled of simpler pieces,
such as cells, for example.

The locality+additivity is satisfied by the generalized homology functors that
are defined, following Sullivan, by limiting possible singularities of cycles and
plaques [6]. Some of these, e.g. bordisms we meet in the next section.

Degree of a Map. Let f ∶ X → Y be a smooth (or piece-wise smooth)
generic map between closed connected oriented equidimensional manifolds

Then the degree deg(f) can be (obviously) equivalently defined either as the
image f∗[X] ∈ Z =Hn(Y ) or as the f !-image of the generator [●] ∈H0(Y ) ∈ Z =
H0(X). For, example, l-sheeted covering maps X → Y have degrees l. Similarly,
one sees that

finite covering maps between arbitrary spaces are surjective on the rational
homology groups.

To understand the local geometry behind the definition of degree, look closer
at our f where X (still assumed compact) is allowed a non-empty boundary and
observe that the f -pullback Ũy ⊂X of some (small) open neighbourhood Uy ⊂ Y
of a generic point y ∈ Y consists of finitely many connected components Ũi ⊂ Ũ ,
such that the map f ∶ Ũi → Uy is a diffeomorphism for all Ũi.

Thus, every Ũi carries two orientations: one induced from X and the second
from Y via f . The sum of +1 assigned to Ũi where the two orientation agree
and of −1 when they disagree is called the local degree degy(f).

If two generic points y1, y2 ∈ Y can be joined by a path in Y which does not
cross the f -image f(∂(X)) ⊂ Y of the boundary of X, then degy1(f) = degy2(f)
since the f -pullback of this path, (which can be assumed generic) consists,
besides possible closed curves, of several segments in Y , joining ±1-degree points
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in f−1(y1) ⊂ Ũy1 ⊂X with ∓1-points in f−1(y2) ⊂ Ũy2 .
Consequently, the local degree does not depend on y if X has no boundary.

Then, clearly, it coincides with the homologically defined degree.
Similarly, one sees in this picture (without any reference to homology) that

the local degree is invariant under generic homotopies F ∶X × [0,1] → Y , where
the smooth (typically disconnected) pull-back curve F −1(y) ⊂ X × [0,1] joins
±1-points in F (x,0)−1(y) ⊂X =X×0 with ∓1-points in F (x,1)−1(y) ⊂X =X×1.

Geometric Versus Algebraic Cycles. Let us explain how the geometric
definition matches the algebraic one for triangulated spaces X.

Recall that the homology of a triangulated space is algebraically defined with
Z-cycles which are Z-chains, i.e. formal linear combinations Calg = ∑s ks∆i

s of
oriented i-simplices ∆i

s with integer coefficients ks, where, by the definition of
”algebraic cycle” , these sums have zero algebraic boundaries, which is equiv-
alent to c(Calg) = 0 for every Z-cocycle c cohomologous to zero (see chapter
2).

But this is exactly the same as our generic cycles Cgeo in the i-skeleton

Xi of X and, tautologically, Calg
taut↦ Cgeo gives us a homomorphism from the

algebraic homology to our geometric one.
On the other hand, an (i + j)-simplex minus its center can be radially ho-

motoped to its boundary. Then the obvious reverse induction on skeleta of the
triangulation shows that the space X minus a subset Σ ⊂X of codimension i+1
can be homotoped to the i-skeleton Xi ⊂X.

Since every generic i-cycle C misses Σ it can be homotoped to Xi where the
resulting map, say f ∶ C →Xi, sends C to an algebraic cycle.

At this point, the equivalence of the two definitions becomes apparent, where,
observe, the argument applies to all cellular spaces X with piece-wise linear
attaching maps.

The usual definition of homology of such an X amounts to working with all
i-cycles contained in Xi and with (i+1)-plaques in Xi+1. In this case the group
of i-cycles becomes a subspace of the group spanned by the i-cells, which shows,
for example, that the rank of Hi(X) does not exceed the number of i-cells in
Xi.

We return to generic geometric cycles and observe that if X is a non-compact
manifold, one may drop ”compact” in the definition of these cycles. The result-
ing group is denoted H1(X,∂∞). If X is compact with boundary, then this
group of the interior of X is called the relative homology group Hi(X,∂(X)).
(The ordinary homology groups of this interior are canonically isomorphic to
those of X.)

Intersection Ring. The intersection of cycles in general position in a
smooth manifold X defines a multiplicative structure on the homology of an
n-manifold X, denoted

[C1] ⋅ [C2] = [C1] ∩ [C2] = [C1 ∩C2] ∈Hn−(i+j)(X)

for [C1] ∈Hn−i(X) and [C2] ∈Hn−j(X),
where [C] ∩ [C] is defined by intersecting C ⊂ X with its small generic pertur-
bation C ′ ⊂X.

(Here genericity is most useful: intersection is painful for simplicial cycles
confined to their respective skeleta of a triangulation. On the other hand, if X
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is a not a manifold one may adjust the definition of cycles to the local topology
of the singular part of X and arrive at what is called the intersection homology.)

It is obvious that the intersection is respected by f ! for proper maps f ,
but not for f∗. The former implies. in particular, that this product is invari-
ant under oriented (i.e. of degrees +1) homotopy equivalences between closed
equidimensional manifolds. (But X ×R, which is homotopy equivalent to X has
trivial intersection ring, whichever is the ring of X.)

Also notice that the intersection of cycles of odd codimensions is anti-commutative
and if one of the two has even codimension it is commutative.

The intersection of two cycles of complementary dimensions is a 0-cycle, the
total Z-weight of which makes sense if X is oriented; it is called the intersection
index of the cycles.

Also observe that the intersection between C1 and C2 equals the intersection
of C1 ×C2 with the diagonal Xdiag ⊂X ×X.

Examples. (a) The intersection ring of the complex projective space CP k is
multiplicatively generated by the homology class of the hyperplane, [CP k−1] ∈
H2k−2(CP k), with the only relation [CP k−1]k+1 = 0 and where, obviously,
[CP k−i] ⋅ [CP k−j] = [CP k−(i+j)].

The only point which needs checking here is that the homology class [CP i]
(additively) generates Hi(CP k), which is seen by observing that CP i+1 ∖CP i,
i = 0,1, ..., k − 1, is an open (2i + 2)-cell, i.e. the open topological ball B2i+2

op

(where the cell attaching map ∂(B2i+2) = S2i+1 → CP i is the quotient map
S2i+1 → S2i+1/T = CP i+1 for the obvious action of the multiplicative group T of
the complex numbers with norm 1 on S2i+1 ⊂ C2i+1).

(b) The intersection ring of the n-torus is isomorphic to the exterior algebra
on n-generators, i.e. the only relations between the multiplicative generators
hi ∈ Hn−1(Tn) are hihj = −hjhi, where hi are the homology classes of the n
coordinate subtori Tn−1

i ⊂ Tn.
This follows from the Künneth formula below, but can be also proved directly

with the obvious cell decomposition of Tn into 2n cells.
The intersection ring structure immensely enriches homology. Additively,

H∗ = ⊕iHi is just a graded Abelian group – the most primitive algebraic object
(if finitely generated) – fully characterized by simple numerical invariants: the
rank and the orders of their cyclic factors.

But the ring structure, say on Hn−2 of an n-manifold X, for n = 2d defines
a symmetric d-form, on Hn−2 = Hn−2(X) which is, a polynomial of degree d in
r variables with integer coefficients for r = rank(Hn−2). All number theory in
the world can not classify these for d ≥ 3 (to be certain, for d ≥ 4).

One can also intersect non-compact cycles, where an intersection of a com-
pact C1 with a non-compact C2 is compact; this defines the intersection pairing

Hn−i(X) ⊗Hn−j(X,∂∞) ∩→Hn−(i+j)(X).

Finally notice that generic 0 cycles C in X are finite sets of points x ∈ X
with the ”orientation” signs ±1 attached to each x in C, where the sum of these
±1 is called the index of C. If X is connected, then ind(C) = 0 if and only if
[C] = 0.

Thom Isomorphism. Let p ∶ V → X be a fiber-wise oriented smooth
(which is unnecessary) RN -bundle over X, where X ⊂ V is embedded as the zero
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section and let V● be Thom space of V . Then there are two natural homology
homomorphisms.

Intersection ∩ ∶ Hi+N(V●) → Hi(X). This is defined by intersecting generic
(i +N)-cycles in V● with X.

Thom Suspension S● ∶ Hi(X) → Hi(V●), where every cycle C ⊂ X goes to
the Thom space of the restriction of V to C, i.e. C ↦ (p−1(C))● ⊂ V●.

These ∩ and S● are mutually reciprocal. Indeed (∩ ○ S●)(C) = C for all
C ⊂ X and also (S● ○ ∩)(C ′) ∼ C ′ for all cycles C ′ in V● where the homology is
established by the fiberwise radial homotopy of C ′ in V● ⊃ V , which fixes ● and
move each v ∈ V by v ↦ tv. Clearly, tC ′ → (S● ○ ∩)(C ′) as t→∞ for all generic
cycles C ′ in V●.

Thus we arrive at the Thom isomorphism

Hi(X) ↔Hi+N(V●).

Similarly we see that
The Thom space of every RN -bundle V → X is (N − 1)-connected, i.e.

πj(V●) = 0 for j = 1,2, ...N − 1.
Indeed, a generic j-sphere Sj → V● with j < N does not intersect X ⊂ V ,

where X is embedded into V by the zero section. Therefore, this sphere radially
(in the fibers of V ) contracts to ● ∈ V●.

Euler Class. Let f ∶ X → B be a fibration with R2k-fibers over a smooth
closed oriented manifold B. Then the intersection indices of 2k-cycles in B with
B ⊂ X, embedded as the zero section, defines an integer cohomology class, i.e.
a homomorphism (additive map) e ∶ H2k(B) → Z ⊂ Q, called the Euler class of
the fibration. (In fact, one does not need B to be a manifold for this definition.)

Observe that the Euler number vanishes if and only if the homology pro-
jection homomorphism 0f∗2k ∶ H2k(V ∖B; Q) → H2k(B; Q) is surjective, where
B ⊂ X is embedded by the zero section b ↦ 0b ∈ Rkb and 0f ∶ V ∖B → B is the
restriction of the map (projection) f to V ∖B.

Moreover, it is easy to see that the ideal in H∗(B) generated by the Euler
class (for the ⌣-ring structure on cohomology defined later in this section) equals
the kernel of the cohomology homomorphism 0f

∗ ∶H∗(B) →H∗(V ∖B).
If B is a closed connected oriented manifold, then e[B] is called the Euler

number of X → B also denoted e.
In other words, the number e equals the self-intersection index of B ⊂ X.

Since the intersection pairing is symmetric on H2k the sign of the Euler number
does not depend on the orientation of B, but it does depend on the orientation
of X.

Also notice that if X is embedded into a larger 4k-manifold X ′ ⊃X then the
self-intersection index of B in X ′ equals that in X.

If X equals the tangent bundle T (B) then X is canonically oriented (even
if B is non-orientable) and the Euler number is non-ambiguously defined and it
equals the self-intersection number of the diagonal Xdiag ⊂X ×X.

Poincaré-Hopf Formula. The Euler number e of the tangent bundle T (B)
of every closed oriented 2k-manifold B satisfies

e = χ(B) = ∑
i=0,1,...k

rank(Hi(X; Q)).
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It is hard the believe this may be true! A single cycle (let it be the fundamental
one) knows something about all of the homology of B.

The most transparent proof of this formula is, probably, via the Morse theory
(known to Poincaré) and it hardly can be called ”trivial”.

A more algebraic proof follows from the Künneth formula (see below) and
an expression of the class [Xdiag] ∈H2k(X ×X) in terms of the intersection ring
structure in H∗(X).

The Euler number can be also defined for connected non-orientable B as
follows. Take the canonical oriented double covering B̃ → B, where each point
b̃ ∈ B̃ over b ∈ B is represented as b + an orientation of B near b. Let the bundle
X̃ → B̃ be induced from X by the covering map B̃ → B, i.e. this X̃ is the obvious
double covering of X corresponding to B̃ → B. Finally, set e(X) = e(X̃)/2.

The Poincaré-Hopf formula for non-orientable 2k-manifolds B follows from
the orientable case by the multiplicativity of the Euler characteristic χ which is
valid for all compact triangulated spaces B,

an l-sheeted covering B̃ → B has χ(B̃) = l ⋅ χ(B).
If the homology is defined via a triangulation of B, then χ(B) equals the

alternating sum ∑i(−1)iN(∆i) of the numbers of i-simplices by straightforward
linear algebra and the multiplicativity follows. But this is not so easy with our
geometric cycles. (If B is a closed manifold, this also follows from the Poincaré-
Hopf formula and the obvious multiplicativity of the Euler number for covering
maps.)

Künneth Theorem. The rational homology of the Cartesian product of
two spaces equals the graded tensor product of the homologies of the factors. In
fact, the natural homomorphism

⊕
i+j=k

Hi(X1; Q) ⊗Hj(X2; Q) →Hk(X1 ×X2; Q), k = 0,1,2, ...

is an isomorphism. Moreover, if X1 and X2 are closed oriented manifolds, this
homomorphism is compatible (if you say it right) with the intersection product.

This is obvious if X1 and X2 have cell decompositions such that the num-
bers of i-cells in each of them equals the ranks of their respective Hi. In the
general case, the proof is cumbersome unless you pass to the language of chain
complexes where the difficulty dissolves in linear algebra. (Yet, keeping track
of geometric cycles may be sometimes necessary, e.g. in the algebraic geometry,
in the geometry of foliated cycles and in evaluating the so called filling profiles
of products of Riemannian manifolds.)

Poincaré Q-Duality. Let X be a connected oriented n-manifold.
The intersection index establishes a linear duality between homologies of com-

plementary dimensions:

Hi(X; Q) equals the Q-linear dual of Hn−i(X,∂∞; Q).

In other words, the intersection pairing

Hi(X) ⊗Hn−i(X,∂∞) ∩→H0(X) = Z

is Q-faithful: a multiple of a compact i-cycle C is homologous to zero if and only
if its intersection index with every non-compact (n− i)-cycle in general position
equals zero.
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Furthermore, if X equals the interior of a compact manifolds with a bound-
ary, then a multiple of a non-compact cycle is homologous to zero if and only
if its intersection index with every compact generic cycle of the complementary
dimension equals zero.

Proof of [Hi ↔ Hn−i] for Closed Manifolds X. We, regretfully, break the
symmetry by choosing some smooth triangulation T of X which means this T
is locally as good as a triangulation of Rn by affine simplices (see below).

Granted T , assign to each generic i-cycle C ⊂ X the intersection index of
C with every oriented ∆n−i of T and observe that the resulting function c⊥ ∶
∆n−i ↦ ind(∆n−i∩C) is a Z-valued cocycle (see section 2), since the intersection
index of C with every (n−i)-sphere ∂(∆n−i+1) equals zero, because these spheres
are homologous to zero in X.

Conversely, given a Z-cocycle c(∆n−i) construct an i-cycle C⊥ ⊂X as follows.
Start with (n−i+1)-simplices ∆n−i+1 and take in each of them a smooth oriented
curve S with the boundary points located at the centers of the (n − i)-faces of
∆n−i+1, where S is normal to a face ∆n−i whenever it meets one and such
that the intersection index of the (slightly extended across ∆n−i) curve S with
∆n−i equals c(∆n−i). Such a curve, (obviously) exists because the function c
is a cocycle. Observe, that the union of these S over all (n − i + 1)-simplices
in the boundary sphere Sn−i+1 = ∂∆n−i+2 of every (n − i + 2)-simplex in T is a
closed (disconnected) curve in Sn−i+1, the intersection index of which with every
(n − i)-simplex ∆n−i ⊂ Sn−i+1 equals c(∆n−i) (where this intersection index is
evaluated in Sn−i+1 but not in X).

Then construct by induction on j the (future) intersection Cj⊥ of C⊥ with the
(n−i+j)-skeleton Tn−i+j of our triangulation by taking the cone from the center
of each simplex ∆n−i+j ⊂ Tn−i+j over the intersection of Cj⊥ with the boundary
sphere ∂(∆n−i+j).

It is easy to see that the resulting C⊥ is an i-cycle and that the composed
maps C → c⊥ → C⊥ and c → C⊥ → c⊥ define identity homomorphisms Hi(X) →
Hi(X) and Hn−i(X; Z) → Hn−i(X; Z) correspondingly and we arrive at the
Poincaré Z-isomorphism,

Hi(X) ↔Hn−i(X; Z).

To complete the proof of the Q-duality one needs to show that Hj(X; Z)⊗Q
equals the Q-linear dual of Hj(X; Q).

To do this we represent Hi(X) by algebraic Z-cycles ∑j kj∆i and now, in
the realm of algebra, appeal to the linear duality between homologies of the
chain and cochain complexes of T :

the natural pairing between classes h ∈ Hi(X) and c ∈ Hi(X; Z), which we
denote (h, c) ↦ c(h) ∈ Z, establishes, when tensored with Q, an isomorphism
between Hi(X; Q) and the Q-linear dual of Hi(X; Q)

Hi(X; Q) ↔Hom[Hi(X; Q)] → Q]

for all compact triangulated spaces X. QED.
Corollaries (a) The non-obvious part of the Poincaré duality is the claim

that, for ever Q-homologically non-trivial cycle C, there is a cycle C ′ of the
complementary dimension, such that the intersection index between C and C ′

does not vanish.
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But the easy part of the duality is also useful, as it allows one to give a lower
bound on the homology by producing sufficiently many non-trivially intersecting
cycles of complementary dimensions.

For example it shows that closed manifolds are non-contractible (where it
reduces to the degree argument). Also it implies that the Künneth pairing
H∗(X; Q)⊗H∗(Y ; Q) →H∗(X×Y ; Q) is injective for closed orientable manifolds
X.

(b) Let f ∶Xm+n → Y n be a smooth map between closed orientable manifolds
such the homology class of the pullback of a generic point is not homologous to
zero, i.e. 0 ≠ [f−1(y0)] ∈ Hm(X). Then the homomorphisms f !i ∶ Hi(Y ; Q) →
Hi+m(X; Q) are injective for all i.

Indeed, every h ∈ Hi(Y ; Q) different from zero comes with an h′ ∈ Hn−i(Y )
such that the intersection index d between the two is ≠ 0. Since the intersection
of f !(h) and f !(h′) equals d[f−1(y0)] none of f !(h) and f !(h′) equals zero.

Consequently/similarly all f∗j ∶Hj(X) →Hj(Y ) are surjective.
For example,
(b1) Equidimensional maps f of positive degrees between closed oriented

manifolds are surjective on rational homology.
(b2) Let f ∶X → Y be a smooth fibration where the fiber is a closed oriented

manifold with non-zero Euler characteristic, e.g. homeomorphic to S2k. Then
the fiber is non-homologous to zero, since the Euler class e of the fiberwise
tangent bundle, which defined on all of X, does not vanish on f−1(y0); hence,
f∗ is surjective.

Recall that the unit tangent bundle fibration X = UT (S2k) → S2k = Y with
S2k−1-fibers has Hi(X; Q) = 0 for 1 ≤ i ≤ 4k − 1, since the Euler class of T (S2k)
does not vanish; hence; f∗ vanishes on all Hi(X; Q), i > 0.

Geometric Cocycles. We gave only a combinatorial definition of cohomol-
ogy, but this can be defined more invariantly with geometric i-cocycles c being
”generically locally constant” functions on oriented plaques D such that c(D) =
−c(−D) for reversing the orientation in D, where c(D1 +D2) = c(D1) + c(D2)
and where the final cocycle condition reads c(C) = 0 for all i-cycles C which are
homologous to zero. Since every C ∼ 0 decomposes into a sum of small cycles,
the condition c(C) = 0 needs to be verified only for (arbitrarily) ”small cycles”
C.

Cocycles are as good as Poincaré’s dual cycles for detecting non-triviality of
geometric cycles C: if c(C) ≠ 0, then, C is non-homologous to zero and also c
is not cohomologous to zero.

If we work with H∗(X; R), these cocycles c(D) can be averaged over mea-
sures on the space of smooth self-mapping X → X homotopic to the identity.
(The averaged cocycles are kind of duals of generic cycles.) Eventually, they
can be reduced to differential forms invariant under a given compact connected
automorphism group of X, that let cohomology return to geometry by the back
door.

On Integrality of Cohomology. In view of the above, the rational cohomology
classes c ∈ Hi(X; Q) can be defined as homomorphisms c ∶ Hi(X) → Q. Such a
c is called integer if its image is contained in Z ⊂ Q. (Non-integrality of certain
classes underlies the existence of nonstandard smooth structures on topological
spheres discovered by Milnor, see section 6.)
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The Q-duality does not tell you the whole story. For example, the following
simple property of closed n-manifolds X depends on the full homological duality:

Connectedness/Contractibiliy. If X is a closed k-connected n-manifold,
i.e. πi(X) = 0 for i = 1, ..., k, then the complement to a point, X ∖ {x0}, is
(n−k−1)-contractible, i.e. there is a homotopy ft of the identity map X∖{x0} →
X∖{x0} with P = f1(X∖{x0}) being a smooth triangulated subspace P ⊂X∖{x0}
with codim(P ) ≥ k + 1.

For example, if πi(X) = 0 for 1 ≤ i ≤ n/2, then X is homotopy equivalent to
Sn.

Smooth triangulations. Recall, that ”smoothness” of a triangulated sub-
set in a smooth n-manifold, say P ∈ X, means that, for every closed i-simplex
∆ ⊂ P , there exist

an open subset U ⊂X which contains ∆,
an affine triangulation P ′ of Rn, n = dim(X),
a diffeomorphism U → U ′ ⊂ Rn which sends ∆ onto an i-simplex ∆′ in P ′.
Accordingly, one defines the notion of a smooth triangulation T of a smooth

manifold X, where one also says that the smooth structure in X is compatible
with T .

Every smooth manifold X can be given a smooth triangulation, e.g. as
follows.

Let S be an affine (i.e. by affine simplices) triangulation of RM which is
invariant under the action of a lattice Γ = ZM ⊂ RM (i.e. S is induced from a
triangulation of the M -torus RM /Γ) and let X ⊂f RM be a smoothly embedded
(or immersed) closed n-submanifold. Then there (obviously) exist

● an arbitrarily small positive constant δ0 = δ0(S) > 0,
● an arbitrarily large constant λ ≥ λ0(X,f, δ0) > 0,
● δ-small moves of the vertices of S for δ ≤ δ0, where these moves themselves

depend on the embedding f ofX into RM and on λ, such that the simplices of the
correspondingly moved triangulation, say S′ = S′δ = S′(X,f) are δ′-transversal
to the λ-scaled X, i.e. to λX =X ⊂λf RM , where

the δ′-transversality of an affine simplex ∆′ ⊂ RM to λX ⊂ RM means that
the affine simplices ∆′′ obtained from ∆′ by arbitrary δ′-moves of the vertices of
∆′ for some δ′ = δ′(S, δ) > 0 are transversal to λX. In particular, the intersection
”angles” between λX and the i-simplices, i = 0,1, ...,M − 1, in S′ are all ≥ δ′.

If λ is sufficiently large (and hence, λX ⊂ RM is nearly flat), then the δ′-
transversality (obviously) implies that the intersection of λX with each simplex
and its neighbours in S′ in the vicinity of each point x ∈ λX ⊂ RM has the same
combinatorial pattern as the intersection of the tangent space Tx(λX) ⊂ RM
with these simplices. Hence, the (cell) partition Π = Πf ′ of λX induced from S′

can be subdivided into a triangulation of X = λX.

Almost all of what we have presented in this section so far was essentially
understood by Poincaré, who switched at some point from geometric cycles to
triangulations, apparently, in order to prove his duality. (See [41] for pursuing
further the first Poincaré approach to homology.)

The language of geometic/generic cycles suggested by Poincaré is well suited
for observing and proving the multitude of obvious little things one comes across
every moment in topology. (I suspect, geometric, even worse, some algebraic
topologists think of cycles while they draw commutative diagrams. Rephrasing
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J.B.S. Haldane’s words: ”Geometry is like a mistress to a topologist: he cannot
live without her but he’s unwilling to be seen with her in public”.)

But if you are far away from manifolds in the homotopy theory it is easier to
work with cohomology and use the cohomology product rather than intersection
product.

The cohomology product is a bilinear pairing, often denoted Hi⊗Hj ⌣→Hi+j ,
which is the Poincaré dual of the intersection product Hn−i ⊗Hn−j

∩→Hn−i−j in
closed oriented n-manifolds X.

The ⌣-product can be defined for all, say triangulated, X as the dual of the
intersection product on the relative homology, HM−i(U ;∞) ⊗HM−j(U ;∞) →
HM−i−j(U ;∞), for a small regular neighbourhood U ⊃ X of X embedded into
some RM . The ⌣ product, so defined, is invariant under continuous maps f ∶
X → Y :

f∗(h1 ⌣ h2) = f∗(h1) ⌣ f∗(h2) for all h1, h2 ∈H∗(Y ).

It easy to see that the ⌣-pairing equals the composition of the Künneth
homomorphism H∗(X) ⊗ H∗(X) → H∗(X × X) with the restriction to the
diagonal H∗(X ×X) →H∗(Xdiag).

You can hardly expect to arrive at anything like Serre’s finiteness theorem
without a linearized (co)homology theory; yet, geometric constructions are of a
great help on the way.

Topological and Q-manifolds. The combinatorial proof of the Poincaré du-
ality is the most transparent for open subsets X ⊂ Rn where the standard
decomposition S of Rn into cubes is the combinatorial dual of its own translate
by a generic vector.

Poincaré duality remains valid for all oriented topological manifolds X and
also for all rational homology or Q-manifolds, that are compact triangulated
n-spaces where the link Ln−i−1 ⊂ X of every i-simplex ∆i in X has the same
rational homology as the sphere Sn−i−1, where it follows from the (special case
of) Alexander duality.

The rational homology of the complement to a topologically embedded k-
sphere as well as of a rational homology sphere, into Sn (or into a Q-manifold
with the rational homology of Sn) equals that of the (n − k − 1)-sphere.

(The link Ln−i−1(∆i) is the union of the simplices ∆n−i−1 ⊂X which do not
intersect ∆i and for which there exists an simplex in X which contains ∆i and
∆n−i−1.)

Alternatively, an n-dimensional space X can be embedded into some RM
where the duality for X reduces to that for ”suitably regular” neighbourhoods
U ⊂ RM of X which admit Thom isomorphisms Hi(X) ↔Hi+M−n(U●).

If X is a topological manifold, then ”locally generic” cycles of complementary
dimension intersect at a discrete set which allows one to define their geometric
intersection index. Also one can define the intersection of several cycles Cj ,
j = 1, ...k, with ∑j dim(Ci) = dim(X) as the intersection index of ×jCj ⊂ Xk

with Xdiag ⊂Xk, but anything more then that can not be done so easily.
Possibly, there is a comprehensive formulation with an obvious invariant

proof of the ”functorial Poincaré duality” which would make transparent, for
example, the multiplicativity of the signature (see below) and the topological
nature of rational Pontryagin classes (see section 10) and which would apply to
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”cycles” of dimensions βN where N = ∞ and 0 ≤ β ≤ 1 in spaces like these we
shall meet in section 11.

Signature. The intersection of (compact) k-cycles in an oriented, possibly
non-compact and/or disconnected, 2k-manifold X defines a bilinear form on the
homology Hk(X). If k is odd, this form is antisymmetric and if k is even it is
symmetric.

The signature of the latter, i.e. the number of positive minus the number of
negative squares in the diagonalized form, is called sig(X). This is well defined
if Hk(X) has finite rank, e.g. if X is compact, possibly with a boundary.

Geometrically, a diagonalization of the intersection form is achieved with a
maximal set of mutually disjoint k-cycles in X where each of them has a non-
zero (positive or negative) self-intersection index. (If the cycles are represented
by smooth closed oriented k-submanifolds, then these indices equal the Euler
numbers of the normal bundles of these submanifolds. In fact, such a maximal
system of submanifolds always exists as it was derived by Thom from the Serre
finiteness theorem.)

Examples. (a) S2k × S2k has zero signature, since the 2k-homology is gen-
erated by the classes of the two coordinate spheres [s1 × S2k] and [S2k × s2],
which both have zero self-intersections.

(b) The complex projective space CP 2m has signature one, since its middle
homology is generated by the class of the complex projective subspace CPm ⊂
CP 2m with the self-intersection = 1.

(c) The tangent bundle T (S2k) has signature 1, since Hk(T (S2k)) is gener-
ated by [S2k] with the self-intersection equal the Euler characteristic χ(S2k) = 2.

It is obvious that sig(mX) = m ⋅ sig(X), where mX denotes the disjoint
union of m copies of X, and that sig(−X) = −sig(X), where ”−” signifies
reversion of orientation. Furthermore

The oriented boundary X of every compact oriented (4k+1)-manifold Y has
zero signature.(Rokhlin 1952).

(Oriented boundaries of non-orientable manifolds may have non-zero sig-
natures. For example the double covering X̃ → X with sig(X̃) = 2sig(X)
non-orientably bounds the corresponding 1-ball bundle Y over X.)

Proof. If k-cycles Ci, i = 1,2, bound relative (k+1)-cycles Di in Y , then the
(zero-dimensional) intersection C1 with C2 bounds a relative 1-cycle in Y which
makes the index of the intersection zero. Hence,

the intersection form vanishes on the kernel kerk ⊂ Hk(X) of the inclusion
homomorphism Hk(X) →Hk(Y ).

On the other hand, the obvious identity

[C ∩D]Y = [C ∩ ∂D]X
and the Poincaré duality in Y show that the orthogonal complement ker⊥k ⊂
Hk(X) with respect to the intersection form in X is contained in kerk. QED

Observe that this argument depends entirely on the Poincaré duality and it
equally applies to the topological and Q-manifolds with boundaries.

Also notice that the Künneth formula and the Poincaré duality (trivially)
imply the Cartesian multiplicativity of the signature for closed manifolds,

sig(X1 ×X2) = sig(X1) ⋅ sig(X2).
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For example, the products of the complex projective spaces ×iCP 2ki have signa-
tures one. (The Künneth formula is obvious here with the cell decompositions
of ×iCP 2ki into ×i(2ki + 1) cells.)

Amazingly, the multiplicativity of the signature of closed manifolds under
covering maps can not be seen with comparable clarity.

Multiplicativity Formula if X̃ →X is an l-sheeted covering map, then

sign(X̃) = l ⋅ sign(X).

This can be sometimes proved elementary, e.g. if the fundamental group of
X is free. In this case, there obviously exist closed hypersurfaces Y ⊂ X and
Ỹ ⊂ X̃ such that X̃∖Ỹ is diffeomorphic to the disjoint union of l copies of X∖Y .
This implies multiplicativity, since signature is additive:

removing a closed hypersurface from a manifold does not change the signa-
ture.

Therefore,

sig(X̃) = sig(X̃ ∖ Ỹ ) = l ⋅ sig(X ∖ Y ) = l ⋅ sig(X).

(This ”additivity of the signature” easily follows from the Poincaré duality as
observed by S. Novikov.)

In general, given a finite covering X̃ → X, there exists an immersed hyper-
surface Y ⊂X (with possible self-intersections) such that the covering trivializes
over X ∖ Y ; hence, X̃ can be assembled from the pieces of X ∖ Y where each
piece is taken l times. One still has an addition formula for some ”stratified
signature” but it is rather involved in the general case.

On the other hand, the multiplicativity of the signature can be derived in a
couple of lines from the Serre finiteness theorem (see below).

5 The Signature and Bordisms.

Let us prove the multiplicativity of the signature by constructing a compact
oriented manifold Y with a boundary, such that the oriented boundary ∂(Y )
equals mX̃ −mlX for some integer m ≠ 0.

Embed X into Rn+N , N >> n = 2k = dim(X) let X̃ ⊂ Rn+N be an embedding
obtained by a small generic perturbation of the covering map X̃ → X ⊂ Rn+N
and X̃ ′ ⊂ Rn+N be the union of l generically perturbed copies of X.

Let Ã● and Ã′
● be the Atiyah-Thom maps from Sn+N = Rn+N● to the Thom

spaces Ũ● and U ′
● of the normal bundles Ũ → X̃ and Ũ ′ → X̃ ′.

Let P̃ ∶ X̃ → X and P̃ ′ ∶ X̃ ′ → X be the normal projections. These projec-
tions, obviously, induce the normal bundles Ũ and Ũ ′ of X̃ and X̃ ′ from the
normal bundle U⊥ →X. Let

P̃● ∶ Ũ● → U⊥● and P̃ ′
● ∶ Ũ ′

● → U⊥●

be the corresponding maps between the Thom spaces and let us look at the two
maps f and f ′ from the sphere Sn+N = RN+n

● to the Thom space U⊥● ,

f = P̃● ○ Ã● ∶ Sn+N → U⊥● , and f ′ = P̃ ′
● ○ Ã′

● ∶ Sn+N → U⊥● .
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Clearly

[●̃●̃′] f−1(X) = X̃ and (f ′)−1(X) = X̃ ′.

On the other hand, the homology homomorphisms of the maps f and f ′

are related to those of P̃ and P̃ ′ via the Thom suspension homomorphism S● ∶
Hn(X) →Hn+N(U⊥● ) as follows

f∗[Sn+N ] = S● ○ P̃∗[X̃] and f ′∗[Sn+N ] = S● ○ P̃ ′
∗[X̃ ′].

Since deg(P̃ ) = deg(P̃ ′) = l,

P̃∗[X̃] = P̃ ′
∗[X̃ ′] = l ⋅ [X] and f ′[Sn+N ] = f[Sn+N ] = l ⋅ S●[X] ∈Hn+N(U⊥● );

hence,
some non-zero m-multiples of the maps f, f ′ ∶ Sn+N → U⊥● can be joined by

a (smooth generic) homotopy F ∶ Sn+N × [0,1] → U⊥● by Serre’s theorem, since
πi(U⊥● ) = 0, i = 1, ...N − 1.

Then, because of [●̃●̃′], the pullback F −1(X) ⊂ Sn+N × [0,1] establishes a
bordism between mX̃ ⊂ Sn+N × 0 and mX̃ ′ =mlX ⊂ Sn+N × 1. This implies that

m ⋅ sig(X̃) =ml ⋅ sig(X) and since m ≠ 0 we get sig(X̃) = l ⋅ sig(X). QED.

Bordisms and the Rokhlin-Thom-Hirzebruch Formula. Let us mod-
ify our definition of homology of a manifold X by allowing only non-singular
i-cycles in X, i.e. smooth closed oriented i-submanifolds in X and denote the
resulting Abelian group by Boi (X).

If 2i ≥ n = dim(X) one has a (minor) problem with taking sums of non-
singular cycles, since generic i-submanifolds may intersect and their union is
unavoidably singular. We assume below that i < n/2; otherwise, we replace X
by X ×RN for N >> n, where, observe, Boi (X ×RN) does not depend on N for
N >> i.

Unlike homology, the bordism groups Boi (X) may be non-trivial even for
a contractible space X, e.g. for X = Rn+N . (Every cycle in Rn equals the
boundary of any cone over it but this does not work with manifolds due to the
singularity at the apex of the cone which is not allowed by the definition of a
bordism.) In fact,

if N >> n, then the bordism group Bon = Bon(Rn+N) is canonically isomorphic
to the homotopy group πn+N(V●), where V● is the Thom space of the tautological
oriented RN -bundle V over the Grassmann manifold V = GrorN (Rn+N+1) (Thom,
1954).

Proof. Let X0 = GrorN (Rn+N) be the Grassmann manifold of oriented N -
planes and V →X0 the tautological oriented RN bundle over this X0.

(The space GrorN (Rn+N) equals the double cover of the space GrN(Rn+N) of
non-oriented N -planes. For example, Gror1 (Rn+1) equals the sphere Sn, while
Gr1(Rn+1) is the projective space, that is Sn divided by the ±-involution.)

Let U� →X be the oriented normal bundle of X with the orientation induced
by those of X and of RN ⊃ X and let G ∶ X → X0 be the oriented Gauss map
which assigns to each x ∈ X the oriented N -plane G(x) ∈ X0 parallel to the
oriented normal space to X at x.
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Since G induces U⊥ from V , it defines the Thom map Sn+N = Rn+N● → V●
and every bordism Y ⊂ Sn+N × [0,1] delivers a homotopy Sn+N × [0,1] → V●
between the Thom maps at the two ends Y ∩ Sn+N × 0 and Y ∩ Sn+N × 1.

This define a homomorphism

τbπ ∶ Bon → πn+N(V●)

since the additive structure in Bon(Ri+N) agrees with that in πi+N(V o● ). (Instead
of checking this, which is trivial, one may appeal to the general principle: ”two
natural Abelian group structures on the same set must coincide.”)

Also note that one needs the extra 1 in Rn+N+1, since bordisms Y between
manifolds in Rn+N lie in Rn+N+1, or, equivalently, in Sn+N+1 × [0,1].

On the other hand, the generic pullback construction

f ↦ f−1(X0) ⊂ Rn+N ⊃ Rn+N● = Sn+N

defines a homomorphism τπb ∶ [f] → [f−1(X0)] from πn+N(V●) to Bon, where,
clearly τπb ○ τbπ and τbπ ○ τπb are the identity homomorphisms. QED.

Now Serre’s Q-sphericity theorem implies the following
Thom Theorem. The (Abelian) group Boi is finitely generated;
Bon⊗Q is isomorphic to the rational homology group Hi(X0; Q) =Hi(X0)⊗Q

for X0 = GrorN (Ri+N+1).
Indeed, πi(V ●) = 0 for N >> n, hence, by Serre,

πn+N(V●) ⊗Q =Hn+N(V●; Q),

while
Hn+N(V●; Q) =Hn(X0; Q)

by the Thom isomorphism.

In order to apply this, one has to compute the homologyHn(GrorN (RN+n+j)); Q),
which, as it is clear from the above, is independent of N ≥ 2n + 2 and of j > 1;
thus, we pass to

Gror =def ⋃
j,N→∞

GrorN (RN+j).

Let us state the answer in the language of cohomology, with the advantage of
the multiplicative structure (see section 4) where, recall, the cohomology product
Hi(X) ⊗Hj(X) ⌣→ Hi+j(X) for closed oriented n-manifold can be defined via
the Poincaré duality H∗(X) ↔Hn−∗(X) by the intersection product Hn−i(X)⊗
Hn−j(X) ∩→Hn−(i+j)(X).

The cohomology ring H∗(Gror; Q) is the polynomial ring in some distin-
guished integer classes, called Pontryagin classes pk ∈H4k(Gror; Z), k = 1,2,3, ...
[50], [21].

(It would be awkward to express this in the homology language when N =
dim(X) → ∞, although the cohomology ring H∗(X) is canonically isomorphic
to HN−∗(X) by Poincaré duality.)

IfX is a smooth oriented n-manifold, its Pontryagin classes pk(X) ∈H4k(X; Z)
are defined as the classes induced from pk by the normal Gauss map G →
GrorN (RN+n) ⊂ Gror for an embedding X → Rn+N , N >> n.
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Examples (see [50]). (a) The the complex projective spaces have

pk(CPn) = (n + 1
k

)h2k

for the generator h ∈ H2(CPn) which is the Poincaré dual to the hyperplane
CPn−1 ⊂ CPn−1.

(b) The rational Pontryagin classes of the Cartesian products X1×X2 satisfy

pk(X1 ×X2) = ∑
i+j=k

pi(X1) ⊗ pj(X2).

If Q is a unitary (i.e. a product of powers) monomial in pi of graded degree
n = 4k, then the value Q(pi)[X] is called the (Pontryagin) Q-number. Equiva-
lently, this is the value of Q(pi) ∈H4i(Gror; Z) on the image of (the fundamental
class) of X in Gror under the Gauss map.

The Thom theorem now can be reformulated as follows.
Two closed oriented n-manifolds are Q-bordant if and only if they have equal

Q-numbers for all monomials Q. Thus, Bon ⊗ Q = 0, unless n is divisible by 4
and the rank of Bon ⊗Q for n = 4k equals the number of Q-monomials of graded
degree n, that are ∏i p

ki

i with ∑i ki = k.
(We shall prove this later in this section, also see [50].)
For example, if n = 4, then there is a single such monomial, p1; if n=8, there

two of them: p2 and p2
1; if n = 12 there three monomials: p3, p1p2 and p3

1; if
n = 16 there are five of them.

In general, the number of such monomials, say π(k) = rank(H4k(Gror; Q)) =
rankQ(Bo4k) (obviously) equals the number of the conjugacy classes in the per-
mutation group Π(k) (which can be seen as a certain subgroup in the Weyl
group in SO(4k)), where, by the Euler formula, the generating function E(t) =
1 +∑k=1,2,... π(k)tk satisfies

1/E(t) = ∏
k=1,2,...

(1 − tk) = ∑
−∞<k<∞

(−1)kt(3k
2−k)/2,

Here the first equality is obvious, the second is tricky (Euler himself was not
able to prove it) and where one knows now-a-days that

π(k) ∼
exp(π

√
2k/3)

4k
√

3
for k →∞.

Since the top Pontryagin classes pk of the complex projective spaces do not
vanish, pk(CP 2k) ≠ 0, the products of these spaces constitute a basis in Bon⊗Q.

Finally, notice that the bordism groups together make a commutative ring
under the Cartesian product of manifolds, denoted Bo∗, and the Thom theorem
says that
Bo∗ ⊗Q is the polynomial ring over Q in the variables [CP 2k], k = 0,2,4, ....
Instead of CP 2k, one might take the compact quotients of the complex hy-

perbolic spaces CH2k for the generators of Bo∗⊗Q. The quotient spaces CH2k/Γ
have two closely related attractive features: their tangent bundles admit natural
flat connections and their rational Pontryagin numbers are homotopy invariant,
see section 10. It would be interesting to find ”natural bordisms” between (linear
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combinations of) Cartesian products of CH2k/Γ and of CP 2k, e.g. associated
to complex analytic ramified coverings CH2k/Γ→ CP 2k.

Since the signature is additive and also multiplicative under this product, it
defines a homomorphism [sig] ∶ Bo∗ → Z which can be expressed in each degree
4k by means of a universal polynomial in the Pontryagin classes, denoted Lk(pi),
by

sig(X) = Lk(pi)[X] for all closed oriented 4k-manifolds X.

For example,

L1 =
1
3
p1, L2 =

1
45

(7p2 − p2
1), L3 =

1
945

(62p3 − 13p1p2 + 2p3
1).

Accordingly,

sig(X4) = 1
3
p1[X4], (Rokhlin 1952)

sig(X8) = 1
45

(7p2(X8) − p2
1(X8))[X8], (Thom 1954)

and where a concise general formula (see blow) was derived by Hirzebruch who
evaluated the coefficients of Lk using the above values of pi for the products
X = ×jCP 2kj of the complex projective spaces, which all have sig(X) = 1, and
by substituting these products ×jCP 2kj with ∑j 4kj = n = 4k, for X = Xn into
the formula sig(X) = Lk[X]. The outcome of this seemingly trivial computation
is unexpectedly beautiful.

Hirzebruch Signature Theorem. Let

R(z) =
√
z

tanh(
√
z)

= 1+z/3−z2/45+ ... = 1+2∑
l>0

(−1)l+1 ζ(2l)zl

π2l
= 1+∑

l>0

22lB2lz
l

(2l)!
,

where ζ(2l) = 1 + 1
22l + 1

32l + 1
42l + ... and let

B2l = (−1)l2lζ(1 − 2l) = (−1)l+1(2l)!ζ(2l)/22l−1π2l

be the Bernoulli numbers [47],

B2 = 1/6,B4 = −1/30, ...,B12 = −691/2730,B14 = 7/6, ...,B30 = 8615841276005/14322, ....

Write
R(z1) ⋅ ... ⋅R(zk) = 1 + P1(zj) + ... + Pk(zj) + ...

where Pj are homogeneous symmetric polynomials of degree j in z1, ..., zk and
rewrite

Pk(zj) = Lk(pi)

where pi = pi(z1, ..., zk) are the elementary symmetric functions in zj of degree
i. The Hirzebruch theorem says that

the above Lk is exactly the polynomial which makes the equality Lk(pi)[X] =
sig(X).

A significant aspect of this formula is that the Pontryagin numbers and
the signature are integers while the Hirzebruch polynomials Lk have non-trivial
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denominators. This yields certain universal divisibility properties of the Pon-
tryagin numbers (and sometimes of the signatures) for smooth closed orientable
4k-manifolds.

But despite a heavy integer load carried by the signature formula, its deriva-
tion depends only on the rational bordism groups Bon⊗Q. This point of elemen-
tary linear algebra was overlooked by Thom (isn’t it incredible?) who derived
the signature formula for 8-manifolds from his special and more difficult compu-
tation of the true bordism group Bo8. However, the shape given by Hirzebruch
to this formula is something more than just linear algebra.

Question. Is there an implementation of the analysis/arithmetic encoded in
the Hirzebruch formula by some infinite dimensional manifolds?

Computation of the Cohomology of the Stable Grassmann Manifold. First,
we show that the cohomology H∗(Gror; Q) is multiplicatively generated by some
classes ei ∈ H∗(Gror; Q) and then we prove that the Li-classes are multiplica-
tively independent. (See [50] for computation of the integer cohomology of the
Grassmann manifolds.)

Think of the unit tangent bundle UT (Sn) as the space of orthonormal 2-
frames in Rn+1, and recall that UT (S2k) is a rational homology (4k−1)-sphere.

Let Wk = Gror2k+1(R∞) be the Grassmann manifold of oriented (2k+1)-planes
in RN , N → ∞, and let W ′′

k consist of the pairs (w,u) where w ∈ Wk is an
(2k + 1)-plane R2k+1

w ⊂ R∞, and u is an orthonormal frame (pair of orthonormal
vectors) in R2k+1

w .
The map p ∶ W ′′

k → Wk−1 = Gror2k−1(R∞) which assigns, to every (w,u), the
(2k−1)-plane u⊥w ⊂ R2k+1

w ⊂ R∞ normal to u is a fibration with contractible fibers
that are spaces of orthonormal 2-frames in R∞ ⊖ u⊥w = R∞−(2k−1); hence, p is a
homotopy equivalence.

A more interesting fibration is q ∶ Wk → W ′′
k for (w,u) ↦ w with the fibers

UT (S2k). Since UT (S2k) is a rational (4k − 1)-sphere, the kernel of the coho-
mology homomorphism q∗ ∶H∗(W ′′

k ; Q) →H∗(Wk; Q) is generated, as a ⌣-ideal,
by the rational Euler class ek ∈H4k(W ′′

k ; Q).
It follows by induction on k that the rational cohomology algebra of Wk =

Gror2k+1(R∞) is generated by certain ei ∈ H4i(Wk; Q), i = 0,1, ..., k, and since
Gror = lim

←Ðk→∞
Gror2k+1, these ei also generate the cohomology of Gror.

Direct Computation of the L-Classes for the Complex Projective Spaces. Let
V →X be an oriented vector bundle and, following Rokhlin-Schwartz and Thom,
define L-classes of V , without any reference to Pontryagin classes, as follows.
Assume that X is a manifold with a trivial tangent bundle; otherwise, embed
X into some RM with large M and take its small regular neighbourhood. By
Serre’s theorem, there exists, for every homology class h ∈ H4k(X) = H4k(V ),
an m =m(h) ≠ 0 such that the m-multiple of h is representable by a closed 4k-
submanifold Z = Zh ⊂ V that equals the pullback of a generic point in the sphere
SM−4k under a generic map V → SM−4k = RM−4k

● with ”compact support”, i.e.
where all but a compact subset in V goes to ● ∈ SM−4k. Observe that such a Z
has trivial normal bundle in V .

Define L(V ) = 1 + L1(V ) + L2(V ) + ... ∈ H4∗(V ; Q) = ⊕kH4k(V ; Q) by the
equality L(V )(h) = sig(Zh)/m(h) for all h ∈H4k(V ) =H4k(X).

If the bundle V is induced from W → Y by an f ∶ X → Y then L(V ) =
f∗(L(W )), since, for dim(W ) > 2k (which we may assume), the generic image
of our Z in W has trivial normal bundle.
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It is also clear that the bundle V1 × V2 → X1 ×X2 has L(V1 × V2) = L(V1) ⊗
L(V2) by the Cartesian multiplicativity of the signature.

Consequently the L-class of the Whitney sum V1⊕V2 →X of V1 and V2 over
X, which is defined as the restriction of V1 × V2 → X ×X to Xdiag ⊂ X ×X,
satisfies

L(V1 ⊕ V2) = L(V1) ⌣ L(V2).

Recall that the complex projective space CP k – the space of C-lines in Ck+1

comes with the canonical C-line bundle represented by these lines and denoted
U → CP k, while the same bundle with the reversed orientation is denoted U−.
(We always refer to the canonical orientations of C-objects.)

Observe that U− =HomC(U → θ) for the trivial C-bundle

θ = CP k ×C→ CP k =HomC(U → U)

and that the Euler class e(U−) = −e(U) equals the generator in H2(CP k) that
is the Poincaré dual of the hyperplane CP k−1 ⊂ CP k, and so el is the dual of
CP k−l ⊂ CP k.

The Whitney (k + 1)-multiple bundle of U−, denoted (k + 1)U−, equals the
tangent bundle Tk = T (CP k) plus θ. Indeed, let U⊥ → CP k be the Ck bundle
of the normals to the lines representing the points in CP k. It is clear that
U⊥⊕U = (k+1)θ, i.e. U⊥⊕U is the trivial Ck+1-bundle, and that, tautologically,

Tk =HomC(U → U⊥).

It follows that

Tk ⊕ θ =HomC(U → U⊥ ⊕U) =HomC(U → (k + 1)θ) = (k + 1)U−.

Recall that

sig(CP 2k) = 1; hence, Lk((k + 1)U−) = Lk(Tk) = e2k.

Now we compute L(U−) = 1+∑k Lk = 1+∑k l2ke2k, by equating e2k and the
2k-degree term in the (k + 1)th power of this sum.

(1 +∑
k

l2ke
2k)k+1 = 1 + ... + e2k + ...

Thus,
(1 + l1e2)3 = 1 + 3l1 + ... = 1 + e2 + ...,

which makes l1 = 1/3 and L1(U−) = e2/3.

Then

(1 + l1e2 + l2e4)5 = 1 + ... + (10l1 + 5l2)e4 + ... = 1 + ... + e4 + ...

which implies that l2 = 1/5 − 2l1 = 1/5 − 2/3 and L2(U−) = (−7/15)e4, etc.

Finally, we compute all L-classes Lj(T2k) = (L(U−))k+1 for T2k = T (CP 2k)
and thus, all L(×jCP 2kj).

For example,

(L1(CP 8))2[CP 8] = 10/3 while (L1(CP 4 ×CP 4))2[CP 4 ×CP 4] = 2/3
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which implies that CP 4 × CP 4 and CP 8, which have equal signatures, are not
rationally bordant, and similarly one sees that the products ×jCP 2kj are mul-
tiplicatively independent in the bordism ring Bo∗ ⊗Q as we stated earlier.

Combinatorial Pontryagin Classes. Rokhlin-Schwartz and indepen-
dently Thom applied their definition of Lk, and hence of the rational Pontryagin
classes, to triangulated (not necessarily smooth) topological manifolds X by ob-
serving that the pullbacks of generic points s ∈ Sn−4k under piece-wise linear
map are Q-manifolds and by pointing out that the signatures of 4k-manifolds
are invariant under bordisms by such (4k + 1)-dimensional Q-manifolds with
boundaries (by the Poincaré duality issuing from the Alexander duality, see
section 4). Thus, they have shown, in particular, that

rational Pontryagin classes of smooth manifolds are invariant under piece-
wise smooth homeomorphisms between smooth manifolds.

The combinatorial pull-back argument breaks down in the topological cate-
gory since there is no good notion of a generic continuous map. Yet, S. Novikov
(1966) proved that the L-classes and, hence, the rational Pontryagin classes are
invariant under arbitrary homeomorphisms (see section 10).

The Thom-Rokhlin-Schwartz argument delivers a definition of rational Pon-
tryagin classes for all Q-manifolds which are by far more general objects than
smooth (or combinatorial) manifolds due to possibly enormous (and beautiful)
fundamental groups π1(Ln−i−1) of their links.

Yet, the naturally defined bordism ring QBon of oriented Q-manifolds is only
marginally different from Bo∗ in the degrees n ≠ 4 where the natural homomor-
phisms Bon ⊗ Q → QBon ⊗ Q are isomorphisms. This can be easily derived by
surgery (see section 9) from Serre’s theorems. For example, if a Q-manifold
X has a single singularity – a cone over Q-sphere Σ then a connected sum of
several copies of Σ bounds a smooth Q-ball which implies that a multiple of X
is Q-bordant to a smooth manifold.

On the contrary, the group QBo4 ⊗ Q, is much bigger than Bo4 ⊗ Q = Q as
rankQ(QBo4) = ∞ (see [44], [22], [23] and references therein).

(It would be interesting to have a notion of ”refined bordisms” between
Q-manifold that would partially keep track of π1(Ln−i−1) for n > 4 as well.)

The simplest examples of Q-manifolds are one point compactifications V 4k
●

of the tangent bundles of even dimensional spheres, V 4k = T (S2k) → S2k, since
the boundaries of the corresponding 2k-ball bundles are Q-homological (2k−1)-
spheres – the unit tangent bundles UT (S2k) → S2k.

Observe that the tangent bundles of spheres are stably trivial – they be-
come trivial after adding trivial bundles to them, namely the tangent bundle
of S2k ⊂ R2k+1 stabilizes to the trivial bundle upon adding the (trivial) normal
bundle of S2k ⊂ R2k+1 to it. Consequently, the manifolds V 4k = T (S2k) have all
characteristic classes zero, and V 4k

● have all Q-classes zero except for dimension
4k.

On the other hand, Lk(V 4k
● ) = sig(V 4k

● ) = 1, since the tangent bundle V 4k =
T (S2k) → S2k has non-zero Euler number. Hence,
the Q-manifolds V 4k

● multiplicatively generate all of QBo∗ ⊗Q except for QBo4.

Local Formulae for Combinatorial Pontryagin Numbers. Let X be a closed
oriented triangulated (smooth or combinatorial) 4k-manifold and let {S4k−1

x }x∈X0
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be the disjoint union of the oriented links S4k−1
x of the vertices x in X. Then

there exists, for each monomial Q of the total degree 4k in the Pontryagin
classes, an assignment of rational numbers Q[Sx] to all S4k−1

x , where Q[S4k−1
x ]

depend only on the combinatorial types of the triangulations of Sx induced from
X, such that the Pontryagin Q-number of X satisfies (Levitt-Rourke 1978),

Q(pi)[X] = ∑
S4k−1

x ∈[[X]]
Q[S4k−1

x ].

Moreover, there is a canonical assignment of real numbers to S4k−1
x with this

property which also applies to all Q-manifolds (Cheeger 1983).
There is no comparable effective combinatorial formulae with a priori ratio-

nal numbers Q[Sx] despite many efforts in this direction, see [24] and references
therein. (Levitt-Rourke theorem is purely existential and Cheeger’s definition
depends on the L2-analysis of differential forms on the non-singular locus of X
away from the codimension 2 skeleton of X.)

Questions. Let {[S4k−1]△} be a finite collection of combinatorial isomor-
phism classes of oriented triangulated (4k − 1)-spheres let Q{[S4k−1]△} be the
Q-vector space of functions q ∶ {[S4k−1]△} → Q and let X be a closed oriented
triangulated 4k-manifold homeomorphic to the 4k-torus (or any parallelizable
manifold for this matter) with all its links in {[S4k−1]△}.

Denote by q(X) ∈ Q{[S4k−1]△} the function, such that q(X)([S4k−1]△) equals
the number of copies of [S4k−1]△ in {S4k−1

x }x∈X0 and let L{[S]△} ⊂ Q{[S4k−1]△}

be the linear span of q(X) for all such X.
The above shows that the vectors q(X) of ”q-numbers” satisfy, besides 2k+1

Euler-Poincaré and Dehn-Somerville equations, about exp(π
√

2k/3)
4k

√
3

linear ”Pon-
tryagin relations”.

Observe that the Euler-Poincaré and Dehn-Somerville equations do not de-
pend on the ±-orientations of the links but the ”Pontryagin relations” are anti-
symmetric since Q[−S4k−1]△ = −Q[S4k−1]△. Both kind of relations are valid for
all Q-manifolds.

What are the codimensions codim(L{[S4k−1]△} ⊂ Q{[S4k−1]△}, i.e. the num-
bers of independent relations between the ”q-numbers”, for ”specific” collections
{[S4k−1]△}?

It is pointed out in [23] that
● the spaces QS

i

± of antisymmetric Q-linear combinations of all combinatorial
spheres make a chain complex for the differential qi± ∶ QS

i

± → QS
i−1

± defined by
the linear extension of the operation of taking the oriented links of all vertices
on the triangulated i-spheres Si△ ∈ Si.

● The operation qi± with values in QS
i−1

± , which is obviously defined on
all closed oriented combinatorial i-manifolds X as well as on combinatorial i-
spheres, satisfies

qi−1
± (qi±(X)) = 0, i.e. i-manifolds represent i-cycles in this complex.

Furthermore, it is shown in [23] (as was pointed out to me by Jeff Cheeger)
that all such anti-symmetric relations are generated/exhausted by the relations
issuing from qn−1

± ○ qn± = 0, where this identity can be regarded as an ”oriented
(Pontryagin in place of Euler-Poincaré) counterpart” to the Dehn-Somerville
equations.
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The exhaustiveness of qn−1
± ○ qn± = 0 and its (easy, [25]) Dehn-Somerville

counterpart, probably, imply that in most (all?) cases the Euler-Poincaré,
Dehn-Somerville, Pontryagin and qn−1

± ○ qn± = 0 make the full set of affine (i.e.
homogeneous and non-homogeneous linear) relations between the vectors q(X),
but it seems hard to effectively (even approximately) evaluate the number of
independent relations issuing from for qn−1

± ○ qn± = 0 for particular collections
{[Sn−1]△} of allowable links of Xn.

Examples. Let D0 =D0(Γ) be a Dirichlet-Voronoi (fundamental polyhedral)
domain of a generic lattice Γ ⊂ RM and let {[Sn−1]△} consist of the (isomor-
phism classes of naturally triangulated) boundaries of the intersections of D0

with generic affine n-planes in RM .
What is codim(L{[Sn−1]△} ⊂ Q{[Sn−1]△}) in this case?
What are the (affine) relations between the ”geometric q-numbers” i.e. the

numbers of combinatorial types of intersections σ of λ-scaled submanifolds X ⊂f
RM , λ →∞, (as in the triangulation construction in the previous section) with
the Γ-translates of D0?

Notice, that some of these σ are not convex-like, but these are negligible
for λ → ∞. On the other hand, if λ is sufficiently large all σ can be made
convex-like by a small perturbation f ′ of f by an argument which is similar to
but slightly more technical than the one used for the triangulation of manifolds
in the previous section.

Is there anything special about the ”geometric q-numbers” for ”distinguished”
X, e.g. for round n-spheres in RN?

Observe that the ratios of the ”geometric q-numbers” are asymptotically
defined for many non-compact complete submanifolds X ⊂ RM .

For example, if X is an affine subspace A = An ⊂ RM , these ratios are
(obviously) expressible in terms of the volumes of the connected regions Ω in D ⊂
RM obtained by cutting D along hypersurfaces made of the affine n-subspaces
A′ ⊂ RM which are parallel to A and which meet the (M −n− 1)-skeleton of D.

What is the number of our kind of relations between these volumes?
There are similar relations/questions for intersection patterns of particular

X with other fundamental domains of lattices Γ in Euclidean and some non-
Euclidean spaces (where the finer asymptotic distributions of these patterns
have a slight arithmetic flavour).

If f ∶ Xn → RM is a generic map with singularities (which may happen if
M ≤ 2n) and D ⊂ RM is a small convex polyhedron in RM with its faces being
δ-transversal to f (e.g. D = λ−1D0, λ → ∞ as in the triangulations of the
previous section), then the pullback f−1(D) ⊂X is not necessarily a topological
cell. However, some local/additive formulae for certain characteristic numbers
may still be available in the corresponding ”non-cell decompositions” of X.

For instance, one (obviously) has such a formula for the Euler characteristic
for all kind of decompositions of X. Also, one has such a ”local formula” for
sig(X) and f ∶X → R (i.e for M = 1) by Novikov’s signature additivity property
mentioned at the end of the previous section.

It seems not hard to show that all Pontryagin numbers can be thus lo-
cally/additively expressed for M ≥ n, but it is unclear what are precisely the
Q-numbers which are combinatorially/locally/additively expressible for given
n = 4k and M < n.

(For example, if M = 1, then the Euler characteristic and the signature are,
probably, the only ”locally/additively expressible” invariants of X.)
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Bordisms of Immersions. If the allowed singularities of oriented n-cycles in
Rn+k are those of collections of n-planes in general position, then the resulting
homologies are the bordism groups of oriented immersed manifolds Xn ⊂ Rn+k
(R.Wells, 1966). For example if k = 1, this group is isomorphic to the stable ho-
motopy group πstn = πn+N(SN), N > n+1, by the Pontryagin pullback construc-
tion, since a small generic perturbation of an oriented Xn in Rn+N ⊃ Rn+1 ⊃Xn

is embedded into Rn+N with a trivial normal bundle, and where every embedding
Xn → Rn+N with the trivial normal bundle can be isotoped to such a pertur-
bation of an immersion Xn → Rn+1 ⊂ Rn+N by the Smale-Hirsch immersion
theorem. (This is obvious for n = 0 and n = 1).

Since immersed oriented Xn ⊂ Rn+1 have trivial stable normal bundles, they
have, for n = 4k, zero signatures by the Serre finiteness theorem. Conversely,
the finiteness of the stable groups πstn = πn+N(SN) can be (essentially) reduced
by a (framed) surgery of Xn (see section 9) to the vanishing of these signatures.

The complexity of πn+N(SN) shifts in this picture one dimension down to
bordism invariants of the ”decorated self-intersections” of immersed Xn ⊂ Rn+1,
which are partially reflected in the structure of the l-sheeted coverings of the
loci of l-multiple points of Xn.

The Galois group of such a covering may be equal the full permutation
group Π(l) and the ”decorated invariants” live in certain ”decorated” bordism
groups of the classifying spaces of Π(l), where the ”dimension shift” suggests an
inductive computation of these groups that would imply, in particular, Serre’s
finiteness theorem of the stable homotopy groups of spheres. In fact, this can
be implemented in terms of configuration spaces associated to the iterated loop
spaces as was pointed out to me by Andras Szùcs, also see [1], [75], [76].

The simplest bordism invariant of codimension one immersions is the parity
of the number of (n + 1)-multiple points of generically immersed Xn ⊂ Rn+1.
For example, the figure ∞ ⊂ R2 with a single double point represents a non-zero
element in πstn=1 = π1+N(SN). The number of (n+1)-multiple points also can be
odd for n = 3 (and, trivially, for n = 0) but it is always even for codimension one
immersions of orientable n-manifolds with n ≠ 0,1,3, while the non-orientable
case is more involved [16], [17].

One knows, (see next section) that every element of the stable homotopy
group πstn = πn+N(SN), N >> n, can be represented for n ≠ 2,6,14,30,62,126 by
an immersionXn → Rn+1, whereXn is a homotopy sphere; if n = 2,6,14,30,62,126,
one can make this with an Xn where rank(H∗(Xn)) = 4.

What is the smallest possible size of the topology, e.g. homology, of the
image f(Xn) ⊂ Rn+1 and/or of the homologies of the (natural coverings of the)
subsets of the l-multiple points of f(Xn)?

Geometric Questions about Bordisms. Let X be a closed oriented Rieman-
nian n-manifold with locally bounded geometry, which means that every R-ball
in X admits a λ-bi-Lipschitz homeomorphism onto the Euclidean R-ball.

Suppose X is bordant to zero and consider all compact Riemannian (n+1)-
manifolds Y extending X = ∂(Y ) with its Riemannian tensor and such that the
local geometries of Y are bounded by some constants R′ << R and l′ >> λ with
the obvious precaution near the boundary.

One can show that the infimum of the volumes of these Y is bounded by

inf
Y
V ol(Y ) ≤ F (V ol(X)),
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with the power exponent bound on the function F = F (V ). (F also depends on
R,λ,R′, λ′, but this seems non-essential for R′ << R,λ′ >> λ.)

What is the true asymptotic behaviour of F (V ) for V →∞ ?
It may be linear for all we know and the above ”dimension shift” picture

and/or the construction from [23] may be useful here.
Is there a better setting of this question with some curvature integrals and/or

spectral invariants rather than volumes?
The real cohomology of the Grassmann manifolds can be analytically repre-

sented by invariant differential forms. Is there a compatible analytic/geometric
representation of Bon ⊗R? (One may think of a class of measurable n-foliations,
see section 10, or, maybe, something more sophisticated than that.)

6 Exotic Spheres.

In 1956, to everybody’s amazement, Milnor found smooth manifolds Σ7 which
were not diffeomorphic to SN ; yet, each of them was decomposable into the
union of two 7-balls B7

1 ,B
7
2 ⊂ Σ7 intersecting over their boundaries ∂(B7

1) =
∂(B7

2) = S6 ⊂ Σ7 like in the ordinary sphere S7.
In fact, this decomposition does imply that Σ7 is ”ordinary” in the topological

category: such a Σ7 is (obviously) homeomorphic to S7.
The subtlety resides in the ”equality” ∂(B7

1) = ∂(B7
2); this identification of

the boundaries is far from being the identity map from the point of view of
either of the two balls – it does not come from any diffeomorphisms B7

1 ↔ B7
2 .

The equality ∂(B7
1) = ∂(B7

2) can be regarded as a self-diffeomorphism f of
the round sphere S6 – the boundary of standard ball B7, but this f does not
extend to a diffeomorphism of B7 in Milnor’s example; otherwise, Σ7 would be
diffeomorphic to S7. (Yet, f radially extends to a piecewise smooth homeomor-
phism of B7 which yields a piecewise smooth homeomorphism between Σ7 and
S7.)

It follows, that such an f can not be included into a family of diffeomorphisms
bringing it to an isometric transformations of S6. Thus, any geometric ”energy
minimizing” flow on the diffeomorphism group diff(S6) either gets stuck or
develops singularities. (It seems little, if anything at all, is known about such
flows and their singularities.)

Milnor’s spheres Σ7 are rather innocuous spaces – the boundaries of (the
total spaces of) 4-ball bundles Θ8 → S4 in some in some R4-bundles V → S4,
i.e. Θ8 ⊂ V and, thus, our Σ7 are certain S3-bundles over S4.

All 4-ball bundles, or equivalently R4-bundles, over S4 are easy to de-
scribe: each is determined by two numbers: the Euler number e, that is the
self-intersection index of S4 ⊂ Θ8, which assumes all integer values, and the
Pontryagin number p1 (i.e. the value of the Pontryagin class p1 ∈ H4(S4) on
[S4] ∈H4(S4)) which may be an arbitrary even integer.

(Milnor explicitly construct his fibrations with maps of the 3-sphere into
the group SO(4) of orientation preserving linear isometries of R4 as follows.
Decompose S4 into two round 4-balls, say S4 = B4

+ ∪ B4
− with the common

boundary S3
∂ = B4

+ ∩B4
− and let f ∶ s∂ ↦ O∂ ∈ SO(4) be a smooth map. Then

glue the boundaries of B4
+ × R4 and B4

− × R4 by the diffeomorphism (s∂ , s) ↦
(s∂ ,O∂(s)) and obtain V 8 = B4

+ × R4 ∪f B4
− × R4 which makes an R4-fibration

over S4.
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To construct a specific f , identify R4 with the quaternion line H and S3 with
the multiplicative group of quaternions of norm 1. Let f(s) = fij(s) ∈ SO(4)
act by x ↦ sixsj for x ∈ H and the left and right quaternion multiplication.
Then Milnor computes: e = i + j and p1 = ±2(i − j).)

Obviously, all Σ7 are 2-connected, but H3(Σ7) may be non-zero (e.g. for the
trivial bundle). It is not hard to show that Σ7 has the same homology as S7,
hence, homotopy equivalent to S7, if and only if e = ±1 which means that the
selfintersection index of the zero section sphere S4 ⊂ Θ8 equals ±1; we stick to
e = 1 for our candidates for Σ7.

The basic example of Σ7 with e = ±1 (the sign depends on the choice of the
orientation in Θ8) is the ordinary 7-sphere which comes with the Hopf fibration
S7 → S4, where this S7 is positioned as the unit sphere in the quaternion
plane H2 = R8, where it is freely acted upon by the group G = S3 of the unit
quaternions and where S7/G equals the sphere S4 representing the quaternion
projective line.

If Σ7 is diffeomorphic to S7 one can attach the 8-ball to Θ8 along this S7-
boundary and obtain a smooth closed 8-manifold, say Θ8

+ .
Milnor observes that the signature of Θ8

+ equals ±1, since the homology of
Θ8
+ is represented by a single cycle – the sphere S4 ⊂ Θ8 ⊂ Θ8

+ the selfintersection
number of which equals the Euler number.

Then Milnor invokes the Thom signature theorem

45sig(X) + p2
1[X] = 7p2[X]

and concludes that the number 45 + p2
1 must be divisible by 7; therefore, the

boundaries Σ7 of those Θ8 which fail this condition, say for p1 = 4, must be
exotic. (You do not have to know the definition of the Pontryagin classes, just
remember they are integer cohomology classes.)

Finally, using quaternions, Milnor explicitly constructs a Morse function
Σ7 → R with only two critical points – maximum and minimum on each Σ7

with e = 1; this yields the two ball decomposition. (We shall explain this in
section 8.)

(Milnor’s topological arguments, which he presents with a meticulous care,
became a common knowledge and can be now found in any textbook; his lemmas
look apparent to a to-day topology student. The hardest for the modern reader
is the final Milnor’s lemma claiming that his function Σ7 → R is Morse with two
critical points. Milnor is laconic at this point: ”It is easy to verify” is all what
he says.)

The 8-manifolds Θ8
+ associated with Milnor’s exotic Σ7 can be triangulated

with a single non-smooth point in such a triangulation. Yet, they admit no
smooth structures compatible with these triangulations since their combina-
torial Pontryagin numbers (defined by Rochlin-Schwartz and Thom) fail the
divisibility condition issuing from the Thom formula sig(X8) = L2[X8]; in fact,
they are not combinatorially bordant to smooth manifolds.

Moreover, these Θ8
+ are not even topologically bordant, and therefore, they

are non-homeomorphic to smooth manifolds by (slightly refined) Novikov’s topo-
logical Pontryagin classes theorem.

The number of homotopy spheres, i.e. of mutually non-diffeomorphic man-
ifolds Σn which are homotopy equivalent to Sn is not that large. In fact, it is
finite for all n ≠ 4 by the work of Kervaire and Milnor [39], who, eventually,
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derive this from the Serre finiteness theorem. (One knows now-a-days that every
smooth homotopy sphere Σn is homeomorphic to Sn according to the solution
of the Poincaré conjecture by Smale for n ≥ 5, by Freedman for n = 4 and by
Perelman for n = 3, where ”homeomorphic”⇒ ”diffeomorphic” for n = 3 by
Moise’s theorem.)

Kervaire and Milnor start by showing that for every homotopy sphere Σn,
there exists a smooth map f ∶ Sn+N → SN , N >> n, such that the pullback
f−1(s) ⊂ Sn+N of a generic point s ∈ SN is diffeomorphic to Σn. (The existence
of such an f with f−1(s) = Σn is equivalent to the existence of an immersion
Σn → Rn+1 by the Hirsch theorem.)

Then, by applying surgery (see section 9) to the f0-pullback of a point for a
given generic map f0 ∶ Sn+N → SN , they prove that almost all homotopy classes
of maps Sn+N → SN come from homotopy n-spheres. Namely:

● If n ≠ 4k +2, then every homotopy class of maps Sn+N → SN , N >> n, can
be represented by a ”Σn-map” f , i.e. where the pullback of a generic point is a
homotopy sphere.

If n = 4k+2, then the homotopy classes of ”Σn-maps” constitute a subgroup
in the corresponding stable homotopy group, say K�

n ⊂ πstn = πn+N(SN), N >> n,
that has index 1 or 2 and which is expressible in terms of the Kervaire-(Arf)
invariant classifying (similarly to the signature for n = 4k) properly defined
”self-intersections” of (k + 1)-cycles mod 2 in (4k + 2)-manifolds.

One knows today by the work of Pontryagin, Kervaire-Milnor and Barratt-
Jones-Mahowald see [9] that

● If n = 2,6,14,30,62, then the Kervaire invariant can be non-zero, i.e.
πstn /K�

n = Z2.
Furthermore,
● The Kervaire invariant vanishes, i.e. K�

n = πstn , for n ≠ 2,6,14,30,62,126
(where it remains unknown if πst126/K�

126 equals {0} or Z2).
In other words,
every continuous map Sn+N → SN , N >> n ≠ 2,6, ...,126, is homotopic to

a smooth map f ∶ Sn+N → SN , such that the f -pullback of a generic point is a
homotopy n-sphere.

The case n ≠ 2l −2 goes back to Browder (1969) and the case n = 2l −2, l ≥ 8
is a recent achievement by Hill, Hopkins and Ravenel [37]. (Their proof relies
on a generalized homology theory Hgen

n where Hgen
n+256 =Hgen

n .)
If the pullback of a generic point of a smooth map f ∶ Sn+N → SN , is

diffeomorphic to Sn, the map f may be non-contractible. In fact, the set of
the homotopy classes of such f makes a cyclic subgroup in the stable homotopy
group of spheres, denoted Jn ⊂ πstn = πn+N(SN), N >> n (and called the image
of the J-homomorphism πn(SO(∞)) → πstn ). The order of Jn is 1 or 2 for
n ≠ 4k−1; if n = 4k−1, then the order of Jn equals the denominator of ∣B2k/4k∣,
where B2k is the Bernoulli number. The first non-trivial J are

J1 = Z2, J3 = Z24, J7 = Z240, J8 = Z2, J9 = Z2 and J11 = Z504.
In general, the homotopy classes of maps f such that the f -pullback of a

generic point is diffeomorphic to a given homotopy sphere Σn, make a Jn-coset
in the stable homotopy group πstn . Thus the correspondence Σn ↝ f defines a
map from the set {Σn} of the diffeomorphism classes of homotopy spheres to

38



the factor group πstn /Jn, say µ ∶ {Σn} → πstn /Jn.
The map µ (which, by the above, is surjective for n ≠ 2,6,14,30,62,126) is

finite-to-one for n ≠ 4, where the proof of this finiteness for n ≥ 5 depends on
Smale’s h-cobordism theorem, (see section 8). In fact, the homotopy n-spheres
make an Abelian group (n ≠ 4) under the connected sum operation Σ1#Σ2 (see
next section) and, by applying surgery to manifolds Θn+1 with boundaries Σn,
where these Θn+1 (unlike the above Milnor’s Θ8) come as pullbacks of generic
points under smooth maps from (n +N + 1)-balls Bn+N+1 to SN , Kervaire and
Milnor show that

(☀) µ ∶ {Σn} → πstn /Jn is a homomorphism with a finite (n ≠ 4) kernel
denoted Bn+1 ⊂ {Σn} which is a cyclic group.

(The homotopy spheres Σn ∈ Bn+1 bound (n+ 1)-manifolds with trivial tan-
gent bundles.)

Moreover,
(⋆) The kernel Bn+1 of µ is zero for n = 2m ≠ 4.
If n + 1 = 4k + 2, then Bn+1 is either zero or Z2, depending on the Kervaire

invariant:
(⋆) If n equals 1, 5, 13, 29, 61 and, possibly, 125, then Bn+1 is zero, and

Bn+1 = Z2 for the rest of n = 4k + 1.
(⋆) if n = 4k − 1, then the cardinality (order) of Bn+1 equals 22k−2(22k−1 − 1)

times the numerator of ∣4B2k/k∣, where B2k is the Bernoulli number.
The above and the known results on the stable homotopy groups πstn imply,

for example, that there are no exotic spheres for n = 5,6, there are 28 mutually
non-diffeomorphic homotopy 7-spheres, there are 16 homotopy 18-spheres and
523264 mutually non-diffeomorphic homotopy 19-spheres.

By Perelman, there is a single smooth structure on the homotopy 3 sphere
and the case n = 4 remains open. (Yet, every homotopy 4-sphere is homeomor-
phic to S4 by Freedman’s solution of the 4D-Poincaré conjecture.)

7 Isotopies and Intersections.

Besides constructing, listing and classifying manifolds X one wants to under-
stand the topology of spaces of maps X → Y .

The space [X→Y ]smth of all C∞ maps carries little geometric load by itself
since this space is homotopy equivalent to [X→Y ]cont(inuous).

An analyst may be concerned with completions of [X→Y ]smth, e.g. with
Sobolev’ topologies while a geometer is keen to study geometric structures, e.g.
Riemannian metrics on this space.

But from a differential topologist’s point of view the most interesting is the
space of smooth embeddings F ∶ X → Y which diffeomorphically send X onto a
smooth submanifold X ′ = f(X) ⊂ Y .

If dim(Y ) > 2dim(X) then generic f are embeddings, but, in general, you
can not produce them at will so easily. However, given such an embedding
f0 ∶ X → Y , there are plenty of smooth homotopies, called (smooth) isotopies
ft, t ∈ [0,1], of it which remain embeddings for every t and which can be obtained
with the following
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Isotopy Theorem. (Thom, 1954.) Let Z ⊂ X be a compact smooth
submanifold (boundary is allowed) and f0 ∶ X → Y is an embedding, where the
essential case is where X ⊂ Y and f0 is the identity map.

Then every isotopy of Z
f0→ Y can be extended to an isotopy of all of X. More

generally, the restriction map R∣Z ∶ [X→Y ]emb → [Z→Y ]emb is a fibration;
in particular, the isotopy extension property holds for an arbitrary family of
embeddings X → Y parametrized by a compact space.

This is similar to the homotopy extension property (mentioned in section
1) for spaces of continuous maps X → Y – the ”geometric” cornerstone of the
algebraic topology.)

The proof easily reduces with the implicit function theorem to the case,
where X = Y and dim(Z) = dim(W ).

Since diffeomorphisms are open in the space of all smooth maps, one can
extend ”small” isotopies, those which only slightly move Z, and since diffeomor-
phisms of Y make a group, the required isotopy is obtained as a composition of
small diffeomorphisms of Y . (The details are easy.)

Both ”open” and ”group” are crucial: for example, homotopies by locally
diffeomorphic maps, say of a disk B2 ⊂ S2 to S2 do not extend to S2 whenever a
map B2 → S2 starts overlapping itself. Also it is much harder (yet possible, [12],
[40]) to extend topological isotopies, since homeomorphisms are, by no means,
open in the space of all continuous maps.

For example if dim(Y ) ≥ 2dim(Z) + 2. then a generic smooth homotopy of
Z is an isotopy: Z does not, generically, cross itself as it moves in Y (unlike,
for example, a circle moving in the 3-space where self-crossings are stable un-
der small perturbations of homotopies). Hence, every generic homotopy of Z
extends to a smooth isotopy of Y .

Mazur Swindle and Hauptvermutung. Let U1, U2 be compact n-manifolds
with boundaries and f12 ∶ U1 → U2 and f21 ∶ U2 → U1 be embeddings which land
in the interiors of their respective target manifolds.

Let W1 and W2 be the unions (inductive limits) of the infinite increasing
sequences of spaces

W1 = U1 ⊂f12 U2 ⊂f21 U1 ⊂f12 U2 ⊂f12 ...

and
W2 = U2 ⊂f21 U1 ⊂f12 U2 ⊂f12 U1 ⊂f12 ...

Observe that W1 and W2 are open manifolds without boundaries and that
they are diffeomorphic since dropping the first term in a sequence U1 ⊂ U2 ⊂
U3 ⊂ ... does not change the union.

Similarly, both manifolds are diffeomorphic to the unions of the sequences

W11 = U1 ⊂f11 U1 ⊂f11 ... and W22 = U2 ⊂f22 U2 ⊂f22...

for
f11 = f12 ○ f21 ∶ U1 → U1 and f22 = f21 ○ f12 ∶ U2 → U2.

If the self-embedding f11 is isotopic to the identity map, then W11 is diffeo-
morphic to the interior of U1 by the isotopy theorem and the same applies to
f22 (or any self-embedding for this matter).
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Thus we conclude with the above, that, for example,
open normal neighbourhoods Uop1 and Uop2 of two homotopy equivalent n-

manifolds (and triangulated spaces in general) Z1 and Z2 in Rn+N , N ≥ n + 2,
are diffeomorphic (Mazur 1961).

Anybody might have guessed that the ”open” condition is a pure techni-
cality and everybody believed so until Milnor’s 1961 counterexample to the
Hauptvermutung – the main conjecture of the combinatorial topology.

Milnor has shown that there are two free isometric actions A1 and A2 of the
cyclic group Zp on the sphere S3, for every prime p ≥ 7, such that

the quotient (lens) spaces Z1 = S3/A1 and Z2 = S3/A2 are homotopy equiv-
alent, but their closed normal neighbourhoods U1 and U2 in any R3+N are not
diffeomorphic. (This could not have happened to simply connected manifolds
Zi by the h-cobordism theorem.)

Moreover,
the polyhedra P1 and P2 obtained by attaching the cones to the boundaries

of these manifolds admit no isomorphic simplicial subdivisions.
Yet, the interiors Uopi of these Ui , i = 1,2, are diffeomorphic for N ≥ 5. In

this case,
P1 and P2 are homeomorphic as the one point compactifications of two home-

omorphic spaces Uop1 and Uop2 .
It was previously known that these Z1 and Z2 are homotopy equivalent (J. H.

C. Whitehead, 1941); yet, they are combinatorially non-equivalent (Reidemeis-
ter, 1936) and, hence, by Moise’s 1951 positive solution of the Hauptvermutung
for 3-manifolds, non-homeomorphic.

There are few direct truly geometric constructions of diffeomorphisms, but
those available, are extensively used, e.g. fiberwise linear diffeomorphisms of
vector bundles. Even the sheer existence of the humble homothety of Rn, x↦ tx,
combined with the isotopy theorem, effortlessly yields, for example, the following

[B→Y ]-Lemma. The space of embeddings f of the n-ball (or Rn) into an
arbitrary Y = Y n+k is homotopy equivalent to the space of tangent n-frames in
Y ; in fact the differential f ↦Df ∣0 establishes a homotopy equivalence between
the respective spaces.

For example,
the assignment f ↦ J(f)∣0 of the Jacobi matrix at 0 ∈ Bn is a homotopy

equivalence of the space of embeddings f ∶ B → Rn to the linear group GL(n).

Corollary: Ball Gluing Lemma. Let X1 and X2 be (n + 1)-dimensional
manifolds with boundaries Y1 and Y2, let B1 ⊂ Y1 be a smooth submanifold dif-
feomorphic to the n-ball and let f ∶ B1 → B2 ⊂ Y2 = ∂(A2) be a diffeomorphism.

If the boundaries Yi of Xi are connected, the diffeomorphism class of the
(n + 1)-manifold X3 = X1 +f X2 obtained by attaching X1 to X2 by f and
(obviously canonically) smoothed at the ”corner” (or rather the ”crease”) along
the boundary of B1, does not depend on B1 and f .

ThisX3 is denotedX1#∂X2. For example, this ”sum” of balls, Bn+1#∂B
n+1,

is again a smooth (n + 1)-ball.
Connected Sum. The boundary Y3 = ∂(X3) can be defined without any

reference to Xi ⊃ Yi, as follows. Glue the manifolds Y1 an Y2 by f ∶ B1 → B2 ⊂ Y2

and then remove the interiors of the balls B1 and of its f -image B2.
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If the manifolds Yi (not necessarily anybody’s boundaries or even being
closed) are connected, then the resulting connected sum manifold is denoted
Y1#Y2.

Isn’t it a waste of glue? You may be wondering why bother glueing the
interiors of the balls if you are going to remove them anyway. Wouldn’t it be
easier first to remove these interiors from both manifolds and then glue what
remains along the spheres Sn−1

i = ∂(Bi)?
This is easier but also it is also a wrong thing to do: the result may depend

on the diffeomorphism Sn−1
1 ↔ Sn−1

2 , as it happens for Y1 = Y2 = S7 in Milnor’s
example; but the connected sum defined with balls is unique by the [B→Y ]-
lemma.

The ball gluing operation may be used many times in succession; thus, for
example, one builds ”big (n + 1)-balls” from smaller ones, where this lemma in
lower dimension may be used for ensuring the ball property of the gluing sites.

Gluing and Bordisms. Take two closed oriented n-manifold X1 and X2 and
let

X1 ⊃ U1 ↔
f
U2 ⊂X2

be an orientation reversing diffeomorphisms between compact n-dimensional
submanifolds Ui ⊂ Xi, i = 1,2 with boundaries. If we glue X1 and X2 by
f and remove the (glued together) interiors of Ui the resulting manifold, say
X3 = X1 +−U X2 is naturally oriented and, clearly, it is orientably bordant to
the disjoint union of X1 and X2. (This is similar to the geometric/algebraic
cancellation of cycles mentioned in section 4.)

Conversely, one can give an alternative definition of the oriented bordism
group Bon as of the Abelian group generated by oriented n-manifolds with the
relations X3 = X1 +X2 for all X3 = X1 +−U X2. This gives the same Bon even if
the only U allowed are those diffeomorphic to Si ×Bn−i as it follows from the
handle decompositions induced by Morse functions.

The isotopy theorem is not dimension specific, but the following construction
due to Haefliger (1961) generalizing the Whitney Lemma of 1944 demonstrates
something special about isotopies in high dimensions.

Let Y be a smooth n-manifold and X ′,X ′′ ⊂ Y be smooth closed submani-
folds in general position. Denote Σ0 =X ′ ∩X ′′ ⊂ Y and let X be the (abstract)
disjoint union of X ′ and X ′′. (If X ′ and X ′′ are connected equividimensional
manifolds, one could say that X is a smooth manifold with its two ”connected
components” X ′ and X ′′ being embedded into Y .)

Clearly,

dim(Σ0) = n− k′ − k′′ for n = dim(Y ), n− k′ = dim(X ′) and n− k′′ = dim(X ′′).

Let ft ∶ X → Y , t ∈ [0,1], be a smooth generic homotopy which disengages
X ′ from X ′′, i.e. f1(X ′) does not intersect f1(X ′′), and let

Σ̃ = {(x′, x′′, t)}ft(x′)=ft(x′′) ⊂X
′ ×X ′′ × [0,1],

i.e. Σ̃ consists of the triples (x′, x′′, t) for which ft(x′) = ft(x′′).
Let Σ ⊂ X ′ ∪X ′′ be the union S′ ∪ S′′, where S′ ⊂ X ′ equals the projection

of Σ̃ to the X ′-factor of X ′ ×X ′′ × [0,1] and S′′ ⊂ X ′′ is the projection of Σ̃ to
X ′′.
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Thus, there is a correspondence x′ ↔ x′′ between the points in Σ = S′ ∪ S′′,
where the two points correspond one to another if x′ ∈ S′ meets x′′ ∈ S′′ at some
moment t∗ in the course of the homotopy, i.e.

ft∗(x′) = ft∗(x′′) for some t∗ ∈ [0,1].

Finally, let W ⊂ Y be the union of the ft-paths, denoted [x′ ∗t x′′] ⊂ Y ,
travelled by the points x′ ∈ S′ ⊂ Σ and x′′ ∈ S′′ ⊂ Σ until they meet at some
moment t∗. In other words, [x′ ∗t x′′] ⊂ Y consists of the union of the points
ft(x′) and ft(x′′) over t ∈ [0, t∗ = t∗(x′) = t∗(x′′)] and

W = ⋃
x′∈S′

[x′ ∗t x′′] = ⋃
x′′∈S′′

[x′ ∗t x′′].

Clearly,

dim(Σ) = dim(Σ0)+1 = n−k′−k′′+1 and dim(W ) = dim(Σ)+1 = n−k′−k′′+2.

To grasp the picture look at X consisting of a round 2-sphere X ′ (where
k′ = 1) and a round circle X ′′ (where k′′ = 2) in the Euclidean 3-space Y , where
X and X ′ intersect at two points x1, x2 – our Σ0 = {x1, x2} in this case.

When X ′ an X ′′ move away one from the other by parallel translations
in the opposite directions, their intersection points sweep W which equals the
intersection of the 3-ball bounded by X ′ and the flat 2-disc spanned by X ′′.
The boundary Σ of this W consists of two arcs S′ ⊂X ′ and S′′ ⊂X ′′, where S′

joins x1 with x2 in X ′ and S′′ join x1 with x2 in X ′′.
Back to the general case, we wantW to be, generically, a smooth submanifold

without double points as well as without any other singularities, except for the
unavoidable corner in its boundary Σ, where S′ meet S′′ along Σ0. We need for
this

2dim(W ) = 2(n − k′ − k′′ + 2) < n = dim(Y ) i.e. 2k′ + 2k′′ > n + 4.

Also, we want to avoid an intersection of W with X ′ and with X ′′ away from
Σ = ∂(W ). If we agree that k′′ ≥ k′, this, generically, needs

dim(W ) + dim(X) = (n − k′ − k′′ + 2) + (n − k′) < n i.e. 2k′ + k′′ > n + 2.

These inequalities imply that k′ ≥ k ≥ 3, and the lowest dimension where
they are meaningful is the first Whitney case: dim(Y ) = n = 6 and k′ = k′′ = 3.

Accordingly, W is called Whitney’s disk, although it may be non-homeomorphic
to B2 with the present definition of W (due to Haefliger).

Haefliger Lemma (Whitney for k + k′ = n). Let the dimensions n − k′ =
dim(X ′) and n−k′′ = dim(X ′′), where k′′ ≥ k′, of two submanifolds X ′ and X ′′

in the ambient n-manifold Y satisfy 2k′ + k′′ > n + 2.
Then every homotopy ft of (the disjoint union of) X ′ and X ′′ in Y which

disengages X ′ from X ′′, can be replaced by a disengaging homotopy fnewt which
is an isotopy, on both manifolds, i.e. fnewt (X ′) and fnew(X ′′) reman smooth
without self intersection points in Y for all t ∈ [0,1] and fnew1 (X ′) does not
intersect fnew1 (X ′′).

Proof. Assume ft is smooth generic and take a small neighbourhood U3ε ⊂ Y
of W . By genericity, this ft is an isotopy of X ′ as well as of X ′′ within U3ε ⊂ Y :
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the intersections of ft(X ′) and ft(X ′′) with U3ε, call them X ′
3ε(t) and X ′′

3ε(t)
are smooth submanifolds in U3ε for all t, which, moreover, do not intersect away
from W ⊂ U3ε.

Hence, by the Thom isotopy theorem, there exists an isotopy Ft of Y ∖ Uε
which equals ft on U2ε ∖Uε and which is constant in t on Y ∖U3ε.

Since ft and Ft within U3ε are equal on the overlap U2ε ∖Uε of their defini-
tion domains, they make together a homotopy of X ′ and X ′′ which, obviously,
satisfies our requirements.

There are several immediate generalizations/applications of this theorem.
(1) One may allow self-intersections Σ0 within connected components of X,

where the necessary homotopy condition for removing Σ0 (which was expressed
with the disengaging ft in the present case) is formulated in terms of maps
f̃ ∶X ×X → Y ×Y commuting with the involutions (x1, x2) ↔ (x2, x1) in X ×X
and (y1, y2) ↔ (y2, y1) in Y × Y and having the pullbacks f̃−1(Ydiag) of the
diagonal Ydiag ⊂ Y × Y equal Xdiag ⊂X ×X, [33].

(2) One can apply all of the above to p parametric families of maps X → Y ,
by paying the price of the extra p in the excess of dim(Y ) over dim(X), [33].

If p = 1, this yield an isotopy classification of embeddings X → Y for 3k > n+3
by homotopies of the above symmetric maps X ×X → Y ×Y , which shows, for
example, that there are no knots for these dimensions (Haefliger, 1961).

if 3k > n + 3, then every smooth embedding Sn−k → Rn is smoothly isotopic
to the standard Sn−k ⊂ Rn.

But if 3k = n + 3 and k = 2l + 1 is odd then there are
infinitely many isotopy of classes of embeddings S4l−1 → R6l, (Haefliger

1962).
Non-triviality of such a knot S4l−1 → R6l is detected by showing that a

map f0 ∶ B4l → R6l × R+ extending S4l−1 = ∂(B4l) can not be turned into an
embedding, keeping it transversal to R6l = R6l × 0 and with its boundary equal
our knot S4l−1 ⊂ R6l.

The Whitney-Haefliger W for f0 has dimension 6l + 1 − 2(2l + 1) + 2 = 2l + 1
and, generically, it transversally intersects B4l at several points.

The resulting (properly defined) intersection index of W with B is non-zero
(otherwise one could eliminate these points by Whitney) and it does not depend
on f0. In fact, it equals the linking invariant of Haefliger. (This is reminiscent
of the ”higher linking products” described by Sullivan’s minimal models, see
section 9.)

(3) In view of the above, one must be careful if one wants to relax the dimen-
sion constrain by an inductive application of the Whitney-Haefliger disengag-
ing procedure, since obstructions/invariants for removal ”higher” intersections
which come on the way may be not so apparent. (The structure of ”higher
self-intersections” of this kind for Euclidean hypersurfaces carries a significant
information on the stable homotopy groups of spheres.)

But this is possible, at least on the Q-level, where one has a comprehensive
algebraic control of self-intersections of all multiplicities for maps of codimension
k ≥ 3. Also, even without tensoring with Q, the higher intersection obstructions
tend to vanish in the combinatorial category.

For example,
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there is no combinatorial knots of codimension k ≥ 3 (Zeeman, 1963).
The essential mechanism of knotting X = Xn ⊂ Y = Y n+2 depends on the

fundamental group Γ of the complement U = Y ⊂ X. The group Γ may look
a nuisance when you want to untangle a knot, especially a surface X2 in a
4-manifold, but these Γ = Γ(X) for various X ⊂ Y form beautifully intricate
patterns which are poorly understood.

For example, the groups Γ = π1(U) capture the étale cohomology of algebraic
manifolds and the Novikov-Pontryagin classes of topological manifolds (see sec-
tion 10). Possibly, the groups Γ(X2) for surfaces X2 ⊂ Y 4 have much to tell us
about the smooth topology of 4-manifolds.

There are few systematic ways of constructing ”simple” X ⊂ Y , e.g. im-
mersed submanifolds, with ”interesting” (e.g. far from being free) fundamental
groups of their complements.

Offhand suggestions are pullbacks of (special singular) divisors X0 in com-
plex algebraic manifolds Y0 under generic maps Y → Y0 and immersed subvari-
eties Xn in cubically subdivided Y n+2, where Xn are made of n-sub-cubes ◻n
inside the cubes ◻n+2 ⊂ Y n+2 and where these interior ◻n ⊂ ◻n+2 are parallel to
the n-faces of ◻n+2.

It remains equally unclear what is the possible topology of self-intersections
of immersions Xn → Y n+2, say for S3 → S5, where the self-intersection makes a
link in S3, and for S4 → S6 where this is an immersed surface in S4.

(4) One can control the position of the image of fnew(X) ⊂ Y , e.g. by
making it to land in a given open subset W0 ⊂ W , if there is no homotopy
obstruction to this.

The above generalizes and simplifies in the combinatorial or ”piecewise
smooth” category, e.g. for ”unknotting spheres”, where the basic construction
is as follows

Engulfing. Let X be a piecewise smooth polyhedron in a smooth manifold
Y .

If n − k = dim(X) ≤ dim(Y ) − 3 and if πi(Y ) = 0 for i = 1, ...dim(Y ), then
there exists a smooth isotopy Ft of Y which eventually (for t = 1) moves X to a
given (small) neighbourhood B○ of a point in Y .

Sketch of the Proof. Start with a generic ft. This ft does the job away from
a certain W which has dim(W ) ≤ n− 2k + 2. This is < dim(X) under the above
assumption and the proof proceeds by induction on dim(X).

This is called ”engulfing” since B○, when moved by the time reversed isotopy,
engulfs X; engulfing was invented by Stallings in his approach to the Poincaré
Conjecture in the combinatorial category, which goes, roughly, as follows.

Let Y be a smooth n-manifold. Then, with a simple use of two mutually
dual smooth triangulations of Y , one can decompose Y , for each i, into the
union of regular neighbourhoods U1 and U2 of smooth subpolyhedra X1 and X2

in Y of dimensions i and n − i − 1 (similarly to the handle body decomposition
of a 3-manifold into the union of two thickened graphs in it), where, recall, a
neighbourhood U of an X ⊂ Y is regular if there exists an isotopy ft ∶ U → U
which brings all of U arbitrarily close to X.

Now let Y be a homotopy sphere of dimension n ≥ 7, say n = 7, and let
i = 3 Then X1 and X2, and hence U1 and U2, can be engulfed by (diffeomorphic
images of) balls, say by B1 ⊃ U1 and B2 ⊃ U2 with their centers denoted 01 ∈ B1
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and 02 ∈ B2.
By moving the 6-sphere ∂(B1) ⊂ B2 by the radial isotopy in B2 toward 02,

one represents Y ∖02 by the union of an increasing sequence of isotopic copies of
the ball B1. This implies (with the isotopy theorem) that Y ∖02 is diffeomorphic
to R7, hence, Y is homeomorphic to S7.

(A refined generalization of this argument delivers the Poincaré conjecture
in the combinatorial and topological categories for n ≥ 5. See [67] for an account
of techniques for proving various ”Poincaré conjectures” and for references to
the source papers.)

8 Handles and h-Cobordisms.

The original approach of Smale to the Poincaré conjecture depends on han-
dle decompositions of manifolds – counterparts to cell decompositions in the
homotopy theory.

Such decompositions are more flexible, and by far more abundant than tri-
angulations and they are better suited for a match with algebraic objects such
as homology. For example, one can sometimes realize a basis in homology by
suitably chosen cells or handles which is not even possible to formulate properly
for triangulations.

Recall that an i-handle of dimension n is the ball Bn decomposed into the
product Bn = Bi ×Bn−i(ε) where one think of such a handle as an ε-thickening
of the unit i-ball and where

A(ε) = Si ×Bn−1(ε) ⊂ Sn−1 = ∂Bn

is seen as an ε-neighbourhood of its axial (i− 1)-sphere Si−1 × 0 – an equatorial
i-sphere in Sn−1.

If X is an n-manifold with boundary Y and f ∶ A(ε) → Y a smooth em-
bedding, one can attach Bn to X by f and the resulting manifold (with the
”corner” along ∂A(ε) made smooth) is denoted X +f Bn or X +Si−1 Bn, where
the latter subscript refers to the f -image of the axial sphere in Y .

The effect of this on the boundary, i.e. modification

∂(X) = Y ↝f Y ′ = ∂(X +Si−1 Bn)

does not depend on X but only on Y and f . It is called an i-surgery of Y at
the sphere f(Si−1 × 0) ⊂ Y .

The manifold X = Y × [0,1] +Si−1 Bn, where Bn is attached to Y × 1, makes
a bordism between Y = Y ×0 and Y ′ which equals the surgically modified Y ×1-
component of the boundary of X. If the manifold Y is oriented, so is X, unless
i = 1 and the two ends of the 1-handle B1 ×Bn−1(ε) are attached to the same
connected component of Y with opposite orientations.

When we attach an i-handle to an X along a zero-homologous sphere Si−1 ⊂
Y , we create a new i-cycle in X+Si−1Bn; when we attach an (i+1)-handle along
an i-sphere in X which is non-homologous to zero, we ”kill” an i-cycle.

These creations/annihilations of homology may cancel each other and a han-
dle decomposition of anX may have by far more handles (balls) than the number
of independent homology classes in H∗(X).
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Smale’s argument proceeds in two steps.
(1) The overall algebraic cancellation is decomposed into ”elementary steps”

by ”reshuffling” handles (in the spirit of J.H.C. Whitehead’s theory of the simple
homotopy type);

(2) each elementary step is implemented geometrically as in the example
below (which does not elucidate the case n = 6).

Cancelling a 3-handle by a 4-handle. Let X = S3 ×B4(ε0) and let us attach
the 4-handle B7 = B4 ×B3(ε), ε << ε0, to the (normal) ε-neighbourhood A∼ of
some sphere

S3
∼ ⊂ Y = ∂(X) = S3 × S3(ε0) for S3(ε0) = ∂B4(ε0).

by some diffeomorphism of A(ε) ⊂ ∂(B7) onto A∼.
If S3

∼ = S3 × b0, b0 ∈ S3(ε0), is the standard sphere, then the resulting X∼ =
X +S3

∼

B7 is obviously diffeomorphic to B7: adding S3 ×B4(ε0) to B7 amounts
to ”bulging” the ball B7 over the ε-neighbourhood A(ε) of the axial 3-sphere
on its boundary.

Another way to see it is by observing that this addition of S3 × B4(ε0) to
B7 can be decomposed into gluing two balls in succession to B7 as follows.

Take a ball B3(δ) ⊂ S3 around some point s0 ∈ S3 and decompose X =
S3 ×B4(ε0) into the union of two balls that are

B7
δ = B3(δ) ×B4(ε0)

and
B7

1−δ = B3(1 − δ) ×B4(ε0) for B3(1 − δ) =def S3 ∖B3(δ).

Clearly, the attachment loci of B7
1−δ to X and of B7

δ to X +B7
1−δ are diffeo-

morphic (after smoothing the corners) to the 6-ball.
Let us modify the sphere S3 × b0 ⊂ S3 × B4(ε0) = ∂(X) by replacing the

original standard embedding of the 3-ball

B3(1 − δ) → B7
1−δ = B3(1 − δ) × S3(ε0) ⊂ ∂(X)

by another one, say,

f∼ ∶ B3(1 − δ) → B7
1−δ = B3(1 − δ) × S3(ε0) = ∂(X),

such that f∼ equals the original embedding near the boundary of ∂(B3(1−δ)) =
∂(B3(δ)) = S2(δ).

Then the same ”ball after ball” argument applies, since the first gluing site
where B7

1−δ is being attached to X, albeit ”wiggled”, remains diffeomorphic to
B6 by the isotopy theorem, while the second one does not change at all. So we
conclude:

whenever S3
∼ ⊂ S3 × S3(ε0) transversally intersect s0 × S3(ε0), s0 ∈ S3, at a

single point, the manifold X∼ =X +S3
∼

B7 is diffeomorphic to B7.

Finally, by Whitney’s lemma, every embedding S3 → S3 × S3(ε0) ⊂ S3 ×
B4(ε0) which is homologous in S3×B4(ε0) to the standard S3×b0 ⊂ S3×B4(ε0),
can be isotoped to another one which meets s0×S3(ε0) transversally at a single
point. Hence,

the handles do cancel one another: if a sphere
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S3
∼ ⊂ S3 × S3(ε0) = ∂(X) ⊂X = S3 ×B4(ε0),

is homologous in X to

S3 × b0 ⊂X = S3 ×B4(ε0), b0 ∈ B4(ε),

then the manifold X +S3
∼

B7 is diffeomorphic to the 7-ball.

Let us show in this picture that Milnor’s sphere Σ7 minus a small ball is
diffeomorphic to B7. Recall that Σ7 is fibered over S4, say by p ∶ Σ7 → S4, with
S3-fibers and with the Euler number e = ±1.

Decompose S4 into two round balls with the common S3-boundary, S4 =
B4
+∪B4

−. Then Σ7 decomposes into X+ = p−1(B4
+) = B4

+×S3 and X− = p−1(B4
−) =

B4
− × S3, where the gluing diffeomorphism between the boundaries ∂(X+) =

S3
+ ×S3 and ∂(X−) = S3

− ×S3 for S3
± = ∂B4

±, is homologically the same as for the
Hopf fibration S7 → S4 for e = ±1.

Therefore, if we decompose the S3-factor of B4
− × S3 into two round balls,

say S3 = B3
1 ∪B3

2 , then either B4
− ×B3

1 or B4
− ×B3

2 makes a 4-handle attached to
X+ to which the handle cancellation applies and shows that X+ ∪ (B4

− ×B3
1) is

a smooth 7-ball. (All what is needed of the Whitney’s lemma is obvious here:
the zero section X ⊂ V in an oriented R2k-bundle V →X =X2k with e(V ) = ±1
can be perturbed to X ′ ⊂ V which transversally intersect X at a single point.)

The handles shaffling/cancellation techniques do not solve the existence
problem for diffeomorphisms Y ↔ Y ′ but rather reduce it to the existence of
h-cobordisms between manifolds, where a compact manifold X with two bound-
ary components Y and Y ′ is called an h-cobordism (between Y and Y ′) if the
inclusion Y ⊂X is a homotopy equivalence.

Smale h-Cobordism Theorem. If an h-cobordism has dim(X) ≥ 6 and
π1(X) = 1 then X is diffeomorphic to Y × [0,1], by a diffeomorphism keeping
Y = Y × 0 ⊂ X fixed. In particular, h-cobordant simply connected manifolds of
dimensions ≥ 5 are diffeomorphic.

Notice that the Poincaré conjecture for the homotopy spheres Σn, n ≥ 6,
follows by applying this to Σn minus two small open balls, while the case m = 1
is solved by Smale with a construction of an h-cobordism between Σ5 and S5.

Also Smale’s handle techniques deliver the following geometric version of the
Poincaré connectedness/contractibilty correspondence (see section 4).

Let X be a closed n-manifold, n ≥ 5, with πi(X) = 0, i = 1, ..., k. Then X
contains a (n − k − 1)-dimensional smooth sub-polyhedron P ⊂ X, such that the
complement of the open (regular) neighbourhood Uε(P ) ⊂ X of P is diffeomor-
phic to the n-ball, (where the boundary ∂(Uε) is the (n−1)-sphere ”ε-collapsed”
onto P = Pn−k−1).

If n = 5 and if the normal bundle of X embedded into some R5+N is trivial, i.e.
if the normal Gauss map of X to the Grassmannian Gr(R5+N) is contractible,
then Smale proves, assuming π1(X) = 1, that

one can choose P = P 3 ⊂X =X5 that equals the union of a smooth topolog-
ical segment s = [0,1] ⊂X and several spheres S2

i and S3
i , where each S3

i meets
s at one point, and also transversally intersects S2

i at a single point and where
there are no other intersections between s, S2

i and S3
i .

In other words,
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(Smale 1965) X is diffeomorphic to the connected sum of several copies of
S2 × S3.

The triviality of the bundle in this theorem is needed to ensure that all
embedded 2-spheres in X have trivial normal bundles, i.e. their normal neigh-
bourhoods split into S2 ×R3 which comes handy when you play with handles.

If one drops this triviality condition, one has
Classification of Simply Connected 5-Manifolds. (Barden 1966) There

is a finite list of explicitly constructed 5-manifolds Xi, such that every closed
simply connected manifold X is diffeomorphic to the connected sum of Xi.

This is possible, in view of the above Smale theorem, since all simply con-
nected 5-manifolds X have ”almost trivial” normal bundles e.g. their only
possible Pontryagin class p1 ∈ H4(X) is zero. Indeed π1(X) = 1 implies that
H1(X) = π1(X)/[π1(X), π1(X)] = 0 and then H4(X) = H1(X) = 0 by the
Poincaré duality.

When you encounter bordisms, the generecity sling launches you to the
stratosphere of algebraic topology so fast that you barely discern the geometric
string attached to it.

Smale’s cells and handles, on the contrary, feel like slippery amebas which
merge and disengage as they reptate in the swamp of unruly geometry, where
n-dimensional cells continuously collapse to lower dimensional ones and keep
squeezing through paper-thin crevices. Yet, their motion is governed, for all we
know, by the rules dictated by some algebraic K-theory (theories?)

This motion hardly can be controlled by any traditional geometric flow. First
of all, the ”simply connected” condition can not be encoded in geometry ([52],
[28] [53] and also breaking the symmetry by dividing a manifold into handles
along with ”genericity” poorly fare in geometry.

Yet, some generalized ”Ricci flow with partial collapse and surgeries” in the
”space of (generic, random?) amebas” might split away whatever it fails to
untangle and bring fresh geometry into the picture.

For example, take a compact locally symmetric space X0 = S/Γ, where S
is a non-compat irreducible symmetric space of rank ≥ and make a 2-surgery
along some non-contractible circle S1 ⊂X0. The resulting manifold X has finite
fundamental group by Margulis’ theorem and so a finite covering X̃ → X is
simply connected. What can a geometric flow do to these X0 and X̃? Would it
bring X back to X0?

9 Manifolds under Surgery.

The Atiyah-Thom construction and Serre’s theory allows one to produce ”ar-
bitrarily large” manifolds X for the m-domination X1 ≻m X2, m > 0, meaning
that there is a map f ∶X1 →X2 of degree m.

Every such f between closed connected oriented manifolds induces a surjec-
tive homomorphisms f∗i ∶ Hi(X1; Q) → Hi(X1; Q) for all i = 0,1, ..., n, (as we
know from section 4), or equivalently, an injective cohomology homomorphism
f∗i ∶Hi(X2; Q) →Hi(X2; Q).

Indeed, by the Poincaré Q-duality, the cup-product (this the common name
for the product on cohomology) pairingHi(X2; Q)⊗Hn−i(X2; Q) → Q =Hn(X2; Q)
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is faithful; therefore, if f∗i vanishes, then so does f∗n. But the latter amounts
to multiplication by m = deg(f),

Hn(X2; Q) = Q→⋅d Q =Hn(X1; Q).
(The main advantage of the cohomology product over the intersection product
on homology is that the former is preserved by all continuous maps,

f∗i+j(c1 ⋅ c2) = f∗i(c1) ⋅ f∗j(c2) for all f ∶ X → Y and all c1 ∈ Hi(Y ),
c2 ∈Hj(Y ).)

If m = 1, then (by the full cohomological Poincaré duality) the above remains
true for all coefficient fields F; moreover, the induced homomorphism πi(X1) →
πi(X2) is surjective as it is seen by looking at the lift of f ∶ X1 → X2 to the
induced map from the covering X̃1 → X1 induced by the universal covering
X̃2 →X2 to X̃2. (A map of degree m > 1 sends π1(X1) to a subgroup in π1(X2)
of a finite index dividing m.)

Let us construct manifolds starting from pseudo-manifolds, where a compact
oriented n-dimensional pseudo-manifold is a triangulated n-space X0, such that

● every simplex of dimension < n in X0 lies in the boundary of an n-simplex,
● The complement to the union of the (n− 2)-simplices in X0 is an oriented

manifold.
Pseudo-manifolds are infinitely easier to construct and to recognize than

manifolds: essentially, these are simplicial complexes with exactly two n-simplices
adjacent to every (n − 1)-simplex.

There is no comparably simple characterization of triangulated n-manifolds
X where the links Ln−i−1 = L∆i ⊂ X of the i-simplices must be topological
(n− i− 1)-spheres. But even deciding if π1(Ln−i−1) = 1 is an unsolvable problem
except for a couple of low dimensions.

Accordingly, it is very hard to produce manifolds by combinatorial con-
structions; yet, one can ”dominate” any pseudo-manifold by a manifold, where,
observe, the notion of degree perfectly applies to oriented pseudo-manifolds.

Let X0 be a connected oriented n-pseudomanifold. Then there exists a smooth
closed connected oriented manifold X and a continuous map f ∶ X → X0 of
degree m > 0.

Moreover, given an oriented RN -bundle V0 → X0, N ≥ 1, one can find an
m-dominating X, which also admits a smooth embedding X ⊂ Rn+N , such that
our f ∶X →X0 of degree m > 0 induces the normal bundle of X from V0.

Proof. Since that the first N − 1 homotopy groups of the Thom space of
V● of V0 vanish (see section 5), Serre’s m-sphericity theorem delivers a map
f● ∶ Sn+N → V● a non-zero degree m, provided N > n. Then the ”generic
pullback” X of X0 ⊂ V0 (see section 3) does the job as it was done in section 5
for Thom’s bordisms.

In general, if 1 ≤ N ≤ n, the m-sphericity of the fundamental class [V●] ∈
Hn+N(V●) is proven with the Sullivan’s minimal models, see theorem 24.5 in
[19]

The minimal model, of a space X is a free (skew)commutative differential
algebra which, in a way, extends the cohomology algebra of X and which faith-
fully encodes all homotopy Q-invariants of X. If X is a smooth N -manifold it
can be seen in terms of ”higher linking” in X.

For example, if two cycles C1,C2 ⊂ X of codimensions i1, i2, satisfy C1 ∼ 0
and C1 ∩C2 = 0, then the (first order) linking class between them is an element
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in the quotient group HN−i1−i2−1(X)/(HN−i1−1(X)∩[C2]) which is defined with
a plaque D1 ∈ ∂−1(C1), i.e. such that ∂(D1) = C1, as the image of [D1 ∩ C2]
under the quotient map

HN−i1−i2−1(X) ∋ [D1 ∩C2] ↦HN−i1−i2−1(X)/(HN−i1−1(X) ∩ [C2]).

Surgery and the Browder-Novikov Theorem (1962 [8],[54]). Let X0 be a
smooth closed simply connected oriented n-manifold, n ≥ 5, and V0 → X0 be a
stable vector bundle where ”stable” means that N = rank(V ) >> n. We want to
modify the smooth structure of X0 keeping its homotopy type unchanged but
with its original normal bundle in Rn+N replaced by V0.

There is an obvious algebraic-topological obstruction to this highlighted by
Atiyah in [2] which we call [V●]-sphericity and which means that there exists
a degree one, map f● of Sn+N to the Thom space V● of V0, i.e. f● sends the
generator [Sn+N ] ∈Hn+N(Sn+N) = Z (for some orientation of the sphere Sn+N )
to the fundamental class of the Thom space, [V● ∈ Hn+N(V●) = Z, which is
distinguished by the orientation in X. (One has to be pedantic with orientations
to keep track of possible/impossible algebraic cancellations.)

However, this obstruction is ”Q-nonessential”, [2] : the set of the vector
bundles admitting such an f● constitutes a coset of a subgroup of finite index
in Atiyah’s (reduced) K-group by Serre’s finiteness theorem.

Recall that K(X) is the Abelian group formally generated by the isomor-
phism classes of vector bundles V over X, where [V1] + [V2] =def 0 whenever
the Whitney sum V1 ⊕ V2 is isomorphic to a trivial bundle.

The Whitney sum of an Rn1 -bundle V1 → X with an Rn2 -bundle V2 → X,
is the Rn1+n2-bundle over X. which equals the fiber-wise Cartesian product of
the two bundles.

For example the Whitney sum of the tangent bundle of a smooth submanifold
Xn ⊂ Wn+N and of its normal bundle in W equals the tangent bundle of W
restricted to X. Thus, it is trivial for W = Rn+N , i.e. it isomorphic to Rn+N ×
X →X, since the tangent bundle of Rn+N is, obviously, trivial.

Granted an f● ∶ Sn+N → V● of degree 1, we take the ”generic pullback” X of
X0,

X ⊂ Rn+N ⊂ Rn+N● = Sn+N ,

and denote by f ∶ X → X0 the restriction of f● to X, where, recall, f induces
the normal bundle of X from V0. .

The map f ∶ X1 → X0, which is clearly onto, is far from being injective – it
may have uncontrollably complicated folds. In fact, it is not even a homotopy
equivalence – the homology homomorphism induced by f

f∗i ∶Hi(X1) →Hi(X0),

is, as we know, surjective and it may (and usually does) have non-trivial kernels
keri ⊂Hi(X1). However, these kernels can be ”killed” by a ”surgical implemen-
tation” of the obstruction theory (generalizing the case where X0 = Sn due to
Kervaire-Milnor) as follows.

Assume keri = 0 for i = 0,1, ..., k − 1, invoke Hurewicz’ theorem and realize
the cycles in kerk by k-spheres mapped to X1, where, observe, the f -images of
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these spheres are contractible in X0 by a relative version of the (elementary)
Hurewicz theorem.

Furthermore, if k < n/2, then these spheres Sk ⊂X1 are generically embedded
(no self-intersections) and have trivial normal bundles in X1, since, essentially,
they come from V → X1 via contractible maps. Thus, small neighbourhoods
(ε-annuli) A = Aε of these spheres in X1 split: A = Sk ×Bn−kε ⊂X1.

It follows, that the corresponding spherical cycles can be killed by (k + 1)-
surgery (where X1 now plays the role of Y in the definition of the surgery);
moreover, it is not hard to arrange a map of the resulting manifold to X0 with
the same properties as f .

If n = dim(X0) is odd, this works up to k = (n − 1)/2 and makes all keri,
including i > k, equal zero by the Poincaré duality.

Since
a continuous map between simply connected spaces which induces an isomor-

phism on homology is a homotopy equivalence by the (elementary) Whitehead
theorem,

the resulting manifold X is a homotopy equivalent to X0 via our surgically
modified map f , call it fsrg ∶X →X0.

Besides, by the construction of fsrg, this map induces the normal bundle of
X from V →X0. Thus we conclude,

the Atiyah [V●]-sphericity is the only condition for realizing a stable vector
bundle V0 →X0 by the normal bundle of a smooth manifold X in the homotopy
class of a given odd dimensional simply connected manifold X0.

If n is even, we need to kill k-spheres for k = n/2, where an extra obstruction
arises. For example, if k is even, the surgery does not change the signature;
therefore, the Pontryagin classes of the bundle V must satisfy the Rokhlin-
Thom-Hirzebruch formula to start with.

(There is an additional constrain for the tangent bundle T (X) – the equality
between the Euler characteristic χ(X) = ∑i=0,...,n(−1)irankQ(Hi(X)) and the
Euler number e(T (X)) that is the self-intersection index of X ⊂ T (X).)

On the other hand the equality L(V )[X0] = sig(X0) (obviously) implies that
sig(X) = sig(X0). It follows that

the intersection form on kerk ⊂Hk(X) has zero signature,
since all h ∈ kerk have zero intersection indices with the pullbacks of k-cycles
from X0.

Then, assuming keri = 0 for i < k and n ≠ 4, one can use Whitney’s lemma
and realize a basis in kerk ⊂ Hk(X1) by 2m embedded spheres Sk2j−1, S

k
2j ⊂ X1,

i = 1, ...m, which have zero self-intersection indices, one point crossings between
Sk2j−1 and Sk2j and no other intersections between these spheres.

Since the spheres Sk ⊂X with [Sk] ∈ kerk have trivial stable normal bundles
U⊥ (i.e. their Whitney sums with trivial 1-bundles, U⊥ ⊕ R, are trivial), the
normal bundle U⊥ = U⊥(Sk) of such a sphere Sk is trivial if and only if the
Euler number e(U⊥) vanishes.

Indeed any oriented k-bundle V → B, such that V ×R = B ×Rk+1, is induced
from the tautological bundle V0 over the oriented Grassmannian Grork (Rk+1),
where Grork (Rk+1) = Sk and V0 is the tangent bundle T (Sk). Thus, the Euler
class of V is induced from that of T (Sk) by the classifying map, G ∶ B → Sk. If
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B = Sk then the Euler number of e(V ) equals 2deg(G) and if e(V ) = 0 the map
G is contractible which makes V = Sk ×Rk.

Now, observe, e(U⊥(Sk)) is conveniently equal to the self-intersection index
of Sk in X. (e(U⊥(Sk)) equals, by definition, the self-intersection of Sk ⊂
U⊥(Sk) which is the same as the self-intersection of this sphere in X.)

Then it easy to see that the (k + 1)-surgeries applied to the spheres Sk2j ,
j = 1, ...,m, kill all of kerk and make X →X0 a homotopy equivalence.

There are several points to check (and to correct) in the above argument,
but everything fits amazingly well in the lap of the linear algebra (The case of
odd k is more subtle due to the Kervaire-Arf invariant.)

Notice, that our starting X0 does not need to be a manifold, but rather a
Poincaré (Browder) n-space, i.e. a finite cell complex satisfying the Poincaré
duality: Hi(X0,F) = Hn−i(X0,F) for all coefficient fields (and rings) F, where
these ”equalities” must be coherent in an obvious sense for different F.

Also, besides the existence of smooth n-manifolds X, the above surgery ar-
gument applied to a bordism Y between homotopy equivalent manifolds X1 and
X2. Under suitable conditions on the normal bundle of Y , such a bordism can
be surgically modified to an h-cobordism. Together with the h-cobordism the-
orem, this leads to an algebraic classification of smooth structures on simply
connected manifolds of dimension n ≥ 5. (see [54]).

Then the Serre finiteness theorem implies that
there are at most finitely many smooth closed simply connected n-manifolds

X in a given a homotopy class and with given Pontryagin classes pk ∈H4k(X).
Summing up, the question ”What are manifolds?” has the following
1962 Answer. Smooth closed simply connected n-manifolds for n ≥ 5, up to

a ”finite correction term”, are ”just” simply connected Poincaré n-spaces X with
distinguished cohomology classes pi ∈ H4i(X), such that Lk(pi)[X] = sig(X) if
n = 4k.

This is a fantastic answer to the ”manifold problem” undreamed of 10 years
earlier. Yet,

● Poincaré spaces are not classifiable. Even the candidates for the cohomol-
ogy rings are not classifiable over Q.

Are there special ”interesting” classes of manifolds and/or coarser than
diff classifications? (Something mediating between bordisms and h-cobordisms
maybe?)

● The π1 = 1 is very restrictive. The surgery theory extends to manifolds
with an arbitrary fundamental group Γ and, modulo the Novikov conjecture – a
non-simply connected counterpart to the relation Lk(pi)[X] = sig(X) (see next
section) – delivers a comparably exhaustive answer in terms of the ”Poincaré
complexes over (the group ring of) Γ” (see [80]).

But this does not tells you much about ”topologically interesting” Γ, e.g.
fundamental groups of n-manifold X with the universal covering Rn (see [13]
[14] about it).

10 Elliptic Wings and Parabolic Flows.

The geometric texture in the topology we have seen so far was all on the side of
the ”entropy”; topologists were finding gentle routes in the rugged landscape of
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all possibilities, you do not have to sweat climbing up steep energy gradients on
these routs. And there was no essential new analysis in this texture for about
50 years since Poincaré.

Analysis came back with a bang in 1963 when Atiyah and Singer discovered
the index theorem.

The underlying idea is simple: the ”difference” between dimensions of two
spaces, say Φ and Ψ, can be defined and be finite even if the spaces themselves
are infinite dimensional, provided the spaces come with a linear (sometimes
non-linear) Fredholm operator D ∶ Φ→ Ψ . This means, there exists an operator
E ∶ Ψ → Φ such that (1 −D ○E) ∶ Ψ → Ψ and (1 −E ○D) ∶ Φ → Φ are compact
operators. (In the non-linear case, the definition(s) is local and more elaborate.)

If D is Fredholm, then the spaces ker(D) and coker(D) = Ψ/D(Φ) are
finite dimensional and the index ind(D) = dim(ker(D)) − dim(coker(D)) is
(by a simple argument) is a homotopy invariant of D in the space of Fredholm
operators.

If, and this is a ”big IF”, you can associate such a D to a geometric or
topological object X, this index will serve as an invariant of X.

It was known since long that elliptic differential operators, e.g. the ordinary
Laplace operator, are Fredholm under suitable (boundary) conditions but most
of these ”natural” operators are self-adjoint and always have zero indices: they
are of no use in topology.

”Interesting” elliptic differential operators D are scares: the ellipticity con-
dition is a tricky inequality (or, rather, non-equality) between the coefficients
of D. In fact, all such (linear) operators currently in use descend from a single
one: the Atiyah-Singer-Dirac operator on spinors.

Atiyah and Singer have computed the indices of their geometric operators in
terms of traditional topological invariants, and thus discovered new properties
of the latter.

For example, they expressed the signature of a closed smooth Riemannian
manifold X as an index of such an operator Dsig acting on differential forms on
X. Since the parametrix operator E for an elliptic operator D can be obtained
by piecing together local parametrices, the very existence of Dsig implies the
multiplicativity of the signature.

The elliptic theory of Atiyah and Singer and their many followers, unlike the
classical theory of PDE, is functorial in nature as it deals with many intercon-
nected operators at the same time in coherent manner.

Thus smooth structures on potential manifolds (Poincaré complexes) define
a functor from the homotopy category to the category of ”Fredholm diagrams”
(e.g. operators – one arrow diagrams); one is tempted to forget manifolds and
study such functors per se. For example, a closed smooth manifold represents
a homology class in Atiyah’s K-theory – the index of Dsig, twisted with vector
bundles over X with connections in them.

Interestingly enough, one of the first topological applications of the index
theory, which equally applies to all dimensions be they big or small, was the
solution (Massey, 1969) of the Whitney 4D-conjecture of 1941 which, in a sim-
plified form, says the following.

The number N(Y ) of possible normal bundles of a closed connected non-
orientable surface Y embedded into the Euclidean space R4 equals ∣χ(Y )−1∣ +1,
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where χ denotes the Euler characteristic.Equivalently, there are ∣χ(Y ) − 1∣ = 1
possible homeomorphisms types of small normal neighbourhoods of Y in R4.

If Y is an orientable surface then N(Y ) = 1, since a small neighbourhood of
such a Y ⊂ R4 is homeomorphic to Y ×R2 by an elementary argument.

If Y is non-orientable, Whitney has shown that N(Y ) ≥ ∣χ(Y ) − 1∣ + 1 by
constructing N = ∣χ(Y )−1∣+1 embeddings of each Y to R4 with different normal
bundles and then conjectured that one could not do better.

Outline of Massey’s Proof. Take the (unique in this case) ramified double
covering X of S4 ⊃ R4 ⊃ Y branched at Y with the natural involution I ∶X →X.
Express the signature of I, that is the quadratic form on H2(X) defined by the
intersection of cycles C and I(C) in X, in terms of the Euler number e⊥ of
the normal bundle of Y ⊂ R4 as sig = e⊥/2 (with suitable orientation and sign
conventions) by applying the Atiyah-Singer equivariant signature theorem. Show
that rank(H2(X)) = 2−χ(Y ) and thus establish the bound ∣e⊥/2∣ ≤ 2−χ(Y ) in
agreement with Whitney’s conjecture.

(The experience of the high dimensional topology would suggest thatN(Y ) =
∞. Now-a-days, multiple constrains on topology of embeddings of surfaces into
4-manifolds are derived with Donaldson’s theory.)

Non-simply Connected Analytic Geometry. The Browder-Novikov theory
implies that, besides the Euler-Poincaré formula, there is a single ”Q-essential
(i.e. non-torsion) homotopy constraint” on tangent bundles of closed simply
connected 4k-manifolds– the Rokhlin-Thom-Hirzebruch signature relation.

But in 1966, Sergey Novikov, in the course of his proof of the topological
invariance of the of the rational Pontryagin classes, i.e of the homology ho-
momorphism H∗(Xn; Q) → H∗(GrN(Rn+N); Q) induced by the normal Gauss
map, found the following new relation for non-simply connected manifolds X.

Let f ∶ Xn → Y n−4k be a smooth map. Then the signature of the 4k-
dimensional pullback manifold Z = f−1(y) of a generic point, sig[f] = sig(Z),
does not depend on the point and/or on f within a given homotopy class [f]
by the generic pull-back theorem and the cobordism invariance of the signature,
but it may change under a homotopy equivalence h ∶X1 →X2.

By an elaborate (and, at first sight, circular) surgery + algebraic K-theory
argument, Novikov proves that

if Y is a k-torus, then sig[f ○ h] = sig[f],
where the simplest case of the projection X ×Tn−4k → Tn−4k is (almost all) what
is needed for the topological invariance of the Pontryagin classes. (See [27] for
a simplified version of Novikov’s proof and [62] for a different approach to the
topological Pontryagin classes.)

Novikov conjectured (among other things) that a similar result holds for an
arbitrary closed manifold Y with contractible universal covering. (This would
imply, in particular, that if an oriented manifold Y ′ is orientably homotopy
equivalent to such a Y , then it is bordant to Y .) Mishchenko (1974) proved
this for manifolds Y admitting metrics of non-positive curvature with a use of
an index theorem for operators on infinite dimensional bundles, thus linking the
Novikov conjecture to geometry.

(Hyperbolic groups also enter Sullivan’s existence/uniqueness theorem of
Lipschitz structures on topological manifolds of dimensions ≥ 5.

A bi-Lipschitz homeomorphism may look very nasty. Take, for instance,
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infinitely many disjoint round balls B1,B2, ... in Rn of radii → 0, take a dif-
feomorphism f of B1 fixing the boundary ∂(B1) an take the scaled copy of f
in each Bi. The resulting homeomorphism, fixed away from these balls, be-
comes quite complicated whenever the balls accumulate at some closed subset,
e.g. a hypersurface in Rn. Yet, one can extend the signature index theorem
and some of the Donaldson theory to this unfriendly bi-Lipschitz, and even to
quasi-conformal, environment.)

The Novikov conjecture remains unsolved. It can be reformulated in purely
group theoretic terms, but the most significant progress which has been achieved
so far depends on geometry and on the index theory.

In a somewhat similar vein, Atiyah (1974) introduced square integrable (also
called L2) cohomology on non-compact manifolds X̃ with cocompact discrete
group actions and proved the L2-index theorem. For example, he has shown
that

if a compact Riemannian 4k-manifolds has non-zero signature, then the uni-
versal covering X̃ admits a non-zero square summable harmonic 2k-form.

This L2-index theorem was extended to measurable foliated spaces (where
”measurable” means the presence of transversal measures) by Alain Connes,
where the two basic manifolds’ attributes– the smooth structure and the measure
– are separated: the smooth structures in the leaves allow differential operators
while the transversal measures underly integration and where the two cooperate
in the ”non-commutative world” of Alain Connes.

If X is a compact measurably and smoothly n-foliated (i.e. almost all leaves
are smooth n-manifolds) leaf-wise oriented space then one naturally defines
Pontryagin’s numbers which are real numbers in this case.

(Every closed manifold X can be regarded as a measurable foliation with
the ”transversal Dirac δ-measure” supported on X. Also complete Rieman-
nian manifolds of finite volume can be regarded as such foliations, provided the
universal coverings of these have locally bounded geometries [11].)

There is a natural notion of bordisms between measurable foliated spaces,
where the Pontryagin numbers are obviously, bordism invariant.

Also, the L2-signature, (which is also defined for leaves being Q-manifolds)
is bordism invariant by Poincaré duality.

The corresponding Lk-number, k = n/4, satisfies here the Hirzebruch formula
with the L2-signature (sorry for the mix-up in notation: L2 ≠ Lk=2): Lk(X) =
sig(X) by the Atiyah-Connes L2-index theorem [11].

It seems not hard to generalize this to measurable foliated spaces where
leaves are topological (or even topological Q) manifolds.

Questions. Let X be a measurable leaf-wise oriented n-foliated space with
zero Pontryagin numbers, e.g. n ≠ 4k. Is X orientably bordant to zero, provided
every leaf in X has measure zero.

What is the counterpart to the Browder-Novikov theory for measurable fo-
liations?

Measurable foliations can be seen as transversal measures on some universal
topological foliation, such as the Hausdorff moduli space X of the isometry classes
of pointed complete Riemannian manifolds L with uniformly locally bounded ge-
ometries (or locally bounded covering geometries [11]), which is tautologically
foliated by these L. Alternatively, one may take the space of pointed triangu-
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lated manifolds with a uniform bound on the numbers of simplices adjacent to
the points in L.

The simplest transversal measures on such an X are weak limits of convex
combinations of Dirac’s δ-measures supported on closed leaves, but most (all?)
known interesting examples descent from group actions, e.g. as follows.

Let L be a Riemannian symmetric space (e.g. the complex hyperbolic space
CHn as in section 5), let the isometry group G of L be embedded into a locally
compact group H and let O ⊂ H be a compact subgroup such that the inter-
section O ∩G equals the (isotropy) subgroup O0 ⊂ G which fixes a point l0 ∈ L.
For example, H may be the special linear group SLN(R) with O = SO(N) or
H may be an adelic group.

Then the quotient space X̃ = H/O is naturally foliated by the H-translate
copies of L = G/O0.

This foliation becomes truly interesting if we pass from X̃ to X = X̃/Γ for a
discrete subgroup Γ ⊂H, where H/Γ has finite volume. (If we want to make sure
that all leaves of the resulting foliation in X are manifolds, we take Γ without
torsion, but singular orbifold foliations are equally interesting and amenable to
the general index theory.)

The full vector of the Pontryagin numbers of such an X depends, up to
rescaling, only on L but it is unclear if there are ”natural (or any) bordisms”
between different X with the same L.

Linear operators are difficult to delinearize keeping them topologically inter-
esting. The two exceptions are the Cauchy-Riemann operator and the signature
operator in dimension 4. The former is used by Thurston (starting from late
70s) in his 3D-geometrization theory and the latter, in the form of the Yang-
Mills equations, begot Donaldson’s 4D-theory (1983) and the Seiberg-Witten
theory (1994).

The logic of Donaldson’s approach resembles that of the index theorem.
Yet, his operator D ∶ Φ→ Ψ is non-linear Fredholm and instead of the index he
studies the bordism-like invariants of (finite dimensional!) pullbacks D−1(ψ) ⊂ Φ
of suitably generic ψ.

These invariants for the Yang-Mills and Seiberg-Witten equations unravel
an incredible richness of the smooth 4D-topological structures which remain
invisible from the perspectives of pure topology” and/or of linear analysis.

The non-linear Ricci flow equation of Richard Hamilton, the parabolic rel-
ative of Einstein, does not have any built-in topological intricacy; it is similar
to the plain heat equation associated to the ordinary Laplace operator. Its po-
tential role is not in exhibiting new structures but, on the contrary, in showing
that these do not exist by ironing out bumps and ripples of Riemannian metrics.
This potential was realized in dimension 3 by Perelman in 2003:

The Ricci flow on Riemannian 3-manifolds, when manually redirected at its
singularities, eventually brings every closed Riemannian 3-manifold to a canon-
ical geometric form predicted by Thurston.

(Possibly, there is a non-linear analysis on foliated spaces, where solutions of,
e.g. parabolic Hamilton-Ricci for 3D and of elliptic Yang-Mills/Seiberg-Witten
for 4D, equations fast, e.g. L2, decay on each leaf and where ”decay” for non-
linear objects may refer to a decay of distances between pairs of objects.)

There is hardly anything in common between the proofs of Smale and Perel-
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man of the Poincaré conjecture. Why the statements look so similar? Is it the
same ”Poincaré conjecture” they have proved? Probably, the answer is ”no”
which raises another question: what is the high dimensional counterpart of the
Hamilton-Perelman 3D-structure?

To get a perspective let us look at another, seemingly remote, fragment of
mathematics – the theory of algebraic equations, where the numbers 2,3 and 4
also play an exceptional role.

If topology followed a contorted path 2→5...→4→3, algebra was going straight
1→2→3→4→5... and it certainly did not stop at this point.

Thus, by comparison, the Smale-Browder-Novikov theorems correspond to
non-solvability of equations of degree ≥ 5 while the present day 3D- and 4D-
theories are brethren of the magnificent formulas solving the equations of degree
3 and 4.

What does, in topology, correspond to the Galois theory, class field theory,
the modularity theorem... ?

Is there, in truth, anything in common between this algebra/arthmetic and
geometry?

It seems so, at least on the surface of things, since the reason for the partic-
ularity of the numbers 2, 3, 4 in both cases arises from the same formula:

4 =3 2 + 2 ∶

a 4 element set has exactly 3 partitions into two 2-element subsets and where,
observe 3 < 4. No number n ≥ 5 admits a similar class of decompositions.

In algebra, the formula 4 =3 2 + 2 implies that the alternating group A(4)
admits an epimorphism onto A(3), while the higher groups A(n) are simple
non-Abelian.

In geometry, this transforms into the splitting of the Lie algebra so(4) into
so(3) ⊕ so(3). This leads to the splitting of the space of the 2-forms into self-
dual and anti-self-dual ones which underlies the Yang-Mills and Seiberg-Witten
equations in dimension 4.

In dimension 2, the group SO(2) ”unfolds” into the geometry of Riemann
surfaces and then, when extended to homeo(S1), brings to light the conformal
field theory.

In dimension 3, Perelman’s proof is grounded in the infinitesimal O(3)-
symmetry of Riemannian metrics on 3-manifolds (which is broken in Thurston’s
theory and even more so in the high dimensional topology based on surgery)
and depends on the irreducibility of the space of traceless curvature tensors.

It seems, the geometric topology has a long way to go in conquering high
dimensions with all their symmetries.

11 Crystals, Liposomes and Drosophila.

Many geometric ides were nurtured in the cradle of manifolds; we want to follow
these ideas in a larger and yet unexplored world of more general ”spaces”.

Several exciting new routes were recently opened to us by the high energy
and statistical physics, e.g. coming from around the string theory and non-
commutative geometry – somebody else may comment on these, not myself.
But there are a few other directions where geometric spaces may be going.
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Infinite Cartesian Products and Related Spaces. A crystal is a collection
of identical molecules molγ = mol0 positioned at certain sites γ which are the
elements of a discrete (crystallographic) group Γ.

If the space of states of each molecule is depicted by some ”manifold” M ,
and the molecules do not interact, then the space X of states of our ”crystal”
equals the Cartesian power MΓ = ×γ∈ΓMγ .

If there are inter-molecular constrains, X will be a subspace of MΓ; further-
more, X may be a quotient space of such a subspace under some equivalence
relation, where, e.g. two states are regarded equivalent if they are indistinguish-
able by a certain class of ”measurements”.

We look for mathematical counterparts to the following physical problem.
Which properties of an individual molecule can be determined by a given class
of measurement of the whole crystal?

Abstractly speaking, we start with some category M of ”spaces” M with
Cartesian (direct) products, e.g. a category of finite sets, of smooth manifolds
or of algebraic manifolds over some field. Given a countable group Γ, we enlarge
this category as follows.

Γ-Power Category ΓM. The objects X ∈ ΓM are projective limits of finite
Cartesian powers M∆ for M ∈ M and finite subsets ∆ ⊂ Γ. Every such X is
naturally acted upon by Γ and the admissible morphisms in our Γ-category are
Γ-equivariant projective limits of morphisms in M.

Thus each morphism, F ∶X =MΓ → Y = NΓ is defined by a single morphism
in M, say by f ∶M∆ → N = N where ∆ ⊂ Γ is a finite (sub)set.

Namely, if we think of x ∈ X and y ∈ Y as M - and N -valued functions x(γ)
and y(γ) on Γ then the value y(γ) = F (x)(γ) ∈ N is evaluated as follows:

translate ∆ ⊂ Γ to γ∆ ⊂ Γ by γ, restrict x(γ) to γ∆ and apply f to this
restriction x∣γ∆ ∈Mγ∆ =M∆.

In particular, every morphism f ∶ M → N in M tautologically defines a
morphism in MΓ, denoted fΓ ∶MΓ → NΓ, but MΓ has many other morphisms
in it.

Which concepts, constructions, properties of morphisms and objects, etc.
from M ”survive” in ΓM for a given group Γ? In particular, what happens to
topological invariants which are multiplicative under Cartesian products, such
as the Euler characteristic and the signature?

For instance, let M and N be manifolds. Suppose M admits no topological
embedding into N (e.g. M = S1, N = [0,1] or M = RP 2, N = S3). When does
MΓ admit an injective morphism to NΓ in the category MΓ?

(One may meaningfully reiterate these questions for continuous Γ-equivariant
maps between Γ-Cartesian products, since not all continuous Γ-equivariant maps
lie in MΓ.)

Conversely, let M → N be a map of non-zero degree. When is the cor-
responding map fΓ ∶ MΓ → NΓ equivariantly homotopic to a non-surjective
map?

Γ-Subvarieties. Add new objects to MΓ defined by equivariant systems of
equations in X =MΓ, e.g. as follows.

Let M be an algebraic variety over some field F and Σ ⊂M ×M a subvariety,
say, a generic algebraic hypersurface of bi-degree (p, q) in CPn ×CPn.

Then every directed graph G = (V,E) on the vertex set V defines a subvari-
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ety, in MV , say Σ(G) ⊂MV which consists of those M -valued functions x(v),
v ∈ V , where (x(v1), x(v2)) ∈ Σ whenever the vertices v1 and v2 are joined by a
directed edge e ∈ E in G. (If Σ ⊂M ×M is symmetric for (m1,m2) ↔ (m2,m1),
one does not need directions in the edges.)

Notice that even if Σ is non-singular, Σ(G) may be singular. (I doubt, this
ever happens for generic hypersurfaces in CPn × CPn.) On the other hand, if
we have a ”sufficiently ample” family of subvarieties Σ in M ×M (e.g. of (p, q)-
hypersurfaces in CPn×CPn) and, for each e ∈ E, we take a generic representative
Σgen = Σgen(e) ⊂M ×M from this family, then the resulting generic subvariety
in M ×M , call it Σgen(G) is non-singular and, if F = C, its topology does not
depend on the choices of Σgen(e).

We are manly interested in Σ(G) and Σgen(G) for infinite graphs G with
a cofinite action of a group Γ, i.e. where the quotient graph G/Γ is finite. In
particular, we want to understand ”infinite dimensional (co)homology” of these
spaces, say for F = C and the ”cardinalities” of their points for finite fields F
(see [5] for some results and references). Here are test questions.

Let Σ be a hypersurface of bi-degree (p, q) in CPn × CPn and Γ = Z. Let
Pk(s) denote the Poincaré polynomial of Σgen(G/kZ), k = 1,2, .... and let

P (s, t) =
∞
∑
k=1

tkP (s) = ∑
k,i

tksirank(Hi(Σgen(G/kZ)).

Observe that the function P (s, t) depends only on n, and (p, q).
Is P (s, t) meromorphic in the two complex variables s and t? Does it satisfy

some ”nice” functional equation?
Similarly, if F = Fp, we ask the same question for the generating function in

two variables counting the Fpl -points of Σ(G/kZ).
Γ-Quotients. These are defined with equivalence relations R ⊂X ×X where

R are subobjects in our category.
The transitivity of (an equivalence relation) R, and it is being a finitary

defined sub-object are hard to satisfy simultaneously. Yet, hyperbolic dynamical
systems provide encouraging examples at least for the categoryM of finite sets.

If M is the category of finite sets then subobjects in MΓ, defined with
subsets Σ ⊂ M ×M are called Markov Γ-shifts. These are studied, mainly for
Γ = Z, in the context of symbolic dynamics [43], [7].

Γ-Markov quotients Z of Markov shifts are defined with equivalence relations
R = R(Σ′) ⊂ Y × Y which are Markov subshifts. (These are called hyperbolic
and/or finitely presented dynamical systems [20], [26].)

If Γ = Z, then the counterpart of the above P (s, t), now a function only in
t, is, essentially, what is called the ζ-function of the dynamical system which
counts the number of periodic orbits. It is shown in [20] with a use of (Sinai-
Bowen) Markov partitions that this function is rational in t for all Z-Markov
quotient systems.

The local topology of Markov quotient (unlike that of shift spaces which are
Cantor sets) may be quite intricate, but some are topological manifolds.

For instance, classical Anosov systems on infra-nilmanifolds V and/or ex-
panding endomorphisms of V are representable as a Z- Markov quotient via
Markov partitions [35].
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Another example is where Γ is the fundamental group of a closed n-manifold
V of negative curvature. The ideal boundary Z = ∂∞(Γ) is a topological (n−1)-
sphere with a Γ-action which admits a Γ-Markov quotient presentation [26].

Since the topological Sn−1-bundle S → V associated to the universal cov-
ering, regarded as the principle Γ bundle, is, obviously, isomorphic to the unit
tangent bundle UT (V ) → V , the Markov presentation of Z = Sn−1 defines the
topological Pontryagin classes pi of V in terms of Γ.

Using this, one can reduce the homotopy invariance of the Pontryagin classes
pi of V to the ε-topological invariance.

Recall that an ε-homeomorphism is given by a pair of maps f12 ∶ V1 → V2

and f21 ∶ V2 → V1, such that the composed maps f11 ∶ V1 → V1 and f22 ∶ V2 → V2

are ε-close to the respective identity maps for some metrics in V1, V2 and a small
ε > 0 depending on these metrics.

Most known proofs, starting from Novikov’s, of invariance of pi under home-
omorphisms equally apply to ε-homeomorphisms.

This, in turn, implies the homotopy invariance of pi if the homotopy can be
”rescaled” to an ε-homotopy.

For example, if V is a nil-manifold Ṽ /Γ, (where Ṽ is a nilpotent Lie group
homeomorphic to Rn) with an expanding endomorphism E ∶ V → V (such a V is
a Z-Markov quotient of a shift), then a large negative power Ẽ−N ∶ Ṽ → Ṽ of the
lift Ẽ ∶ Ṽ → Ṽ brings any homotopy close to identity. Then the ε-topological
invariance of pi implies the homotopy invariance for these V . (The case of
V = Rn/Zn and Ẽ ∶ ṽ → 2ṽ is used by Kirby in his topological torus trick.)

A similar reasoning yields the homotopy invariance of pi for many (manifolds
with fundamental) groups Γ, e.g. for hyperbolic groups.

Questions. Can one effectively describe the local and global topology of
Γ-Markov quotients Z in combinatorial terms? Can one, for a given (e.g. hy-
perbolic) group Γ, ”classify” those Γ-Markov quotients Z which are topological
manifolds or, more generally, locally contractible spaces?

For example, can one describe the classical Anosov systems Z in terms of
the combinatorics of their Z-Markov quotient representations? How restrictive
is the assumption that Z is a topological manifold? How much the topology
of the local dynamics at the periodic points in Z restrict the topology of Z
(E.g. we want to incorporate pseudo-Anosov automorphisms of surfaces into
the general picture.)

It seems, as in the case of the hyperbolic groups, (irreducible) Z-Markov
quotients becomes more scarce/rigid/symmetric as the topological dimension
and/or the local topological connectivity increases.

Are there interesting Γ-Markov quotients over categories M besides finite
sets? For example, can one have such an object over the category of algebraic
varieties over Z with non-trivial (e.g. positive dimensional) topology in the
spaces of its Fpi-points?

Liposomes and Micelles are surfaces of membranes surrounded by water
which are assembled of rod-like (phospholipid) molecules oriented normally to
the surface of the membrane with hydrophilic ”heads” facing the exterior and the
interior of a cell while the hydrophobic ”tails” are buried inside the membrane.

These surfaces satisfy certain partial differential equations of rather general
nature (see [30]). If we heat the water, membranes dissolve: their constituent
molecules become (almost) randomly distributed in the water; yet, if we cool
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the solution, the surfaces and the equations they satisfy re-emerge.
Question. Is there a (quasi)-canonical way of associating statistical ensem-

bles S to geometric system S of PDE, such that the equations emerge at low
temperatures T and also can be read from the properties of high temperature
states of S by some ”analytic continuation” in T?

The architectures of liposomes and micelles in an ambient space, say W ,
which are composed of ”somethings” normal to their surfaces X ⊂W , are remi-
niscent of Thom-Atiyah representation of submanifolds with their normal bun-
dles by generic maps f● ∶W → V●, where V● is the Thom space of a vector bundle
V0 over some space X0 and where manifolds X = f−1

● (X0) ⊂W come with their
normal bundles induced from the bundle V0.

The space of these ”generic maps” f● looks as an intermediate between an
individual ”deterministic” liposome X and its high temperature randomization.
Can one make this precise?

Poincaré-Sturtevant Functors. All what the brain knows about the geometry
of the space is a flow Sin of electric impulses delivered to it by our sensory
organs. All what an alien browsing through our mathematical manuscripts
would directly perceive, is a flow of symbols on the paper, say Gout.

Is there a natural functorial-like transformation P from sensory inputs to
mathematical outputs, a map between ”spaces of flows” P ∶ S → G such that
P(Sin)”=”Gout?

It is not even easy to properly state this problem as we neither know what
our ”spaces of flows” are, nor what the meaning of the equality ”=” is.

Yet, it is an essentially mathematical problem a solution of which (in a
weaker form) is indicated by Poincaré in [59]. Besides, we all witness the solution
of this problem by our brains.

An easier problem of this kind presents itself in the classical genetics.
What can be concluded about the geometry of a genome of an organism by

observing the phenotypes of various representatives of the same species (with
no molecular biology available)?

This problem was solved in 1913, long before the advent of the molecular
biology and discovery of DNA, by 19 year old Alfred Sturtevant (then a student
in T. H. Morgan’s lab) who reconstructed the linear structure on the set of
genes on a chromosome of Drosophila melanogaster from samples of a probability
measure on the space of gene linkages.

Here mathematics is more apparent: the geometry of a space X is repre-
sented by something like a measure on the set of subsets in X; yet, I do not
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know how to formulate clear-cut mathematical questions in either case (compare
[29], [31]).

Who knows where manifolds are going?
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mentarii Mathematici Helvetici 28: 17-86, (1954).
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