
Plain Geometry & Relativity, part V

28. Matter is but extension, and is differentiated only by its various motions.
Let us summarize where we are now in our efforts to answer those three
questions—Note 25—of manifolds starting from this dictum of Descartes.

(28.1) We saw closed manifolds emerge magically—and it seems in all
their diversity—in euclidean n-spaces from their own periodic motions.1 Even
simple physical systems have many more degrees of freedom n than visual space,
but we can here work in just the one cartesian space of all sequences of real
numbers having only finitely many nonzero entries.2

(28.2) That pragmatic restriction—any observer’s space at his time t = 1 is
an n-ball of radius c < ∞ around him—led us to an absolute time τ defined on,
and preserved by the linear reflections of the cone over his n-ball. The flow lines
of a motion of the n-ball project its moving points on the successive absolute
spaces τ = constant. Their chords are parallel to rays of the cone, besides we
require that this motion proceeds via homeomorphisms.

(28.21) For n > 4 this requirement implies that there is a perturbation of the
motion of the n-ball with lipschitz homeomorphisms. We sketched in Note 23
why this seems true and gives one half of : A closed manifold emerges in a
periodic relativistic motion if and only if it admits a lipschitz
structure. For the other half we showed that a 2-ball emerges from a smooth
motion for any n ≥ 2, from which it is clear any closed smooth manifold occurs,
hoping that similar constructions work for closed lipschitz manifolds.

(28.22) Further, using a lipschitz yang-mills theory, Donaldson and
Sullivan have shown that some closed 4-manifolds do not admit any lipschitz
structure. On the other hand, using a bieberbach theorem for relativistic
crystallography, the latter had shown long before that outside dimension 4 all
manifolds admit a unique lipschitz structure. However I have yet to understand
these technologies to my full satisfaction.

(28.3) From that complicated hidden motion we only got static closed
manifolds in our n-ball of radius c < ∞. What sets them moving is more
pragmatism : only a compact interval of absolute time for each snapshot. De-
pending on the scale at which we are discerning the hidden motion, there is say
a number 1 < s < ∞ – very big in macrophysics, almost 1 for microphysics –
and the τ th frame of this moving picture uses [τ/s, τs], i.e., the actual hidden
motion is replaced with the one having this restriction as a period to make this
snapshot. Since there is in fact no periodicity the closed manifolds move and oc-
casionally coalesce or bifurcate in this movie : cobordism or intrinsic homology
arises naturally from motion. Not only that, as our discernment of the
hidden motion becomes finer, what was a minimal manifold can get partitioned,
say into a foliation, and its compact leaves will be now natural candidates for
cartesian matter at this smaller scale s, et cetera.

1As persistent minimal sets of these motions (more details of this and some other things
still to be done) so our manifolds are connected but may not be orientable.

2This space R∞ was used in the last two parallel notes q and Q.
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29. A cartesian motion is a partition of conical spacetime into infinite
arcs, its flow lines, that cut each copy τ = constant of the absolute space once
and only once, inducing homeomorphisms between these level surfaces, and
have chords parallel to rays. If all flow lines tend to the origin as τ → 0 it is a
deformation3 of the basic example, cartesian rest, which has as flow lines all
rays of the cone. We’ll now discuss why this definition is reasonable.

(29.1) The continuity of flow lines does not for n > 1 guarantee that the
bijections induced between the spaces τ = constant are bicontinuous, that was
a separate condition. To obtain manifolds that are smooth, piecewise linear or
lipschitz we’ll also use cartesian motions with flow lines and homeomorphisms
smooth, piecewise linear or lipschitz. The condition, chords parallel to rays,
which kicks in for c < ∞ implies then that the flow lines are lipschitz. This
being an open condition it persists under perturbations and so we’ll be able to
approximate – if c < ∞, n ̸= 4 and the given motion is periodic – by arbitrarily
close cartesian motions with homeomorphisms lipschitz.4

(29.2) The initial condition at τ → 0 ensures the flow lines cut each
t = constant of any observer once and only once :- With the continuity of flow
lines it gives one cut, and there can’t be two because the chords of these n-balls
are not parallel to even the rays of the closed cone over them. �

In other words, the time of any observer is strictly increasing and takes all
possible values on flow lines. Conversely for c < ∞ this implies the initial
condition, and that chords of flow lines are parallel to the rays of the closed
cone5 :- The time t of S takes all values on it, so the flow line must start from
O. It can’t have a chord −−−→

P1P2 which extended on either side exits the cone, for
then we can find a nearby chord of the cone which separates O and P2 from P1

in the plane of these points, so the time t′ of the ray S′ through this chord’s
mid-point would have a lesser value at P2 than at P1. �

(29.3) We call cartesian motions preserved by all homotheties steady, and
those preserved by some homothety other than the identity periodic in time.
If c < ∞ the restriction of a deformation to times [t/s, st] of an observer extends
to a periodic deformation preserved by multiplication by s2 :- For s > 1 we
must use homothetic patterns of flow lines over the intervals . . . , [t/s3, t/s] and
[st, s3t], . . . which is okay since concatenation preserves continuity, the sum of
two vectors parallel to rays is parallel to a ray, and the new flow lines are defined
for all t > 0, so the initial condition also holds. � Likewise, we can replace any
portion of a motion by a homothetically equivalent portion of another, and
concatenation works just as well in the everything lipschitz or piecewise linear

3Talking of deformations, I still don’t know – see x – if a cantorian PG&R ties up with his
IUTT, but, even as Mochizuki finished his 8 talks in Kyoto, I saw it was child’s play to win a
game on p. 787 of the Notices of the A.M.S. of August 2016 by using deformations of addition
(for example, if the ith kid guesses the number which makes the total i mod 10)!

4The deforming homeomorphisms, that change each ray to the flow line through the same
point on τ = 1, are made lipschitz step by step, using as scaffolding a crystallographic tiling
of spacetime, n = 4 excluded because of those – see |, c – switching difficulties.

5So this more general definition permits photon-like instantaneous motion on some intervals
of absolute time, but we’ll use our open and particle-like definition, on each flow line the
elapsed time defined by

∫ P
O τ(dr) – see Note 15 – is also strictly increasing.
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context, but some sandpapering is needed for smoothness.
Similarly, the restriction of any cartesian motion to absolute times [τ/s, sτ ]

extends periodically, but we may lose the initial condition, for example, consider
cartesian rest for (0, τ0] followed by all lines parallel to a ray S. An infinite
repetition will play a key rôle again in the torus tricks needed to get also some
measure of spatial periodicity into a given cartesian motion.

30. Periodicity of a cartesian motion in fact makes sense with respect to any
transformation of spacetime which preserves this notion, say a linear reflection
of the cone, or else the time reversal of all its rays in a curved mirror τ = a, or
any composition of these, see Note 23. Clearly, a homothety is a composition of
two time reversals, but why do these nonlinear factors also preserve the notion
of cartesian motion and the cayley distance of the cone? We’ll see why, also
we’ll see that cayley distance is born from the age-old definitions of adding and
multiplying segments that are given in elementary classes.

(30.1) The above involutions mirror cartesian motions to cartesian motions.
This will follow easily once we have checked the following.

(30.11) A line parallel to the boundary and cutting the mirror in one point
is switched with the other such line on the same plane through the origin :-

This plane—of the given line L and the origin—is shown below, P being the
one point of the mirror on the line. So, if the mirror is flat, it cannot contain
this plane – in this trivial case the line stays put – it cuts it in the ray S through
P . Any point A of the plane reflects to the point A′ such that the mid-point of
AA′ is on S. It follows that the mirror image L′ of our line is the other line M
of this plane through P which is parallel to the boundary of the cone.

If the mirror is curved, τ = a, then any point A reflects to the point A′′

on the same ray such that τ(A)τ(A′′) = a2. We recall that τ2 = t2 − x2

c2 in
the coordinates (t, x) of S. So if A = (a + u, cu) is on the line L with slope c

through P = (a, 0) we have τ2(A) = a2 + 2au. Therefore τ2(A′′) = a4

a2+2au and
τ(A′′)
τ(A) = a

a+2u . Hence A′′ = (a(a+u)
a+2u , acu

a+2u ) = (a− au
a+2u ,

cau
a+2u ), the point on the

ray through A and the line M of slope −c through P . The mirror image L′′ is
again M , but now as A runs over L linearly in the direction τ increasing, its
image A′′ describes M non-linearly in the direction τ decreasing. �
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So these involutions of spacetime not only preserve its product structure,
they map a line parallel to its boundary to another such line. The hypersurface
of all such lines through A is mapped to the hypersurface at A′ or A′′. A segment
joining A to B is parallel to a ray iff B is in a component of the complement of
this hypersurface through which the ray of A passes. Using this we see that the
mirror images of all flow lines obey the chord condition. �

(30.12) In fact, the above switching property fixes the curved mirrors and so τ
up to a constant multiple. Also, τ(B′′) < τ(A′′) iff τ(B) > τ(A) was fine above
because our flow lines are unoriented. And, as is shown below, the segment
B′′A′′ is not the reversal of AB unless B is on the ray of A. Hence, there is no
piecewise linear cartesian motion other than rest which is preserved by a time
reversal! Which suggests that, in this unfolding tale about the cartesian genesis
of closed manifolds, this non-linear doubling of the symmetries of spacetime will
tie up with the cohomological obstruction to piecewise linearity.

(30.13) Any other line R parallel to a ray S reverses to an R′′ which is
coplanar, strictly convex, tangent to S at the origin, and asymptotic to the line
L′′ parallel to the boundary whose reversal L has the same end as R :-

In coordinates (t, x) of the observer S such that R consists of all points
A = (u, b), b

c < u < ∞, its reversal R′′ in the curved mirror τ = a consists of all
points A′′ = a2c2

c2u2−b2 (u, b). As u increases both coordinates of A′′ decrease to
0, the second at a faster rate, so the graph of R′′ is strictly convex downwards
and approaches the origin tangent to S. As u → b

c , R and L approach their
common end E, so R′′ approaches the line L′′. �

(30.14) Eliminating u = bt
x we see that A′′ = (t, x) satisfies bx2 + c2a2x −

c2bt2 = 0, so R′′ lies on a hyperbola. This non-linearity persists in the classical
limit c → ∞ : now A′′ = a2

u2 (u, b), 0 < u < ∞, so R′′ is the t > 0 portion of the
parabola a2x− bt2 = 0 in the coordinates of the observer S.6 So, the cartesian
motion with flow lines straight and parallel to S always reverses to one whose
flow lines, other than this ray, are conics tangent to it at the origin.

6From note 23 : even for c = ∞ the hidden product structure is different from that of any
observer. Things are not always easier now, classical notions often have simpler relativistic
deformations. From page 2 of PG&R text : ball geometry ‘explains’ euclidean geometry, the
classical limit of the naturally defined linear reflections of the cone restrict to the euclidean
reflections on the flat t = 1 of half-space.
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On the other hand, a linear reflection in a mirror containing S preserves
this motion, and, in a flat mirror not containing S, it reflects to a motion with
flow lines straight but, unless c = ∞, not parallel to each other : they diverge
towards infinity because signals are reaching S′ at a finite speed.

(30.15) Indeed, the lines parallel to S form one half of this observer’s product
structure, which therefore reverses to the arcs above together with the reversals
of his balls. The reversal B′′ of any ball B = {(x, t) : t = d} in τ = a is given
by translating τ = a2

2d parallel to S by a2

2d :- A obeys f(t,x) = 0 iff A′′ obeys
f( a2c2

c2t2−x2 t,
a2c2

c2t2−x2 x) = 0, so B′′ is the subset of all (x, t) such that a2c2

c2t2−x2 t = d,
i.e., dc2t2 − a2c2t− dx2 = 0, i.e., (t− a2

2d )
2 − x2

c2 = (a
2

2d )
2. �

(30.16) So let’s extend the principle of mirror relativity to reversals! The
hidden product structure consists of the rays and the level surfaces of absolute
time. The point on ray S and surface τ = a will be denoted Sa. We had called
S an observer, we’ll now think of each Sa as an alien associate who can also
reverse in time. So we have, an n-ball’s worth of observers, each a line’s worth
of aliens. Mimicking the enunciation we used in PG&R text : any other alien Sb

observes the curved mirror image of what Sa observes, under the time reversal
switching these points. This too is dictated by the aesthetics of Note 2. Also,
the composition of two time reversals is a homothety, and our instruments can
simulate a species for which time is apparently speeded up or slowed down. The
postulate implies that our physical laws, scaled by a suitable factor, coincide
with their laws. However, this extension shall really come into play when we
come to the cartesian genesis of elementary particles. If we can hear orientation
dependent characteristic numbers of a closed manifold, it says aliens can
hear the same manifold born with the opposite orientation. Further, I’ve heard
said that we too can hear these anti-particles! Therefore, but more importantly
just for the fun of it, let’s reflect some more on reflections.

(30.17) We first recall why, any observer deems the rulers of another shrunk
up to, and his clock slower by, the same factor :- Any observer S puts himself at
the center of a euclidean ball whose radius is increasing in proportion c to the
time on his clock : the disjoint union of all these balls, a right cone, is spacetime
as he sees it. Mirror relativity identifies this multitude of right cones, one for
each observer, with just one cone : the unique7 linear reflection of the right
cone of S which switches its axis S with another ray S′ transfers the product
structure8 of S to another representing how S′ sees spacetime. For example PQ
below represents the distance between S and S′ as measured by S at his time
OP . It reflects to P ′Q′ which has the same length as measured by S′ at the
same time OP ′ on his clock. However, P ′Q′ is not in a ball of S, and even its
spatial component9 P ′R is more than PQ. Likewise, OP ′ is not parallel to S,
and even its temporal component OR is more than OP . The said factors are
the same, i.e., PQ/P ′R = OP/OR, by similar triangles. �

7Since its flat mirror contains all midpoints of chords of the cone parallel to PP ′.
8Each point has its ball and parallel to S (but a ball and parallel may be disjoint); this

structure is preserved by the many linear reflections of the cone which preserve S.
9In ball of P ′; the parallel to S through P ′ may not cut his ball at time OP .
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Calculation of this factor in terms of v, the speed PQ/OP of S′ as measured
by S, equivalently P ′Q′/OP ′ of S as measured by S′ :- We’ll use coordinates of
S. Let EF be the diameter of the ball of S extending PQ (perpendicular diame-
ters reflect to equal and parallel chords). The parallelogram {O,E′, 2P ′, F ′} has
sides of slope ±c and one diagonal has slope v, so the other diagonal extending
Q′P ′ has slope c2/v, equivalently 1/γ =

√
1− v2/c2 in

. �
In the same vein, S may deem a point invisible to S′ if no parallel to

S through its ball goes through its mirror image. This invisible-to-S′ subset
of a ball of S consists of all points which are not in the ellipsoid with centre
on ray S′, all perpendicular diameters equal to that of the ball, but the one in
this plane is shrunk by 1/γ :- Linearity and P 7→ P ′, P ′ 7→ P imply (t, x,y) 7→
(γt − γv

c2 x, vγt − γx,y) which preserves c2t2 − x2 − y2. So (t, x,y) is in the
hyperplane of the ball of S′ iff γt− γv

c2 x = a, i.e. t = a
γ + v

c2x, and is the mirror
image of the point (a, x := vγ[ aγ + v

c2x]− γx = va− x
γ ,y) in the hyperplane of

the ball of S, which satisfies γ2(x− va)2 + y2 < a2c2 iff x2 + y2 < a2c2. � We
note that P is not in this ellipsoid iff γv ≥ c, i.e., iff

√
2v ≥ c, then each observer

may think that he is invisible to the other! � Finally, here is a construction of
P ′ via the time reversal that keeps P fixed :-

(30.18) Of lines through P parallel to the boundary two are cut by any other
ray, the reversal that keeps P fixed switches these cuts, see (30.11). So any point
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T is mapped to T ′′ on the same ray such that OT ·OT ′′ = OR ·OR′′ where R
and R′′ denote these cuts, and its fixed point on this ray, i.e., the point P ′ on
the curved mirror through P , is given by OP ′ =

√
OR ·OR′′. Thus, a single

reversal, defined directly in this way for c < ∞, gives all the linear reflections
of the cone, and lays bare its hidden product structure. �

Any alien Sa perceives spacetime as a euclidean ball around him whose radius
is growing in proportion c to a two-valued time on his two-way clock, with
both orientations equally natural. (30.16) identifies all these right cones—one
for each observer, two for each alien—with just one cone : Let the right cone of
S be one of the right cones of S1; the unique linear reflections which switch S
with any other ray S′ then identify the right cones of the observers S′ with one
of the right cones of the aliens S′

1; the time reversal in the curved mirror τ = 1
converts these to the other product structure of these aliens; and finally, the
unique time reversals which switch τ = 1 and any other τ = a give us the pairs
of right cones of the remaining aliens. So any oriented alien A perceives the right
conical structure of another, e.g., his alter ego A∗ with the other orientation, as
distorted, and can jump to misconceptions, even for c = ∞ :-

For example, two aliens are related by a time reversal, necessarily unique,
iff they are associated to the same observer S. Any point T at time t and a
distance r from S in the right cone of A, reverses to a T ′′ which is at the same
time and distance from S in the right conical structure of A′′, but A deems
these measurements of A′′ to be his own spatial and temporal components for
T ′′, and for c < ∞ he may also deem an annulus of his ball through T invisible
to A′′ in the same sense of this word as used before.10

To compute this distortion we think of Figure 14 now as the right cone of A.11

So the point A of S to which {A,A∗} correspond has time 1, and A is related to
A′′ at the point A′′ with time a2 by the reversal in the curved mirror through P .
More generally, if P ′ is the point of this mirror on the ray OT , then T reverses to
T ′′ on this ray such that OT

OT ′′ =
OT 2

OT ·OT ′′ =
OT 2

OP ′2 = OT 2

OQ2
OQ2

OP ′2 = t2

a2 (1− r2/t2

c2 )12,
the ratio by which the time and distance-from-S measurements of A′′ are deemed
off by A. For c < ∞, T is deemed invisible to A′′ by A iff his distance from S

to T ′′ is ≥ ct, the radius of the ball of T , i.e., iff r ≥ ct t
2

a2 (1− r2/t2

c2 ). The case
of equality re-arranged with g = ct

r shows that, the ratio g of the outer to inner
radii of any invisible-to-A′′ annulus satisfies g2 − a2

t2 g − 1 = 0, in particular at
time t = a of A, it is precisely the golden ratio! �

(30.19) As a group all compositions of reversals is the nonabelian double cover
of the positive numbers under multiplcation:- A composition κ of two reversals

10“When I use a word,” Humpty-Dumpty said, “it means just what I chose it to mean,” and
Synge has said, in his turn, that relativity has much the same appeal as Alice in Wonderland:
aliens and invisibility enhance this fairy tale charm!

11Previously, it was the right cone of the observer S, in which the time u at A is such that
Su = {A,A∗}. Even if u = 1, this may be the right cone of A∗, in which the right cone of A
is awfully distorted; and its about τ = 1 reversed rays have only a fictitious origin at infinity.
The hidden product structure is preserved by reversals, but the so-called absolute time τ is
invariant only if we limit ourseles to linear reflections of the cone.

12i.e., once again, T = (t,x) 7→ a2c2

c2t2−x2 (t,x) = T ′′, where x2 := r2.
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α ◦β multiplies the right cones of any alien {A,A∗} with the same number and
its inverse, viz., the squared ratio k of his time at the curved mirrors of α and β.
For β ◦ α, these two numbers interchange, our group is nonabelian. Moreover,
(α◦β)◦ (γ ◦δ), etc., multiply the two cones by the product of these numbers for
α ◦ β, γ ◦ δ, etc., thereby giving us two isomorphisms of the index two subgroup
of all even compositions with the group of positive reals under multiplication,
which are related to each other by inversion. �

Though the ratio of times13 at an ordered pair of points of a ray is the same
up to inversion in all the right conical structures, even a homothetical oriented
alien κ(A) can be grossly misunderstood by A :- The time and distance of any
point κ(T ) in the right cone of the oriented alien κ(A) are exactly the same14 as
those of the point T in the right cone of A, but, in the same sense as before, A
deems the time and distance measurements of κ(A) to be off by the above factor
k, and if k > 1 he may also deem points at distance ct/k or more in his ball of
radius ct to be invisible to κ(A)! �

(30.191) Distortion of an alien {B,B∗} on another ray S′ :- To see this A can
use, after15 a reversal α about an apt time a, or the homothety κ multiplying
his right cone by a2, the linear reflection f switching S and S′. Therefore, T =

(t, x,y) 7→ a2c2

c2t2−x2−y2 (t, x,y) 7→ a2c2

c2t2−x2−y2 (γt− γv
c2 x, vγt− γx,y) = (f ◦α)(T ),

or T = (t, x,y) 7→ a2(t, x,y) 7→ a2(γt− γv
c2 x, vγt− γx,y) = (f ◦ κ)(T ).16 So A

deems the time of B = (f ◦α)(A) to be off by the factor t2

a2 (1− r2/t2

c2 )γ, and his
distance-to-ray measurement off by the same factor in the plane of S and S′,
but only by t2

a2 (1− r2/t2

c2 ) in directions perpendicular to this plane. Further, he
may also deem the point T invisible to B if the distance of (f ◦α)(T ) from S is ct
or more, and these invisible-to-B subsets of his balls can be calculated from the
formula above. Likewise, A deems the time and distance-to-ray measurements
of the alter ego B∗ to be off by, and up to the factor a2γ, and he may also deem
the points of his balls, not in 1/a2 times the ellipsoids of (30.17) with centre on
S′, to be invisible to this oriented alien. �

(30.192) Though f ◦ α and f ◦ κ both map the point A on which the alien
{A,A∗} lives, to the point B of {B,B∗}, they are very different transformations.

13The cayley distance between the two aliens is the log of the c/2th power of the bigger
ratio, while the squares of both ratios give {k, k−1}. Modulo reversals, an alien can explain
this rescaling by saying the other is using different units of absolute time, the primary physical
quantity in the sense of On dimensional analysis (1999) for cartesian c < ∞ physics. With
reversals thrown in, this is moot, but we have the discrete and dimensionless topological
invariants of the created manifold-matter.

14And this, in fact, is so for any composition κ of reversals and linear reflections.
15Or before : α ◦ f = f ◦ α is true for any function α of the cone to itself which on each ray

restricts to the same but arbitrary function τ 7→ α(τ) of numbers, because the linear reflection
f maps rays to rays and preserves τ . This gives many interesting deformations, for example,
the beautiful theorem of Sarkovskii joins the fray, but α(τ) = a2/τ are the only decreasing
homeomorphisms of positive numbers that preserve cayley distance.

16We are again in, and Figure 16 shows, the right cone of A with his τ , v is the slope of S′,
γ(v) as in (30.17), and the x of (30.18) has been split into (x,y) along and perpendicular to
the plane of S and S′, so x2 + y2 = r2. The perceived distortion depends, but only up to an
orthogonal transformation of his cone, on how A is seeing {B,B∗}, for example, the size and
shape of the invisible subsets are fixed, but not how they sit in his balls.
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The orientation-preserving non-linear half-turn f ◦α keeps the axis in which
the mirrors of f and α intersect17 fixed, and is its own inverse. The orientation-
reversing linear glide reflection f ◦ κ has for a ̸= 1 no periodic points, but
preserves the mirror of f and multiplies it by a2. A translation f ◦ g, i.e., a
composition of two linear reflections of the cone, is identity on the intersection
of their flat mirrors and preserves the complementary subspace spanned by the
directions in which they reflect.18 This subspace is 2-dimensional if f ̸= g, and
f ◦ g multiplies one of the boundary rays in it by a number bigger than one,
and the other by its inverse, for example, if g(t, x,y) = (t,−x,y), then f ◦ g

multiplies the boundary rays (t, ct,0) and (t,−ct,0) by
√

c+v
c−v and

√
c−v
c+v , while,

for the inverse translation g ◦ f , these proper values are switched.

(30.193) As a group all compositions of linear reflections parallel to a given
plane is the nonabelian double cover of the positive numbers :- f ◦ g multiplies
the two boundary rays of the right cone of any A parallel to this plane with the
same number and its inverse, for (f ◦ g)◦ (h◦k) these proper values multiply, so
giving two19 isomorphisms of the index two subgroup of translations, with the
multiplicative group of positive reals, related by inversion. �

(30.194) So x = 0 is mapped by the translations (f ◦ g)i to x = vit, where
c+vi
c−vi

= ( c+v
c−v )

i, while the homotheties κj take τ = 1 to τ = a2j . These flat and
curved hypersurfaces give a subdivision of the cone of A which restricts to the
deformed rectangular tiling of his 2-cone y = 0 shown above. Dividing by
these symmetries gives a 2-torus; and if we divide it by f or the glide reflection

17This codimension two axis cuts the plane of S and S′ in that black dot with A-coordinates
a
√

2
1+γ

( γ+1
2

, γv
2
) inside the tile with vertices A = (1, 0), A′ = (γ, γv), B = (a2γ, a2γv), B′ =

(a2, 0), it is the point on the ray through the mid-point of AA′ with τ = a.
18Likewise, the subspace spanned by the directions of any number of linear reflections of the

cone is the complement of the intersection of their mirrors with respect to the non-degenerate
symmetric form of τ2, with cone all null vectors, etc. This algebra is useful, but, for us, only
that open connected cone is spacetime, in particular, we don’t use the linear reflections, also
called ‘time reversals’, which interchange it with its missing half.

19 The proper values of f ◦ g are also switched for A∗, but, as in (30.91), the log of the cth
power of the bigger is a cayley distance c

2
log c+v

c−v
; by which the rays parallel to the plane get

translated; for c → ∞, (f ◦ g)(1, x,y) → (1, x+ v,y) and c
2

log c+v
c−v

→ v.

9



f ◦
√
κ a möbius strip20 or klein bottle; while further division by the half-turn

f ◦ α wraps it twice with a branch point over another torus, etc.
(30.195) The two discrete subgroups of positive numbers coincide iff c+v

c−v =

a±2, but even for this square tiling of the 2-cone, no composition of linear
reflections and reversals can interchange adjacent sides 21 of its tiles, so, its
symmetry group is no bigger. Again, if v is fixed and c is big, then a is almost 1
for squarehood, so, in the classical limit there is no such tiling; but, if we make
no additional demands, we can always keep both v and a fixed, and straighten
the limiting subdivision, of the half-space t > 0 by flats x = ivt and t = a2j ,
by a suitable (t, x,y) 7→ (logC t, x

t ,
y
t ) to obtain, on the entire euclidean plane

y = 0 of A, an ordinary tiling by squares of size v × v.
(30.196) Staring us in the face also from Figure 16 is a magical stairway

to heaven22 which is a concomitant of c < ∞ ! The curves suggest points
of constant height on the boundary of a cone of one dimension more, which it
is natural to put inside the cone over the ball Bn+1 with the same centre and
radius, for, the linear reflections of the cone over Bn not only extend to it, with
their rotations they give all of them ... till finally we are in the ball B∞ of radius
c < ∞, where this stairway ends, because, we can shift each guest in an infinite
hotel to the next room, and put a new arrival in the first.

20Ditto if we divide S1×S1 by the involution which switches its factors, so, a möbius strip is
the space of quadratic homogenous equations ax2+bxy+cy2 = 0 over R with b2−4ac ≥ 0 :- the
quadratic formula tells us this condition is necessary and sufficient for factorization over R,
and S1 = R∪∞. � Attaching the remaining equations with complex conjugate roots, an open
2-disk, then completes the manifold RP 2 of all real quadratic equations, but a like dissection
of RPn for n ≥ 3 is more involved. Unlike the circle, the symmetric powers of a 2-manifold
are manifolds :- a suspect link is the join of a sphere and a circle divided by its antipodal
action, but this is a circle too. � This implies, the multiplication of n linear equations in x
and y over C, an injective map from the nth symmetric power of S2 = C∪∞ to the manifold
CPn of all degree n equations, is surjective, that is, the fundamental theorem of algebra!
The relativistic analogues of this bijection, for 2-manifolds M2 = B2/Γ – the inverse map is
how ‘Poincaré had solved any polynomial equation by using automorphic functions’ – are once
again ‘well-known’, but not to me! These old memories had resurfaced after a conversation
with Keerti about three months ago; the symmetric powers of 2-manifolds also figure in some
attractive ‘numerologies’ about particles, going back to Majorana, in which, for example, a
beautiful recent paper of Atiyah and Manton also indulges.

21Despite the fact that, there is no cayley isometry of the cone other than these compositions,
and, all four sides of these tilings do have the same cayley length. My plan–see page 3–was to
go over cartesian motions, cayley distance and segments rather quickly in (30.1), (30.2) and
(30.3), but things went truly for a toss after the advent of the aliens in (30.16)! Fearing that
it might be some time before I return to these topics, let me remind you that the factor c

2
in

cayley distance made its classical limit the euclidean distance on t = 1, but, because of it, the
cayley distance between distinct times blows up as c → ∞. Again, the points at a constant
cayley distance can be funny, for example, the inscribed cayley circle of our square tile touches
its boundary in segments; but, distinct cayley circles of a disk intersect in at most two points,
for this distance is equivalent to its conformal metric, which has genuine but eccentric circles.
Anyway, from the square tiling of the 2-cone we can make trivalent bricklaying patterns,
and it is not hard to calculate the cayley diameter of a star of a vertex, so the fourth proof in
auNgLIAW Aqy twielW (2015) still works. There is also a cayley-invariant volume, and one can
probably find for the 2-cone also, all quadrilaterals for which this area is equal to the product
of the average cayley lengths of the opposite sides, etc.

22My name for what is usually Poincaré extension, for example, in Beardon’s book.
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(30.197) So these ball geometries arise plainly, one after the other, from a
mere segment [0, c). Then, in Note 23, had dawned on us the realization that,
associated to any cartesian motion there is a canonical partition F of the ball
Bn into path connected subsets M that are topologically homogenous.23 Any
M inherits its charts from the motion itself, and if compact we had deemed it
to be cartesian matter provided it is persistent, i.e., appears also in any
perturbation of the cartesian motion.

(30.198) Calculus, more precisely lipschitz calculus, is also a child of c < ∞.
If n is big enough, or even not four, any cartesian motion can be perturbed over
a compact time interval by an arbitrarily small amount to one whose homeo-
morphisms are lipschitz. The proof needs a cayley lattice of the (n+1)-cone
with quotient a closed parallelizable manifold. Given this scaffolding, it is like
simplicial approximation, except that it is nearby homeomorphisms, not just
maps that are sought. For c = ∞ any two translations commute, so n of these
with a homothety give one, with quotient an (n+1)-dimensional torus, but now
that all-important chord condition on the flow lines of the cartesian motion is
not available, so the results are different : it is only for c < ∞ that cartesian
matter is necessarily lipschitz-smooth.

(30.199) So, just from a segment, a whole world, see Note 28, has sprung
up, but what about fractional dimensions? It is topological homogeneity that is
the basic feature of manifolds, the other, that they should be locally euclidean,
is our natural desire to not stray too far from home. There seems no reason
why all cartesian matter should be locally euclidean, but about path connected
homogenous fractals, I know very little; however the Bing-Borsuk conjecture,
see Note 25, suggests there may be surprises. Also: what dimension is best? In
the lipschitz context we saw that hausdorff dimension is natural, but there
are certainly other candidates.24

We have stayed at home, yet in these n-balls have popped up naturally it
seems all manifolds and some other path connected and homogenous compacta.
This cartesian matter can be examined, if the birthing motion was smooth
enough, using only the elementary tools of the calculus of several variables.
Besides we have the option n = ∞ to sidestep or delay knotty questions, still
without giving up the creature comforts of home.25

Coming back to that cayley lattice, the natural idea, ‘lets make c an integer
and search over Z’, needs to be finessed, as Fricke pointed out long ago. Due to
their quadratic nature the hyperboloids may not have enough integral points, so

23For, once again, these minimal sets M are the equivalence classes generated by the binary
relation R on the ball Bn defined by xRy iff x and y are on the same orbit, i.e., iff they are
the projections of two points on the same flow line, say, at absolute times τ1 and τ2, but then
the homeomorphism ϕτ1τ2 of Bn given by the motion throws x on y, and besides, it maps
each equivalence class to itself, so it preserves any M and its complement Bn \M . �

24More general and natural might be von Neumann dimension : from the defining relation
R of F , one should make nice C∗-algebras with involution given maybe by reversal. Also,
this reminds me of the smoothing operators for closed foliated manifolds (M,F) that I had
played around a lot with in the 1970s, but it was Connes and Skandalis, a bit later, who had
got a full-blown index formula for foliations by using such a dimension.

25For an example of these comforts, see From calculus to cyclic cohomology (1995).
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we search quadratic extensions, and this suffices to find a lattice with quotient
a closed manifold; but to get parallelizability the search was extended into the
étale or grainy nature of this homotopy type. Maybe this can be avoided, but it
would be even nicer if we could understand this ‘grainy nature’ with the same
cartesian clarity. Which brings me to the last note of this year.

(30.199...) The dots indicate I’m keeping my options open in case I want to
add another tid-bit before (30.2), but you might object: dots mean 9 recurring
from school and that this is (30.2) already, written in a long-winded way. Cantor
opened a wonderful world by simply giving up this school dictat ! Even with 9
recurring, it was now not (30.2) for him, or even something lesser than it by
an infinitesimal, it was just an infinite sequence (with one point) of ten things,
and on all such sequences – a power of the cardinality ten set – we have only
the product topology. What can one do with this mere dust? Almost anything!
is the short answer : not just the real line, all interesting spaces you can think
of, for example, all manifolds, are but quotient spaces of this dust. Besides, it
is not hard to show this, and that is precisely the rub, the bewildering number
of nice ways26 in which we can lift reality to this combinatorial dust. Though
various criteria have guided what seems ‘best’ it would be fair to say that what
followed from Hensel’s discovery of those wonderful fields in such dust is so far
the clear winner. From (30.196) and (30.197) we know how, starting with a
mere segment, we can bring into being naturally manifolds and all, so we ask, is
there an equally natural cantorian P G & R of which this is only a functorial
quotient? Many possibilities come to mind, but when it comes to reading the
mind of God almost, it is best to proceed slowly and in humility ...

K S Sarkaria (contd.)

26See, for example “Amazing curves!” (2010); to all those motifs has recently been added
the above mural “P G & R” on a verandah roof. December 31, 2016.
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