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- Sierksma's Dutch Cheese Problem

by

K.S.Sarkaria

§1. Introduction

|
The object of this note is to give a proof of the following conjecture of

I

S'ierksma [15], 1979 ( = Reay [ 7], Problem 14 a ), where rr; denotes the simplicial
complex consisting of all faces, of an i-simplex o , of dimensions < j.

(1.7) Dutch Cheese Problem (1 ). For any(general position)linear map f:

S (a-1) (7 +1)
—(g-1)( = +1)

{'5'1, L G‘Q; of simplices of

7
> IR(‘} , there exist at least ((q-‘l)!)" pairwise disjoint g-tuples

(@-1)( € +1)
“a-1)( (+1)

This improves on a theorem of Tverberg [17], 1966, which is equivalent to saying

such that f( ) GETTe LY i a'q) =¢ .

that, for g > 2 , there always exists at least one such g-tuple. The case g=2 is
Radon's Theorem [ g ], 1921. It is easily seen -- see §2 -- that the bound ((a=-1)1)¢

is the best possible.

We will il}fact prove a more general result which applies also to continuous maps f.
Let us recall some definitions -- cf. [ 9] -- before stating this generalization.

For any simplicial complex K, the g-fold cartesian product of K, i.e. the product

1K ¢ eee 29K of q disjoint copies of K, will also be denoted by K x ... K ( g times )

or Kq. Its cells o©.%x ... =&

o, K, T # ¢ , will usually be identified with

1 q’
ordered g-tuples ( Tar eee s crq) of nonempty simplices of K. The gth product config-
uration K;I is the sub cell complex of k¥ obtained by deleting all cells ( OTqr eee 1 T,

for which o i =\0‘j #¢ for some i #3j. We will also need the gth deleted product Xg of

a topological space X, i.e. the subspace of its g-fold cartesian product x¥= x> cen Tl
( g times ) obtained by deleting all points of the TYpe (X, by X)) X s,

Consider now the case when K = o (a-1)( - *1)

(g-1)( € +7)

K has a ((g-1)¢)-dimensional gth product configuration Kz . Also, that (g-1)¢ is the

and X = R® . We note that this

codimension of the ¢ -dimensional diagonal A = ( RY)¥ \ ( R );’t in the g-fold cartesian

(1) So named because of the prize offered by Sierksma for its solution.



product ( R®)? of R’. any f: K—R' induces an 2. k¥ » (rHY, fq(x1, ,xq)
= (f(x.l), ,f(xq)). A cardinality g subset {x1, ,x} of points ( of the

space ) of K is called (i) separated if (x;, ... ,X_) K‘é , and (ii) a g-uple
. . : : g
point of f if f(x1) S a— f(xq), i.e. if £ (x1, ,xq) ¢ A . Now suppose that

f: K ->R" is a general position continuous map , i.e. is a general position linear

map with respect to some simplicial subdivision of K. 'L‘hem, %ince dim Kg = codim & ,

O A
it follows that the set of separated g-uple p01nts oq f is finite, and for any such
then
g-uple pomt i' 1, ,xq* ,} X, & int crl,/( Tyr eee s o" ) is a top-dimensional cell

Fua ‘_' M e o LA
of Kg . | In theilnear case, the correspondence ix1, e 7R } —> {0—1, AT q-q§
is one-one, so the following result contains (1.1).
(1.2) Generalized " Tverberg-Sierksma " Theorem. A general position continuocus

map f: ¢ :3:1;: Z :1; — R‘ must have at least ((g-1)!)° separated g-uple points.

Such general position continuous maps f can be found arbitrarily close to any

(g-1)(¢ +1)
(@-1)(¢ +1)

jecture of Tverberg, 1978 ( = Reay [ 71, Problem 15 ) which amounts to saying that

— Re . So (1.2) also establishes a con-

given continuous map g: o
Tverberg's Theorem generalizes to all continuous maps g. For primes g this result is
due to Bardny-Shlosman-Szucs [ 1]. A simpler proof was given subsequently in [10].
(1.3) Remark. If g ) N oeee N gl s‘q) = ¢ , for a continuous g and some
pairwise disjoint ‘T’-i’ then also f(s5 ) i PR ':rq) = ¢ , for all sufficiently
close f. This shows that the words ''general position" are redundant in (1.1), how-
\-2) Lorants L OV guuc« coni o A

ever| theysame probably mecessary: k&t:ﬁqe proof will show|that (1.2) holds

for all continuous gwith isolated separated g-uple p01nts lying in top dimensional

cells of K(; , provided each one of these is counted as many times as the absolute
value of the local degree of gq near this point ( i.e. degree of rhap given by gq from
ql -¢-1 )

a small ((g-1)t)-1-dimensional sphere enclosing this point to IR(; =28

Van Kampen [18], 1932, showed that a continuous map from rrzln+2 to R2n must

have a separated 2-uple point. The proof given in §2 is inspired by van Kampen's, and

has many other applications--see §3--besides (1.2)e.g we will state a Sierksma-type

generalization of van Kampen's result, which too can be proved by the method of §2.



§2. Proof of Theorem (1.2)

The underlying field of coefficients of our chains and cochains will be C,

the field of complex numbers. Also, though it is not necessary, we prefer to work
throughout with simplices ( instead of cells ) and so will replace the products of §
with the following

(2.1) JOINS. Recall that the g—foid join X(q) of a space X consists of

all points of the type t.x = t1x1 + ceo + thq , where x = (x1, T ,xq) ¢ X3 and

= (t1, i ,tq) ¢ T , the convex hull of the canonical basis vectors of R, Here,

it is understood that t.x = t'.x' whenever t =t' and X; = xi Y i such that ti
(q)

= ti 7 0. We will identify x? with the subspace of X consisting of all points

1 1 1
- - 4+ cos + =X
q 9 q g

X = X
1
the type é YV + eee + % y -— from X(q) we obtain the gth deleted join Xiq) o L

of the type . By deleting the diagonal -- i.e. all points of

X is triangulable by a simplicial complex K then X(q) can be triangulated by the

(9)

simplicial complex K *°, the g-fold join 1K. .. Ik of g disjoint copies of K. Its

simplices 1:71 LS ee nE T o, ¢ K, will usually be denoted by ordered g-tuples

q ’
(7., «o. , ) of simplices of K. ( Thus k? is a proper sub poset of K(q). ) The
1 g

gth join configuration Ki?) of K is the subcomplex of K(q) consisting of all pair-

wise disjoint ordered g-tuples of simplices of K.

(2.2) If K= f:g:lii E:]; and f: K —RY is a general position continuous

map, then the induced map f(q): K(q)-—a-( Re)(q) images the codimension one skeleton

of K(‘&q) to (R iq_.

tere £9 is defined by £ ¥ (tyx, + ... 4 txg) = HEGR) + s tqf(xqi.
The assertion follows easily from the fact that both the dimension of Kﬁg), and the
codimension of the diagonal in ( RQ)(q), are equal to " (g-1)( €+1).'-Infact note also
that under f(q) the images of the top dimensional simplices of Kg?) can hit the
diagonal only finitely many times.

Tt is time now to consider certain group actions.

(2.3) POUIVARIANCE. Ve will denote by 2z, = {Id, >, 2, v, 27} a cyelic

group of g elements. It acts on X(q) via r(t1x1+ oo s ¥ g-1



i s : : (@) .
By + el 4 thq + t,%,. Note that the restr;ct10n pf this action to X, is

fixed point free, i.e. the orbit of each point has a length equal to some divisor of

(q) the group Zq acts via v(f7‘1, v wlie 4 G

i;q) is free , i.e. each

g bigger than 1 . Analogously on K g-1" %c

= (T as b rq’ e ). The restriction of this action to K
simplex has an orbit of length g . Lastly, note that the map £ () of (2.2) commutes
with these group actions.

(2.4) The gth deleted join ( R® iq) of R has the ZCFhomotopy type of a

fixed point free Zq-sphere S(q—” i g . Furthermore, the order g homeomorphism

(CI-”( (-+1)_1 (_1)(Q‘1 )(‘:4-1)'

» of S has degree

To see this note that the space ( r® iq) is the join of ( ] )g and the

Zq-subspace Y of (R )(q) consisting of all points t.lx1 + ee. + thq with at least

some ti = 0. But Y has the zq—homotopy type of the sphere Sq-2 = 9r , as follows
by symmetrically using some contraction of R to a point. Under (t1 PR ,tq_1 ,tq) —r
(tyr -n ,tq,t1) . g undergoes a change of orientation (_-1)q—1. And, by projecting

( R )q on the orthogonal complement A of the diagonal subspace & , and then nor-

malising, we see that ( R' )2 has the Zq-homotopy type of the unit sphere gla=tie 1

)

of /. sSince the diagonal undergoes no change of orientation under (x1 e ShZee ,xq_,',xq

Y (x2, ,xq,x1) -- here each X, & R® and so is an t -tuple of numbers -- it

1)L -1

follows that the change of orientation of S(q_ is same as that of th, i.e. it

is (-1 s (8P e RH‘; « ¥ -hasthe R _-howRopy type of Wt Ll =

S S(q_”t -] : sq_z, and under » the change of orientation of this sphere , i.e. the

degres of » , is (-1 \FNEH)

This enables us to define in a well known way -- cf. [16] -- the following top

(q) K_,)_(q—1)(€+1)
x ! T (g=1) (¢ +1)

(2.5) OBSTRUCTION COCYCLES. Choose any general position continuous map f :

dimensional integral cochains of K

K->R, By (2.2) and (2.4) it induces a continuous Zq—map F from the codimen-

(q) (g-1)( ¢ +1)-1

sion one skeleton of K ¥ to a Zq—sphere S . We will fix an orien-

tation of this sphere. Then, the associated obstruction cocycle Ve o is the top

dimensional cochain of K(‘g) which assigns to each top dimensional oriented simplex



& e(q-”( ¢+1) of K&q) the degree of the restricted map F: 3¢ —= (a1 €+1)-1.

Here it is understood that the orientation of the sphere 793¢ is the one induced by
that of € .

(2.6) The obstruction cocycle ©. of f is zero iff F extends to a

f
continuous zq_mp Ki’Q) (g=1) (¢ +1)-1

.. e “
)(q s P 6’f , and, upto coboundary of a symmetric cochain, crf is

—> S

. Furthermore, O‘jf is symmetric , i.e.

sk e~ = (-
> of_(1

independent of f.

The first part follows because o"f(e) =deg ( F|2€¢) is zero iff F
extends to € . To see the transformation formula note that (2* cff)( €)= c/-’f(»t?-)
=deg ( F|?:0) =deg (©Fid0) because F commutes with the zq—action, and this
Rt (A s ¢ Bia0), 1.e. EiETEHD ep(@), by (2.4). For

the last part let g: K — Rl be any general position continuous map, and let G be

the corresponding continuous Zq-map from the codimension one skeleton of K&q) to

S(q—1)( € +1)-1 (g=-1)( € +1)-1

. The connectivity of S ensures that, upto a Zq—

homotopy, G will coincide with F on the codimension two skeleton of Kizq) . However,

on any oriented codimension one simplex ?(q—1)( £41)-1 of Kizq), G can differ

from F by a degree amount 9;9 f(gf’) ( i.e. the degree of the map furnished by F
’

and G, from the sphere formed by identifying boundaries of 2 copies of ¢ , to

(g-1) (< +1)-1 - . ; o s
S ) . The coboundary & ( %g,f ) of ?"g,f equals e~ g Further

g, g) = (_1)(q-—1)( ¢ £1) 2 by a calculation similar to the one made for <Z.

1 5y, g,f

i We now use complex coefficients to define a top dimengional chain of Kf_‘?) .

_ 5 (a=1) (€ +1)
S T

(2.7) FUNDAMENTAL CYCLE. ILet w be a gth root of unity other than 1. Also,

let the vertices of o‘(q_”(t'”) be named 1,2, ... ,(g=1)( {+1)+1. Each top dim-

_(g-1)(L +1)
Y (g=1) (& +1)

1E:1L, SFs N q(;q, l\':1l+ siaa kt’:q\: (g-1)( £ +1)+1, where c’:i are pairwise disjoint

ensional simplex € of K(g) , K = , is of the type (&, ... ,eq)z

subsets of these integers. We assign to any such ( the orientation prescribed by the
natural order of the integers, and the complex coefficient &5 = T cul‘ei‘ . ( So,

5 P
\C\L
e.g.,§12,15§\’§21,23}U334} is assigned the orientation [%1,12,23,34,75]. ) The resultin



complex linear combination TQ, = %—, O—”ee of oriented top dimensional simplices of
Kfv‘,q) will be called a fundamental cycle of Kfﬁq). .
(2.8) .. is indeed a cycle of K(g), i.e. has boundary 2.L = 0. Furthermore

Af
_E*\-D-v = ‘—U‘Q\:—O#.

A codimension one simplex g = (Cﬁ’ "'Fq) of Kféq), oriented as above

by the natural order of the integers, has the same incidence number [ O[i]: @l = (-1 )(f

with respect to any of the g top dimensional oriented simplices G[i] = (:3‘/1 ey SR
‘\1““‘\’ Sy 3q) incident to 4. Here 1 » & ¥ (g-1) ( (+1)+1 is the integer
missing from all the “'Ti' 1si€q. Since 39 = %' ”G( ,?;f.[ i<l § 4dE follovws,l
that, in 9.1, the simplex « occurs with coefficient (-1 X (Z’(f wpld]l = f- X
u-_c[i] (1 + 4+ .00 + ~_q-1)' which is zerc because .. is alqi:l; \rc;ot of unity other
than 1. To see the second part note that the simplicial isomorphism . : KS:I) — K(Aqq)

T 7(x)

maps each vertex "t to t, where » denotes the cyclic permutation (2, ... ,q,1)

of (1, ... ,g-1,9). So .. preserves the orientation given to the top dimensional sim-

= ;'\—‘«\i\(z‘(G))i\=

plices. Since 7(i)-i = 1 modg Y i, we also have «

| RS (@) T oieie§
R T LEER o T TR = Wl . wL_(cu-1)-s2;s",\t m(i)! =
b ST AR Bt oy
¢ '( (!:. ) = (.‘..C O .
(2.9) DUALITY. Consider the subspace of chains c = C.¢ -- i.e. complex

<]
linear combination of oriented simplices -- of Kqu) which transform under Zq accor-

ding to «+, c = Ac : note that A has to be a gth root of unity, that c_ = f\ch(e) .

and that the subspace is preserved by the boundary operator 2 . Likewise the subspace,

5

of the dual space, consisting of cochains a transforming according to »* a = N\a,
is preserved by the dual coboundary operator < . ILet K(f) / Zq denote the set of
orbits € -- each of these has cardinality g -- of simplices of K(f) uncier the given

free action of 2,

4+ We define <a , c> = o gcea(é) : ebe*f .

A »G«cK(;"’/lﬁV
(2.10) Stokes' formula. For any gth root of unity, <a , c'>\ is well-defined

d <ca, c> = <a, 'Bc}AL
i - o} - * = = ' <4 = (5 i
Since ¢,  al=(g)) =c, . G*a)(e) cy(@))\a (¢) = c.ale), the choice

of &e#~ is unimportant, and <a , c>A is well-defined. To verify the formula it



. obviously suffices to check the case c = © +'Xiu( ) + ... + ,>“I-q z‘q_1(c-‘) :

now <Za,c> = ocal(G) =a(d€) = <a, '3c>A , by choosing, for the orbit of

each simplex occuring in ‘dc , the corresponding representative in J€ .

(@-1)( €+1)
(g-1)(C +1)

{7
exactly ((g-1)! )* intersecting unordered g-tuples of pairwise disjoint simplices and

The next argument will use a linear map h: o —=pe [Rf which has

enable us to calculate < -fff A J7-.>) for some. cases when c/]'? and «L transform com-
patibly.

(2.11) If g and € are not both even,(g,¢) =k >1, and «w+1 is a kth

5

root of unity, then 2* ¢ vyek = L , and | < v o0 - X ((q—1)!)c+1.

f 2 Yfa
r+1

> re1, and €= 2 .t, where t is odd, and « = exp(Zﬁ"-vG)/Q);

Again, if g

then o*¢p=-tp, udh=-M, and <oy, L > 1= (a-nn.

That c-f and .0}, transform as indicated follows from (2.6) and (2.8) (e.g.
4
in the second case u.:2 = exp (w.{-1) = -1, so co€= (-1)t = -1). Also, since by

(2.6}, <’

shows that the value of < TE \-"7-'>; does not depend on the general position map e

depends on f only upto an additive coboundary, Stokes' formula (2.10)

We will use an f very close to the linear map h: 0‘:3:};: i :1; — Rc defined as

follows.

"

let T, ... , C+1, be the vertices, and g the barycentre, of an t-simplex éz
c ®R' . Then the map h —- which is determined by what it does to the vertices 1,2,
s (@=1)(L+1),(@-1)( £+1)+1 —- images the first g-1 vertices to 1 , the next g-1
to 2 , and so on, with the very last vertex, (g-1)( ¢ +1)+1, being imaged to the bary-

7N

centre & .

| One has h( 61) 6 SRR £, 1 o | eq) # ¢ , for a pairwise disjoint ordered g-tuple
€ = (Cqr con s eq) of simplices, iff one of the ei's_is equal to $(g-1)( C+1)+1¢
(so has h-image g ), and all others are ¢ -simplices with h-images equal to <§C .
For the purpose of computing the number of Zq—crbits & arising from such g-tuples
& , we will count the number of such ©'s with eq = §(g-1)( €+1)+1§. The jth,

1< j < €+1, vertices of Gi , 1< i <g-1, determine, and are determined by any of

the (g-1)! permutations of {(q—-1)(j-1)+1, ,(q—1)j§- . So there are in all ((q—1)1)’



such Zq—orbits M and thus ((q—1)1)€ such cardinality g sets {61, el eq} .

For any of the ((g-1)!) ol such @'s, We - w( ¢ +¥1)(1+...+(q—1)) =
o L+1)alg-1)/2) _ & say. So the definition of <¢*. , <L > 41 shows that it
equals . 2. deg{F: 2o — sl €+1)—1§= “ % deg {H: 20 —> glan (¢ +1)-1{
where H is d::‘ermined by h?  and the homotopy equivalence ( Re),((q) o 5T e
discussed while proving (2.4). Under the linear map h(q): K(g)-—? ( RQ)(Q) the images
h@(e ) of top dimensional oriented simplices © of the above type all coincide, and
constitute an oriented ((g-1)( ¢ +1))-dimensional simplex which cuts the (-dimensional

diagonal of ( RE )(q) transversely in an interior point. Hence the nonzero degrees in

% (+1
question are either all +1 , or else all -1 , and <o, <X >+1 syl (T .

So, to complete the proof of (1.2) for the above cases, it suffices to check
the following.

(2,32 “If e and ), transform compatibly, then the general position map

. = (@=1)(% +1) ¢ . Ty v
£: & (g-1)(¢ +1) > R__has at least \<ere s L > | + (g-1)!__separated g-uple

points.

By definition <’¢rf r KL Dy = 5 {we. deg( F: 306 g LP )_1) : Gex
= 'G‘LK(‘)/Z.l ,
. : (q) » : (@) _ o(g-1)(€+1)-1
where F 1is determined by £ and the homotopy equivalence (R ), = S

of (2.4). Since f 1is in general position, we can choose a sufficiently fine simplicial

Zq-subdivision E of K)(;J) , such that f(q) is linear on E, and the images f(q)( 3)

of top dimensional simplices ﬁ of E are either disjoint from the diagonal, or else
intersect it transversely in a single interior point. Note that such intersections are
in one-one correspondence with the permutations of the separated g-uple points of f .
If, amongst the pA's subdividing a top dimensional & ¢ Kg?) there are r , say ,.@1,

cee 1 By of the intersecting type, then obviously deg( F: %8—>S(q_1)( ¢41)-1

) is
the sum of r integers n, = +1, with sign depending on the orientation of f(q)( &8 i) ’

hs i

N

e LAUS <fwf ¢ G S +1 is the sum of N complex numbers of modulus 1, where
N = number of Zq—orbits arising from separated g-uple points, i.e. (g-1)! times the

number of (unordered) separated g-uple points of f. So the result follows because N

l<os, > -



For the (known) case g =2 , (2.6) and (2.8) (now w = -1) show that under 2,
2 ¢ and <% transform alike, except for a sign difference, SO < e <L >  is well
defined mod 2 , and one can prove (1.2) exactly as above with all calculations now mod 2.

Note that, for any pair (g, ¢ ) of natural numbers, we now know the truth of (1.2
for some pair (q, '), €' > € . So the following assertion suffices to complete the

proof of (1.2).

(q—1)€ G -1
81 " B

with exactly N separated g-uple points, then there must also exist a general position
(@-1)(€+1) £ ot '

X (2.13) If there exists a general position continuous map

_mgL_T(q_”( 2 41) with exactly N.((g-1)!) separated g-uple points.
y g ngj;:(eﬂ; n *323 ‘ eﬁgjig » and let Rf and Rf denote the 2

components of Rc N Re o . We can assume that there is a simplicial subdivision E of

(] igj ;% such that ¢ is a general position linear map with respect to E, and the Ng

coordinates x of the N separated g-uple points of ¢ are contained in the (relative)
interiors of Ng pairwise disjoint simplices A of E. Consider a linear map f: '”3:3 .E
— R® which coincides with ¢ on E , and which images the vertices of 7 into ‘Ri .

Since there are only g-1 such vertices it follows that, for any g pairwise disjoint

simplices {o(, «+e & “q}i 72:§°E the g-fold intersection f( « )0 ... A f(a(q)

is nonempty only if cj?(o(.]\ e R <‘c(o<q\"r ) is nonempty. And, the same must also

remain true for any general position linear map f: ?gj .E—> lRe

sufficiently close

to E.
” For each of the separated g-uple points { Xpp oeee ,xq'(, of ¢ one has the g simplic

: 12
$Bqr cor o P q%’ lying within pairwise disjoint simplies de:g-l ;é , such that x, & intf,,

,x‘qaint(?,q. We observe that ¢ ( (.%.I)f\ ,’\cf((zc} is a point, and that the same

statement is true for any linear map E —> RL1 sufficiently close to cy . We now replace

f by a general position linear map f: 'rg:g E —» R

F’q—1’ are perturbed slightly into ERQ_ , and that of Bq slightly into !Ri . Using the

in which the vertices of £, ...,

observation just made, and, once again, the fact that ‘~ has only g-1 vertices, we now

see further that if HNT ¥ Bqr oe- ,xqv'r = @q’ then f£( a<1)./\ ’\f(o(q) is

nonempty --and then equal to a point-- iff «

(Aq , and each rx'i , 1€ 1i < g-1, contains

gq



10

.

exactly one of the g-1 vertices of T . Each -561, B (Zq} gives rise to (g-1)!

(g-1)(¢ +1)
(g-1)( £ +1)

such {d1, s qu} , thus such a general position continuous map f: o

—> R@ has exactly N.((g-1)!) separated g-uple points.

§3. Further applications

A simplicial complex will be called a pseudo-g-manifold if each codimension one

simplex is incident to precisely q top dimensional simplices (so pseudo-2-manifold =
pseudomanifold). It is easily seen that, amongst the skeletons of simplices K = a‘;

j < i, the only ones for which the gth Jjoin configuration, Ki?) , is a pseodo-g-manifold,

are those of the type O'E (which were considered above) and o

’

gs+g-2

51 . For these latter,

a proof similar to that of §2 , with complex fundamental cycles defined analogously to
those of (2.7), establishes the following

(3.1) Generalized "van Kampen-Sierksma" Theorem. A general position continuous

map f: T_gf;q—Z —> R" , where {(g-1) < g(s-1), must have at least ((q-1)!)s separated

g-uple points.

Note that once again this implies a weaker linear version analogous to (1.1).

The case g = 2 of (3.1) was proved independently by van Kampen [18], 1932,
and Flores [ 4 ], 1933. Flores used the Borsuk-Ulam Theorem [2], 1933 (= Lusternik-
Schnirelman Theorem [ 51, 1930) and the fact that the pseudomanifold | a«zqu’

indeed an antipodal (2s-1)-sphere. Also, a more general Borsuk-Ulam result was used in

is

[10] to prove a weaker version of (3.1) for all primes p, viz., that a continuous map g:

C‘gf:p_z-—é R£ , [(p-1) s p(s-1), must have at least one separated p-uple point.
As in (2.5) one can define a cocycle < ., for any zq-map G from the codimension

G
(q) - ~(@=-1)(C +7) (g=1)(t+1)-
¥ KT Tga1) (e +1)

which is zero iff G extends to a Zq—map K

one skeleton of K , to the fixed-point-free Zq-sphere S

i{q’ — @D 1 s easily verified
that, upto coboundary of a symmetric cochain, “a is same as Cg -
xSk

of <;ﬁf , ~22>  vyields the first part of the following

So the non vanishing

(3.2) Generalized Borsuk-Ulam Theorem. lLet g > 2, and let S(q—1)(C+1)-1 denote

the fixed-point-free Zq-sphere of (2.4). Then there exists no continuous Zq—map from
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(q) = o (a=1)(L +1) (@-1)( €+1)-1 - Tamiix : B
K‘V r K = T(G=1)( 2 +1) to S . This implies that there exists no con

tinuous Zq-map from the (t+1)-fold join of {g points} to the t-fold join of {g points¢.

(

1

«.. The proof of the second part involves using the aoin formula, (L .M)ig) = L(g ).M

t)(z) N
i, B

(t+1)-fold join of {2 points} = octahedral t-sphere, so (3.2) contains the classical

which shows that (r}é) ;q’ is the (t+1)-fold join of {q points}. Note that (o

Borsuk-Ulam Theorem [ 2], viz., that there exists no continuous Z2—map from the antipodal

sphere st to gt

. See also Dold [ 3] for some other Borsuk-Ulam results which too
can be proved by van Kampen's method.

(3.3) Remark. Although the notion of degrée was introduced by L.E.J.Brouwer,
most of its properties (used in §2) are due to H.Hopf, who also gave some of the first
degree theoretic proofs of the Borsuk-Ulam Theorem (see [2 ], footnote 6).

Similar results hold for simplicial complexes K other than skeletons of simplice:s

(g-1)(C +1)-1 ¢

(3.4) A continuous map from S to R must have a separated g-uple

point with respect to any triangulation K of AR .

Note that (1.2) implies this immediately for the minimal spherical triangulation

K = v ggj;i t:] ;_1 » and it is not hard to deduce the general case from this by means

of a direct argument. We remark that (3.4) extends still further to many spherical cell
subdivisions K, e.g., improving on Roudneff [ 8], to all those associated to oriented
matroids. We hope to discuss this and other aspects of the role of matroids in the theory

characteristic classes elsewhere. (See also [12], proof of (2.5).)

(q) . - gs+g-2
g r K= T § gy

vis-a-vis the combinatorics of the characteristic classes:of Pontrjagin et al. Infact it

The pseudo-g-manifolds K , Seem to play an important role
seems that the complex fundamental cycles supported on them -- and some additional qua-
ternionic cycles constructed by using finite multiplicative subgroups of H -- probably
suffice to detect, in some generic (e.g. as in [13]) éense, the non-vanishing of all known
characteristic classes. This is indicated by the fact that the pseudo-g-manifolds occur-
ing in the image of the functor K ~~» K‘(Fg) are all apparently given by the following

{325) Classificétion Theorem. The gth join configuration, K;q) , of a simplicial

complex, K, is a pseudo-g-manifold iff K is a join of some simplicial complexes of the
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and o 35¥2-2 -

- t
Biee G_t §-7 —=

A complete proof of this result has so far been given only for the case when
q=2 and dim (k\Z)) = 2(aim K) + 1:see [11].

The vanishing of the top dimensional symmetric cohomology classes <~ = | 4 ]
considered here -- or, more pertinently, the existence of a suitable zq—map -- 1is,
under suitable dimensional restrictions » not only necessary, but also sufficient, for
the existence of a continuous map without any (separated or not) g-uple points. For
instance, consider the casetof a continuous map from an (g—‘l )-dimensional simplicial com-
plex K to & when {(g-1) = q(s-1). Now K\ has dimension <gs-1 while (&*)(@
has by (2.4) the Zq-homotopy type of a fixed point free sphere sqs—2. The obstruction
class ¢~ is zero iff there is a Zq-map from Kf‘q) to qu_z. Further we have the
following

(3.6) Generalized Van Kampen-Wu-Shapiro Theorem. For a given g > 2, and all s

sufficiently big, the (gs-1)-dimensional symmetric cohomology class ¢ of an (s-1)-dimen-

sional simplicial complex K is zero iff there exists a continuous map without g-uple

points from K to R° whenever L(g-1) 2 q(s-1).

The proof of this result is inspired also by van Kampen [18] who gave an argument

for the case g=2 and s > 3, which exploits z = 0 to successively eliminate the

isolated 2-uple points of a general position continuous map Ks_1 =¥ !RZ(S_1 ) . Note howeve:
that van Kampen's argument contained an unproved lemma, viz., the p.{. version of the (now)
well known Whitney Trick. The first complete proofs of this case were given only in 1957
independently by Shapiro and Wu. (The result is true also for q =2 and s = 2 -- the
case of graphs -- by virtue of a separate argument using Kuratowski's planarity criterion)
An exposition of the van Kampen-Whitney constructions, and theiJ:*. various general-
izations, will be given in [14], which will also contain more details regarding some of
the results stated here.
Finally we remark that the method of §2 can also be modified to compute the
gth Tverberg number N q(X_) -- i.e. the least N such that any continuous map from o 5 to

N
X has a separated g-uple point -- for some spaces X other than :RL (cf. [7 ] for analogou:

linear problems, e.g. that of Eckhoff on p.169).
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