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          This paper is based on ‘lectures’ in simple everyday language that I’ve been giving 
to mostly non-mathematical visitors on some motifs – see photographs below – in our 
house.  Hopefully this written version shall appeal to a wider audience.1 
 
          1.  “Perfectly proportioned.”  The defining property of a golden rectangle is that,  
if we delete from it a square on a smaller side, then we are left with a similar rectangle, 
i.e., one having the same length-to-breadth ratio, and this ratio, that is, the common 
length-to-breadth ratio of all golden rectangles, is called the golden ratio. 
 

                         
 
           
          The two murals near the front door depict golden rectangles.  Thus, deleting the  
blues gives a smaller golden rectangle, then, by throwing away the bluish greens, another 
which is still smaller, and after three more deletions, one arrives finally in these murals at 
the tiny white rectangles.  Indeed, the inherent limitations of masonry, or for that matter, 
any practical form of visual representation, clearly dictate that one would need to stop, 
sooner or later, at some point or the other. However, what the spiralling in these murals is 
intended to evoke is that, in our God-given unlimited imagination, there is, just as clearly,  
no need to stop, now or ever.  We can continue deleting a square on a smaller side for as 

                                                 
1 Also, I’ll now  be able to refer my inquisitors to this paper, which policy should, if nothing else, save those of our visitors who pose 
their queries more out of politeness than curiosity,  from being bored to death by my possibly long-winded answers! 
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long as we wish!  And therein, in this evoked idea, as I’ll presently show, lies the real 
beauty of these depictions, a beauty which transcends by far their mere visuals, and in my 
humble, but admittedly prejudiced, mathematician’s opinion, is far more fetching than 
anything the best painter has ever painted, or the best poet ever written. 
 
          In fact these ‘mere visuals’ already have – as you can confirm from the web – a 
huge fan following.  From Phidias, through Leonardo da Vinci, to Le Corbusier, the 
architect who planned Chandigarh, the proportions of the golden rectangle have been 
raved about by all sorts of aesthetes, with Corbusier even opining that the navel divides a 
perfectly proportioned human body in the golden ratio, and then the two parts in turn are 
divided in the same ratio at the throat and the knees respectively!   I’ve nothing to add to 
all this,  but I do have something to say about an assertion that one finds on quite a few 
websites, and also on a panel in the City Museum in Sector 10, namely that, ‘the golden 
ratio is equal to 1.618.’  This is simply not true!   
 
           The golden ratio is not equal to 1.618 (recall that 1.618 is decimal notation for 
1618 by 1000).  To see this, we note that, if the length-to-breadth ratio of our rectangle 
were 1618 by 1000, we could have subdivided each side of our rectangle into either 1618 
or 1000 appropriately chosen equal units.  Then, by drawing parallels through these 
subdivision points, we could have partitioned the rectangle into 1618 H 1000 equal 
squares.  The deletion of the blues would have entailed throwing away 1000 H 1000 of 
these small squares, and then, that of the bluish greens, 618 H 618 more of these small 
squares, etcetra.  So, since we have finitely many small squares in all, and are throwing 
away some at each step, we would have been done (even in our imagination) in  finitely 
many steps.  This contradicts the fact that the deletion process can (in our imagination) 
continue for as long as we wish.  So, the length-to-breadth ratio of our rectangle is not 
1618 by 1000, i.e., the golden ratio is not equal to 1.618.  
 

 
 

          Remarkably 1618 and 1000 played no special role in this reasoning, it works just as 
well with any two whole numbers m and n!  Therefore: the golden ratio is not equal to 
any fractional number m/n (m by n), or equivalently, a golden rectangle cannot be 
partitioned into finitely many equal squares in above way! A truly mind-blowing result!    
For, these squares can be as tiny as we want, even the size of a meson!  Again, between 
any two fractional numbers, howsoever close, there is an infinity of fractional numbers, 
yet, on this already more than overcrowded ruler, there is somehow still some room left 
for numbers like the golden ratio that are not fractional!   
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          There is much more that can be said about this argument (see Notes) but I’ll move 
on now to a water feature, located on the other side of the front door, past that garden 
path, roman aqueduct, overhead water tank, and rockery with a stony brook hurrying 
down through its bonsai, cacti and white-washed temple into that small water pond.    
 
       

              
 
 

          2.  “Beesmukhi” (bees = twenty, mukhi = faced) is what its Bhojpuri speaking 
sculptors called the concrete statue in this small water pond.  It depicts – once we have 
sublimated those concrete rods into zero thickness edges in our boundless imagination  
and put down a triangle of our own into each triangular boundary – an icosahedron (icosa 
= twenty, hedron = faced), that is, a regular solid having 20 equilateral (all 3 sides equal) 
triangular faces, with 5 faces at each of its (20 H 3)/5 = 12 vertices.  We also see, thanks 
to the omission of the faces (triangular glass panes were considered briefly), the ‘innards’ 
of this statue, which reveal the secret of an icosahedron’s existence: its 12 = 3 H 4 
vertices are the vertices of 3 identical rectangles (those concrete slabs) each inserted 
perpendicularly half-way through a parallel central slit of  the next in cyclic order (see 
the line drawing accompanying this photo, the cyclic order is I, II, III, I)!  
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          To verify this, we note that the 12 vertices are equidistant from the common center 
of the 3 rectangles; and each is incident to 5 edges (concrete rods), while each edge has 2 
vertices, so there are in all (12 H 5)/2 = 30 edges. Of these, the 24 which join a vertex to 
one of the two nearest vertices of the next rectangle have clearly, by symmetry, the same 
length a.  Also, the remaining 6 edges, being the shorter sides of the identical rectangles, 
have the same length b. In general, a is not equal to b, and only 8 of the obtained triangles 
are equilateral with sides {a, a, a}, the remaining 12 are only isosceles (two sides equal) 
with sides {a, a, b}.  However, the above construction gives an icosahedron, provided 
the  three identical rectangles have a special length-to-breadth ratio.  For, if we keep b 
fixed, then a increases or decreases with l, the common length of the rectangles, being 
patently much bigger than b when the rectangles are very long, but is lesser than b when 
the rectangles approach ‘squarehood’ (the angle between the equal sides of the isosceles 
triangles is then almost a right angle), so there is an optimal  l at which a = b. 
 
          Once again, it is time to move on, so I won’t elaborate further (but see Notes) on 
the above argument, and shall only mention without proof that the above ‘special’ ratio 
turns out to be none other than the golden ratio!  Which reminds me, we should have 
(because syntactically correct oxymorons are dime a dozen) proved the existence of a 
golden rectangle also, not gullibly accepted its defining prescription at face value (and the 
missing beauties of the next ‘lecture’ shall drive home this existential point further).    
Luckily, this particular oversight is easily rectified.  We note that, the length-to-breadth 
ratio, of the rectangle obtained by deleting a square on a smaller side from a rectangle 
with fixed breadth b and shrinking length l, is equal to 1 when this varying length is 2b, 
and becomes arbitrarily large as l approaches b, so there is an optimal length l at which 
the  rectangle obtained after deletion has also the same ratio l/b.    
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          Also, here explicitly is the omitted general prescription for a regular solid {p,q}: 
its finitely many vertices should be on a sphere, its faces should be equal regular—i.e., 
with consecutive vertices equally spaced on a circle—polygons with p sides and vertices, 
and there should be q of these faces at each vertex.  Clearly, p and q must be whole 
numbers 3 or bigger, and there exists a regular polygon with p sides for any such p, so, 
from the delicate way in which we settled the case {3,5} (icosahedron), it is natural to 
fear that the general existence problem for regular solids must be hard.  Surprisingly, this 
is not the case, but, since it would be best to first meet the Egyptian beauty (no, not 
Cleopatra!) which inspired this unexpectedly easy solution, let’s move on a bit, past this 
glorious sextet of golden barrels – which is almost as old as this fifty-year-old house – 
towards that small gate, and look back at the new addition on the roof.    
 
              

                        
 
 
          3.  “Pyramid.”  The four topmost glass panels suggest a small pyramid with a 
square base and equilateral triangular sloping faces, but only two of these extend to those 
much bigger but similar sloping triangular walls of glass, so, more imaginatively, you 
might like to think in terms of a bigger pyramid of the same kind that has only managed 
to free itself partially from the confines of the edifice!  [The remaining walls of this stair-
head room, dubbed “Kuttiya” (cottage) by the carpenters, are mostly opaque and plumb, 
and its interior is ‘ethnic’ and spartan: brick and salvaged circa 1958 marble-chips 
flooring, raised sitting area also in brickwork with in-built chessboard, etc.]   A  quick 
continuity argument confirms that, if the apex is at a suitable height – in fact at height 
equal to the radius of the base – above the center of the square base, then the sloping and 
obviously isosceles triangular faces of the pyramid shall be equilateral. 
 

. 



 6

 
          More generally,  for a variable pyramid, with base a fixed regular polygon Q with 
q sides, and apex A moving up and down on the perpendicular line through the center O 
of the base, the angle α subtended at the apex by a polygonal edge takes all values less 
than 360/q degrees, and only these values.  For, the equal edges of this isosceles triangle 
(see figure) become very long, so their included angle α becomes very small, as A 
recedes towards infinity, while α increases towards 360/q when A approaches O.  (In 
particular, since 60 is less than 360/4 = 90,  there exists a square pyramid for which α is 
60 degrees, i.e., one with sloping isosceles faces equilateral). 
   

 
 

          This generalization was motivated by the fact that, a regular solid {p,q} can exist 
only if there exists a pyramid of the above kind with α  equal to an angle of a regular 
polygon with p sides.  Indeed, any pyramid with A a vertex of {p,q} and vertices of Q 
equidistant points on the q incident edges shall do the job.       
 
          We invoke next the ‘theorem’ that, the sum of the angles of a triangle is a straight 
angle (180 degrees), which you probably still remember from school?  If not, you can 
safely take it on faith, for it is logically equivalent to Euclid’s fifth postulate, the main 
unproved ‘axiom’ of his geometry.  Now that Euclid’s name has come up, let me remark  
that all these beautiful things that I’m telling you about, about golden rectangles and 
regular solids and pyramids and such, they are all in that great treatise on geometry that 
was written by this Egyptian, virtually under the shadow of the Great Pyramid, about 2 to 
3 centuries before the advent of the fair and beauteous Cleopatra.  Coming back to our 
problem, we note that a regular polygon with p sides can be cut up into p-2 triangles, so 
the sum of its angles is (p-2) H 180 degrees, so each is ((p-2) H 180)/p degrees.  
Therefore, a regular solid {p,q} can exist only if ((p-2) H 180)/p < 360/q, a very strong 
constraint indeed, for this inequality can be rewritten q(p-2) < 2p, i.e. qp – 2q – 2p < 0, 
i.e. qp – 2q – 2p + 4 < 4, i.e. (q-2)(p-2) < 4, i.e., the product of the whole numbers q-2 
and p-2 must be less than four, i.e. {p,q} = {3,3}, {3,4}, {4,3}, {3,5} or {5,3}!    
 
           To mop up note that, given any {p,q} we can make a {q,p} as follows: for each 
vertex of {p,q} take the regular polygon whose vertices are the q centers of the incident 
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faces, the solid enclosed by all these polygons is a {q,p}. We already know that {3,5} or 
icosahedron exists, and pasting (see figure) together the bases of two equal square 
pyramids with equilateral sloping faces gives us a {3,4} or octahedron (eight equilateral 
triangular faces, four at each vertex).  So by this method we can also make a  {5,3} or 
dodecahedron (twelve regular pentagonal faces, three at each vertex) and {4,3} or 
hexahedron (six square faces, three at each vertex), respectively.  The otherwise so rich 
English language has, very curiously,  a popular synonym, cube, only for the regular solid 
{4,3}.  Even the simplest regular solid {3,3}, which can be realized by choosing any four 
mutually non-adjacent vertices of a cube (see figure) goes only by its rather  pedantic 
name, tetrahedron (four equilateral triangular faces, three at each vertex). 
 

 
 
           These five beauties are all there in this house!  That “white-washed temple” on the 
rockery was a {3,3} (did you notice?), and we’ve discussed “Beesmukhi” = {3,5} at 
length, and this glass “Pyramid” (believe me!) is really the tip of a big {3,4} trying to free 
itself from the confines of this edifice.  On the first-floor terrace, there are the “Eyes” 
(photo above) or the skylights of that new and skew ground-floor living room.  These 
depict the two pieces of a {4,3} (cube) that one obtains when it is cut perpendularly to its 
main diagonal, and there is much of interest (see Notes) that can be said about these 
hexagonal sections, as well as the grills showing beneath them.  The {5,3} is also in the 
house, but as befits its special metaphysical significance, in a different avatar.    
 
          To explain this rather cryptic remark, I recall that Aflatoon (i.e. Plato, in Punjabi) 
had associated {3,3} with Fire, {4,3} with Earth, {3,4} with Air, {3,5} with Water – the  
‘Four Elements’ – and {5,3} with the Universe which contains everything, as well as the 
Quintessence of everything (One is All, All is One). Even as metaphysics, this 
association looks somewhat arbitrary, for, we saw that {p,q} and {q,p} are practically the 
two sides of the same coin, then why are their associates so different?  However, 
mankind always has, and always shall, try – with of course varying success – to find in 
mathematical certainty the basis for all sorts of beliefs and facts. Indeed, a large number 
of today’s theoretical physicists seem to be (if not openly declared, then closet) 
Platonists. For instance, with just a wee bit of poetic license (see Notes for elaboration) 
one can say that ‘the special Lie group E8’, in the symmetries of which String Theory is 
currently seeking the truth about quarks and practically everything else, is nothing but a 
higher-dimensional regular solid.  Aflatoon would have approved!           
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          4. “Miss Universe.”  That wall-painting with bevelled frame under my office 
window depicts a ‘topologist’s dodecahedron’.  Exactly one of the four sides of each 
cemented panel is subdivided into two by a fifth vertex, so these panels are non-regular 
pentagons.  Further, 5 different colours have been assigned to 5 pairs of panels, but the 
eleventh panel is left uncoloured, which should alert you to the fact that there is a twelfth 
face, which is – of course! – the obviously uncoloured and missing ‘glass pane’ in front  
of this painting.  With this understood, you can check that there are, at each of the 20  
vertices, exactly 3 of these pentagonal faces, so what we have here is a rather severely 
squashed {5,3}. Yet, this distortion is mild enough, and of no import, to a topologist, i.e., 
‘a person  who can’t distinguish between his/her coffee-cup and doughnut’ (see Notes for 
more on this and other examples of topologically equivalent shapes).   
 

 
 
           
          More seriously, topology is an extreme generalization/simplification of Euclid’s 
geometry in which distance and angle become bit players, only continuity matters. 
Accordingly, two shapes are topologically equivalent if there exists a one-one onto 
correspondence between them which is continuous in both directions.  So a ‘topologist’s 
polygon’  with p sides may not (unlike the pentagons of this mural) even be planar, and 
its specified p boundary edges, joining one after another its specified p vertices, can be 
very crooked.  This implies that a closed surface bounding any reasonably smooth body 
admits (infinitely many)  polygonal subdivisions into finitely many topologist’s polygons.  
By choosing one point (these shall be the  vertices of the new subdivision) in each face of 
a  polygonal subdivision, and for each pair of faces having a common edge a curve (these 
shall be the edges of the new subdivision) across this edge between the two points, we get 
a dual polygonal subdivision of the same surface with each face containing just one 
vertex of the original subdivision.  For example, this construction applied to the mural 
above would give us a ‘topologist’s icosahedron {3,5}’.  More generally a ‘topologist’s 
{p,q}’ shall be any reasonably smooth body with a polygonal subdivision of its bounding 
surface into finitely many topologist’s p-sided polygons, q at each vertex.  
 
           Topology frees us from the shackles of Euclid’s fifth postulate, which had a 
decisive say in the last argument, so it seems there can’t be  just five possibilities, with p 
and q at least three, for which one has a topologists’s {p,q} on a ball?  However the 
answer remains “yes”, but there are brave new worlds (to wit, pretzels!) on which the 
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remaining lost beauties {p,q} dwell.   We denote by V, E and F the number of vertices, 
edges and faces of a polygonal subdivision of a surface.  If it is a topologist’s {p,q}, each 
face has p edges and each vertex belongs to q edges, while each edge belongs to 2 faces 
and has 2 vertices, so pF = 2E =  qV = say t, so V – E + F =  t/q – t/2 + t/p = t(2p – pq + 
2q)/2pq.  Therefore, if V – E + F is positive, then pq – 2p – 2q is negative, which implies 
(assuming that both p and q are at least three) as before the same conclusion, viz., {p,q} = 
{3,3}, {3,4}, {4,3}, {3,5} or {5,3}.  At first sight our new hypothesis appears useless, but 
looks can be deceptive! The number V – E  + F is the same for all polygonal subdivisions 
of a closed surface, i.e., it is a topological invariant of the surface, and can be easily 
computed by using any convenient polygonal subdivision of the same. 
 
          To get a feel of the proof subdivide any polygonal subdivision, with V vertices, E 
edges and F faces, further by putting a new vertex (a) inside a face with u edges  and 
joining it to the vertices of this face, or (b) on an edge and joining it to the vertices of the 
two, say u- and v-sided, faces to which the edge belongs.  In case (a) the new subdivision 
has V + 1 vertices, E + u edges and F + u – 1 faces, while in case (b) it has V + 1 vertices, 
E + u + v – 3 edges and F +  u + v – 4  faces; so V – E + F stays put under both 
operations.  The required invariance is then a corollary of the fact (see Notes for more 
details) that any two polygonal subdivisions P and Q of a surface are related to each other 
by a finite sequence of polygonal subdivisions P = P1 , P2 ,  ... , Pn = Q, such that at each 
step either Pi+1 is such an elementary subdivision of Pi or vice versa.  
 
          In particular, V – E + F = 2 for the five regular solids, which are topologically 
equivalent to a ball, so this formula holds for any  polygonal subdivision of its surface.  
The lost beauties can only be on surfaces whose V – E + F is non-positive, and one such 
we’ve already mentioned, viz., the surface of a doughnut or a coffee cup or, if you please,   
a pretzel with 1 hole.  It has V – E + F = 0 and the two figures below depict a {4,4} and a 
{6,3} on it.  More generally, the surface of a pretzel, or a block of wood, with t holes has 
V – E + F = 2 – 2t, which is a very negative number if t is very big, which prompts the 
query: can all the missing beauties {p,q} be found on surfaces of pretzels?  As we’ll see 
later, the answer is “yes”, and just like Plato’s five, these {p,q}’s are also geometrically 
regular, if we are willing to use distances not satisfying Euclid’s fifth postulate! 

                                                  
          In the last figure we used the fact that, the surface of a doughnut can be obtained 
by glueing opposite sides of a square: AB ≡ DC converts the square into a cylinder, and 
AD ≡ BC corresponds to bringing the circular ends of this cylinder together in space.  If 
we alter our glueing slightly to AB ≡ DC and AD ≡ CB something very remarkable 
happens: we obtain (in our imagination) a shape, called Klein’s Bottle, which is locally 
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just like any closed surface, but which cannot possibly exist in 3-dimensional space!   To 
see this note that if we put a circular arrow, on each face of a polygonal subdivision of a 
closed surface,  which is clockwise when seen from the direction of the enclosed body, 
then each edge occurs with opposite directions with respect to the arrows on its two faces, 
but Klein’s Bottle does not obey this condition, for example, the choice of arrows 
depicted in the next figure is bad on the heavy edges.  We can hope to find  Klein’s  
Bottle only in a higher-dimensional euclidean space! 

            
          Just so there is no confusion here, let me emphasize once again that geometry is 
really played out in the mind, it is a logical development of some axioms, and its 
admittedly helpful, but necessarily imperfect figures are quite dispensable. One goes 
from 2- to 3-dimensional space simply by postulating a new direction perpendicular to 
the old ones, and using this device again and again, we can do Euclid’s geometry in 4, 5, 
or as many finite dimensions, n, as we like.  We’ll denote this euclidean n-dimensional 
space by En, and connected and closed shapes which topologically are just like En locally 
shall be called n-dimensional manifolds.  Examples: an n-dimensional sphere Sn, i.e., a 
subset of En+1 consisting of all points at a fixed distance from a fixed point; again, any 
closed surface of euclidean 3-dimensional space is a 2-dimensional manifold; but so too 
is Klein’s Bottle; likewise, by glueing pairs of faces of a subdivision of the surface of a 
ball one can obtain many 3-dimensional manifolds, above all, Poincaré’s manifold P3, 
which can be obtained, from the body bounded by this bevelled wall-painting and its 
‘glass pane’ by identifying the 6 like coloured pairs of faces as above.      
 
           Whatever one might think of Plato’s {5,3} = Universe/Quintessence – or its 
‘improvement’ {5,3}/{3,5} = Universe/Quintessence? – this offspring P3 of {5,3} has 
been at the centre of the topological universe for a 100 years and more!  It was known 
that S2 was the only 2-dimensional manifold in which every loop bounded.  For some 
time Poincaré thought that a like statement was true in dimension 3, till he found P3,  
which has this property but, unlike S3, is not simply connected: it has loops which cannot 
be shrunk to a point. Thus was born Poincaré’s Conjecture – ‘a simply connected closed 
3-dimensional manifold is topologically equivalent to S3 ’ – the (erstwhile) holy grail of 
topology which spawned numerous beautiful results and finally a solution by Perelman so 
natural that it promises much more. Or, for that matter, take the embeddability of P3 in E4 
which (unlike the embeddability of the Klein Bottle in E3 that we disposed off in short  
order) turned out to be extremely delicate: the answer is “no” if the embedding is 
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required to be the slightest bit reasonable, nevertheless Freedman showed that there is a 
very crumpled copy of P3 in E4, and this unexpected “yes” unlocked the door to the 
complete classification of simply connected 4-manifolds!  I’m sure the last few sentences 
have gone completely above your head; to be quite frank, I don’t really understand all 
this myself,  all I know is that there is scintillating beauty here, but despite trying off and 
on, I’ve only caught glimmers of it so far, but enough to keep on trying. 
 
          Uncannily enough, this offspring P3 of “Miss Universe” has also been weighed by 
physicists as the global shape of the spatial universe – one can almost hear Aflatoon’s: “I 
told you so!” – as revealed to us by those mysterious radio waves constantly coming to 
Earth because of that ‘Big Bang’ aeons ago.  However, I’m sure Plato would have been 
more impressed by what mathematicians have gotten out of his beloved {5,3}, to my 
mind there is nothing in any other field which is remotely as deep or attractive.   
  

------------------------------------- 
INTERMISSION 

------------------------------------- 
 

          The following is based on tea-time conversations – for example, in this ‘new and 
skew’ room I mentioned before – with parents of school-going children and others. 
 

                                  
 
          A common reaction to these ‘lectures’ is that they are unlike any my listeners heard 
in school or college. At which I blurt out that, at least in all of India north of the Narbada, 
this is the common reaction to anyone saying anything mathematical in any manner. The 
unfortunate fact quite simply is that the “mathematics” which is being taught, learnt and 
done in our schools, colleges and even universities, is as close to mathematics as Johnny 
Walker’s “chan-chen chin-chon-chun” is to Chinese!2  The tail constantly wags the dog 
in these parts, and the baby gets thrown out with the bathwater every day: “mathematics” 
means monotonously memorizing methods for mindlessly doing the stereotypical 
questions in that looming examination at the tail-end of the year, and reasoning – such a 
waste of  precious time! – finds no place in this inane and often panic-stricken drill.   

                                                 
2 Bollywood comedians were and are prone to mimicking alien languages to raise laughs.  A further note 
for mathematicians in developed countries: beware of drawing parallels with shortcomings in your own 
system, believe me, they are all insignificant in comparison!  ‘The law of large numbers’ implies a few of 
us do manage to learn mathematics despite this system, and this tiny percentage then tends to drift to your 
shores; but in India itself, it is not this handful, but the mainstream of “mathematicians” – a totally different 
species really! – which is very much in control of the whole show from top to bottom. 
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         Mathematics is all about formulating and trying to reason out solutions of clearly 
stated logical problems.  Crosswords, chess or bridge problems, and sudokus qualify – 
and some fine mathematics is indeed tied closely to games – but more attention is rightly 
paid to logical issues and problems that have arisen from our attempts to understand more 
basic things like space, time, and motion.  To my students confused about this word, I 
always used to say: ‘proof’ simply means ‘the reasons why’ and you all know what that 
means!  For example, when someone asks “why are you carrying an umbrella?” you go 
“because it was raining earlier” if that happens to be your reason, it’s that simple!  You 
have to do exactly the same, no less no more, that is, just clearly give your reasons in 
simple everyday language, if you want to fully answer any question in this subject; put 
another way: there are only ‘proof questions’ in mathematics, none other!  Their 
classification into sums, examples, exercises, problems, propositions, lemmas, theorems 
and so on, is done in your book only for organizational purposes – a highlighted theorem 
is likely to be used again, an exercise probably not – and does not indicate any basic 
difference in the way in which their answers have to be penned: the reasons why, that is, 
a proof, is always a must!  And neither is this classification a reliable indicator of 
difficulty: a  prominently displayed theorem may be easy to prove without looking at the 
argument given in the book – always a wise policy to adopt till a problem has utterly 
defeated you – while a nondescript exercise might have you running around in circles for 
many days or even weeks.  Also, I used to repeatedly remind my students: mathematical 
symbols are convenient abbreviations meant to shorten sentences, not a license to murder 
them!   Your argument, whether right or wrong, complete or incomplete, should at least 
be in grammatically correct sentences.  Just like a string, say,  e.g. et al. $ etc. @ % op. 
cit. i.e., of ordinary abbreviations all by themselves, is gibberish (unless you are writing 
in some code to a fellow-spy) so is almost certainly that extended string of mathematical 
symbols without any ordinary words between them which you handed in as your answer 
(unless you and your teacher are two computers who are communicating with each other 
using a purely symbolic language).  If you can’t read out the full form of what you just 
wrote as an ordinary grammatically sound sentence, then you need to rewrite it. Indeed, 
in my humble opinion, it is almost always a good policy (especially so for a beginner) to 
try to use the minimum amount of notation, our mathematics tends to become that much 
better; anyway, there is certainly no direct correlation between the density per square inch 
of mathematical symbols and the quality of mathematics! 
 
           On the other hand, I am all for a liberal use of another kind of abbreviations – a 
picture speaks a thousand words! – in teaching, learning and doing mathematics.  Indeed, 
via just four motifs and some quickly-drawn related sketches,  I’ve conveyed to you, in 
next to no time and without any jargon, essentially complete proofs of some very  famous 
results of mathematics.3  That I have gone easy on name-dropping was partly because of 
                                                 
3 For example, the existence of non-fractional or ‘irrational numbers’ was proved by the Pythagoreans,  and 
is still amongst the 3-4 deepest things in school mathematics; yet the proof which I’ve given in “Perfectly 
proportioned” is perfectly easy!  Moreover this pictorial method – which, much to my bafflement, I’ve not 
seen used in any text-book – is quite general, and repeatedly deleting a square on the smaller side of a 
rectangle or ‘Euclid’s algorithm’ also gives us, when it terminates, the ‘highest common factor’ of the 
sides, or equivalently, the subdivision of the rectangle into equal squares of largest size. Again, the theorem 
that there are five and only five regular solids, was the probable aim of Euclid’s long treatise, and comes at 
its very end, and is not even taught in schools and most colleges. The informal continuity argument which I 
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lack of time, but more out of a fear that you may not confuse the rose with a  name, or for 
that matter a picture, of the rose. Such admonishments are no longer necessary if you 
have grasped the beauty of the patterns of thought, that is, the mathematics evoked by 
these motifs.  Why, you are smelling the rose now!  Your richly deserved reward for the 
effort that you have put in: mathematics is never a spectator sport, one has to do some 
mental work of one’s own even to ‘see’ already-done mathematics.  Were my motifs 
merely making statements they would have demanded much less, but this was not my 
intention, and non-trivial effort is sometimes needed to understand even some points of 
an argument which are labelled ‘obvious’, ‘clear’ or ‘trivial’.  These ‘trivial’ gaps are 
inevitable in almost any argument of a readable length, and until and unless these missing 
steps also become clear to you, you obviously have not grasped the argument. Yes, 
reasoning correctly is the same as redefining things – if ‘things’ means finite sets of 
statements and ‘redefining’ addition or deletion at each step of a statement which follows 
trivially from the others – but mathematics is more: it is the art of redefining things, for 
example, euclidean geometry is a never-ending logical thumri 4 on just one non self-
evident statement, the fifth postulate!  Here too a part of the kick, a great part I think, lies 
in the suddenness with which yet another lovely and unexpected reformulation arises ever 
so often out of nowhere, as is exemplified by some gems of this art-form that I have 
chosen to submit for your consideration via these motifs.  
 
          To really appreciate mathematics, one has to ‘do’ mathematics.  If you are game, 
you can start trying today, and no prerequisites are needed, for, there are all sorts of   
logical problems, more natural than crosswords and sudokos, so more typical of what 
mathematicians prefer to think about, which can be found aplenty, and at all levels, from 
the internet or elsewhere.5  If you are the sort who doesn’t give up easily, then pretty soon 
will come the day when you’ll be able to tell the world of one which was, oh! so 
innocent-looking, yet led you such a long and merry dance, before it finally revealed its 
secret, but not before you had a rather inspired idea of your very own!  Then, and only 
then, shall ye know why, to those who are intensely involved in mathematics, its beauty is 
palpable!  There is no silver bullet, but personally, I try to understand most problems via 
pictures – a suitable figure being already the battle half-won! – and find the same helpful 
in explaining my solutions.  However, I must warn you that a figure not suitable for the 
task in hand can just as easily lead us astray, and there are times when those underlying 
patterns of thought can be ‘seen’ better and more easily without any visual aid.       
 
          Obviously hard work is a must, but don’t do maths ‘seriously’ :  its only a game!  
A mathematician at his most creative is like a child ‘in the zone’ with his video-game : as  

                                                                                                                                                 
used in “Beesmukhi” for the existence of an icosahedron (or golden rectangle) was used by Eudoxus in a 
more formal guise to define multiplication of lengths, so similarity of triangles, to which topic the hardest 
of Euclid’s books, Book V, was devoted; and much later, in the hands of Dedekind in the nineteenth 
century, this ‘completeness property of the line’ led to a complete arithmetization of geometry, and people 
started calling the points of the number line ‘real numbers’.  Et cetera (see Notes). 
4 Light classical Indian vocal music in which a female singer typically repeats, virtually fondles, just one 
sentence, say a declaration of her love for Krishna, in wildly different ways.  
5 For example, the problems from the last IMO, a competition for gifted high school students, are posted 
with my solutions to the same at my website on www.kssarkaria.org/docs/imo2009.pdf.  
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J. L. Synge has suggested, “the human mind is at its best when playing”!  So this its-
only-a-game approach may, just may, increase your chances of solving that problem.  
Besides, it has the extra bonus of softening the disappointment of failure, which – let’s 
face it – is always a distinct possibility whenever we do anything worth doing.  Pertinent 
too perhaps is the fact that, mathematics is a game – just like say “dots and squares” 
(which shall occur in a motif below) but with more symbols and moves – in the precise 
sense that mathematical statements can be written (though often very cumbersomely) as 
sentences of a purely symbolic language, and mathematical proofs can be written as finite 
(but usually extremely long : it would take reams of paper to actually write out some very 
simple arguments this way) sequences of these symbolic sentences, each produced from 
the sentence preceding it by one of a handful of prescribed moves.    
 
            As we walk now after our cuppa towards the staircase, I note that walking in the 
opposite direction towards the skew room – see the last two pics, right to left – one has 
the pleasant feeling that one is in a moving ship turning left!  Also I recall our structural 
engineer’s “easy method” for calculating the area of this room or any quadrilateral: 
multiply the average lengths of the two pairs of opposite sides!  Easy, but easily seen to 
be wrong, after which I’d asked – this is typical of mathematics, one question leads to 
another – as to exactly which were the quadrilaterals for which it was correct, which had 
led in turn (see Notes for the full story) to the roof-top motifs that we’ll discuss next.    
 

                                                                    
 
          Emerging out now from the “Pyramid” stair-head on to the roof-top, and looking 
down over its parapet, we can espy the first-floor sundial “IX to V” (see Notes for more 
on the geometry of the shadow of the circular hole in its gnomon, and the circa 1958 in-
laid Star of David faintly discernible around it) and way back, atop that roman aqueduct 
you saw before, a brand-new little white house which bing has built for himself … but 
I’m getting ahead of myself here … let me return to the motifs on the  roof-top. 
 

------------------------------------- 
 

          5. “Four half-turns.”  The area of a rectangle is length times breadth, using which 
one sees that the area of a triangle is half the perpendicular from a vertex to the opposite 
side times the length of that side. Which in turn shows that, if we deform a quadrilateral 
by bodily translating a diagonal parallel to itself, resp. parallel to the other diagonal, then 
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the areas of the triangles on either side of this diagonal, resp. the other diagonal, stay put.  
Therefore, the area of a quadrilateral stays put under a deformation effected by any 
translation of a diagonal.  In particular, a translation B′D′ to BD after which AC and BD 
bisect each other, converts any given quadrilateral AB′CD′ to a parallelogram ABCD  
(opposite sides parallel and equal) of the same area.  By drawing two families of equally 
spaced parallel lines we now partition the entire plane—see figure below—into congruent 
parallelograms, of which ABCD is only one, and use B 6 B′ and D 6 D′ to translate back 
the entire line containing BD to the parallel straight line containing B′D′, so as to 
simultaneously deform a whole row of these congruent parallelograms back to the row of 
congruent orange quadrilaterals, of which AB′CD′ is only one.  Next we observe that the 
two shaded triangles have sides of lengths {AB+DC, AB′, D′C} and {AD+BC, AD′, 
B′C}.  Since any side of a triangle is less than the sum of the other two, it follows that, 
this deformation increases the average length of a pair of opposite sides of a 
parallelogram.  For a non-rectangular parallelogram the product of these averages was 
already bigger than the area, so we conclude that, the “easy method” of calculating the 
area of a quadrilateral is correct only for rectangles, and in all other cases it gives a 
value which is strictly bigger than the actual area.   
  

        
  
          Besides, we have stumbled on a striking fact: the plane can be tiled by congruent 
copies of any given quadrilateral!  To see this, we deform all parallelograms having ‘the 
same chessboard-colour’ as ABCD in the same way: the spaces left between the ensuing 
orange quadrilaterals will be congruent yellow quadrilaterals, namely, the fusions of  the 
yellow triangles of each strip with those of an adjacent strip.  Such a plane tiling is 
depicted (‘building up’, as it were) in an island in the red brick roof-top. I note that,  
though the quadrilateral used in this motif is convex, i.e., with all angles less than 180 
degrees, this was not needed in our proof, a non-convex quadrilateral tiles too. 
 
          As does any triangle, because two copies make a parallelogram; but all pentagons 
do not tile.  For example, a regular pentagon does not tile the plane: all its angles are 108 
degrees, and 108 does not divide 360, so no number of these can fit at a vertex.  It seems 
it was Hilbert who suggested, more than a 100 years ago, that it shouldn’t be so hard, to 
classify all convex pentagons which tile the plane, but the progress since then on this 
problem has been painfully slow and somewhat funny!  A longish list of types of convex 
pentagons that tile the plane has been dressed up, and every 10-15 years or so, someone 
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has claimed that the list was now complete, till someone else came along and cooked the 
said claim, simply by adding yet one more type, that had previously been overlooked, to 
the allegedly complete list!  The analogous classification of convex hexagons which tile 
was much easier, and a short and indeed complete list is known since long; and, when the 
number of sides is more, it is easier still with list really short: the plane cannot be tiled by 
congruent copies of any convex polygon with more than six sides (see Notes)! 
 
          If a tiling has a symmetry relating any pair of tiles, then its symmetries are said to 
form a crystallographic group.  Our quadrilateral tiling is of this type because, when a 
tile executes a half-turn around the mid-point of one of its edges, one obtains the tile 
sharing that edge with it, which (is an easy method for laying the tiling, and) shows that 
the euclidean motion responsible for the (unique, because our quadrilateral has sides of 
distinct lengths) congruence T ≡ U between any two tiles must, automatically, map  tiles 
to tiles!  This symmetry is the composition of any sequence of planar half-turns taking  
our ‘dancing quadrilateral’ from T to U, so our group is generated by half-turns around  
the mid-points of all the edges of the tiling, but we’ll show more: our group is generated 
by the four half-turns {p, q, r, s} of a single tile!   I.e., we’ll show that words in these four 
letters, interpreted right to left as compositions of the corresponding half-turns, give us all 
the symmetries of our tiling, it being understood that there is also an empty word 1 with 
no letters which represents the do-nothing (or identity) motion.  However the same   
symmetry is given by many words: we have the relations pp = 1, qq = 1, rr = 1, ss = 1 
and pqrs = 1, and all their obvious consequences. The first four relations merely say that 
doing a half-turn twice is the same as doing nothing. More  generally, it is easy to check   
that a half-turn p of the plane around P,  followed by a half-turn q around Q, is the same 
as translating each point of the plane by an amount equal to, and in the direction parallel 
to, the directed segment 2PQ.  We’ll also need this pretty proposition—see figure—from 
school geometry: the mid-points {P, Q, R, S} of the sides of any quadrilateral T are the 
vertices of a parallelogram PQRS, whose sides are parallel to, and half as long as its 
diagonals.  So pq = sr = t1 , the translation by the directed diagonal 2QP = 2RS; so pqrs = 
srrs = ss = 1, the fifth relation; and qp = rs is the inverse translation by 2PQ = 2SR.  
Likewise, qr = ps = t2 , the translation by 2RQ = 2SP, and rq = sp is the inverse 
translation by 2QR = 2PS. The required result follows because, starting from this T, we 
can obviously reach any U by making, if need be, any one of these four half-turns, 
followed by a suitable number of translations t1 and t2 or their inverses. 
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          It has been known for 200 years that, upto a composition-preserving bijection, 
there are exactly 16 more of these crystallographic groups.  By 1900, the classification of 
the analogously defined spatial groups, which are the ones that really matter in the study 
of crystalline substances, was also essentially complete, there being now, exactly 230 
spatial crystallographic groups.  This had entailed arguments much more delicate than in 
the planar case, which led Hilbert to include, in his famous list of problems from that 
year, the determination of the crystallographic groups of euclidean n-space, as the first 
part of his Eighteenth Problem. By 1930 or so (see Notes for more) it was known that 
(like our 2-dimensional example above) crystallographic groups of n-space are finitely 
generated and have n independent translations, and that, there are only finitely many of 
these groups, but this number is still unknown for n > 4. The second part of the  
Eighteenth Problem was about not necessarily crystallographic tilings, and had asked, 
amongst other things, for a particular 3-dimensional example.  From the fact that Hilbert 
did not ask for a similar planar example, it is likely that he had expected the answer ‘yes’ 
to the following question:  if congruent copies of a convex polygon tile the plane, then 
can they also tile it crystallographically?  The second motif on this roof-top, that is, 
“Marjorie’s example,” shows that the answer is ‘no’! 
 

                 
 
          Since one turns through 360 degrees as one goes around a convex polygon, the five 
angles of such a pentagon ABCDE obey A + B + C + D + E = (5 H 180) – 360 = 540 
degrees, and, in general, they obey no other condition. To make a tiling it is necessary –
otherwise its copies won’t fit at a vertex – that some of these angles, possibly with 
repetitions, should add up to 360 degrees.  Again, it is necessary that some of the edges 
{AB, BC, CD, DE, EA} be equal: otherwise, the two tiles across any edge have to be 
reflections of each other, so we can tile only if the five angles are divisors of  360 adding 
up to 540, that is, never.  A longish list of  fitting conditions, sufficient for tiling, is now 
available.  The pentagon used here obeys the conditions B + 2E = 360, C + 2D = 360 and 
EA = AB = BC = CD that were shown by Marjorie Rice to be sufficient (see Notes) in 
1975, and the fifth edge DE is shorter.  So, in any tiling by congruent copies of this 
pentagon, one has triads of tiles like the one in the upper left corner.  The reflection in DE 
is the sole euclidean motion that throws the white tile of this triad on the one below it.  
For the tiling to be crystallographic, this reflection must map the third tile of the triad on 
itself, which is impossible because our pentagon is congruent to itself only via the 
identity map.  So this is a counterexample to a conjecture of Hilbert’s; also, it is an 
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example of what can be achieved by sheer enthusiasm!  For Marjorie Rice, you see, was a 
housewife who had studied maths only till her high school 35 long years before, when 
she chanced one day upon an article on pentagonal tilings in the “Scientific American,” 
that led her to start making more and more of these tilings on her own. 
 
          We’ll now descend the stairs back to the ground floor, and exit towards the annexe, 
to view the line-mural on the northern wall of this house (but, for a really up-close view,  
we should have gone instead to the adjoining roof-top of the annexe).    
          
          6.  “Grecian origami.”  I’ll resist repeating in full a favourite story of mine about 
how I had tracked down a famous, but forgotten, mural of Jeanneret’s in this city about 
five years ago, but shall recall that his raised red-brick mural (see Notes for the original 
photo) was in a state of advanced neglect (with almost two full letters missing) when I’d 
finally re-found it and hurriedly made that day (for I didn’t have a camera on me) the 
sketch that is shown below. You’ll immediately recognize in its E + F = H the statement of, 
the one theorem that we all remember from school! 
 
 

                  
 
 
          Above that balcony with a ‘jeanneret jaali’ – a knotted (see Notes) brick lattice de 
rigueur in Chandigarh houses built till the late sixties – and a vertical version of a more 
traditional jaali once popular on the parapets of Punjab’s villages, there is a mural which 
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is even simpler – grooves in cement, coloured purple – than Jeanneret’s, and scores over 
it inasmuch as, it depicts the same theorem with a complete proof!  Simply cut out – with 
a scissors if you will! – the two congruent right triangles from the big tilted square on 
their hypotenuses, and translate the triangle at the top to the bottom, and the one on the 
right to the extreme left, to obtain that shoe-shaped union of the squares on the smaller 
sides, which can be cut further, if need be, into these two squares.    
 
          More generally, the paper-less Greek ancients knew that, any finite set of polygons 
can be converted into a single square by paper-cutting and pasting (= ‘uncutting’) 
moves!  Indeed, the mural has already taught us that a sum of two squares is equal to a 
square in the sense of this ‘grecian origami’ (as against japanese origami, which uses 
paper-folding and unfolding moves), and a polygon can obviously be cut into triangles, 
and a triangle converted easily into a rectangle, which can be cut into equal squares and a 
rectangle which is not too long (length/breadth ≤ 5 will do). We cut such a rectangle 
parallel to its length and breadth to make four similar and equal rectangles, and lay these 
four as shown below, so it’ll suffice to show that this (shaded) difference of two squares 
is also equal to a square.  To see this we check that, because our rectangles are not too 
long, the square hole can be rotated around its centre by any amount we like within the 
big square, and that this rotation can be realized by cutting and re-pasting four equal 
triangles. We rotate the hole thus to the new position in which the clockwise extensions 
of its arms meet the edges of the bigger square at their mid-points, and cut along these 
extensions, then the resulting four congruent pieces shall refit to form a square. 
 

 
 
          A line segment and a polygon are also called, respectively, a 1-dimensional and a 
2-dimensional polytope, and quite generally, an n-dimensional polytope is a region of n-
dimensional space bounded by finitely many (n-1)-dimensional polytopes, and one can 
play n-dimensional grecian origami with these!  The grothendieck group K(n) has as 
elements all finite sets of n-dimensional polytopes or their negatives, with two such sets 
deemed same if they are related to each other by pasting and cutting, and these operations 
are used to define addition and subtraction in K(n). This is a natural generalization of the 
geometric definition of numbers: K(1) is clearly the real numbers as defined in school 
with the usual addition, and it is easy to see that addition is associative, commutative, and 
obeys the cancellation rules in any K(n).  The result we proved above shows that on K(2) 
too, there is a notion of ‘greater than’ which is well-behaved with respect to addition, and 
which is ‘complete’ (given any partition into two parts, with anything in the first less than 
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anything in the second, exactly one of the parts has a greatest or smallest element), so,   
K(2) is isomorphic to the additive group of real numbers K(1), more precisely, there is a 
unique one-one, onto, and order- and addition-preserving signed-area map K(2) 6 K(1) 
which assigns to the unit square the number 1.  As against this, for n ≥ 3, the groups K(n) 
are not totally ordered (but their structure is still not completely worked out for n ≥ 5), so, 
there are 3-dimensional polytopes of the same volume which are not related to each other 
by any finite sequence of cutting and pasting moves.  Indeed, responding to Hilbert’s 
Third Problem, Dehn had shown in the year 1900 itself that, the regular tetrahedron 
cannot be converted into a cube by any such sequence of moves (see Notes)! 
 
          From our vantage point under this old mango tree, that we had chosen to view the    
pythagorean mural, if you’ll now kindly turn, and peer out over the boundary wall, you’ll 
notice many copies of the last two drawings in the humble concrete of the “Pythagoras 
Drive” which a car needs to take from the main road to enter this house! 
               

   
 
             As we walk out on this driveway, let me point out how intimately its red-brick 
pattern is tied with the mural, which is re-drawn above, with the big tilted square now 
shown straight-up, and I’ve shaded its shoe-shape, the better to display how, congruent 
copies of this shoe, when translated vertically and horizontally by amounts equal to the 
hypotenuse, fit snugly with each other to give us a tiling of the entire plane!  The crosses 
mark the centres of the bigger square constituents of some of these shoe-tiles, joining 
them one gets the big square panels of the driveway, whose central black granite tiles 
depict the smaller square constituents, or the toes, of some of these shoes.  While making 
this driveway, the tricky part was to lay these small granite tiles accurately, so that the 
clockwise extensions of their arms would hit the sides of the big panels in their mid-
points; once this was done, the brick pattern was easy enough to complete, and then 
finally, concrete was poured into the remaining congruent quadrilateral spaces.  Indeed, 
you must have noted some ‘warm-up panels’ of this driveway inside the gate, in which 
extensions are not required to hit the mid-points, e.g., there was one depicting, the first of 
the trio of diagrams on the last page, which proves (a-b)2  + 4ab  =  (a+b)2. 
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          It also solves the discrete pythagorean problem, in which one seeks all pairs of 
squares made from square tiles of unit size, whose sum is also such a square. The 
diagram shows that the difference of two such squares, both even or both odd, is made up 
of a whole number of unit tiles, and is a perfect square if and only if ab is a perfect 
square;  for example,  a = 4 and b = 1 give the solution 32 + 42 = 52; a = 9 and b = 4 give 
52 + 122 = 132; and so on. We can just as easily solve some higher-dimensional problems, 
e.g., is the sum of two cubes a cube in the sense of grecian origami? Yes!  Using two-
dimensional origami (with the remaining dimension basically a passenger) we can 
convert the cubes, and the cube having the same volume as their sum, to boxes of height 
one; then, using two-dimensional origami again, convert the sum of the bases of the first 
two boxes to that of the third box.  Repeating this, we see in fact that, the same is true for 
any two ‘n-dimensional cubes’, i.e., n-fold ‘powers’ of segments, in the same sense as a 
plane is often considered a ‘product’ of two chosen lines or axes. More generally, this 
cartesian product defines a multiplication K(n) × K(m) 6 K(n+m) which is still not fully 
understood, however K(1) × K(1) 6 K(2) followed by the area isomorphism K(2) 6 K(1) 
is obviously the multiplication of numbers.  However, the higher-dimensional analogues 
of the discrete pythagorean problem are more challenging, and the general assertion that,  
for any n ≥ 3, the equation xn + yn = zn has no solution in positive whole numbers x, y 
and z – which Fermat (in)famously could not leave us a proof of because there was not 
enough space in that margin! – has been proved only recently after all these centuries by 
Wiles, but we definitely don’t have enough space to explain his proof here.         
 
          Returning to the tiling that we’re standing on, I note that it is crystallographic with 
no symmetry other than its defining translations, and that there are 8 vertices on each of 
its congruent shoe-tiles – the angles of this non-convex octagon are 270, 90, 90, 180, 90, 
180, 90 and 90 degrees in clockwise cyclic order – but at some vertices there are 3 tiles, 
at others only 2. Unlike, say, the usual brick pattern all over these walls, which depicts a 
tiling by non-convex hexagons, 3 at each vertex.  So, in analogy with a question about 
polygonal subdivisions of surfaces that we posed in “Miss Universe” we ask: is there a 
tiling of the plane by topological p-gons, q at each vertex?  Note that we have thrown 
away all geometric shackles, our tiles are now allowed to be not only non-convex but 
practically arbitrary, and we aren’t demanding any congruence between them, let alone 
crystallographicity of tiling, moreover, not being confined now to a closed surface of a 
bounded body – we have the plane’s infinitude at our disposal – intuition suggests no 
obstruction,  it seems very reasonable to expect the answer ‘yes’?   However some care is 
needed; you can soon find out for yourself, by just trying to build these tilings, that, the 
answer is ‘no’ for {p,q} = {3,3}, {3,4}, {4,3}, {3,5} and {5,3}: you’ll be forced to go 
into the third dimension (and there you’ll get the same old examples)! For all other 
values of p ≥ 3 and q ≥ 3 the answer is ‘yes’, as we’ll see in the ‘lecture’ after the next, 
and then we’ll use our proof to solve the previous question about closed surfaces.    
 
          It is time to move on, but we won’t re-enter the house just yet, we’ll make a right 
turn on this sidewalk to take a look at that other driveway which goes till the main gate of 
“213, 16A”, for there awaits us, again in its humble concrete, our next motif (there is also 
some ‘concrete mathematics’, viz., a repeat of “four half-turns”, which can be seen 
outside the small southern gate of this house, which opens on the side street).  
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          7.  “Amazing curves!”  As you can see – a line-drawing and a roof-top view are 
also given – the same materials are used again: three square ‘islands’ are made from 
granite tiles of unit size, and around them swirls an extended red-brick pattern, which 
turns this driveway into a maze of concrete paths, complete with an arrow indicating its    
point of entry. Its two-dimensionality (no view-obstructing high hedges here) renders this 
maze easy to thread, and I’ve seen many ‘children’ (of all ages!) go zig-zagging gleefully 
and triumphantly up this maze to the main gate, though it must be said that quite a few of 
them don’t know what that initial 11010101 in dark red brick signifies. 
                    

  
 

                  
 
          I’ll come to this in a little while, but first, I must urge you to look harder, for then 
you’ll realize (this is especially clear in the line-drawing) that something even more 
‘childish’ has been going on here: a dots-and-squares game!  Doubtless, you have played 
this game in school and/or college between (or maybe even during some particularly 
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boring) classes, but here are its rules anyway.  On a chosen playing area – a  rectangular 
piece of paper usually, but here the region between these toe-walls converging to the 
main gate of the house, minus the three tiled islands – one marks all the vertices – here  
one-inch square dots of dark brick – of a square grid; then the players take turns putting 
in the edges – here one-inch thick in red brick – of the grid between them, with a player 
having the option of an extra turn every time he/she completes a square; and the winner, 
if any, at the end is the person who has made the most squares. However there is 
something peculiar about this particular game: no player has bothered to ‘take’ a square!  
Maybe the players are rank tyros, or maybe, though it is much less likely, accomplished 
grandmasters playing a deep cat-and-mouse strategy, for, after all, dots-and-squares is 
still unsolved (see Notes)?  No, the real reason is something else again: the players have 
become so fascinated by an incredible thought tied closely to the emerging and 
meandering snakes of squares – in a typical game, each of these gets taken in one go 
towards the end, and these climactic moves usually decide who wins or loses – that they 
have lost their competitive edge entirely, and have started thinking of something much 
more interesting than who shall win or lose this silly game!  Leaving you wondering for 
the moment as to what this ‘incredible thought’ could possibly be, I’ll finish the 
description by mentioning that – like that arrow, and the initial mysterious string of 1’s 
and 0’s – the four interdicting crosses in darker brick, that you see near the toe-walls, are 
there only to turn this peculiar game position into an appealing maze. 
 
          Long familiarity often makes us forget that whole numbers are abstractions (and it 
is this that makes them useful): sure, five ducks, five pens, five poems, etc., are tangible 
enough, but, as Cantor reminded us in the nineteenth century,  five, of and by itself, is the 
commonality between, or alternatively, the equivalence class of all these sets, any two of 
which are related to each other by a one-one onto or bijective correspondence, and, 
when we think about it, it is nothing short of a miracle that a human child can intuitively 
grasp this abstract notion ‘five’ in kindergarten: no other species even comes close!  The 
usual notation for these notions is also interesting: for the first ten non-negative whole 
numbers we use the ten symbols 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9, and then, we denote any 
number by counting off powers of ten, from the highest downwards, in that number, for 
example, the number of this house has 2 second powers, 1 first power, and 3 zeroth 
powers of ten (a zeroth power is always unity by convention), and that’s what 213 
signifies. However, the choice of ten as ‘base’, though customary, is in fact quite 
arbitrary: any number bigger than one would serve just as well (the choice ten was 
probably made because we have as many digits on our hands, but there have been ancient 
civilizations that got along just fine with other bases)! For instance, if we want to 
decrease the number of symbols, then the least choice, two, is obviously the best. Once 
again, let us agree to use 0 and 1 for the first two whole numbers, but after that, any other 
number will now be denoted by counting off powers of two – that is, 1, 2, 4, 8, 16, 32, 64, 
128, and so on – from the highest downwards, in that number, for example, 11010101 is 
the house number in base two notation, because, as you can check,  213 =  (1 × 27) + (1 × 
26) + (0 × 25) + (1 × 24) + (0 × 23) + (1 × 22) + (0 × 21) + (1 × 20).  
 
          There is a whiff here of “Pythagoras Drive” too: the three tiled islands depict the 
smallest solution of the discrete pythagorean problem, 32 + 42 = 52. In this context, 
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observe that an odd square has a central tile, an even square has none, and the number of 
tiles in each square ring is a multiple of four.  So, the sum of two odd squares is not a 
square, a point tacitly used when we’d solved this problem; also note that, in base four 
notation, using the letters a, b, c and d (instead of the more hackneyed 0, 1, 2 and 3 
respectively), this observation translates into saying that, the right-most letter of the word 
denoting an odd square is b, and that it is a for an even square. 
 
          Our dots-and-squares players, who were incidentally named Georg and David, had 
not neglected maths in school, so knew that not only whole numbers, but, any non-
negative real number can be written as an infinite decimal, and likewise, in other bases 
too, e.g., in base four. We subdivide the non-negative number line into segments (end-
points are deemed in them) of unit length, and denote each of them by the base four 
notation of its initial whole number followed by • (‘decimal point’); then, we subdivide 
these segments into four equal segments, and denote them, respectively, by appending a, 
b, c or d to the notation of the subdivided segment; next, we subdivide these into four 
equal segments, and denote them, respectively, by appending a, b, c or d to the notation 
of the subdivided segment; ad infinitum.  Having done this, we denote a real number x by 
[x1 … xt • xt+1 xt+2 …] – where each xi is a, b, c or d; thus, except for that dot and the 
enclosing brackets, this is a right-infinite word formed from four letters – if and only if it 
is contained in all the segments denoted by the finite truncations of this infinite word, that 
is, x should be in x1 … xt • , as well as in x1 … xt • xt+1 , as well as in x1 … xt • xt+1 xt+2 , 
et cetera.  I’ve added the brackets to emphasize that, some pairs of words are to be 
identified, for, to positive end points of all these segments, we have obviously assigned 
not one, but two words; this too is exactly as in decimal expansions, where, for example, 
we know that 13 • 45000 … is to be identified with 13 • 44999 … 
 

 
          Now consider a snake of squares (boundaries are deemed parts of squares) of unit 
size that a dots-and-squares player can take thus: he puts in the final edge of the first 
square which also becomes the third edge of the next square, then he puts in the final 
edge of this square which also becomes the third edge of the next square, etc.  The first 
diagram above shows five of the twenty squares en prise in the game on this driveway, 
which can be taken in this manner in the indicated order; but clearly, one has arbitrarily 
long finite snakes, as well as, infinite ones that cover the entire plane.  The ‘incredible 
thought’ they inspired was this: using a snake, one can label points of the plane, in a 
manner entirely analogous to the base four notation above for points of the line!  We 
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denote the chosen snake’s squares, in order of capture, by the base four notation of the 
corresponding whole number followed by • ; this order is indicated by the dotted curve in 
the first picture, which starts from an extant edge with a crossed vertex on the first 
square.  We now subdivide these squares into four equal squares, and build a snake – see 
the second picture – from all these: its first square is the one having the cross on it, then 
the other three in the first big square in the order which lets us exit it on the same side as 
before; then come the four small squares of the second big square in the order which lets 
us exit it on the same side as before; etc. (it is easily checked that the order indicated by 
the directed dotted curve of the second picture is the unique such order). We denote the 
small squares within each big square, in this order, by appending a, b, c and d to the 
notation for the big square.  Next, we cut up all these small squares into four equal and 
still smaller squares – because of congestion this step is shown in the third picture only 
for the square b • on a magnified scale – and make, exactly as before, a snake from all 
these; and these are denoted by appending a, b, c and d in this order as before; and so on 
(things became so crowded that only the dotted curve indicating this portion of the next 
snake is drawn next, the names of the squares are omitted). With all these squares now 
unambiguously named (exactly like those segments were before) we make the parallel  
definition: we denote a point X of the plane by [[x1 … xt • xt+1 xt+2 …]]  if and only if it is 
contained in all the squares denoted by the finite truncations of this infinite word, that is, 
X should be in x1 … xt • , as well as in x1 … xt • xt+1 , as well as in x1 … xt • xt+1 xt+2 , et 
cetera.  The double brackets indicate that there is need to make more identifications now 
than in the one-dimensional case: to points X on the interiors of the edges of our squares 
we have assigned two words, but to those on the vertices, as many as four. Thus x = [x1 
… xt • xt+1 xt+2 …] 6 [[x1 … xt • xt+1 xt+2 …]] = X is well-defined but not one-one, and 
obviously X is varying continuously, i.e., is tracing a plane ‘curve’, as x varies, a curve 
which, amazingly, visits each and every point of all the squares of the chosen snake 
(these variations of X can however be shown to have no specified direction, see Notes, so 
one can justifiably argue that this is an inappropriate usage of the word curve)! 
 
          This neat definition, of the younger player David Hilbert, generalizes painlessly to 
all dimensions n – one uses base 2n now because an n-dimensional cube subdivides into 
so many cubes of half the size – to yield, a continuous mapping of the unit segment onto 
the n-dimensional unit cube!  For n ≥ 2 this is magical: by identifying finite subsets of a 
segment we can increase dimension as much as we like!  This was known already to the 
older Georg Cantor, who had given a (non-continuous) one-one onto map between a 
segment and a square, and had observed that the magic begins at n = 1: the space C of all 
infinite sequences of 0’s and 1’s is zero-dimensional, and becomes the one-dimensional 
segment only post those innocuous two-fold identifications of base 2 expansions!  To see 
this zero-dimensionality, switch 1’s to 2’s and interpret these sequences of 0’s and 2’s as 
points of the segment in base 3, this exhibits C as the ‘dust’ remaining after this: delete 
the middle third to get two disjoint segments, then delete their middle thirds, etc.  The 
segment, the square, the cube, etc., so all the continuums like manifolds that one 
encounters in most of mathematics, can be constructed from this primordial cantorian 
dust C by making finite-to-one identifications! For, base 2n expansions can be read off 
from the base 2 expansion, for example, the point 1101010011… of C goes to the point x 
of the segment having base 4 expansion [•(11)(01)(01)(00)(11)… ] = [• dbbad ...], which 
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goes to the point X = [[• dbbad ...]] of the unit square defined by using a snake with one 
square, with say the top edge final; likewise, grouping terms in threes gives the base 8 
expansion, so, by the generalized definition we mentioned, a  point in the cube, etc.  In all 
likelihood, Cantor already knew of a simpler, but less neat, construction of a continuous 
map from the segment onto a square:  the base 2 surjection C 6 [0,1] induces a surjection 
C × C 6 [0,1] × [0,1], but C × C can be identified with C (see Notes), so by linearly 
extending this function on those deleted thirds we obtain a continuous surjection [0,1] 6 
[0,1] × [0,1].  Also, he most certainly knew that, C represents a bigger infinite whole 
number – in the sense of his definition of five given earlier – than the set of all finite 
whole numbers, because any one-one function from the latter to the former misses the 
sequence of C whose nth term is not the nth term of the nth sequence!  Mathematics of 
today can all be written formally in Set Theory, the language which Cantor invented,  and 
Hilbert and others developed, to talk expressly of these infinite whole numbers.  
 
          8.  “Magic Carpet.”  Now that you’ve traversed the maze, and are past the main 
gate, you’ll note that we’re back where this tour began: there, to the right on that wall in 
front, is “Perfectly proportioned,” which involved the golden ratio, after which we’d gone 
tripping down that stone path to the left to see “Beesmukhi,” whose three rectangles were 
golden too, which is the same as saying – consider the pentagon whose five vertices are 
the five neighbours of any vertex of this icosahedron – that golden ratio = diagonal ÷ side 
for any regular pentagon. You’ll note also, if you look down, that you’re being given a 
red-carpet welcome, and that, in this welcoming mat that you’re standing on, there is 
again, a regular pentagon, but this time, one whose edges are circular arcs; as Poincaré 
showed, this seemingly frivolous frill has amazingly far-reaching implications!   
 

 
 
 
          More precisely, our five circular edges have as their centres the five vertices of the 
pentagram obtained by extending the edges of an ordinary regular pentagon, from which 
fact it follows—see the next diagram—that, the angle between the tangents to the two 
circular edges at each vertex is 72 degrees, that is, one-fifths of 360 degrees; and 
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likewise, starting from an ordinary regular polygon with p ≥ 6 edges, one gets a regular 
polygon with p circular edges making an angle of 360/p degrees at each vertex. 

 
 

          By moving their centres equally towards or away from the centre we can make 
these circular edges more or less curved, so we see further that,  for all  p ≥ 3 and  q ≥ 3, 
other than the five exceptions{p,q} = {3,3}, {3,4}, {3,5}, {4,3} and {5,3}, there is a 
regular polygon with p circular edges making an angle of 360/q degrees at each vertex.  
The five exceptions come about because we don’t want edges bending outwards, so 360/q 
cannot be bigger than the angle ((p-2)H180)/p of an ordinary regular p-sided polygon, and 
while discussing “Pyramid,” we’ve seen that this happens if and only if (p-2)(q-2) < 4, 
i.e., in these five cases.  However, we’ve not excluded the cases when the edges are not 
curved at all, which happens if and only if these two angles are equal, i.e. (p-2)(q-2) = 4, 
i.e. {p,q} = {3,6}, {4,4} or {6,3}.  In other words, we’ve adopted the convention that ‘a 
regular polygon with circular edges’ may, in particular, have straight edges; in fact the 
key to the following is to, think of straight lines as if they were “infinite circles” passing 
through an additional “point at infinity,” for this intuition suggests rather naturally the 
appropriate generalization of some concepts to ‘all’ circles. 
 
          For example, the case {4,4} is that of a square, and the red half-brick square tiling  
that you see around the curved pentagon is ‘seen’ also by someone who has ensconced 
herself in a square changing-room with mirrored walls, which prompts this question: do 
multiple reflections in the circular edges of this single curved pentagon determine 
likewise a tiling by infinitely many curved  pentagons, five at each vertex?  The answer is 
yes (!) provided we define reflection in a circle suitably: the image of any point P shall be 
the point P′ lying on all circles through P which cut the mirror perpendicularly.  
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          So, reflection in a finite circle switches its centre O with the point at infinity, keeps 
its own points fixed, and preserves any perpendicular circle—say, a line through O—as a 
whole, but interchanges all pairs of points {P,P′} on it such that OP′ times OP is the 
square of its radius. For, a circle cuts the mirror perpendicularly at T if and only if OT is 
its tangent at T, i.e., OP′T is similar to OTP, i.e., OP′/OT = OT/OP, i.e., OP′×OP = OT2.  
The remaining circles are paired with distinct circles.  If OU ≠ OT is tangent to the circle 
at U—see diagram—then it expands/contracts to the circle obtained by multiplying all 
rays from O by OT2/OU2,  because OQ×OP = OU2 and OP′/OQ = OT2/OU2  = OQ′/OP 
imply OP′×OP = OT2 = OQ′×OQ.  Likewise, when O is inside the circle, then reversing 
and multiplying all rays from O by the constant OT2/(OQ×OP) – here PQ is any chord of 
the circle through O – shall give the other circle. Finally, a finite circle through O gets 
paired with the line (infinite circle) perpendicular to the diameter OA at A′, because 
similarity of OAP and OP′A′ gives OP′×OP = OA′×OA. Though not distance-preserving, 
reflection in a circle maps any angle at P to an equal but opposite angle at P′: by 
continuity of P 6 P′ it suffices to check this off the mirror, when the circles through P and 
P′ tangent to the two directions enclosing the given angle at P, being perpendicular to the 
mirror, are preserved by reflection in it, so the angle at P is mapped to the equal but 
opposite angle between these circles at their second intersection P′. 
 

 
 
          The round yellow ‘halo’, in which the red curved pentagon is inlaid, is such that its   
‘horizon’ cuts the edge-circles perpendicularly, so its size is ordained by the pythagorean 
theorem: (radius of horizon)2 + (radius of an edge)2 = (distance from the centre to the 
centre of an edge)2.  Likewise, any regular genuinely curved polygon has a bounded – but 
limitless, the horizon is not assumed to be in it – halo, while that of an ordinary regular 
polygon shall be deemed to be the entire plane. The diagram above shows only the five 
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primary reflections of the red pentagon in its edges, and two new reflections of each of 
these, but this suggests already that, the halo of any regular curved polygon is the union 
of its multiple reflections in edges!  That these polygonal reflections are all in the halo, 
have circular edges perpendicular to the horizon, and the same angle at each vertex, is 
clear enough, because reflection in any edge keeps it fixed, preserves the perpendicular 
horizon as a whole, maps circles to circles, and preserves angles. However, as the 
diagram shows, these iterated reflections can contract in size very rapidly, so it is not 
obvious that any point P of the halo is in one of these reflections.  To see that it is, we use 
the fact that the centres of the edges of all the reflections are outside the perpendicular 
horizon, so the radii of the edges which cut the segment joining the centre to P are all  
bigger than the positive distance from P to the horizon, so contraction in size is bounded 
for reflections in these particular edges, so only finitely many reflections are needed to 
cover this segment and find a polygonal reflection which contains P.   
 
          To precise this result, we’ll now indulge in some “grecian origami” involving these 
multiple reflections: we make a separate paper copy of each of these (infinitely many) 
polygonal reflections, and glue two of these paper polygons along an edge if and only if 
reflection in this edge switches their originals!  This gives us a space locally like any 
closed surface, except possibly near the vertices v: we get a surface if and only if the 
angle of the regular curved polygon is a fractional number.  For, a polygonal reflection 
incident to v returns to itself after some, say q, reflections in edges incident to v, only if 
the qth, but no smaller, multiple of the angle is a multiple of 360 degrees, that is, the 
angle is 360r/q where the whole numbers r and q have no common factors.  We dub this, 
the riemann surface of a regular curved polygon with p sides and angle 360r/q, and note 
that, it carries a tiling by infinitely many p-sided paper polygons q at each vertex; for 
example, all ordinary regular polygons have riemann surfaces; and the one tiled by 
ordinary regular paper pentagons has ten at each vertex, because the angle is now 108 
degrees, so r = 3 and q = 10.  We examine next, the covering map f from the riemann 
surface onto the halo, which identifies each paper polygon with its original.  When r ≥ 2, 
this map is obviously not one-one: the pre-image v of f(v) ‘branches off’ into r distinct 
pre-images when f(v) is varied slightly.  That there is no branching when r = 1 is however 
not reason enough to conclude that, the halo of a regular curved polygon with p sides and 
angle 360/q is tiled by its multiple reflections in edges.  It is conceivable that f might fail 
to be one-one in a more subtle way: a sequence of edge-reflections covering a long loop, 
starting and ending at a point P of the halo, might bring us back to a different polygonal 
reflection containing P?  The answer is ‘no’ because, the halo is simply connected – any 
loop at P can be shrunk continuously to the constant loop at P – from  which fact it 
follows easily that f is a topological equivalence when r = 1.  
 
          Moreover, our tiling is ‘regular’ in its curved geometry: any vertex v of the red tile 
T can be mapped to any other vertex w by a composition g of reflections in circles which 
preserves the tiling!  Choose any sequence of tiles, starting with T, and ending with a tile 
U incident to w, such that each shares an edge with the preceding. From the way in which 
the tiling was defined, we know that the composition g of reflections in this sequence of 
shared edges maps T onto U, and by using preliminary reflections in the lines of 
symmetry of T we can also ensure g(v) = w. Since g maps circles perpendicular to a 
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circle C to ones perpendicular to g(C), we also know that, if P reflects in C to P′, then 
g(P) shall reflect in g(C) to g(P′).  So g maps the primary reflections of T onto the 
corresponding primary reflections of U, and likewise the secondary reflections of T are 
mapped to those of U, et cetera, so g preserves the tiling.    

 
         We’ll now subdivide the central tile by its lines of symmetry, extend this 
subdivision to all tiles by reflections in edges, and identify (!) each curved triangle with 
the unique symmetry g which maps any chosen basic triangle 1 to it.  This subdivision is 
shown above for the pentagonal tiles of the last picture: their boundaries are in yellow, the 
new edges within them incident to their vertices are in blue, and the remaining edges are 
in red.  So, the edges of any triangle have different colours, and symmetries preserve 
colours of edges.  Using this we’ll now show that, the group of symmetries is generated 
by the reflections {r, y, b} in the edges of the basic triangle, i.e. (see “Four half-turns”)  
any g is equal to a word in these three letters interpreted right to left as a composition of 
reflections.  Indeed, r, y and b are the triangles sharing a red, yellow and blue edge with 
the triangle 1; so, the corresponding three triangles adjacent to any triangle h are hr, hy 
and hb; so, g is equal to the word whose letters give in succession the colours of the 
shared edges of any path of triangles from 1 to g; for example, the dotted path in the 
figure shows byrybybbrybybyb = g.  Thus there are infinitely many ways of writing the 
same symmetry, for instance the identity 1, as such a word, but things are really not all 
that bad: any relation w = 1 can be reduced to 1 = 1 by using the obvious relations r2 = 1, 
y2 = 1, b2 = 1, L2 = 1, Mp = 1 and Nq = 1, where L = ry, M = br and N = yb.  This  again 
uses the simple-connectivity of the halo: any loop of triangles can be built up from small 
loops enclosing at most one vertex of the triangular tiling, and the listed relations are 
easily seen to be all those that can arise from such small loops. The shaded triangles form  
the subgroup of all orientation-preserving symmetries—compositions of an even number 
of reflections—which is generated by any two of the three ‘rotations’ above, say L and N, 
subject only to the relations L2 = 1, Nq = 1 and (LN)p = 1.   
    
          The above groups are infinite, but this does not rule out that, by imposing 
additional relations, one can’t get, finite groups generated by two elements L and N 
whose orders (lowest powers equal to the identity) are 2 and q, while that of LN is p?  
Given such a group, we can double its size by a new generator y subject to y2 = 1, r2 = 1 
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and b2 = 1, where r = Ly and b = yN, and then indulge again in some (purely topological) 
“grecian origami” imitating the last picture: each element g of this doubled group is 
deemed a triangle with red-blue-yellow edges, and we glue the red edges of all the pairs 
{g, gr}, the blue of all pairs {g, gb}, and the yellow of all {g, gy}.  The resulting space is 
a closed orientable surface—the boundary of a pretzel with holes—because  each edge 
belongs to two triangles, each vertex to 2p, 2q or 4 triangles forming a loop around it, 
depending on whether the vertex is opposite a yellow, red or blue edge, and the shaded 
triangles of the initial group can be unambiguously deemed clockwise.  Displayed in 
glorious yellow on the surface just described we’ll plainly see, finitely many p-sided 
topologist’s polygons, q at each vertex, and at the same time, displayed in fiery red, the 
dual topologist’s {q,p}! Moreover, the orientation-preserving symmetries of either give 
us back the initial group, and the cardinality of the doubled group gives, via an obvious 
euler characteristic calculation (cf. p.8) the number of holes in the pretzel too!            

 
          Finding such finite groups might appear formidable, but it is really a none-too-hard 
problem about something from school, viz., permutations, i.e., one-one functions of a 
finite set on itself.  The job is only, to give, for each q ≥ 3 and p ≥ 3, permutations N of 
order q, and L of order 2, such that N followed by L is of order p, for the finiteness of the 
underlying set ensures that the generated group is finite! The figure above indicates one 
way of making these examples for q ≥ 3 and p ≥ q, which suffices, because p and q can 
be interchanged.  In each case, the finite set consists of dots and, the functions N and L 
are defined by the blue and orange arrows, respectively, dots without arrows being fixed 
points; and the numbering indicates the cycles of LN, i.e., N followed by L. In the upper 
left diagram N has the two cycles of length q = 5, connected by an ‘orange cross,’ the two 
transpositions of L, and it turns out that LN has also two cycles of length q, viz., (12345) 
and (1′2′3′4′5′). There are q-2 fixed points of L in each, and by ‘dangling’ a new orange    
transposition to a new dot, as in the lower diagram, from the same number of these in the 
two cycles, we can increase the lengths of these cycles equally by this number, so this 
gives us the needed examples for q ≥ 3, q ≤ p ≤ 2q-2.  In the upper right diagram, N has t 
= 3 orbits of length q = 5 connected by the t-1 transpositions of L, and it turns out that LN 
is a cycle of size tq.  By an orange double-arrow ‘shorting’ two consecutive fixed points 
of L on this cycle, or by up to q-1 danglers from them – the diagram on the bottom right 
has both! – we can vary the size of this cycle from tq-1 (now LN also has a fixed point) 
through (t+1)q-1, which completes the job because any t ≥ 2 can be used. 
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          In fact, these non-platonic ‘lost beauties’ exist in great profusion!  For instance, we 
used two blue pentagonal cycles linked by an orange cross, but an arbitrarily long train of 
this type works too, so, there are infinitely many finite groups of type {5,5} (and the same 
is true for any non-platonic pair)!  Moreover, an orange cross within a single pentagonal 
blue cycle gives the smallest such group, which has 60 elements, namely, all the ‘even 
permutations’ of the five dots, so this particular {5,5} has t = 60 in the notation used in 
“Miss Universe” (p. 8), so, twelve pentagons, five at each vertex, on a pretzel with four 
holes, and the bigger finite groups of this type will entail using pretzels with more and 
more holes.  Most importantly, all these finite groups are obtainable by putting extra 
relations on the group of symmetries, of the tiling of its halo given by the multiple 
reflections of our red regular curved pentagon, for, we have proved that this infinite 
group has only the stated relations. So, if we are willing to think of these surfaces 
intrinsically, rather than being ‘of’ pretzels ‘in’ ordinary three-dimensional space, these 
infinitely many finite {5,5}’s are all regular in the curved geometry they inherit naturally 
from that of  the halo via these extra relations!  Indeed, each of these relations is of the 
form g = 1, where g is a fixed point free composition of an even number of reflections in 
circles, and the surface in question is topologically equivalent to the space obtained by 
identifying all points of the halo which are related to each other by such g’s. 
  

 
 
          No, the above picture is not – alas! – of another motif in “213, 16A,” but of marble 
inlay work done long ago (around 1420) by Uccello in far away Venice. It shows a 
dodecahedragram, which is obtained by extending the faces of a regular dodecahedron 
{5,3}, just like a pentagram is obtained by extending the sides of a regular pentagon; but, 
whereas a pentagram is only a pentagon with self-intersections, a dodecahedragram is 
the smallest {5,5} with self-intersections!  Its 12 vertices are the apices of the pyramids 
on the dodecahedron’s faces, which have expanded into the pentagrams which are its 12 
pentagonal (with self-intersections) faces, while its 30 edges are the extensions of those 
of the dodecahedron.  So, topology jumps from genus zero to that of a surface with genus 
four just by the act of extending the faces of a dodecahedron (this may be tied to a result 
of Freedman mentioned at the end of “Miss Universe”), as this banished beauty {5,5} 
makes a brave, but inevitably blemished (by self-intersections) attempt to display all its 
charms with the five platonic beauties in ordinary 3-dimensional space! 
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          The regularity of the non-platonic {p,q}’s with respect to the curved geometry of 
the halo tells us that the parallel postulate must be invalid in it, and that is so: now lines 
are circular paths perpendicular to the horizon, and through a point not on a given line 
there are many non-intersecting lines! However, we still have a distance which is 
invariant under reflections in all lines, and Poincaré pointed out that it can be derived 
from the assumption that local measurements at ordinary distance r from the centre are 
made by using rulers which have shrunk (!) by the factor R2 – r2, where R is the radius of 
the halo.  Which is related to his rejection of the age-old notions of separate space and 
time in favour of a new principle of relativity to give Maxwell’s theory of light a 
coordinate-free meaning, for the distance we mentioned is just the right one if space-time 
is viewed projectively (see Notes).  This last ‘lecture’ started with a pentagon and a 
pentagram, and has ended with their spatial analogues, but the game has barely begun!  
The dodecahedron is now almost crying out for its faces to be curved inwards, and 
starting with Poincaré himself, down to Thurston and others, magical things have been 
discovered thus; likewise, Gromov and others have lately been busy playing ‘dots-and-
squares’ in halos; but here is where I’ll stop, except for the following tailpiece.  
 

------------------------------------- 
bing’s ome  

------------------------------------- 
 

          One afternoon I was telling someone with a math background how that little white 
“house with two rooms” and a sloping red roof – it was mentioned fleetingly on p.14, 
see also pp.3,5 for older pictures of this area – atop that roman aqueduct was, in fact, an 
example constructed by Bing of a space which is, contractible but not collapsible! 
 

                           
   

          Its glass windows allow us to see that it is peculiar: one enters its rear room via a 
corridor attached by a flange to the front room, and vice versa!  This is shown above in 
the line-drawing, more precisely, the position depicted is the one obtaining after the 
slightly overhanging roof has been ‘pushed in’ a wee bit to make it flush with the walls.  
There being no free edges left, we can’t collapse it any further.  On the other hand, filling 
the house with sand, and then excavating out the same shows, just as plainly, that the 3-
dimensional ball, which of course is collapsible, collapses also to Bing’s house!   
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          At this point I realized that I had not one, but three listeners, and that I had been 
talking above the heads, in more ways than one, of the other two!  Two small girls, a 
precocious child of about ten, and her equally bright-eyed younger sister, who was 
probably still not of school-going age, were also with us (they and their parents were 
amongst a number of guests we had over for tea that day). To make amends, I switched to 
my story about that chotta aadmi (small man) who had, as a matter of fact, made this 
fully-functional paani ki taanki (overhead water tank), as well as this roman aqueduct 
with its thirteen (true) arches, all by himself, and who was, to tell the truth, still pretty 
much running the whole show, more or less … There was an indulgent and bemused look 
on the older child’s face as I spun out this yarn, but her little sister was impressed!  She 
asked, “So he lives in the house with the two rooms, uncle?”  “No, beta,” I replied, 
“that’s the pump-house. He lives, like all elves do, far far underground.  That little cave 
in the wall, from where that tiny road comes out to that ramp leading to the spiral stair-
case winding around and up this taanki, and finally, that arch bridge to the aqueduct, I 
would suspect that that’s his route to and from work, but like most humans I can’t see 
elves, so I’m not sure.”  From the eagerness growing on the older sister’s face, it was 
clear that she had much surer knowledge than me, and sure enough, she soon took over 
from me entirely the further education of her sister on these rather technical matters 
pertaining to the habits of hobbits and elves and even ents!  Her sister listened dutifully 
enough, but I couldn’t help noticing that she was, all the while, using her eyes, and so 
taking in the details on the rockery, more than her rather busy teacher.  As the tiny stony 
brook hurtled down its rocks, and around that island with the tetrahedral agni mandir and 
the sacred peepul tree, into that water pond with “Beesmukhi” and its spout, and that 
double-curved bridge over it that takes one into the plant house.  
 

                          
 
          With the children busy in their play, the conversation returned to mathematics, and 
my companion now pointed out something which had been before my eyes all along, but 
which – duh! – I had not seen before: the mother golden-barrel in the background has its 
five prickly ‘pups’ arranged in pentagonal symmetry around it, just like that around each 
vertex of that icosahedron!  In return, I explained why the above statue is called, “pi two 
is abelian!”  Minus the jargon, this basic theorem from topology says just this: any 
continuous mapping, of the top and bottom of the box shown in the line-diagram, which is 
defined in the same way on the two blue, and on the two orange squares, and which takes 
their boundaries to just one point, can be extended to a continuous mapping of the box 
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which takes all its vertical faces to this point.  To see this, extend in the obvious way to 
the two disjoint—but flared enormously near their ends—blue and orange square tubes,  
which join these pairs of squares, and map the rest of the box to the point! 
 
          By now we were sitting on the marble-quilted chabutra (platform) shown below, 
our legs dangling over the polished rounded edges of what had remained of the huge tile 
from which the halo of “Magic Carpet” had been cut, and were doing our maths on a 
yellow curved pentagonal table-top, made from the very piece that had been cut out from 
this halo to inlay its red counterpart!  From this chabutra one can enjoy the passing show 
around and past both the entrances of the greenhouse, in particular, the cantilever roof 
above the main door (p.1) is also visible, and my companion did not fail to notice that it 
was just like the top of “pi two is abelian!”  This is so because this motif in concrete was 
originally intended to be done there on a bigger scale; likewise, something like the statue 
(p.33) near the other entrance to this plant-shed, which I therefore call “möbius’s 
balcony,” was once supposed to frame an intended balcony outside my office’s rear 
window.  Since my companion already knew a simple6 method for making this one-sided 
surface – take a strip of paper, twist one end through 180 degrees, and glue to the other – 
there was nothing much I had to say about it.  So, we just sat in silence, the better to 
enjoy another very pleasant and surprising feature of this place, which, frankly, was 
unintended too, it is pure serendipity: when the brook is flowing, there is almost as much 
sound of running water coming from the rear of this chabutra as from its front!          
 

       
     
          On our way out, we paused at the spot from where the sound of running water is 
transmitted via the metallic frame to the rear of the chabutra, to ponder the patterns made 
by fast-flowing water from the fall, over the pebbles of that gorge, as it about-turns into a 
subterranean tunnel and pool which feed the stony brook.  It was about then that I told my 
companion, “That method of yours does not really give us a möbius strip of paper, indeed 
it can never be made, for, the material making it would prescribe an inner side, while we 
want a one-sided surface!”  Now this is serious, not only am I faulting another method, it 

                                                 
6 Making the möbius strip in concrete is however not as simple.  I’ll give specific attributions about the 
mentioned motifs in the Notes, but since these are far from ready, I’ll like to express here and now my 
gratitude to Asa Ram, Miraj, Guni Laal, Ram Prakash, and all the other artisans who were involved in this 
work.  Also, these motifs could not possibly have come into being without either the indulgence, or the 
organisational abilities of my wife, so here’s a very big “Thank you!” to you too, Minni.  
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seems I didn’t come clean on mine either, but my companion saw the point I was trying 
to get across.  Neither the concrete statue, nor the most delicate of models in the thinnest 
of papers shall give a möbius strip, for the simple reason that, it is an abstract idea: it 
exists in our imagination only: there alone is to be found that ethereal paper with zero 
thickness, the gossamer necessary to ‘make’ any mathematical surface.  So, the “house 
with two rooms” atop the aqueduct, that too is not mathematician R. H. Bing’s example 
either, only an evocation of the same, and so on down the line, for all the motifs.  They 
are all flawed depictions of flawless forms that can’t be seen as such – “like elves,” my 
companion teased me – but the fact that these imperfect depictions are so efficient in 
evoking in our minds these precise ideas, suggests that these ‘elves of mathematics’ are 
somewhat more important and natural, and in fact, most of these logical constructs arose 
historically from a contemplation of the patterns of nature.  So it is not surprising that, 
there is not only great beauty in these logically perfect thought-patterns7 of mathematics, 
they have also given us an ever-deeper understanding of nature’s patterns.  
 

 
 
          Conversation over tea that day had flowed smoothly on everything under the sun, 
but both were waning now, yet the older sister was chattering away with the grown-ups, 
but her sibling had left the skew room long ago.  Fearing that she might be too near the 
water-pond in this fading light, I was relieved to find her by the aqueduct, but was taken 
aback by her posture: half-kneeling and stockstill, she was sort of squinting, steadily and 
fixedly, into that little cave!  Setting myself down slowly on the grass besides her, I 
asked, “What is it, beta, what are you looking at?”  Her voice was soft, but the two words 
were clear enough, and made my eyes dart to the “house with two rooms,” but it was not 
that, it was this cave only that was holding all her attention, as she repeated,“bing’s 
ome,” and moved a finger slowly towards it.  The thought flashed that she was pulling 
my leg in return, but there was not a trace of naughtiness on that innocent face, and the 
thought was dismissed, as I looked at exactly where she was looking, but I saw only what 
you see in the photo above (which however was taken on a later day, in better light). 

                                                 
7 In the preceding ‘lectures’ I have used the motifs merely as gateways towards the much deeper beauty in 
these patterns of thought, but, as I mentioned on p. 13, non-trivial effort is needed even to ‘see’ already-
done mathematics.  Therefore, to keep the focus on these very beautiful but demanding arguments, it was 
necessary to minimize all distraction; so only a bare amount of terminology was used, and just a few names 
were mentioned; but a more extended glossary, and a bibliography, will be given in the Notes. 
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While she remained in that fascinated state for about thirty seconds more, when, all of a 
sudden, her body relaxed and returned to normal, and it was clear that whatever she had 
seen, or thought she had seen, was no longer there.  The happy smile the child smiled at 
me then presumed that I had also seen what she had seen, so I only smiled back.  
However later, on many evenings at about the same time, I have sat down on the same 
grass at the same place, and tried many contortions of face and squintings of eyes, hoping 
to espy, for myself, that elf which that little girl had apparently seen, but I would be lying 
if I were to tell you that I have seen it too, for I haven’t, not yet, anyways! 
 
          I remember reading that, try as they might, a small but significant percentage of 
people can’t see the hidden image in even the simplest of those “Magic Eye” pictures, so 
who knows, bing with a small ‘bee’ might be somewhere in the previous photograph, 
only you aren’t squinting at it properly?   More seriously, I hope you managed to catch at 
least a glimpse of the shimmering beauty of the elves of mathematics, which indeed I 
have seen, and which I’ve tried to share with you, via these motifs, in this paper. 
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