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A “RIEMANN HYPOTHESIS” FOR TRIANGULABLE MANIFOLDS
K. S. SARKARIA

ABSTRACT. Given a triangulable manifold we show how to find a triangulation
whose characteristic polynomial has roots which are either real or on the line
Rez=1/2.

If K is a (finite) simplicial complex, then fx(z) will denote the polynomial
x/2—f(K)-z+ f(K)-z*—---; here x is the Euler characteristic of the un-
derlying space M =| K| and f,(K) is the number of i-simplices in K.

THEOREM. If M is any closed triangulable manifold, then it admits a triangulation K
for which all the nonreal zeros of fx(z) lie on the line Re z = 1/2.

Proor. If L is any triangulation of M™, then one has the functional equation
f,(2) = (=1)"*'f,(1 — z). (This fact is well known and is a concise way of writing
the Dehn-Sommerville equations (see e.g. [1, p. 101]): it was observed by Klee [2]
that these equations hold if the link of each i-simplex of L has the same Euler
characteristic as an (m — i — 1)-dimensional sphere, e.g. if L triangulates a closed
m-manifold.) So the roots of f,(z) are symmetrically situated about the real axis and
the line Rez = 1/2.

For each integer ¢ = 0 we construct a simplicial complex L, as follows: L, = L is
any triangulation of M and L, , is obtained by deriving an m-simplex of L, We
note that

fu(2) = 2) =gz +qlm+ D2 =g T )
+ (_I)MHq(mnt l)zm+l _(_1)"‘+lqzm+l

= f(z) = qz(1 = 2)"" = (=1)"" gz (1 — z).

We assert that for all q sufficiently big K = L is a triangulation of M™ such that fx(z)
has distinct roots of which all but 2 lie on the line Rez = 1/2. It is clear that the
remaining 2 roots must then be equal to 1/2 =« for some k > 0; if x = 0 these
exceptional roots are obviously 0 and 1.

Note that fi(1 —z) = (— D)™ fe(2) and fi(2) :mz_) imply that for m odd
(resp. m even) f(z) takes real (resp. purely imaginary) values on the line Re z = 1/2;
the same is also true for the degree m + 1 polynomial

—z(1—2)™ " = (=) (1 = 2) = ¢ fe(2) — g7 - fu(2).
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Next we observe that the m — 1 roots of —z(1 — z)"*! — (—1)"*1z7+ (1 — z)
other than 0 and 1 satisfy |z/(1 — z)|= 1, i.e. lie on the line Re z = 1/2. So for ¢
big the neighbouring polynomial ¢~ 'f(z) must also have m — 1 roots on the line
Rez=1/2. QE.D.

REMARK. Let L be a triangulation of M"™ and let C(¢, m + 1), g=m + 2, be a
cyclic triangulation (see e.g. [1, p. 82]) of the sphere S™. By omitting an m-simplex
each from L and C(q, m + 1) and then identifying their boundaries, one gets a
triangulation L7 of M™. One can verify (using equation (13) on p. 172 of [1] to
examine the roots of the polynomial of C(g, m + 1)) that if m=>5 and g is
sufficiently big, then f,.(z) has some roots which are neither real nor on the line
Rez=1/2.

The “Riemann hypothesis” considered above is related to the lower and upper
bound conjectures for manifolds and is amongst the problems posed in §6 of [3].

I am grateful to the referee for pointing out a mistake in the original version of
this paper.
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