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   § 1. Introduction. 

   Let M be a smooth closed manifold which carries a smooth foliation . A 
smooth form co of degree p is said to be of filtration>_i if it vanishes whenever 

p-i+1 of the vectors are tangent to the foliation. In this way the deRham 
complex of smooth forms becomes a filtered complex and we have the spectral 
sequence Ek(e) which converges after a finite number of steps to the (finite-
dimensional) real cohomology of M. 

   Let us denote by I() the Lie algebra of all infinitesimal transformations 
of the foliation. At each point xEM, we get a subspace I(3)(x) of the tangent 
space Tx (by evaluating the vector fields at x). The foliation is called transitive 
if I()(x)=Tx for all x. 

   THEOREM. If a smooth closed manifold M carries a transitive foliation 
then E2() is finite dimensional. 

   This theorem is proved in no. 6) below : the method of proof, which is of 
independent interest, consists in making a parametrix for the exterior derivative 
by averaging over flows and then employing the theory of compact operators. 

   In no. 1) we define the filtration and in no. 2) by using the theory of exact 
couples reduce the finiteness problem to an equivalent simpler form (Lemma 3). 
In no. 3) the relevant results from functional analysis are recalled, a k-parametrix 
is defined and it is related to the finite dimensionality of Ek(e). In nos. 5) and 
6) we construct a 2-parametrix when is transitive and thereby prove the 
theorem. Beyond some elementary differential geometry (chapter I of [2]), 
functional analysis ([71) and homological algebra (definition of spectral sequence 
as in [3]) the treatment below is self-contained. Further comments about the 
various aspects of this construction and the literature are made in no. 7) below. 

    § 2. Lie subalgebras of £M. 

   If M is a smooth manifold, the set of all its smooth tangent vector fields 
is a Lie algebra with the usual bracket operation. We shall denote this Lie 
algebra by "~'M. We also denote by A(M) the algebra of all smooth forms on
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M; as usual we will equip this algebra with the (skew) derivations d (exterior 

derivative), zx (interior product) and Lx (Lie derivative). Here X E We 

have the following well-known formulas : 

     (a) d2=0 (b) vxry+vyrx=O (c) LxLY-LYL'i                                            (1) 

     (d) dzx+zxd=Lx (e) zxLY-LYZx=z~Y,x~ (f) Lxd--dLx=O. 

(So one cannot make any more (skew) derivations out of d, Lx and zx by using 
the `bracket' operations). 

   Let be any subalgebra of 'M. A degree p form wE /D(M) is said to be 

of filtration>_i if 

                          (Zx1vx2 ... Zxp_1+1)(w)=0 (2) 

whenever X1, • •., X p_i+1 E In other words w(X1, • •., X )=O whenever p-i+ l 

of the vectors are in . We shall denote the subalgebra of all forms of filtra-

tion >_i by Ai(d) whereas Ap() will denote those which are also of degree p. 
   LEMMA 1. Also if X EE,                               LxC~~C)) ~2()• 

   PROOF. The second inclusion follows by (1) (e). 

   After that the first inclusion follows from (1) (d). Q. E. D. 

   A subalgebra "U CM is called a foliation-with-singularities if it is a module 
over the ring A°(M) of all smooth functions. By tensoring any subalgebra 

3 c M with A°(M) we get a foliation 5 with singularities which contains . 
For each x E M we have the evaluation map ex : M -~ T x. If the subalgebra 

  is a module over A°(M) and furthermore if the vector spaces ex()=Dx are 

of the same dimension l we say that is a foliationn of codimension c=m-l, 

(here m=dim M). Now U Dx is a subbundle D of the tangent bundle T. 
                              XEM 

   Conversely given any subbundle D of T one could define AD(D) exactly as 
above (by using (2) and C°°(D) in place of ). 

   LEMMA 2. d(A (D)) A1(D) for all i if and only if D is tangent to a foliation. 

   PROOF. Take any two vector fields X, YE C°°(D) and let w be any 1-form 
that vanishes on D. Then w([X, Y])=2dw(X, Y)=0 since dwE A(D). Hence 

[X, Y] E C°°(D) Q.E. D. 
   Henceforth we will concentrate on the case when is a foliation though 

almost everything holds, with some occasional modifications, if is any subal-

gebra of 
   X EM is called an infinitesimal transformation of if for all YE i~, [X, Y] 

E. By Jacobi's identity all such vector fields form a subalgebra I(). 
However by repeating this process one gets nothing new i. e. I I(1))=I . 

   (Proof. Over an open cell UcM choose local coordinates so that the vector 

fields ° , ..•, span D. Choose any YE I(I(I)). We then see that 
      o~xl axe
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We shall say that a foliation is transitive if I(1) is the one-leaf foliation of 

M. This is clearly same as the definition above. 

   § 3. Spectral sequences. 

   Lemma 2 makes it quite clear that given a foliated manifold (M, ) a 

natural object of study is the filtered complex 

                  A=A0(2)E----A1() -...~-A~( )~-0. (3) 

(It will be understood that An( )=A if n<0 and =0 if n> c). To study this 
we recall some terminology from [3]. 

   An exact couple is an exact sequence

of 
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the derived exact couple is the induced
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Here D1= ~ H(A), E1= ~ H and these spaces shall be given the usual 

grading and bigrading (e. g. Ep'a=Hp+q A p , D=H(A) etc.). The maps 

p 

                                                     p+1 

are made up of the maps of the long exact homology sequences of 0 -~ Ai+1 

A2 --* A1/A1+1 -~ 0. The important thing for us is to note that a is induced by 
the inclusions `1i+1-~ A. 

   Now by repeatedly forming the derived of this exact couple we get our 

spectral sequence :

Note that each space En is equipped with a differential do and is the homology 
of the previous. It is also clear that Dn=an_1(D1), so it is made up of the 
images D, of the maps H(A1) -k H(11+1) induced by inclusion. 

   LEMMA 3. Let be a foliation of the closed manifold M. Then Ek(e) is 

finite dimensional if and only if the images of all the induced maps H(A) -> 
H(A k+1) are finite dimensional. 

   PROOF. First, if D1k is finite dimensional for all i the exactness of (5) shows 
that all the Ek are also finite dimensional. Conversely suppose in (5) En is 
finite dimensional and Dn+1=a(Dn) is of finite type ; then by exactness it follows 
that Dn is also of finite type. So by downward induction we get required 
result. (The induction is permissible since for n large enough E=H(A) and 
DH(A) or =0). Q. E. D. 

   COROLLARY 1. Let U 1,2 be two f oliations of M such that 21~ and 
c(1)-c(2)=E. Then if Ek(a) is finite dimensional so is Ek+;('llb). 

   PROOF. Only the case a ~ b is non-trivial. For definiteness let us assume 
a=1, b=2. We note first that
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                          Ai(2~2) C A1('~1) 
                                          (6)                          A

('1) l)cA1_ (1j2) 

Now the map H(Ai( 2)) - H(Ai-k-e-1( 2)) is seen to factor through the map 
H(Ai(1)) --> H(11i_k_1(V1)) which is of finite rank. Q. E. D. 

   COROLLARY 2. For any foliation EC+1O and Em-c+2( ) are finite 
dimensional. 
   PROOF. {foliation of M by pts} c c {foliation of M by one leaf}. Also 
one can easily check that 

            E2 {pt. foliation} H(A) E1 {one-leaf foliation}. 

   Now we use Corollary 1. Q. E. D. 

   § 4. Compact operators. 

   Let us denote by Zi all the closed forms that lie in Ai. Then the image 
of H(A1) -> H(11i-k+1) is isomorphic to the vector space 

                        Zi 
                              d(`li-k+l)nZi . 

To prove the finite dimensionality of these quotients we use the theory of 
topological vector spaces. 

   We shall topologise A with the usual C°° topology. In this way it becomes 
a Hausdorff locally convex topological vector space. (Infact it is also complete 
and metrisable : briefly, a Frechet space. One can characterize this topology of 
A as the unique Frechet space topology in which all differential operators are 
continuous). Further it is clear that each subspace Ai is also a closed subspace. 

   If E and F are HLCTVSes a linear map s : E -~ F is called compact if it 

maps some nhbd U~0 to a set s(U) with compact closure. (We note that such 
a map can be a homeomorphism only if E and F are finite dimensional ; for 
now s(U) is a relatively compact neighbourhood of 0~ F, and we can use a 
theorem of Riesz. The same theorem, coupled with the open mapping theorem, 
shows that if E and F are Frechet spaces, s(E) can be closed only if it is 
finite dimensional). 

   We are interested in using the following 
   LEMMA 4. Let E be a HLCT VS and let s: E --~ E be compact. Then (1-s) 

(E) is closed and of finite codimension. 
   PROOF. See p. 197 of [7]. Q. E. D. 

   (Note that only the closedness is non trivial. Granting this we conclude 
that E; (1-s)(E) is also Hausdorff-besides being locally convex. Since s induces 
the identity map in this quotient we can use the above mentioned theorem of
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Riesz.) 

   COROLLARY 3. LetCM be a foliation on M. Also suppose that we have 

available two linear maps s, p in A such that 

                 a) s is compact 

               b) 1-s=dp+pd 
                                           (7) 

               c) s(A2) L A2 for all i 

               d) p(AI) ~ AI-k+l for all i. 

Then Ek(e) is finite dimensional. 
   PROOF. By (b), (c) and (d) it follows that (1-s)Zi~d(AI-k+l)nZI. But by 

(a) and Lemma 4, Zi (1)Z is finite dimensional. So Zi/d(Ai-k+l)nZI i. e. the                    -si 

image of H(A1) --> H(Ai_k+l) is also finite dimensional. Now use Lemma 3. 

                                                                 Q.E.D. 
   REMARK. If one omits condition (7) (c) we only get (1-s)ZI~d(Ati-k+l). 

So the question arises as to when 

                    Z~ i
s finite dimensional?               (1-s)(Z1)nZ1 

Unfortunately this happens only if (c) holds at least mod finite dimensional 
spaces. To see this one can use the following result. 

   LEMMA 5. Let F be a closed subspace of a Frechet space E and let s: E -> 

E be a compact map, Then (1-s)(F)nF is finite dimensional if and only if 

  s(F) i 
 Fns(F) s finite dimensional. 

   (Its proof employs only the functional analysis mentioned above.) 
   A pair of linear maps s, p : A--~ A satisfying (7) will be called a k-parametrix. 

   § 5. Averaging over flows. 

   Extending the terminology above we shall say that a vector space V 1M 
is transitive if V(x)=Tx for all xEM. If M is compact it is clear that we can 
always extract a finite dimensional transitive subspace out of V. (For example 
if a foliation of M is transitive there exists a finite dimensional subspace 

VI(1j) which is transitive). 
   We now fix such a finite dimensional and transitive vector space VM, 

and, furthermore choose a Riemannian metric g on V. Let g j denote the 
volume element. Finally let us choose a smooth non-negative real valued func-
tion ~S on V supported in a compact neighbourhood of o. Using these ingredients
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we define a map s : A -~ A by 

                 (sw)(x)= (v*w)(x)~(v) g . (8) 

(Let vt : M -> M denote the flow of the vector field v~ V. Then vl : M ---> M is 
the diffeomorphism corresponding to t=1. It induces the map i4: A - A.) 

   We can assume, without loss of generality, that dim V> m. (dim V=m is 

possible only if M is parallelisable). For each x E M we denote the kernel of 
ex : V --j T x by V x and its orthogonal complement by V x. The induced metrics 
on these two subspaces are called gx and gx respectively. If vE V we have a 
unique decomposition v=u+w where uc Vx and wE V x. Using Fubini's theorem 
about repeated integrations we can write above expression as 

             (sw)(x)= gx (~~~w)i`(w)(x)~uCw) gx I • (9) 
                                Vx Yx 

Here cu(w)=~5(u+w). 
   LEMMA 6. We can choose supp ~z5 so small that the map Fx : V x -> M given 

by Fx(w)=(u+w)1(x) maps supp ~5u diffeomorphically into M for all x and u. 
   PROOF. Let N denote the bundle over M which is the union of all the spaces 

F Vx, xEM. Now consider the map Mx V -- NxM given by (x, v) -> ((x, u), v1x) : 
here v=u+w, uE Vx, w~ V x. It is a smooth map of maximum rank on Mx {0} 

(due to transitivity of V) ; also it maps the compact set Mx {0} diffeomorphically 
into NXM. So one can find a neighbourhood Mx U of this on which F is a 
diffeomorphism. If we take supp c U the Lemma follows. Q. E. D. 

   Let us denote the 1-dimensional bundle of volumes by Q -~ M. Also let 
2T* denote the bundle of covectors. (So A(M)=C°°(2T *)). For each triple 
x~ M, y E M and u V x we define a linear map Ku(x, y) : AT y -~ AT x ®Qy by 

                 Ku(x, y)=0 if y E Fx(supp c). 

   If y=Fx(w), w E supp ~5u and wy 2T y then (10) 

            Ku(x, y)wy=(u+w)*(wy)®((Fx)-1)*(~5u I gx I)(y) 

   Substituting this definition in the above formula (9) we get 

                (si)(x)= gx I KuCx, y)w(y) • (11) 
                                      Vx M 

If we furthermore define K(x, y) : 2T -~ AT x ®Qy by 

                  K(x, y)= YxKu(x, y)1 gx I (12) 

we see that
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                   (sw)(x)= MK(x, y)w(y). (13) 

Operators of this type are called integral operators (see [1]). They are in 

particular compact. We thus have 
   LEMMA 7. The operator s(V, ~S, g) : A(M) --> A(M) defined by (8) is compact 

if M is compact, V is transitive, and supp ~b is small enough. 

   REMARK. We have explicitly constructed the smooth kernel K(x, y) of s. 

The operator s is in fact of trace class, the trace being defined by Tr(s) 

= Tr K(x, x) : see [1]. This fact is important when one proves index 

M formulas by using the parametrix. 

    § 6. The parametrix. 

    We define a linear map p : A-A by 

               (pw)(x)= v o(zLv w)(x)¢(v)dt I g (14) 

Furthermore we normalise the function 

                       v~(v) I g =1. (15) 

    LEMMA 8. The map s is chain homotopic to the identity map, 1-s=dp+pd. 
    PROOF. 

1 

               (dp+pd)(w)-- v o(dzv+2'vd)v*w~(v)dt g 

 since induced maps commute with exterior derivative. Now by 1(d) this equals 

                       v oLvv*wO(v)dt gI. 

 But the Lie derivative Lv is the negative derivative along the flow. So this 
 equals 

                                     II -0isw 

 by using (15). Q. E. D. 
    THEOREM. Let be a transitive foliation of the closed manifold M. Then 
 E2() is finite dimensional. 

     PROOF. Choose a finite dimensional transitive V c I() and construct s and 
                                              So s is com  p as above, taking care that supp ~ ' is small enough. pact and 1-s
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=dp+pd by Lemmas 7 and 8. Since each v~ V is an infinitesimal transforma-

tion of , vt : M -> M maps leafs onto leafs. So v(A1) A i for all i. Now (8) 
and (14) tell us that s(A) cAi, p(A1)cA _1 for all i. So (s, p) is a 2-parametrix 

and, by Corollary 3, E2() is finite dimensional. Q. E. D. 

    7. Concluding remarks. 

   (a) If is a fibration (i. e. the leaves are preimages 7r1(b), bEB where 
7r : M -~ B is of max. rank) then it is transitive. Again many foliations arising 

out of Lie group actions are transitive. 

   (b) In general E2() is infinite dimensional. The cohomology of [8] is 
E*'0() and examples are given there when it is not finite dimensional. 

   (c) ` transitive' is a very restrictive hypothesis e. g. all leafs have to be 
diffeomorphic. However by using Corollary 1 above one can construct instances 

when E3() is finite dimensional (by finding a foliation' of one dimension 

more which is transitive and contains etc.). Again for some non-transitive 

foliations the kernel K(x, y) of s -which is now smooth only on an open subset 

of M x M satisfies estimates which allow s to be compact. 

S 

   (d) Let sp denote the map A(M) --~ A' (M). Then ~(-1)pTr sp=e(M), the 

p Euler characteristic. One can compute the left side from (10) and (12) and thus 

get a semi-local Gauss-Bonnet theorem. The reader should compare with [1] 
which is the source of many ideas of this paper. 

   (e) If admits a bundle like metric then E2'0() are finite dimensional. 
This follows from [4] ; the result is proved there by using Hodge theory. 

   (f) If a parametrix is sought for some other skew derivation a (say, the a 
of complex manifolds) then instead of Lie derivatives Ly one has to deal with 
the derivations rya+ary and instead of vt : M --> M with the flow on T(M) given 
by the vector field on T(M) corresponding to this. This remark is important 
to give canonical constructions of parametrices which are well behaved with 
respect to some extra structure on M (say, a connection). We will deal with 
these topics in a subsequent paper. 

   (g) Take the foliation on a torus T 2 with irrational slope a. Then if a 
can be well-approximated by rationals E1() is infinite dimensional ; otherwise 
finite dimensional. So even for an ergodic, minimal flow E1(3) can be infinite 
dimensional. (One must be able to construct time averages of forms in the C1-
topology for E1() to be finite dimensional). We also remark that if M is 
orientable and E1() is finite dimensional then (and so, if 
c() is odd, that signature (M)=0). This duality theorem, which is the analog 

of Serre's duality for complex manifolds, holds in other instances too. All this 
can be found in [6].
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   (h) The programme of studying the filtration (3) of the deRham complex 
was commenced in [5], a thesis written under the guidance of Professor 
Anthony Phillips at Stony Brook. 
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