
Bénard Polygons

By K. S. Sarkaria

We prove that if a neighborhood of a polygonal region admits a two-
dimensional eigenfunction of the Laplacian, having a nonzero eigenvalue
and such that its normal derivative vanishes on all the bounding edges, then
the polygonal region must be a union of complete pieces of a tiling of the
plane by congruent rectangles, or by congruent (45◦, 45◦, 90◦) or (30◦, 60◦,
90◦) triangles. Hydrodynamically, this means that during critical convection
in a horizontal fluid layer uniformally heated from below, the mere occur-
rence of one arbitrary closed vertical polygonal fluid surface across which
there is no transportation of fluid automatically guarantees the presence of
one of the usual special convection patterns. In addition it shows that linear
convection theory seldom predicts a regular fluid pattern: e.g., for the case
of a triangular container having angles substantially different from (45◦, 45◦,
90◦), (30◦, 60◦, 90◦), (60◦, 60◦, 60◦) or (30◦, 30◦, 120◦), it predicts that the
convection cells not touching the boundary, if any, should be noticeably non-
polygonal. We also consider a nonlinear generalization and the noneuclidean
analogues of such polygons.

1. Introduction

The well-known “turbulence problem” asks whether experimentally observed
chaotic motions are logical consequences of the partial differential equa-
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tions of fluid mechanics (and the given initial and boundary conditions). This
article makes no contribution to this very difficult problem. Rather, we will
consider another, similar-sounding, but certainly much easier, open problem
of rational hydrodynamics, and give a partial solution of the same.

When a thin fluid layer, parallel to the horizontal x–y plane, is heated uni-
formly from below, the hotter, lighter liquid at the bottom tends to rise to
the top, but is prevented from doing so by the internal friction of the fluid,
until the temperature just exceeds a critical value, at which the fluid layer is
observed to partition off into polygonal regions. Within each of these regions
the fluid starts flowing slowly and steadily, generally up the middle and down
the vertical walls of these polygonal cells. (If the temperature is raised fur-
ther, the flow becomes faster and eventually turbulent.) Such experiments go
back to Bénard (1900) and it has been found that the critical temperature
and the geometry of the observed flow pattern depend on many factors, such
as boundary conditions, surface tension, solute content, electrical conductiv-
ity of the fluid, and presence of a magnetic field.

Are all these experimental observations deducible from the underlying par-
tial differential equations? This question is certainly easier than the turbu-
lence problem, because, the speed of the flow being small, these equations are
now merely the linearized partial differential equations of fluid mechanics.
Indeed, extensive work (for comprehensive and readable overviews see [1, 2])
based on this strategy has been done over the years, but only criticality seems
to be thoroughly understood.

Most strikingly it is unknown why does polygonal convection pattern should
appear at all as a strictly logical consequence of the partial differential equations
of the problem. As our contribution to this tantalizing question, we show that
these equations do at least imply that if one closed polygonal vertical wall
becomes visible within the convecting fluid, then, indeed, the entire pattern must
already be visible (moreover, we classify all the possible patterns). Here, the
assumed “closed polygonal” wall can have any finite number of straight sides,
and the region enclosed by it can be nonconvex; we demand only that it be
“within,” in the sense that there be fluid both in this polygonal region and
in the region immediately outside it, with no transportation of fluid between
these two regions. This heuristically enunciated proposition mirrors the more
formally stated theorem of Section 2; e.g., to see this for the purely buoyancy-
driven case, the points of which we must keep in mind are the following.

Following Boussinesq (1903), convection is supposed to be governed by
the equation of continuity, � ·q = 0; the Navier–Stokes equations of motion
ρdq/dt = −�p+ ρg�1 − αT �k + µ�2q; and the equation of heat conduction
dT/dt = χ�2T. Here, the “density” ρ, the gravitational acceleration g, the
expansion coefficient α in the term ρg�1− αT �k chosen to model buoyancy,
the dynamic viscosity µ, and the thermal conductivity χ, are all treated as
constants; while the velocity q = �u� v�w�, the pressure p, and the tempera-
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ture T , are functions of x� y� z, and t. These equations are clearly satisfied if
we put q = 0� T = −cz, and p = ρg�z−αcz2/2�. This describes rest; i.e., the
situation in which buoyancy is unable to overcome viscous resistance.

Rayleigh, 1916, sought the smallest c for which one also has a nearby
stationary solution q = q�x� y� z� 	= 0� T = −cz + θ�x� y� z�� and p =
ρg�z − αcz2/2� + ρ�x� y� z�. On substituting these into the equations, and
using dq/dt = �q/�t + �q ·��q and dT/dt = �T/�t + �q ·��T , we obtain
� ·q = 0� �q ·��q = −�p − ρgαθk + µ�2q, and −cw + �q ·��θ = χ�2θ.
However, for q and θ small, �q ·��q and �q · ��θ are of a higher order of
smallness, and thus, we assume from here on that the underlying differential
equations of the problem are their linearizations:

� ·q = θ� (1)

0 = −�p− ρgαθk + µ�2q� (2)

−cw = χ�2θ� (3)

Note that � × ��p� = 0�� × θk = ��θ/�y�−�θ/�x� 0��� × �� ×
θk� = ��2θ/�z�x��2θ/�z�y�−�2θ/�x2 − �2θ/�y2�, and � × �� × q� =
��� ·q� −�2q. So, on taking the curl of (2) twice, and using (1), we get 0 =
ρgα�−�2θ/�z�x�−�2θ/�z�y��2θ/�x2 + �2θ/�y2� +µ�4q. By applying x�2,
and using (3), this gives 0 = −cρgα�−�2w/�z�x�−�2w/�z�y��2w/�x2 +
�2w/�y2� + χµ�6q. So the k component of q, w�x� y� z�, satisfies the
following eigenvalue equation for c,

0 = −cρgα��2f/�x2 + �2f/�y2� + χµ�σf� (4)

As is easily seen, θ�x� y� z� also satisfies (4). Indeed, the vertical component
ζ�x� y� z� = �v/�x − �u/�y of the vorticity curl(q) is identically zero, and so,
because −�2w/�z�x = �/�x��u/�x + �v/�y� = �2u/�x2 + �2v/�y�x =
�2u/�x2 + �2u/�y2 and likewise −�2w/�z�y = �2v/�x2 + �2v/�y2, u and v
are also eigenfunctions of (4). The assertion just made regarding ζ follows
(cf. [1], pp. 22, 32) because the third component of the curl of (2) gives
0 = �2ζ, but the natural boundary conditions for ζ on top and bottom are
either ζ = 0 (rigid) or �ζ/�z = 0 (free), and, in either case, by applying the
well-known uniqueness theorems for �2, we must have ζ = 0.

Let � denote the vector space of all smooth functions f �x� y� z�, and let
�� ⊂ � � λ ≥ 0, be the subspace of all those for which �2f/�x2 + �2f/�y2 =
−λ2f . If f belongs to ��, then all partial derivatives of f also belong to
��: also recall that � is the topological direct sum of these subspaces ��,
� ≥ 0. So, without loss of generality we may only consider the case when all
our functions f are in the same ��� λ ≥ 0. With this understood, the above
eigenvalue Equation (4) becomes

0 = cρgαλf + χµ�−λ2 + �2/�z2�3f� (5)
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Obviously, we need only those λ ≥ 0 for which �� 	= 0; i.e., λ2 ∈ spec�� �,
the spectrum (an important Euclidean geometric invariant) of the fluid layer
�. Thinking of x and y as fixed, (5) is an ordinary linear differential equation
with constant coefficients and can be easily solved by using the given bound-
ary conditions at the top and bottom of �. For example, for the free–free
case, w = �2w/�z2 = �4w/�z4 = 0 at both top and bottom, so (5) has no
nonzero solution w�x� y� z� for � 	= 0, but for all other �2 ∈ Spec�� �, there is
at least one c = cλ, necessarily positive, for which it has a nonzero solution,
and the sought-for critical temperature gradient is their infimum,

inf�cλ � 0 	= λ2 ∈ Spec�� ��� (6)

Because u� v ∈ ��� λ 	= 0, there exists a unique pair f� g ∈ �� such that
u = �f/�x − �g/�y and v = �f/�y + �g/�x; namely, f = λ−2��u/�x +
�v/�y� = λ−2�w/�z and g = λ−2 ��v/�x − �u/�y� = 0. So q ∈ ����3 is
entirely determined by its vertical component w, and we have

q = �λ−2�2w/�z�x� λ−2�2w/�z�y�w�� (7)

Note finally that there is no transportation of fluid across lx+my + n = 0
iff lu+mv = 0 on this plane. Using (7), we see equivalently that there is no
transportation of fluid across a vertical plane lx + my + n = 0 if and only if
l�w/�x+m�w/�y = 0 on this plane. This motivates the formal definition that
follows, and shows that the theorem below implies the proposition enunciated
above.

2. Bénard polygon

A polygon P ⊂ �2 will be called a Bénard polygon if there exists a nonzero
function φ and a nonzero real number λ, such that

�2φ

�x2 + �2φ

�y2 = −λ2φ� (8)

in some neighborhood of the closed polygonal region P ⊂ �2 bounded by P ,
and such that the normal derivative of φ satisfies

�φ

�n
= 0� (9)

on all the edges of the boundary P . If, moreover, we can find a φ such that
�φ/�v is not identically zero for some unit vector v, then P will be called non-
trivial (note that a nontrivial P might also admit a “trivial” φ with �φ/�v ≡ 0
in some direction v). The following result says that these “eigenpolygons” of
the Laplacian are quite special.
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Figure 1.

Theorem 1. A polygon P ⊂ �2 is a nontrivial Bénard polygon iff it is
formed by the edges of a tiling of �2 by congruent rectangles, or by congru-
ent triangles having angles (45◦, 45◦, 90◦) or (30◦, 60◦, 90◦).

Note that in this statement, “rectangles” can be assumed to be not squares,
for the diagonals of a square subdivide it into congruent (45◦, 45◦, 90◦) tiles.
Also, hexagonal and equilateral triangular tilings are covered by this state-
ment, because the diagonals of a hexagon cut it up into (60◦, 60◦, 60◦) tiles,
whose medians subdivide them further into (30◦, 60◦, 90◦) tiles. [Figure 1
shows three Bénard polygons drawn in the (30◦, 60◦, 90◦) tiling of �2.] Note
also the immediate corollary that a Bénard triangle must necessarily have angles
(45◦, 45◦, 90◦), (30◦, 60◦, 90◦), (60◦, 60◦, 60◦), or (30◦, 30◦, 120◦). (Trivial
Bénard polygons are easy to classify: see Section 4.)

The proof occupies Sections 3–5 and is essentially split up into three
propositions. In Section 6, we discuss further the implications of the above
result vis-à-vis convection patterns, and in Sections 7 and 8 we sketch some
interesting generalizations and analogues.

3. Walls

We shall use the fact that φ, being a solution of (8) not merely on P but
on an open set of �2 containing P, is necessarily real analytic at all points of
P. Such results go back at least to Holmgren; indeed, one has the definitive
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theorem of Petrovsky (see, e.g., [3], Ch. IV, especially pp. 96 and 97 and
Cor. 4.4.1 on p. 114), which tells us that on an open set of �n, all classical
(in fact, even distributional) solutions of a partial differential equation with
constant coefficients are real analytic, if and only if the equation is elliptic.

Also, we shall use the fact that the Laplacian commutes with the map µ∗

on functions—µ∗�φ� = φ◦µ—induced by any isometry µ of �2; and so, if
� is a solution of (8) on � ⊆ �2, then µ∗�φ� must be a solution of (8) on
µ−1��� ⊆ �2. This commutativity is easily verified by a computation based on
the fact that µ � �2 → �2 is an isometry of �2 if and only if it is a translation
followed by an orthogonal linear transformation. The key point for us will
be that any solution of (8) is symmetric with respect to reflection in its walls,
i.e., the straight lines on which (9) holds; e.g., one has the following.

Proposition 1. Let � ⊂ �2 be an open ball with L a straight line passing
through its center. If a solution φ � �→ � of (8) satisfies (9) on a subinterval
of L∩�, then it satisfies (9) identically on L∩�, and one has φ = µ∗φ where
µ denotes reflection in L.

Proof: By using a suitable isometry µ of �2 we can assume, without loss of
generality, that � = ��x� y� � 0 ≤ �x2 + y2�1/2 < r� and that the straight line L
is the x-axis y = 0. Next, using the principle of unique analytic continuation, it
is straightforward to reduce further to the case when φ�x� y� has a convergent
power series representation �i≥0aijx

iyj valid throughout this open ball �.
Because ��/�y�x� 0� = �i≥0ai1x

i for −r < x < +r, this function of x is
analytic in �−r�+r�. Because we are given that it vanishes on a subinterval
of �−r�+r� it must vanish identically, which happens iff ai1 = 0 for all i ≥ 0.
Next, on substituting ��x� y� = %i≥0aijx

iyj in the differential equation (8),
we get the recurrent relations

�i+ 2��i+ 1�ai+2� j + �j + 2��j + 1�ai� j+2 = −λ2aij (10)

for all i ≥ 0 and j ≥ 0. These relations (10) show that aij = 0 for all j odd,
and so we have the asserted symmetry φ�x�−y� = φ�x� y�.

4. Primitive case

We first deal with primitive Bénard polygons; i.e., those that admit a nontrivial
φ satisfying the conditions of Section 2, and the additional condition that
no wall of φ should pass through the interior of the polygonal region P.
(However, we remark that for the direct part of the following, we shall only
use the fact that no wall, through a vertex of P , should pass through the
interior of P.)
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Proposition 2. A primitive Bénard polygon must be a rectangle, or a trian-
gle with angles (45◦, 45◦, 90◦), (30◦, 60◦, 90◦), or (60◦, 60◦, 60◦), and, conversely,
with the possible exception of (60◦, 60◦, 60◦) triangles, all these are, indeed, prim-
itive Bénard polygons.

Proof: Let L1 and L2 denote the two walls of φ that bound an internal
angle θ of P at some vertex v (so θ 	= π) of P . This angle is shown shaded
in Figure 2, which also shows an � (cf. Proposition 1) with v as center, in
which the solution φ of (8) is known to exist.

We cannot have θ > π, because then some parts of these walls L1� L2 pass
through the interior of P. Also, if π/2 < θ < π, then Proposition 1 gives a
wall µ2�L1� that passes through the interior of P. So 0 < θ ≤ π/2, and, by
using Proposition 1, repeatedly (see Figure 2) we obtain, on reflecting L1 in
L2, a wall L3, and then on reflecting L2 in L3, we obtain a wall L4, and so
on. Because the angle between any two consecutive walls of this sequence
L1� L2� L3� L4 � � � is θ, after some steps the wall L1 will recur; otherwise we
would get a wall with some part in the interior of P. Thus, we have shown that
any internal angle θ of P must be an integral divisor of π; i.e., that θ = π/m
for some integer m ≥ 2.

All internal angles being ≤ π/2, it follows that P cannot have more than
four sides, because the sum of the t internal angles of a t-gon is �t − 2�π. If

Figure 2.
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P is a quadrilateral, then the sum of its four angles being 2π, we must have
m = 2 for all the four angles; i.e., P must be a rectangle. Otherwise, P is
a triangle. So, the sum of the three angles π/m�π/n, and π/p being π, we
seek integers m�n�p ≥ 2 such that

1
m

+ 1
n
+ 1
p

= 1� (11)

These are easily found: one has �m�n�p� = �3� 3� 3�� �2� 4� 4� or �2� 3� 6�,
which give the three triangular possibilities.

Conversely, because cos�λ·x�+cos�λ·y� solves (8) over �2, and all its walls
are as in Figure 3(a), it follows that (45◦, 45◦, 90◦) triangles are primitive.
Likewise, all the walls of the solution cos�λx� + cos�λ · cos�2π/3� · x + λ ·
sin�2π/3� · y� + cos�λ · cos�4π/3� · x + λ · sin�4π/3� · y� are as shown in
Figure 1, so (30◦, 60◦, 90◦) triangles are primitive. Finally, for any A 	= 0� 1,
all the walls of the solution A · cos�λ · x� + cos�λ · y� form a square pattern,
and, for a and b nonzero, distinct, and such that λ2 = a2 + b2, the walls of
the solution cos�a · x� · cos�b · y� form a rectangular pattern, Figure 3(b). So
rectangles are also primitive.

Note that the solution cos�λ · x� used above is, up to an isometry µ of
�2, and a multiplicative constant A, the only trivial solution of (8). Its walls
are all horizontal lines y = C, and all vertical lines x = mπ/λ, with m an
integer. Therefore, it follows that a polygon P is Bénard with respect to a trivial
solution of (8) iff all its angles are π/2 or 3π/2, and all ratios of sides, in one
of the two directions, are rational.

For some of the examples used in the above proof we symmetrized this
trivial solution over a small rotation group. As against these, we note that
for all rotation groups G with order bigger than 8, all the walls of the solution
φ�x� y� = �θ∈G cos�λ · cos θ · x + λ · sin θ · y� of (8) must pass through the
origin. Furthermore, because ∂φ/∂x = 0 on x = 0, and ∂φ/∂y = 0 on y = 0,

Figure 3.
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the two axes, and the lines obtained by rotating them by angles θ ∈ G, are
walls. Thus, the angle between adjacent walls through the origin is an integral
divisor of both π/2 and 2π/�G�.

5. Finiteness

Given a � by the degree m of a point of �2 we mean the number of walls of �
passing through it, and a point O will be called a crossing of � if its degree is
at least two. In the following, we use the fact (see the proof of Proposition 2)
that if the degree m is finite, then the angular distance between adjacent
walls through O is π/m.

Proposition 3. Given that P is any nontrivial Bénard polygon with φ as in
Section 2, then there are only finitely many walls of φ that meet P.

Proof: Assume, if possible, that the nontrivial � has an infinite number of
walls passing through P. Then there must be an infinite number of crossings
of φ in P, indeed, each wall has at least one on the boundary P; viz, where
it exits from P.

If the degree of a crossing O were infinite, then symmetry with respect
to walls through O implies that there are infinitely many of these walls in
directions arbitrarily close to any given direction. Therefore, all lines through
O must be walls; i.e., � is constant on each circle around O and depends only
on the distance r from v. Moreover, this dependence is real analytic, because
��r�� r > 0 satisfies an ordinary linear differential equation with real analytic
coefficients (namely, r∂2φ/∂r2 + ∂φ/∂r = −λ2rφ, so such a φ�r� would, in
fact, be a Bessel function of the zero-th order). Consider a ray from O, which
exits P at a distance ro from O, at an interior point v of an edge of P . We have
grad�φ� = 0 at all points w of this edge sufficiently close to v. The distances
from 0 to these points w gives a subinterval �ro − ε� ro + ε� on which φ′�r�
is zero. So, by real analyticity, φ�r� is a constant function, which gives the
contradiction λ = 0.

Therefore, all crossings have finite degree. Furthermore, these degrees
must be bounded above. If not, we can find an O such that arbitrarily close to
it there is a crossing having an arbitrarily high finite degree. Consider now any
point p on a line with normal vector n passing through O. If ∂φ/∂n �� 0 at p,
then we must have ∂φ/∂m �� 0 for all q in a sufficiently small neighborhood
U of p and all m in a sufficiently small neighborhood V of n. However, from
the definition of O, it is clear that we can find a wall with normal vector
m∈V , which passes through U . So all lines through O must be walls, but we
already ruled this out in the last paragraph.

The boundary edges of P are in finitely many directions, and all walls meet
them. Therefore, from the boundedness of the degrees, it follows that each
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of the infinitely many walls through P must be in one of finitely many direc-
tions only. One of these, say, that perpendicular to unit vector v, will be the
direction of infinitely many walls. Because P is compact, given any δ > 0, we
can find two members of this parallel pencil of lines that are at distance < δ
from each other. By symmetry it follows that between any two members of
this pencil there must be another. Therefore, we must have ∂φ/∂v = 0 iden-
tically, which contradicts the fact that φ is a nontrivial solution of (8).

We now can complete the proof of the Theorem. Note that the parts of P—
obtained by subdividing it by using the (by Proposition 3 finitely many) walls
of � in P—have no walls passing through their interior; i.e., their boundaries
are what we called primitive Bénard polygons. Therefore, each of these parts
must be one of the four possibilities given by Proposition 2. To see that
any two parts are congruent, it clearly suffices to look at the case when they
share a common edge: the symmetry of φ with respect to this common wall
shows that, were they not congruent, by reflection in this wall, we should
have additional walls in them. Last, we note that, by successive reflections in
edges, any part generates a tiling of all of �2; namely, the tilings picturized in
Figures 1 and 3, or, possibly, the equilateral triangular tiling, which we can
subdivide by using the medians into that of Figure 1.

Conversely, each of these tilings is given by all the walls of a nontrivial
solution φ of (8) defined throughout �2; namely, the examples given while
proving Proposition 2. So any P , having edges in such a tiling, is a nontrivial
Bénard polygon as per the definition of Section 2.

For any polygon P ⊂ �2 and λ∈�, let �P� λ denote the vector space of all
solutions �s of (8), on some open set containing P, which satisfy the boundary
condition (9) on P . We have characterized all Ps for which dim �P� λ > 0 for
some � = 0. It remains to find these numbers dim��P� λ� exactly, and to
exhibit nice bases for these solution spaces.

6. Physical interpretation

Resuming the discussion of Section 1, we recall that the boundary conditions
at the top and bottom of � are needed to work out the critical temperature
gradient (6). Note, however, that the boundedness of � also plays a role;
e.g., they make Spec(� ) discrete, so the critical wave number � at which this
infimum occurs usually differs from that based on the assumption � = �2,
thus explaining (cf. [2], pp. 71, 73–75) why the observed critical temperature
gradient is usually more than that predicted by assuming � = �2.

It seems that we should next use the conditions prevailing on the lat-
eral boundary ∂� to decide whether or not a polygonal pattern will occur.
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Assuming no transportation of fluid across ∂�, we have on it q ·n = 0; i.e.,
u ∂β/∂x + v ∂β/∂y = 0 if ∂� is given by β�x� y� = 0; i.e., ∂w/∂n = 0
by using (7). Thus, we are led to the following boundary value problem for
φ�x� y� = w�x� y� C�.

�2�− �2� = 0 on �� ��/�n = 0 on ��� (12)

We confine ourselves to the case of a polygonal container. Now, of course,
any nonzero solution of (12) gives rise to a polygonal fluid pattern. How-
ever, all its polygonal cells might be touching ∂�. Indeed, it might even
have no interior walls; i.e., it might have just one polygonal cell, namely, �
itself. Let us agree that a regular pattern of convection is one in which at
least one cell, which is strictly polygonal, is contained entirely in the inte-
rior int�� � = � − ∂�. (Note that a priori this definition is much broader
than what “regular pattern” usually connotes in Bénard theory.) Thus, our
theorem has the immediate, but remarkable, corollary that a regular pattern
is possible in a polygonal container only if its lateral boundary ∂� is a Bénard
polygon in the sense of Section 2. Because such polygons are very special, it
follows—on the basis of the linear theory being used—that regular fluid pat-
terns are very special indeed. For example, we predict that if one observes
critical fluid convection in a triangular container with angles substantially differ-
ent from (45◦, 45◦, 90◦), (30◦, 60◦, 90◦), (60◦, 60◦, 60◦), or (30◦, 30◦, 120◦), the
pattern will be always noticeably irregular.

Surprisingly, the above obvious line of attack is not pursued in Bénard
theory (neither could we find anything relevant on the above boundary
value problem in the partial differential equation literature). Instead, almost
always, it is assumed that � = �2, and, more seriously, the basic question
posed in Section 1; i.e., why any polygonal pattern should appear at all, is
simply evaded; e.g., by imposing some ad hoc symmetry requirement, which
forces one to choose for φ one of the examples used in Section 4! Often
it is just laid down by fiat (see, e.g., [4], pp. 143, 144) that only those �s
that have hexagonal or square symmetry will be considered, or else (see [1],
p. 43) it is argued that (there being no points or directions in the layer that
are preferred) the visible walls of the flow pattern must (why?) form an
absolutely symmetric tesselation of the plane. Indeed, (see, e.g., [2], p. 86)
the prevailing consensus seems to be that linear theory always predicts a regu-
lar fluid pattern; as we have shown above, this is far from the truth. It seldom
(because Bénard ∂� s are so rare) predicts a regular fluid pattern: these are
the exceptions, not the rule.

However, returning to one of these exceptional situations, let us note that
an edge of the tiling formed by the walls of φ is visible to an experimenter
observing the flow (cf. [2], p. 27) if and only if one has on it either ��x� y� > 0
always, or else φ�x� y� < 0 always. For a solution φ whose walls form a (30◦,
60◦, 90◦) tiling, the subset of visible edges determines a hexagonal tiling, and
for a φ whose walls form a (45◦, 45◦, 90◦) tiling, this subset gives a square
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tiling. The visible walls λx = nπ of the trivial solution φ�x� y� = cos�λx�
partition off the plane into infinite strips or rolls, and that of cos�ax�+cos�by�
into rectangles. Thus, as mentioned already, our theorem shows that if just
one closed polygon of walls is visible, then, in fact, an entire convective flow
pattern of one of these kinds must be visible.

We emphasize that in this result, just the presence in int(�) of any closed
curvilinear vertical surface with ∂w/∂n = 0 on it won’t do; we made essential
use of the fact it comes discretized into finitely many straight walls; i.e., that
it is polygonal. We remark also that for the general case of a curved vertical
∂x, our theorem does give some strong necessary conditions for the existence
of a regular pattern, but because these are more complicated, we will not go
into this matter here.

Also note that mere boundedness of φ at infinity does not imply the existence
of a closed polygon of walls; e.g., as mentioned before, by symmetrizing cos�λ·
x� by any rotation group of order >8, one gets a solution of (8) having lots
of walls through the origin but (as follows by using the theorem, or by direct
computation) none other. These and other special solutions may be of use for
doing a comparative study of the stability of all the flow patterns mentioned
above, within a single nice finite dimensional manifold of solutions of (8).
Lacking this, only stability of rolls vs hexagons, or of rolls vs squares, is
usually studied (cf. [4], p. 144) within the linear finite dimensional spaces of
solutions having hexagonal, respectively square, symmetry.

To correlate the above with experiment, one must, as usual, think of ∂�,
not as the actual lateral boundary, where one usually has q = 0, but as
a very thin boundary layer’s parallel inner surface, on which only q ·n =
0 holds. (Under linear theory, the boundary condition q = 0, would have
yielded the zero solution only.) Because q ≡ 0 at rest, maybe linearization
is valid at criticality; i.e., when the “break” (see [2], p. 84) in the heat flux
curve occurs because of the sudden supplementation of heat conduction by
convection. However, visual observation occurs somewhat later, and it is moot
if linearization is valid when the patterns become visible. Indeed, very close to
the lateral boundary q is noticeably nonzero: therefore, the spatial variation
of q cannot be assumed to be of the same order of smallness as q. That
is why one deletes this region by the hypothetical boundary displacement
just mentioned. However, we might still be left with some (say, isolated for
the sake of simplicity) points of int(�), where linearization is suspect; e.g.,
stagnation points, or random, but pointlike, disturbances that pop up (cf. [2]
p. 30) in an otherwise uniform critical temperature field. With this as our
motivation, we show next that the above conclusions are virtually unchanged,
even under the weaker linearization hypothesis that the equations of Section 1
are valid only away from some, unspecified in advance, but isolated points.

7. Singular points

A polygon P ⊂ �2 will be called weakly Bénard if one can find a solution
φ of (8), having possibly some isolated singular points, which is valid in a



Bénard Polygons 151

neighborhood of P, and which satisfies (9) at all the ordinary points of the
edges of P . We now classify these.

Of course Proposition 1 is unchanged if all points of the ball � are ordinary
points of φ. Furthermore, an analogue holds when the center of � is the sole
singular point of φ in �, provided L is a ray through the center. Thus, one
still has symmetry of φ with respect to reflections in its walls, except that one
must now allow that some walls may be rays or segments; i.e., are terminating
at one or both ends in singular points. (Here use is made also of the fact that
after deleting the singular points, a connected open set remains connected, so
any analytic function is still determined uniquely by its restriction to any open
subset.) Applying this symmetry we see that for any v∈�2, either the number
of walls through v is infinite, or the angle between adjacent walls through v is
an integral divisor of 2π (instead of π before). Using this, we now obtain the
following generalization of Proposition 2, where, again, primitive means that
no walls of φ pass through the interior of P.

Proposition 4. A primitive weakly Bénard polygon must be one of the four
Bénard triangles, or a rectangle, or one of the quadrilaterals and pentagons of
Figure 4 or a regular hexagon.

Figure 4.
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Proof: Let P ⊂ �2 be weakly Bénard with φ a solution of (8), valid
in a neighborhood of P except for some isolated points, which satisfies
(9) on the ordinary points of the edges of P , and none of whose walls
passes through the interior of P. We first check that if P has n sides, then
3 ≤ n ≤ 6, and that the internal angles of P , arranged in nonincreasing
order, are �2π/m1� � � � � 2π/mn�, with �m1� � � � �mn� being one of the following
nondecreasing n-tuples of positive integers (listed in “lexicographic” order
for each n).

n = 6 � �3� 3� 3� 3� 3� 3��
n = 5 � �3� 3� 3� 3� 6� or �3� 3� 3� 4� 4��
n = 4 � �3� 3� 4� 12�� �3� 3� 6� 6�� �3� 4� 4� 6� or �4� 4� 4� 4��
n = 3 � �3� 7� 42�� �3� 8� 24�� �3� 9� 18�� �3� 10� 15�� �3� 12� 12�� �4� 5� 20��

�4� 6� 12�� �4� 8� 8�� �5� 5� 10� or �6� 6� 6��
To see this, recall that the sum of the n internal angles of P is �n − 2�π.

Because each of these internal angles is of the type 2π/mi, mi ≥ 3, the
n-tuple �m1� � � � �mn� of these integers must satisfy

1
m1

+ 1
m2

+ · · · + 1
mn

= n− 2
2
� (13)

Each of the fractions on the left side of (13) is at most 1/3, so we must
have n · 1/3 ≥ �n− 2�/2; i.e., n ≤ 6; and for n = 6, all the six mis must be 3.
For n = 5, the right side of (13) is 3/2, and, because 2�1/3 + 3�1/4 < 3/2, at
least three of the five mis should be 3. When exactly three are 3, the other
two mis must be both 4 in order for all the five fractions to add up to 3/2. In
case four mis are 3, the fifth must be the reciprocal of 3/2− 4 · �1/3�; i.e., 6.
Proceeding likewise for n = 4 and n = 3, one gets all the possibilities listed
above.

We note now that the two arms of an internal angle of the type 2π/m, with
m odd, must be both of the same length, because continuing φ by reflections
around the vertex, we must be able to arrange an odd number of copies of
this angle around the vertex symmetrically. This implies, for n = 3, that if the
3-tuple has one odd entry, then the other two entries should be equal. There-
fore, of the triangles, only �3� 12� 12�, �4� 6� 12�, �4� 8� 8�, and �6� 6� 6� remain;
i.e., the four Bénard triangles. It is easily seen that there is no quadrilateral
�3� 3� 4� 12� with the two arms of both 120◦ angles of same length; there
are two �3� 3� 6� 6�s and two �3� 4� 4� 6�s as drawn above; and, of course, the
rectangles �4� 4� 4� 4�. There is no pentagon with four 120◦ angles, all with
both arms equal, so no �3� 3� 3� 3� 6�; on the other hand, there are two pen-
tagons �3� 3� 3� 4� 4� satisfying this arms condition. Finally, the arms condition
implies that a �3� 3� 3� 3� 3� 3� must have all six arms equal.
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To classify weakly Bénard fluid patterns it is necessary to decide which of
the above cases actually occur as primitive weakly Bénard polygons. In any
case, looking at Figure 1, it is easily seen that each polygon of Figure 4 is
located within this �30◦� 60◦� 90◦� tiling, and generates, by reflection, a coarser
subtiling by congruent pieces.

Corollary. All weakly Bénard polygons are Bénard.

To see this, note that because there are only finitely many singular points of
φ in a neighborhood of P, the argument of Proposition 3 generalizes almost
verbatim, to show that any nontrival weakly Bénard polygon has only finitely
many walls of the nontrival φ penetrating it, and so can be dissected, by
means of these finitely many walls, into finitely many pieces. Being primitive,
each of these pieces must be one of the possibilities given by Proposition 4,
and also all pieces must be congruent to each other, because any two sharing
an edge are symmetric with respect to reflection in this edge.

8. Noneuclidean polygons

Consider now a P on S2, the unit sphere of �3, whose edges are great circle
arcs. Using spherical coordinates 0 ≤ ψ < π and 0 ≤ θ < 2π, and the
spherical Laplacian, we now replace (8) by

1
sinψ

∂

∂ψ

(
sinψ

∂φ

∂ψ

)
+ 1

sin2 ψ

∂2φ

∂θ2 = −λ2φ (14)

and call P a spherical Bénard polygon if there exists, for some λ 	= 0, a solution
φ of this partial differential equation, which is valid in a neighborhood of P
(one of the two closed regions of S2 bounded by P) and obeys the condition
∂φ/∂n = 0 (now n is tangent vector normal to edge) identically on the edges
of P . We have checked the “only if” part of the following: P is a spherical
Bénard polygon if and only if it is formed by the edges of a tiling of S2 by
congruent spherical triangles having angles (90◦, 60◦, 60◦), (90◦, 60◦, 36◦), (90◦,
45◦, 30◦), or (90◦, 90◦, π/t), where t is any integer ≥ 2.

The point now is that the sum of the n internal angles of a spherical n-gon
exceeds �n − 2�π—the excess being the spherical area of the n-gon—and
so, for P primitive, we are looking for n integers mi ≥ 2 such that the sum
of their reciprocals exceeds n − 2. This forces n = 3, and for this n, the
only nondescending 3-tuples of integers obeying this condition are �2� 2� t�,
�2� 3� 3�, �2� 3� 4�, and �2� 3� 5�, which gives the triangles listed. In each case,
the area of the triangle turns out to divide 4π, a necessary condition that it
tile S2. Indeed, a little reflection shows that all the triangles do tile the sphere;
e.g., (90◦, 60◦, 60◦) triangles result if we subdivide a “cubical subdivision”
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further by diagonals of all the 4-gons, and (90◦, 60◦, 36◦) triangles result if
we subdivide the 5-gons of a “dodecahedral subdivision” further by 10 rays
through their barycenters, and so forth. To prove the “if” part, one needs
to find explicit φs whose great spherical walls have one of these possible
geometries. This should be possible; e.g., by looking at the “metaharmonic
functions” of [5] (see Appendix II of [5]), but we have not yet done this
checking.

For a hyperbolic geometry the situation is slightly different, because now
the sum of the n internal angles falls short of �n−2�π by the hyperbolic area.
Therefore there are many more possibilities. However, with some additional
conditions we can get finite lists of primitive hyperbolic Bénard polygons. For
example, if we confine to tilings that subdivide a “Fuchsian tiling of the first
kind of genus g” (the pairwise identification of the edges of the tilings gives
a surface of genus g—recall g ≥ 2—and the quotient map should not be
branched), then the sum of the internal angles is precisely �n−2g�π, and we
can make finite lists analogous to those above.

Using the open unit disk 	 = ��x� y� � r < 1� ⊂ �2 with the Riemannian
metric 16�1− r2�−4�dx2 +dy2� as our model for this geometry we are looking
for a polygon P ⊂ 	 whose edges are segments of circles normal to the
bounding circle ∂	, such that there is a solution φ of

1
4

(
1 − r2)2

(
∂2φ

∂x2 + ∂2φ

∂y2

)
= −λ2φ (15)

valid in a neighborhood of the compact region P ⊂ 	 enclosed by P , which
has zero normal derivative on all the edges of P . It seems that these hyper-
bolic patterns should arise experimentally if one observes convection when
the temperature gradient tapers off as a function of r. Likewise, the spher-
ical polygons should be closely related to the convection in spherical layers
studied by Busse et al. (see [4]).

The angular conditions indeed should hold if we move over to the gen-
eral case of any Riemannian geometry ds2 = E�x� y�dx2 + 2G�x� y�dxdy +
F�x� y�dy2 as long as we confine ourselves, as in the two homogenous cases
above, to geodesic polygons. This is so, because these conditions were derived
using only some infinitesimal symmetries. However, because there are no
global symmetries now, the assertions regarding tiling will become meaning-
less in this general context.
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