SHORTER NOTES

The purpose of this department is to publish very short papers of unusually polished character, for which there is no other outlet.

EMBEDDING AND UNKNOTTING OF SOME POLYHEDRA

K. S. SARKARIA

ABSTRACT. If a compact polyhedron X^n , $n \ge 3$ (resp. $n \ge 2$), has the property that any two of its nonsingular points can be joined by an arc containing at most one singular point, then X^n embeds in \mathbb{R}^{2n} (resp. unknots in \mathbb{R}^{2n+1}).

The object of this note is to discuss a situation where the Penrose-Whitehead-Zeeman construction (see Zeeman [10, pp. 66–67]) works for a class of polyhedra much more general than manifolds. In particular reduced polyhedra satisfy our hypotheses. Thus Husch's unknotting theorem [4] is a special case of the result proved below.

Let X be a compact polyhedron of dimension n. A point x of X is called nonsingular (resp. singular) if there exists (resp. does not exist) a triangulation of X containing x in the interior of an n-simplex.

THEOREM. Let X be a compact polyhedron of dimension $n \geq 3$ (resp. $n \geq 2$). If any two nonsingular points of X can be joined by an arc containing at most one singular point, then X embeds in \mathbb{R}^{2n} (resp. unknots in \mathbb{R}^{2n+1}).

Embedding. General position yields a p.l. map $f \colon X^n \to \mathbf{R}^{2n}$ with a finite number of nonsingular double points. To explain our iterative construction it suffices to consider the case when there is just one pair $\{x_1, x_2\}$ of nonsingular double points, $f(x_1) = f(x_2)$. Let A be an arc, containing at most one singular point of X, and joining x_1 to x_2 . Because 2 + n < 2n any general position point p of \mathbf{R}^{2n} is joinable to the circle C = f(A) in such a way that the 2-disk D = pC meets $f(X^n)$ in precisely C. By choosing triangulations of X^n (resp. \mathbf{R}^{2n}) in which A (resp. $f(X^n)$ and D) are full subcomplexes, and f is simplicial, we can find regular neighborhoods N(A) of A in X, and N(D) of D in \mathbf{R}^{2n} , such that $f(X - N(A)) \subseteq \mathbf{R}^{2n} - N(D)$, $f(\partial N(A)) \subseteq \partial N(D)$ and $f(N(A)) \subseteq N(D)$. If A has no singular point, N(A) is an n-disk. If A has the unique singular point y, then N(A) is p.l. homeomorphic to the closed star of y. In either case we see that N(A) is a cone over its boundary $\partial N(A)$. Therefore we can extend the embedding

Received by the editors June 6, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 57Q35, 57Q37.

Key words and phrases. Polyhedra, embedding, unknotting.

 $f \mid (X^n - \text{int}N(A))$ to an embedding $g \colon X^n \to \mathbf{R}^{2n}$ by coning $f(\partial N(A))$ over an interior point of the 2n-disk N(D).

Unknotting. General position yields a p.l. map $f: X^n \times I \to \mathbf{R}^{2n+1} \times I$ whose 'ends' f_0, f_1 are two given embeddings of X^n in \mathbf{R}^{2n+1} , and which has a finite number of nonsingular double points. Since any two nonsingular points of $X^n \times I$ too can be joined by an arc having at most one singular point, we repeat the above construction to get a p.l. embedding $g: X^n \times I \to \mathbf{R}^{2n+1} \times I$ with ends $g_0 = f_0, g_1 = f_1$. Thus f_0 and f_1 are concordant. By Lickorish [5, Theorem 6], concordance implies isotopy in codimensions ≥ 3 . Thus f_0 and f_1 are isotopic.

The above theorem is best possible in the sense that one cannot replace 'at most one' by 'at most two'. Recall that two n-spheres can link in \mathbb{R}^{2n+1} . Thus, by joining two n-spheres, $n \geq 1$, by a thin 'ribbon', we get an example of an n-dimensional polyhedron which knots in \mathbb{R}^{2n+1} and for which any two nonsingular points can be joined by an arc containing at most two singular points. Another example of a polyhedron having this joinability property is the n-skeleton of an N-simplex, $N \geq 2n+1$, $n \geq 1$. It was proved by van Kampen [7] and Flores [3] that, for $N \geq 2n+2$, this polyhedron does not embed in \mathbb{R}^{2n} .

Husch unknotting. A homogenously n-dimensional and connected polyhedron X^n is called reduced if it can be obtained from some other, Y^n , by replacing a regular neighborhood N(T), of a maximal tree T of a triangulation of Y^n , by a cone $z \cdot \partial N(T)$. Since T is a maximal tree, for each $x \in Y$ we can find a $t \in T$ and an arc α from x to t such that all points of $\alpha - \{x, t\}$ are nonsingular points of Y^n . From this it follows that any nonsingular point of X^n can be joined to $\partial N(T)$ via nonsingular points of X^n , and thus, that any two nonsingular points of X can be joined by an arc A through the base point z, such that all points of $A - \{z\}$ are nonsingular points of X^n . Therefore the above theorem implies Husch's result A0 that all reduced polyhedra A1, A2, unknot in A3. Note that the A3-skeleton of a A4-simplex, A5, is not reduced, but does satisfy the hypothesis of the above theorem.

Bibliographical remarks. The case $X^n=$ a connected pseudomanifold (resp. $X^n=$ polyhedron obtained by making some identifications on the boundary of a connected manifold) of the above theorem is due to van Kampen [7] (resp. Edwards [2]). The construction given in the above proof (resp. general Penrose-Whitehead-Zeeman construction) is a variation (resp. a generalization) of a construction by which van Kampen [7] eliminates those pairs of double points, of a g.p. map $f: |K^n| \to \mathbb{R}^{2n}$, which lie in adjacent n-simplices of K^n . For other developments of van Kampen's ideas see also Shapiro [6], Wu [9] and Weber [8]. For more on singularities see Akin [1].

REFERENCES

- E. Akin, Manifold phenomena in the theory of polyhedra, Trans. Amer. Math. Soc. 143 (1969), 413-473.
- C. H. Edwards, Jr., Unknotting polyhedral homology manifolds, Michigan Math. J. 15 (1968), 81-95
- 3. A. Flores, Über n-dimensionale Komplexe die im R_{2n+1} absolut selbstverschlungen sind, Ergeb. Math. Kolloq. 6 (1933/34), 4-7.

- 4. L. S. Husch, On piecewise linear unknotting of polyhedra, Yokohoma Math. J. 17 (1968), 87-92.
- 5. W. B. R. Lickorish, The p.l. unknotting of cones, Topology 4 (1965), 67-91.
- A. Shapiro, The obstruction to embedding a complex in Euclidean space, Ann. of Math. 66 (1957), 256-269.
- E. R. van Kampen, Komplexe in euklidische Raumen, Abh. Math. Sem. Hamburg 9 (1932), 72-78 and Berichtigung dazu, ibid., 152-153.
- C. Weber, Plongements de polyèdres dans le domaine métastable, Comment. Math. Helv. 42 (1967), 1–27.
- 9. W.-T. Wu, A theory of embedding, immersion, and isotopy of polytopes in a Euclidean space, Science Press, Peking, 1965.
- E. C. Zeeman, Polyhedral n-manifolds: II. Embeddings, Topology of 3-Manifolds and Related Topics (M. K. Fort, Ed.), Prentice-Hall, Englewood Cliffs, N. J., 1961, pp. 64-70.

DEPARTMENT OF MATHEMATICS, GEORGE MASON UNIVERSITY, FAIRFAX, VIRGINIA 22030