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ABSTRACT. The n-skeleton of a (2n+2)-simplex does not embed in R?" . This
well-known result is due (independently) to van Kampen, 1932, and Flores,
1933, who proved the case p = 2 of the following:

Theorem. Let p be a prime, and let s and | be positive integers such that
I(p — 1) < p(s — 1). Then, for any continuous map f from a (ps+p — 2)-

dimensional simplex into R, there must exist p points {x,, ..., xp} , lying in
pairwise disjoint faces of dimensions < s—1 of this simplex, such that f(x,) =
s f(xy).

1. INTRODUCTION
The first general examples of simplicial complexes which are not embeddable
in a Euclidean space of twice their dimension were given in the early thirties.
Van Kampen [11] and Flores [5] proved (independently) that there does not exist
a continuous one-one map from azfl , the (s—1)-skeleton of a 2s-dimensional
simplex, into the Euclidean space R*~D | Both van Kampen and Flores used
deleted functors (though in different ways) and both proved a little more:

1.1. Van Kampen-Flores theorem. For any continuous map f: aszil — R¥7D
there exists a pair (o, , 0,) of disjoint simplices of 02_5_1 such that f(o,)Nf(0,) #

0.

An equally well-known and earlier theorem of Radon [6] can also be stated
in the same format:

1.2. Radon’s theorem. For any linear map f: a,’Ill — R there exists a pair

(0,, 0,) of disjoint simplicies of 0,1:11 such that f(o,)N f(0,) # ¢.

Arguments similar to those given by either van Kampen [11] or Flores [5] can
be used to see that the above statement is in fact true for all continuous maps
f: a,’f:ll — R'. This generalization of Radon’s theorem was however pointed
out only much later by Bajmdczy and Barany [1].

Received by the editors August 8, 1988.
1980 Mathematics Subject Classification (1985 Revision). Primary 57Q35, 52A37.

©1991 American Mathematical Society
0002-9939/91 $1.00 + $.25 per page

559



560 K. S. SARKARIA

The deleted functor methods used by van Kampen and Flores have been ame-
liorated in many different ways, and have been applied to get many interesting
topological and combinatorial results, see, e.g. [13, 12, 7, 8, 9], etc. The object
of this note is to use the techniques of [8], where we used deleted joins to prove
a generalized Erdos-Kneser conjecture, to establish the following very general
theorem of the Radon-van Kampen-Flores type. Here n, s, j, p,and [ are
integers with 1 <s<n+1,2<j<p, 0</!,and p isaprime, and a p-tuple
of sets is called j-wise disjoint if the intersection of any j of the sets is empty.

1.3. Theorem. Let either (a) n=s—1 and (n+1)G-1)>{+D(p-1),
b) n>s—1,and (m+1)(p-1)+ps=>(n+1)(j-1)> (l+m+2)( - 1)
for some non- negatlve integer m . Then, for any continuous map f —R,
there exists a j-wise disjoint p-tuple (o, ..., ap) of simplices of 05—1 such that
fle)n---nfla,) #9.

When n=s—1=(I+1)(p—-1), p any prime, and j = 2 this gives the

1.4. Bdrdany-Shlosman-Sziics theorem. For any continuous map f: a((,lill))g 11))

o ) of simplices of

— R there exists a pairwise disjoint p-tuple (o, ..., A

a((,’::))g_"ll)) such that f(o)N---N f(a,) # D

This generalization [2] of Radon’s theorem remains ture for any p provided
one assumes that f is linear: this was established earlier by Tverberg [10].

Note that the conclusion of 1.4 is stronger than saying that f admits a p-
fold multiple point, f(x,)=---=f (xp). If the complementary dimension of

the diagonal of (R’)" ,1.e. /(p — 1), is more than p times the dimension of a
simplicial complex K, then any general position linear map f: K — R’ will
have no such multiple points. On the other hand by putting n=ps+p—-2, p
any prime, j =2, and m = 0, Theorem 1.3 yields the following:

1.5. Generalized van Kampen-Flores theorem. For any continuous map f:
af”;” 2 LR, I(p-1) < p(s—1), there exists a pairwise disjoint p-tuple

(0, ..., a,) of simplices of o] PSYP2 such that fle)n---nflo,) #2.

We note that in this result the number ps+ p — 2 is best possible. Thus, e.g.
1.5 tells us that a continuous map from the 1000-dimensional complex afggg to
R'%® must have a 5-tuple point. But, by sending 4 vertices to each of the 1251
vertices, and the barycenter, of a 1250-dimensional simplex contained in R!%0

3007 _, RI1250 without any 5-tuple points. Similarly one

one gets a linear map "1000
has linear maps f: ¢?*177° — R’ without p-tuple points whenever /(p — 1) =

pls—1).

One lacuna in all these results is that p has to be prime. However, note that
the cases j > 2 of Theorem 1.3 also give us information about the existence of
q-fold multiple points of f for nonprimes q: Let us call a p-tuple of points
(X5 .05 X,) J-wise distinct if no j of them are the same. Note that there are
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at least ¢ =]p/(j — 1)[ pairwise distinct entries in such a p-tuple. (Here ]¢[
denotes the smallest integer > t.) The conclusion of Theorem 1.3 is stronger
than saying that f must image some j-wise distinct p-tuple of points to the
same point of R , and this last is equivalent to saying that f must have a
g-fold multiple point.

2. DELETED PRODUCTS

As in [8] each ordered p-tuple of simplices of a simplicial complex K will
be considered to be a simplex of the p-fold join K W = KK K (the join
of p disjoint copies of K ), and the deleted join KU(‘.’)) is a subcomplex of K¥
formed by all j-wise disjoint ordered p-tuples of simplices of K.

Definition 2.1. Likewise, for any topological space E, the deleted product Ej.’
is the subspace of the p-fold product E®> = E x E x --- x E formed by all
j-wise distinct ordered p-tuples of points of E. Thus we have an increas-
ing sequence of spaces ¢ = Ef C Ej} C --- C E" C Ef,’ .1 = E’. Ej and
E;’ are also denoted by E” and E?: these are called respectively, the pth
product configuration and the pth deleted product of E. The group z, of all
permutations of {1,2,---, p}, and therefore the subgroup Zp generated by
the cyclic permutation (2, 3, ..., p, 1), acts on these spaces in the obvious
way. m(X,,..., xp) = (xn(l), cees nu(p))\m € Zp. Note that, for j < p, the
Zp-action on E;’ is fixed-point-free; further, if p is prime, then this action is
free.

2.2. The pth deleted product of the Euclidean space R’ isthe complement in
R? > (Rl)” of the /-dimensional vector subspace given by x;, =x, =+ = X, .
By projecting orthogonally on the perpendicular (/p — /)-dimensional vector
subspace, and normalizing, we see that (Rl)f has the Z,-homotopy type of
an (Ip — I — 1)-dimensional sphere. (More generally, (Rl)ﬁ, k < p, is the
complement in R? of (%), I(p — k + 1)-dimensional vector subspaces given
by Xj =X ==X 1<i <--<i, <p,and one can check that this
complement has the Zp-homotopy type of a bouquet of (/k —/ — 1)-spheres.)
We will also use the fact (cf. [8]) that for ¢, the simplicial complex formed
by all the faces of an n-simplex, the deIeted Jjoin (a ) has the Z -homotopy
type of a bouquet of ((n + 1)(j — 1) — 1)- dzmenszonal spheres: ThlS follows
because (a;')g)) = ((a)"*)G) = (a0)() ™" using (4-B){}) = A()-B(}) , and

S0 = (aj’_'zl) . Here a,’ denotes the t-skeleton of an i-simplex.

2.3. To relate the notions of joins and products we make the following con-
ventions:

Let @' denote the (p — 1)-simplex whose vertices are the canonical basis
vectors (0,...,0,1,0,...,0) of R’. The p-fold join of spaces, EV =
EE..... E (the join of p disjoint copies of E ) has as its points all formal
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linear combinations t-x = #,x, + -+ +1,x,, t € [thZ}|, x € E”, with t-x
identified with ¢-x’ whenever ¢ = ¢ and x, = x]Vi s.t. ¢, = f; # 0. The
group X, acts on E? via X+ X)) = Ly Xaay T F LX) -
We identify E” with the subspace of E® consisting of points of the type
(1/p)-x = (1/p)x, + -+ (1/p)x, . On the other hand K” = K x K x ---x K
(resp. Kf ) is the cell complex whose cells correspond to (resp. j-wise disjoint)
ordered p-tuples of nonempty simplices of K. Alternatively one can consider
K? asasubposet of K ®) under C. Under barycentric subdivision this subposet
yields a subcomplex (K”)' of (K?) and, if E =|K|, .hen E®) is covered by
K and the subspace E’ is covered by the subcomplex (K*) of (K®)'. The
complement K ) _ g? , a subcomplex of K @ , will be denoted by Ké" ) (: its
elements are ordered p-tuples of simplices of K, with at least one member of
the p-tuple empty). The subspace of EP covered by K((,” ) will be denoted by
E((,p ). Note that E((,” ) consists of all points of the type t-x, with ¢ lying in the
(p — 2)-sphere I‘!‘ﬁ:;l . The group X, acts on this sphere via (¢, ..., t,) =

(tﬂ(l) 9 ey Tﬂ(p)) .

3. MULTIPLE POINTS
The proof of 1.3 will be based on

Lemma 3.1. Let p be a prime number, and K a simplicial complex. If there
exists a continuous map f from |K| into R', with fle)n---n flo,) = ¢¥
Jj-wise disjoint p-tuples of simplices of K, then there must also exist a continuous
map F from |K((§’))| to the sphere SEDE=D=1 " \hich commutes with some free
actions of the group z,.

This is an easy consequence of the functorial nature of deleted products:
Any map E Ly taking j-wise distinct p-tuples to k-wise distinct p-tuples
induces the Zp-map
(3.2) B Y,
where f’(x,...,x,) = (f(x)),..., f(x,)). If E=|K|, then with the con-
ventions made in 2.3 E? is bigger than |K?| = |(K?)'|. The latter is the sub-
space of j-wise distinct p-tuples of points which are contained in j-wise dis-
joint p-tuples of simplices, and so one has a map f”: |Kj.’ | - Y{ even under
the weaker hypothesis that all such p-tuples are mapped by f to k-wise distinct
p-tuples of Y. |K((j.’))| C E(()")-|Kj.’|, and one has the Z -map A: E® - |r§:;|
given by A(¢:x) =t. Thus we get the Z,-map

(3.3) AR LD

The result follows because 2.2 tells us that, when ¥ =R’ and k = p, the right
side of (3.3) has the Z -homotopy type of an sHHE-1-1
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3.4. Proof of Theorem 1.3. If some f: o, | — R’ does not have the stated
property, then the above lemma provides us with a Z,map F: |(as”_l)g))| —

SEHNE=D=1 11 case (a) no such F can exist because 2.2 tells us that connec-
tivity of the domain is > the dimension of the range, and the Borsuk-Ulam
result of Dold [4], p. 68, applies. Even in case (b), instead of ruling out the
existence of such an F by means of a direct examination of the connectivity

f ( s" 1)(") we will make do with the same readily available information 2.2

regardmg (a )( e
We note that the barycentrically subdivided complex ((a ) ( ])) is contained

in the join of the two “complementary” subcomplexes, ((a" )( ]))' and L =

(o )(]) (C )(1)) Hence, if we could find a Z -map G: |L| — smHhe-h-1

then the join of maps F-G would provide us with a Z ,-map |((o )8)) )| —

SU+m+DE-1-1 " And no such Z,-map could exist, because, under the given
condition (n+1)(j —1) > ({+ m+2)(p — 1), the domain has connectivity >
the dimension of the range.
The map G can be defined (cf. [8]) as follows. Let ¢" = {1, 2,...,n+1},
™ ={1,2,...,m+1}, and assign to each s-face ¢’ C ¢”, a color c(¢’) € 6™
thus: if & has a vertex

p-1 S\ _
Smf__ then c(E)—]

(first vertex of &')(j — 1) [

-1’ p-1
otherwise ¢(&) = m + 1. Using the given condition (m + 1)(p — 1) + ps >
(n+1)(j — 1) it is easily checked that one cannot have c¢({)) = -+ = c(éz)
for any j-wise disjoint p-tuple (&), , é;) of s-faces of o". (Because

TU---U&| > p(s+1)/(j — 1) while length (m(p - 1)/(j = 1),n+1] <
p(s+1)/(j—1), all &s could not have been colored by m + 1. Also the
total number of vertices, occurring first in some ff, is > p/(j - 1); so, if
all first vertices were < m(p — 1)/(j — 1), then largest color-smallest color
>1p/(j = 1) = 1)(j = 1)/(p - 1)[= 1.) More generally, to any face o’ C ¢”",
assign the set ¢(a') c 8™ of colors assigned to s-faces of ¢” contained in o

(so E( =@ iff t <s). Now we define a Z,-monotone function C: (o )8))

(Cis ) by Cley, ..., a,) = (€(ey), ..., ¢(a,)). Note that C(a, ..., a,) is
empty iff (a,,...,a,) belongs to the subcomplex (o, 1)8)) of (o, )(]) Thus
the derived map of C provides us with the requisite G = |C’|: |L| — |( 0'")(")| i~
sme=H-1 = QE.D.

3.5. Remarks. (a) Van Kampen [11] and Flores [5] also point out that the
complexes obtained by taking joins of complexes of type azfl retain the prop-
erty of being nonembeddable in twice-dimensional Euclidean space. Analo-

gously if the hypotheses of Theorem 1.3 are satisfied by (j,p,n,, s, 1) and
(J,p,ny,8,, 1), then the conclusion of Theorem 1.3 is valid for any contin-

—
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— R'*:*2 . To see this proceed as in 3.4 to con-

struct a Z -monotone function C,-C,: (g "_:"ﬁl)( 5 = (O Izzill)g) and note

that this functlon is supported on s1mp11ces not contamed in the subcomplex
(o] g0, —1) ) - (b) Another generalization of Theorem 1.3 yields sufficient con-

uous map f: o s'—1‘7 .\

ditions ensuring that every continuous map E a s R’ hasa Jj-wise disjoint
p-tuple (g,,...,0 )of simplices of a _, for Wthh (fla), ..., f(ap)) isa

k-disjoint p-tuple of subsets of R . This time one uses the fact that (Rl)gg is
a bouquet of (/+1)(k — 1) — 1-spheres, and the (easy) “if” part of the following
“generalized Erdos-Kneser Conjecture™: There is a coloring ¢ of the s-faces
of 6" by the vertices of 8™, with all j-disjoint tuples (&, ..., és) going to k-
distinct tuples (c(&}), ..., ¢(&))) ifand only if (m+1)(k—1)+ps > (n+1)(j-1).
The “only if” part can be estabhshed by means of a slight generalization of the
argument given in [8].

(c) For the classical van Kampen-Flores theorem 1.1, our proof, 3.4, is closely
related to that of Flores [5]. Both proofs use the classical Borsuk-Ulam the-
orem [3]. In addition, Flores used the interesting fact that (aszil)iz) is Z,-
homeomorphic to a (2s—1)-sphere. On the other hand, we use the more obvious

fact that (aif ),(f) is a 2s-sphere, and that, there is a coloring ¢ of the s-faces

of 022; with just one color since no two s-faces can be disjoint.

(d) Van Kampen’s proof [11] was self-contained and did not depend on the
contemporaneous work of Borsuk [3] (in fact an argument similar to, and eas-
ier than, that given by van Kampen, also gives a simple proof of the Borsuk-
Ulam theorem): To each general position map f from K to an oriented twice-
dimensional Euclidean space, associate the integral cocycle o f of Kf /Z, which
counts (with sign) the number of intersections, under f, of any pair of disjoint-
oriented simplices of K. Van Kampen checked that a deformation of f changes

o, only by a coboundary. Thus the value (o, z) of o, on a cycle z of K? Z,

2(s—1)

is independent of f. The nonembeddablhty of a —,inR ) follows by not-

ing that there is a general position map f: as_l — R¥7D with just one double
point and so (o, z) = lmod 2 for the mod 2 cycle z formed by all top-
dimensional cells of (a l) /Z, . We note that the linear-homotopy-theoretical
argument of Tverberg [10] is analogous to that of van Kampen [11]. We will
show elsewhere that van Kampen type arguments can be used to establish a num-
ber of interesting results besides those of Dold [4], and of this paper. A more
leisurely and extensive account of the numerous combinatorial and topological
applications of deleted functors will be given in [9].
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