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ABSTRACT. The theocrems of Dimensional Analysis become
obvious if one thinks of the set of m-tuples of positive
real numbers as a veclor space over Lhe reals,

1. INTRODUCTION. There 1is a iat_-“.r_:inating thing called
dimensional reasoning which pervades all of physics and engineeering.
It goes back to Galileo, but came into its own only in 1915, when, in a
short but striking note [81, Rayleigh listed in quick order a wealth of
physical laws which can be obtained easily by using only dimensional
r‘easoﬁing. The ensuing intense interest led to an analysis of the basic
notions, "physical quantities" and "physical laws", and a new subject
was born with the appearance of Bridgman’s classic [2]. Later on, these

foundational guestions were probed further in Birkhoff [11.

The subject is simple enough, there being essentially only two
theorems. The first, "Bridgman’'s", stems from his postulate that the
ratio of two measurements of a physical quantity is an invariant, and
deduces from it the existence of dimensional symbols. The second,
"Buckingham’'s", tells precisely how much information about a physical
law can be squeezed out by using dimensional reasoning only. My object
is to give quick proofs of these two theorems. However , since the
beauty of Dimensional Analysis lies in its examples, which moreover are
what motivate these otherwise dry general theorems, I.will start with an

example, indeed the very first one on Rayleigh’'s list.

Dispersion relation for water waves. Intuition suggests a
physical law v = f(A, g, h) amongst the physical quantities v = wave
speed, A = wave length, g = gravitational acceleration, h = water depth.
Adjoining their dimensional symbols (it is convenient usually to take
mass, length and time as primary quantities) we get LT 'y = FilN, LT"zg,
Lh). This equation represents the fact that our physical law does not

depend on the size of the units. In particular we can make LA = 1 and



LT?g = 1 by choosing L = Rl R S

So our physical law is

A2 o 51, 1, A/, i.e. v = C(h/A)Ygh, where Cix) is an
unknown function of just one dimensionless quantity h/xn. If the depth h

is much bigger than A, then its value should not matter, i.e. for deep

water waves v = CYgh, where now the unknown C is just a constant.

We seem to have got something by doing almost nothing g Indeed,
dimensional reasonkng is valuable precisely because it is a qguick means
of obtaining partial, and occasionally the only known, information about
a physical problem. For water waves, there however does exist a full
blown theory — see e.g. Lighthill {71 — in which this dispersion
relationship is obtained by solving a simple boundary value problem.
This gives better results : COo = (1/¥2Mtanh'®(2mo) (Stokes 1847) and
co C = 1/¥2n (Green 1839) for the deep water case. This is typical of
what one can exﬁect in general : dimensional reasoning reduces the task
+o determining a function involving a lesser number of gquantities, and

Buckingham's theorem tells us how small this number can be.

2. *pPOSITIVE" VECTOR SPACES. The main point of this note is that
the theorems of Dimensional Analysis are in fact about vector spaces P
of m—tuples of positive real numbers. in P™ "addition” is componentwise
multiplication and "scalar multiplication by r" same as taking the rth
power of all components. Taking log of all the components gives a
linear isomorphism P" —?_:—t ER-, using which we will also transfer the
usual metric and measure of ®R™ to P™. It is natural to use these vector
spaces P™ because, in Dimensional Analysis, one deals only with physical
quantities whose values are positive real'number-s?_-; We will assume also

that all functions are continuous’ unless mentioned otherwise.

3. PHYSICAL DUANTITIES are of various kinds {masses, viscosities,
etc.) subject to the following hypotheses.

(i) Ratios constant. Following Bridgman [2] we assume that the
ratio of measured values of two physical guantities of the same kind is
independent of the units used.

(ii) Finiteness. We assume that there is an n, and choose it to
be the least such, so that the measured value of any quantity of a given
kind @ is a fixed (continuous) function Q(pys «=v pn) of those of some

quantities of n chosen primary kinds (in [2] this function is assumed



differentiable). Quantities of the primary kind are measured directly
by comparison with chosen primary units; guantities of the remaining

secondary kinds® are usually measured by indirect methods.

4. "BRIDGMAN'S THEOREM". The function Q@ : " — F postulated

above must in fact be an affine R-linear function.

That is, if T(py, oo 5 B) = @y, «ov s p)+ @1, ...y 1), then

T:P" — P is a linear map, i.e. we must have

t t , =
oA gy o I:'n’ =y l"2 =z"":'n 2
for fixed t, € . This monomial or dimensional symbol characterizes the
kind @. Note alsc that the function Q(pi, S pn) postulated in (ii)
was onto, which happens iff the indices ti are not all zero. However
the above statement remains true if we regard, as we shall from here on,
the ordinary positive numbers as physical quantities of an extra

dimensionless kind having ti = @ for all i.

Proof. ‘Recall that a group homomorphism between real vector

5 - o . A s 2
spaces is continuous iff it is a linear map. By (i)

T(pl, e eina pn) - mepl’ ety anpn)
T({:n1 y se- 3 P ) Tlpy s vre 3 P, )
Fut pl' e pn' = 1 to see that T is a group homomorphism. gq.e.d.

5. RESCALING GROUP REPRESENTATIONS. As in Birkhoff [1]1 we fix a
P" = 6 and denote its elements by a = {(a, s a ). Choosing n
primary kinds is interpreted as identifying 6 with the set P" of
n—tuples 1pi. e g pn) of measured values of such gquantities. These
are measured by direct comparison with primary units. So, if the ith
primary unit becomes mi times smaller, the value Py becomes &y times
larger. Hence, the group operation (al, ke otn)tpl, css gy pn) —
talpl. aeia y mnpn) interprets as the rescaling action of G on P". More
generally, given any m kinds, the set of all m—tuples tul. awin g Dm) of
measured values of such quantities constitutes a IPm, and if primary

units become a = (al, S ) anl times smaller, the measured value (:!]I



becomes Ti (o) times bigger, Ti : G —» [P being the R-linear map of & [ .
Sa, if Ti= (T,
interpret as the rescaling action of G on g

e, T.)= 6 IP". the translations Tl(a) (.) of P"

The same letter T (and later likewise U, V, etc.) will also denote

L]

this representation of 6 by translations. The linear map T : G —» [P'",

and thus this representation T, are characterized by the m x n matrix
t t

t. z
[ty ;1 over R formed by the indices of the m symbols p, u|:|2 ‘f..pn i

The erbits are the subspace T(B) and its translates. By the dimension
of this representation, we mean that of the underlying vector space, so
dim(T) = m. And, by its rank r, we mean the dimension of its orbits, so
r = rank(T) = rank [t j:l. Note that two such representations T and U

i
are G-homeomorphic iff they have the same dimension and the same rank.

It is useful to allow this matrix to be perfectly general, e.g.,
in the following, it is the G-set r" of alt possible m-tuples of values
of m given physical quantities, not necessarily of distinct kinds, which
is interpreted as T, so some rows of l:tij] may be equal to each other.

) 6. PHYSICAL LAWS are relations L < T {(zero—sets wml. et Qn) =
@ of functions IF'. =k R, etc.) subject to the following hypotheses.

(a) Closed. We assume that if the relation is not true for some
values “'-“1' snny 0.) e P" of the physical quantities, then it is not
true also for nearby values, i.e. that the complement of L is open.

(b) Invariant (cf. Birkhoff (1], pp. 89-98). We assume that the
relation is valid in all units, i.e. that if (Ql, - Qn) € L, then

T (o) (B ....Bm) € L for all a € G.

l'

7. “BUCKINGHAM'S THEOREM". Above L < T, dim(T) = m rank(T) = r,
is a linear pull-back of a law between mn—r dimensionless guantities.

Proof. Take any linear surjection n: P* — ™" whose kernel is
the r—dimensional subspace T(G). By (b), L is a union of orbits of T,
j.e. translates of T(GB), so L = l'l-‘tﬂ(L)), the pull-back under Il of the
m=r

closed subset M(L) of the trivial representation u=10mPr g.e.d.

Equivalently, a law given as the zero-set of y surjects linearly



on a law given as the zero-set of the function waﬁ* of m-r dimensionless

quantities.' Geometrically, Buckingham's theorem tells us that, upto

-~

homeomorphism, physical laws are cylinders L = P" x n).® Recall next
that, being a closed Euclidean set, (L) is the zero-set of a smooth

real —valued function ¢(ﬂl. dEe ¥ n._r). and so L of the smooth function

t¢un)(01, aaal iy Dm} constant on orbits of T ; so our notion of physical

law is essentially the same as of Bridgman [2]. Note finally that
changing primary kinds interprets as identifying 6 with another V having
dimi(V) = rank(V¥) = n ; so each [tij] gets multiplied from the right by

the n x n matrix [vi.J_l. but the orbits of T are unchanged.

.

NoTEs

1. Based on talk delivered 17.12.99 in the "Instructional School
on Linear Algebra®", Panjab University, Chandigarh.

2. For example, norms of vectorial/tensorial physical guantities;
also, for non-relativistic macroscopic measurements, we can fix a frame,
and focus on just one orthant of values of their components.

3. The context being measurement, one should perhaps only assume
measurability; this leads however — see note S5 — to the same results.

4. Tying secondary units suitably to the primary units one can
ensure B8(1, ...,1) = 1; we omit this "normalization"” hypothesis because
it will not work for dimensionless quantities defined later.

S. This was proved well before Bridgman (2] by Cauchy [4], 1821,
and is very easy : any solution F : R — R of Fix + y) = F(x) + Fily)
obeys F(t) = t.F{1) for all t € @, and so for all t € R, provided F 1is
continuous. Hamel [6]1, 1905, pointed out that one obtains all solutions
by assigning arbitrary values F(b) to the elements b of a @-basis of R,
and Fréchet [51, 1913, proved that a measurable solution F of this
equation is automatically continuous. For example, the solution F which
assigns the value | to one b and @ to all others is non—-measurable,
which shows, as Im(F) is countable, that codimension one Q-vector
subspaces of R are non-measurable. For more on Cauchy’'s equation, Hamel
bases, and non-measurable sets, we refer to the beautiful papers of
Sierpinski and Banach in VYolume 1 of the Fundamenta Mathematica.

b. A translation of P" extends uniquely to a 'pos#tive Jinear
transformation” of R™, i.e. one which maps the orthant F~ < R onto

itself. Conversely a continuous representation T of mG by such
transformations of R restricts to one by translations of P . ﬁ?r, the
m coordinate rays, being the extreme rays of the convex cone P, must

map on each other under such a transformation; so, since G is connected,
and T(id) = id, each coordinate ray must in fact map onto itself.

w
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7. Equivalently, make m-r rows of l:tij] zero by row pperations,
i.e. by left multiplication by a nonsingular m x W matrix E"ki]' and

define 1 by the submatrix provided by the corresponding rows of tnki].

8. Birkhoff [1]1 points put that this was proved much_ before
Buckingham [31 by vaschy [91, 1B92. The dual linear injection N_ : A
—» P™ is defined by the transpose of the matrix of I : r" — ™. An
analysis of the calculus proofs of {21 and [31 reveals that at heart
only a 1 is caonstructed, the rest is just unnecessary baggage.

9. To understand the topology of L further it is necessary to go
beyond Dimensional Analysis into the specifics of the physical law.
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