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FORMAL THEORIES ARE ACYCLIC

by K. S. SaArRkARIA in Fairfax, Virginia (U.8.A))

§ 1. Introduetion

Corresponding to cach formal theory or logic (i.e. a language together with its axioms
and rules of inference) 3§ we will define a triangulated space (i.e. a geometrical simplicial
complex) F. Indeed F will be the full simplicial complex whose vertices are the for-
mulae of F with two vertices being contiguous iff each is immediate from the other
under the postulates of §%. We will check that the notion of a proof in the formal
theory % corresponds to that of a path in the topological space F. Thus all the provable
formulae can be characterised as the vertices of the component P of F containing the
axioms; and. for any provable formula f. one can think of a proof as a path in P which
joins it to some axiom g. With this picture in mind it is natural to enquire whether
two such proofs of f are always homotopic to each other? An affirmative answer to
this question follows if one can prove that the fundamental (or first homotopy) group
(P} is trivial. We will prove the more general theorem that infact every component
of F'is acyclic in the sense that all its homotopy groups are trivial.

In 2.1 to 2.4 we will discuss the case when the formal theory is some first order logic.
Analysing the proofs given here one sees that all the results extend to more general
formal thecries. In 2.5.2 we give an alternative construnction of the topological space.
And in 2.5.3 we point out that there are other natural. but more restrictive, notions
of “‘homotopies of proof’ under which one is led to the study of the homology of some
subcomplexes (of this topologization) which are usually not acyclic.

The necessary background material in algebraic topology can be found in any text-
book. e.g. in SPANIER [2].

§ 2. Topologization of formal theories

2.1. We consider the case when our formal theory 3§ is some first order theory or

logic. The alphabet consists of
~ A v = ¥V 3 ) (, ¢ v py

where the suffices ¢, j. k.l run over some sets of positive integers. Expressions
Puly Ty. .o oy). with each w,, 1 £ m < I equal to some constant ¢; or else some
variable v;. are called utomic formulae; starting from these one builds up the set of
all well formed formulae by employving the logical symbols in the usual way. A well
formed formula is called a formula only if it has no free variables; the set of all for-
miulae of § will also be denoted by §. To describe the postulates of ¥ it will be con-
venient to let ¢(v) denote a well formed formula having v asx its sole free variable:
and if ¢ is a constant, ¢(c) will denote the formula obtained from it by replacing all
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free occurences of v with ¢. By a sct of avioms we mean any recursive subset A < §
containing all tautologous formulae as well as all formulae of the type (Vo) p(v) = ¢(c)
and ¢(¢) = (Iv) ¢(v). The rules of inference will be (i) modus ponens {f.f=g} -y
and (ii) the generalization rules f= ¢(c) > f = (Vo) ¢(v). q(c) = f - () ¢(v) = |
providing ¢ does not oceur in f nor in ¢(v).

2.2, A formula f will be called a ronjunction of f,,f,.. .., f if it is obtained from
these formulae by emploving the conjunction symbol A k — 1 times: eg.
(f1 A ((f2 A f3) A fa)) I8 & conjunction of f.fs, f5, fa- We will say that a formula f is

imediate from a formula ¢ if we can write f and ¢ as conjunctions of f,.f,... .. f;
and ¢,.¢5,....q¢, in such a way that each f; is either (i) an axiom of ¥ or (il) equal

to some g, or (iii) a direct consequence under generalization of an axiom or some ¢;
or (iv) a direct consequence under modus ponens of two formulae which are axioms
or some ¢;'s. Further two formulae f and g will be said to he contiguous if each is im-
mediate from the other.

We will now build a triangulated topological space F as follows. Bach formula f € §
is considered as a vertex: each pair {f,. f,} of contiguous formulae of ¥ is considered
as an edge with end points f, and f,. . . .. and more generally any et {f, . f5. .. .. four}
of # + 1 pairwise contiguous formulae is considered as a closed n-dimensional simplex
with vertices f,,f,.....f,s,. The set theoretic union of these simplices is cquipped
with the weak topology and denoted by F.

Our object is to study some properties of this topological space in the following
paragraphs.

2.3. We write fF ¢ whenever there is a finite sequence f = f,.f,,....f, = ¢ of
formulae of ¥ with ecach f;,. 2 < i < n. either an axiom or a consequence of some
preceding formula(e) under the rules of inference: such a sequence is said to be a proof
(of length n) of g from f. Formulae f and ¢ are called logically equivalent if f + ¢ and
gFf

2.3.1. Two formulae of § are contained in the same com ponent of the topological space F
if and only if they are logically equivalent.

2.3.2. Suppose that formulae f.¢ are contained in the component (mmaximal con-
nected subset) €' of F. We note that each point f e I has the path connected open
neighbourhood St(f) given by taking the union of the interiors of all the simplices
incident to f. Therefore a path component of ' must be both open and closed and thus
the whole of (". Hence one can find a continuous mapping @ from the unit interval
[0. 1] into F such that @(0) = f and @(1) = ¢. Replacing @ by a suitable simplicial
approximation, we can find a finite sequence f=f,,....f, = ¢ of formulae in
such that each f,. 1 < ¢ < n — 1, ix contiguous to f,,,.

If & j and k is immediate from j. then h F k.

One can prove this in a routine manner hy using definition 2.2 and the fact that
the set of axioms contains all the tautologies. Using this lemma repeatedly on the
above sequence we see that fgand g & /.

2.3.3. Conversely, since ft+ g, we can find a proof f = f,.f,.....f, = g of g from f.
Then the following sequence of conjunctions. where we have omitted writine the
te=] l tanl
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parantheses since their positions are of no consequence, has the property that each is
contiguous to the preceding.

fhintaeoo honfan o onfuoing. finfo noo Afuang. o finfang fag.

This shows that f A g lies in the same component as f. Likewise. from ¢ F f. we de-
duce that ¢ A f lies in the same component as g. Since f A g and g A f are contiguous it
follows that f and ¢ are in the same component of F. Thix proves 2.3.1.

2.3.4. We will write kg if fF g for some axiom f: all such formulae ¢ are called the
provable fornndae of §. (Conversely note that if f ix an axiom, then g F f for all for-
mulae ¢.) The subcomplex of F spauned by all the provable formulae will be denoted
by P: 2.3.1 shows that P might also be defined as the component of F containing the
axioms. The deduction lemma allows us to reformulate 2.3.1 ax follows:

Formudae f. g of % ave in the same component of I iff f <> g is a provable formula.

One observes that the negations ~f. ~g of two contiguous formulae f, ¢ need not
be contiguous: it ix however true that the subcompler ~C' spanned by the negations of
all formulae of a component (' of I' is itself a component of F. This corollary follows at
once on ohserving that f <> g is provable iff ~f < ~g ix provable. We recall that the
formal theory ¥ ix called consistent if the set R of provable formulae is disjoint from
its negation ~B. (For such theories it is easy to check that infact each component ¢
ix disjoint from its negation ~(.) When the theory is not consistent every formula
can be shown to be provable. Thus we see that the topological space F is connected iff
the formal theory & is inconsistent.

24, dny continuous map from the n-sphere S*, n 2 1, into F is homotopically trivial.

2.4.1. For each finite set ¢) < % we define a subcomplex ¢, ¢ F as follows: @, is
spanned by the et (5, of formulae which are conjunctions of some formulae from 5.
We will prove that any simplicial map @: K — Q. where K is some triangulation of S",
n = 1, is homotopically trivial. This implies 2.4 because the simplicial approximation
theorem tells us that one can find a triangulation K of §" such that there ix a sim-
plicial map A — F in the same homotopy class as the given map 8" — F.

2.4.2. A formula fe (5, will be said to have weight k if k is the least integer such
that f ix a conjunction {possibly with repetitions) of % distinct formulae from &: note
that 1 < & < |63 :

Case 1. If every formula @(x). v a vertex of A, is a conjunction (possibly with
repetitions) of the same £ distinet formulae from ¢ then obviously the map @: K — G,
is homotopic to a constant map.

(fase 2. Otherwise we can choose a vertex v of K such that (i) @(v) has least weight k
and (ii) there is a vertex w of A contiguous to v such that @(w) and @(v) are not con-
junctions (possibly with repetitions) of the same I distinct formulae from . The

simplicial complex K is the union of the subcomplexes St(v) and K-St(v); note that

St(v) 1s formed (see fig. 1) by coning its boundary Lk(v) (= St(v) n (K-St(v))) over v.
We construct a subdivision K’ of K by retaining the subcomplex K-St(v) and by sub-

dividing the subcomplex St(v) into (St(v))" ax follows. For each vertex «, € Lk(v) we
define ¢} = midpoint of ve; (resp. a; = @;) if @(a;) is not (resp. is} the conjunction
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{possibly with repetitions) of the same & distinet formulae from & as @(v). These
vertices a; are now used to construct a complex Lk(»') which is isomorphic to Lk(v)
under the correspondence a; — a; (see fig. 2). We cone Lk(¢') over »". The remaining
annular region between Lk(v) and Lk(v') ix triangulated (in a standard way) as follows:

We totally order the vertices of ILk(v) ax a,.«,.a;.....ay. Then whenever
Wig- @i s - ..a,-j}. o < 1y < ... < iy, is asimplex of Lk(v) and 0 < p £ 4, we take
¢ p Py - .

Wiy~ oo 6 @ @) as a simplex for this annular region.

We now define a new simplicial map @’ of this triangulated n-sphere K’ into F.
Outside the region St{v) it will be same as @: for each vertex ¢; of Lk(v) with a} = a,
we let @'(a]) = P(a,) A D(v) and lastly @'(v') = @) A Dla,) A ... A Dlay). D is well
defined because contiguous vertices of A’ go to contiguous vertices of F.

(a) The simplicial maps @, D': 8" = G, are homotopic.

We identify the common boundary Lk(v) in the triangulations St(v) and (St(v))’ of
fig. 1 and fig. 2 and cone the resultant complex M over a new vertex x. One has the
map @ @': M — @, which equals @ on St(v) and @’ on (—S_t(—v))’. One can extend it
to a simplicial map ¥: «M — G., e.g. by defining ¥(2) = ®(v). Since @, @’ coincide
outside the region St(v), thix shows that @ ~ @',

(b) For any vertex a’ of K’ the formula @'(a’) has weight 2 k; further the number of
vertices @’ of K’ for which @'(a’) has weight ¥ is one less than the number of vertices a
of K for which ®(a) has least weight k.

This follows becanse (1) whenever a; + a; the weight of @'(a}) = ®(a;) A D) is
strictly bigger than & and (2) the weight of @'(v') = @) A D(a,)) A ... A Dlay) is
strictly bigger than k.

If »Case 17 applies to @' we are through. Otherwise we can repeat the above pro-
cess to get @ ~ @ ete. Since weight is bounded above by || we see, from (b), that
after a finite number of steps (say m) we will get a simplicial @ =~ @ such that @
falls in *“Case 1”. Hence @ is homotopically trivial.

2.4.3. For every component C' of F, the homotopy groups m(C), n = 1, are all trivial.

This follows at once from 2.4 and the definition of these groups. Using the Hurewicz
iromorphism theorem we now see that the homology groups H,(F), n = 1, are all trivial.



FORMAL THY.ORIES ARE ACYCLIC 367

Regarding Hy(F)—it ix the free Abelian group on the components of F—we have
already ~secen in 2.3.4 that, for consistent §. it has rank = 2. Infact it is fairly easy to
see that if a consistent first order logic 7% is sufficiently rich, then F has x, components.
Here by “sufficiently rich’” we mean that the language should have enough predicates
ete. to deduce GODEL's incompleteness theorem. viz., that the set T of true formulae
{in any interpretation) ix not recursively enumerable. (The subcomplex 7' of F spanned
by T will be a disjoint union of components of F:. further 7~ (~T) =0 and
Tv (~T) = F.) On the other hand one can deduce eaxily that the set € of formulae
lyving in any component (' of F is recursively enumerable. Since a finite union of r.e.
setx is r.e. this rules out the possibility that F has a finite number of components.

2.5. By a general theory or logic % we will understand a recursive set of formulae
{also to be denoted by ¥) equipped with a finite number of recursive relations of which
precisely one is singulary. This singulary relation % < ¥ constitutes the axioms of our
logic: the higher arity relations R € & % ... x 7 are called the rules of inference of
the logic (if (f, . f5..... fi) € R one says that f, is a direct consequence of {f, . f,.... . fi_\}).
The notion of proof and provable formule is defined just as hefore. (These definitions
are almost the same as those given by Davis in [1]. p. 117; as in that book we assume
that there is a fixed countable alphabet. equipped with a Gdédel numbering, out of
which all the formulae are built.)

2.5.1. Let us suppose that § is equipped with a binary operation A (or. alternatively
that our alphabet has three symbols (. ) and A such that if f.g e ¥ then (f A g) € F).
We can generalise all the definitions of 2.2, in the obvious way, to such logies §. A look
at itx proof shows that the acyclicity theorem 2.4 continues to hold even now. However
one can prove 2.3.1 —which relates the topology of I’ to the notion of proof in §—
only under some additional conditions on F. It would suffice. e.g.. to assume that 3
s equipped with another binary operation = such that (i) modus ponens is a rule of
inference and (ii) all formulae of the type fag =f. faAg=gArfand f= (g = (fAg))
are axioms. This follows because (i) and (ii) allow us to deduce that formula % is im-
mediate from formula j only if j + k£ and thus the lemma used in 2.3.2 holds.

2.5.2. There is an alternative wayv of constructing a suitable topological space which
avoids imposing the extra conditions of 2.5.1 on 7. Let %% be the set of all finite sub-
sets of formulae and let ¥ be identified with the suhset of ¥ consisting of singletons.
We say that {f, . f,.....fi} €& is immediate from {y,.¢,,....¢,} €F if each f; is
either (i) an axiom or equal to a ¢; or (ii) a direct consequence of some axioms and
some ¢;’~ under some rule of inference of X. Now (just as in 2.2) we define F to be
the full simplicial complex whose set of vertices is § with two vertices being contiguous
iff each is immediate from the other. The analogue of 2.3.1 can now be proved easily:

Two formulac of 7 lie in the same component of F iff they are logically equivalent in 5.

(The component of F containing the axioms will be denoted by P: a formula belongs
to P iff it is provable). Also we can prove, exactly as before, that the topological space
F is acyclic.

2.5.3. For each n = 1 let ¥, denote the subcoruplex of F spanned by %, € § where
%, consists of all subsets of < »n formulae from §. The component of F, containing the
axioms will be denoted by P,; clearly P, € PAF,, P, P,., and |J P, = P. We

n:
nz1

will say that a provable formula is of depth < n if it belongs to P,.
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If a provable formula has a proof of length n, then <t is of depth < n.

Thix follows from an argument similar to that given in 2.3.3. Sometimes on¢ has an
upper hound for the depth: e.g.. one verifies easily that if the rules of inference of 3
are all binary and symmetric, then any provable formula has depth £ 1. (This remark
applies to the logics associated to Thue ov Post systems: see Davis [1], pp. 84. 117 for
definitions.) For a provable formula f of depth < » one can restrict attention to those
proofs which correspond to joining f to an axiom ¢ by a path lying wholly within P,:
and. for two such proofs. it is natural to consider a more restrictive notion of homo-
topy in which one ix not allowed to go outside the subcomplex P,. Thus it is of interest
to look at the homology and homotopy groups of P,. Unlike P. which ix alwayx acyvelic,
these subcomplexes can have a very rich homology. Infact. given any connected and
full simplicial complex K having a couptable number of vertices. one can find « logic §
for which P, = K. (To see thix let the alphabet be formed from the vertices v.v,. ...
of K: let the set % of formulae consist of all one letter words: let us have just one
axiom ¢; and just one binary symmetric rule of inference R defined by (v;,.v,) e R
iff v;v; ix an edge of K.) Since the barycentric derived of any simplicial complex is full,
it follows that we can find @ logic & whose P, is homeomorphic to any preassigned. con-
nected and countable simplicial comple.
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