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Abstract. We give a minimal triangulation: 53, — 2 of the Hopf maph: 3 — §2 and use it to
obtain a new construction of the 9-vertex complex projective plane.

Mathematics Subject Classifications 2000): Primary 57Q15, Secondary 51E15 and 51E20.

Key words: Hopf map, Villarceau circles, complex projective plane, triangulations of manifolds.

1. Introduction

As is well known, any smooth map of constant rank between two closed smooth
manifolds istriangulable i.e., it is, up to homeomorphisms, the geometrical real-
ization of some simplicial map between two finite simplicial complexes. However,
it is usually a hard problem to determittee least number of verticesquired for

such a triangulation. In this note we shall describe (Section 2) a simplicial map
n: 83, — 2 from a 12-vertex 3-spher§s,, onto the 4-vertex 2-sphet®, which
triangulates the Hopf map $° — $2 (Section 3) with the least number of vertices.
Another description of; is given in Section 4. As an application of this minimal
simplicial Hopf map, the first author found a new construction (Section 5) of the 9-
vertex complex projective plane. This 9-vertex triangulatio© 82 was originally
discovered via a computer search by Kiithnel in 1980 and an interesting account of
it is given in Kiihnel-Banchoff [1] and Bagchi—Datta [2].

2. Definition of n: §3,— $2

Let S2 denote all proper faces of the tetrahedron ABCD. The simplicial complex

3, is the union of two solid tori having a common boundary. One of these — the

pre-image undey of the triangle ABC ofSZ — is the solid 9-vertex torus/3 shown

in Figure 1(b) below. Its boundary is the 9-vertex 2-tofifsshown in Figure 1(a).
The solid torusV3, — the pre-image underof S2\int. (ABC) — has 12-vertices.

Its boundary is the 9-vertex 2-torus of Figure 2(a) which is isomorphic and will be
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Figure 1.

identified with 72 under the isomorphism provided by the indicated vertex label-
ing (note that the previously slanting circles | and Il of Figure 1(a) have become
horizontal). This solid torusvs, is the union of two 3-balls V and W shown in
Figure 2(b).

The boundary 2-spheres of these balls are made up of two cylinder§ of
bounded by | and Il, capped by the 2-disks obtained by coning Pgesind D,
respectively. Note that one of these balls is triangulated as a cone over a boundary
vertex D1, while the second is a cone over an interior verizx The simplicial
mapn: S3, — S7 is well defined because undef — A, B, - B, C; — C and
D; — D Vi € 7Z/3, each simplex of3, gets mapped to a simplex 6f.

3. HopfMap h: §3— §2

We recall that, if one thinks of® as a unit sphere df?, and ofS? as the extended
complex planéj = C U {oo}, then the Hopf map is defined Iyz1, z2) = z1/z2.

Let D2 = {u € C:|u| < 1} andS* = 9D? Then(u,z) — (1 + |u|>)~Y?.
(uz, z) gives a homeomorphismi? x S* — h~1(D?) under which the fibers of the
projection mapD? x St — D? are mapped onto those of the Hopf map. Likewise
(u,z) = (1+|u|?>)~Y?.(z, uz) provide us with a fiber preserving homeomorphism
D?x St — h*l(@\int. D?). Hence, up to homeomorphism, the Hopf map is same
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as the map obtained from two copies of the projection m8px S* — D?, by
identifying the two boundary torf?> = S x S by means of fiber preserving
homeomorphisniu, z) — (u, uz).

This self-homeomorphism df? = R?/Z? is induced by the linear automor-
phism of R? provided by the unimodular matriEgi 2] So it is the geometrical

realization of the simplicial isomorphism, which we had used to identify the toral
triangulation of Figure 1(a) with that of Figure 2(a). On the other hand Figures 1(b)
and 2(b) gave us triangulations of two copies of the projection Pax S* —
D?(~ ABC). Son: 3, — S2 triangulates:: $° — S2.

4. Hopf Map and Villarceau Circles [4]

Let d be the metric ors® defined asi(u, v) = cos*(u, v)Vu, v € S (here by
the symbol(u, v) we mean inner product or scalar product of the position vectors
of u andv). In other wordsd («, v) is the length of the shorter arc (betweeland
v) of the great circle ofs® throughu andv. For any great circleC of S define
d(u,C) = inf{d(u,v) for all v € C} and for any two great circle€; and C,
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defined(Cq, Cp) = inf{d(u, C,) for all u € C,}. Two great circlex’; andC, of

$2 are called Clifford parallel it/ (u, Co) = d(v, Cy) for all u, v € C;. It can be
easily seen that any two fibers of the Hopf mag® — $2 = C are Clifford
parallel to each other. This follows from the fact that the actiors’obn $2 i.e.

X (21, 22) = (Az1, Az2) YA € Stis isometric and transitive on each fiber. For any
given fiberC = h=%(0) (say) and for each € [0, /2] define

Cy=1{ueSdu,C) =al.

ClearlyCo = C andCr/, = {u € S3|cosH(u, v) = w/2, wherev € C is such
thatd (u, v) = d(u, C)}i.e.Cy ;2 is the set of all points o$® whose position vectors
are orthogonal to the plane containing the cir€leSo we can writeC,, , = C*.

To showC, is topologicallys* x S for eacha € (0, /2).

For anyv € C the setE = {u € $%|d(u, v) = «} is a small 2-sphere i§ with
centrev and radiusy. Note that only those points & which are also the points of
the plane containing the circte*, lie in C,. But the points that are common to both
¥ and the plane containing the cirae- form a small circle inS® (a stereographic
projectionp of this small circle, inR3, is shown in Figure 3).

It is clear thatC, is the surface obtained by revolving this small circle (by
keeping its center af) aboutC+. So it is topologicallys* x S*.

Villarceau circles

Through eachn = (z1, z2) € C, there are two great circles (6f) (i) = {(Az1,

rAz2) VA € S1} and(ii) = {(Az1, Az2) YA € S}, which are Clifford parallel taC.
This shows that the relation of Clifford parallelism is not a transitive relation. Now
we can draw four families of circles gnC,,), (1) usual meridians and parallels, (2)
the image undep of two kinds (i.e. (i) and (ii)) of Clifford parallels t@’ contained

in C,. The last two families are calledillarceau circles In Figure 4, Villarceau
circles of only one kind are drawn oveKC,) for somex.
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Figure 4.

Figure 5. (From [4], Vol. Il, p. 305.)

Decomposition 062 into two solid tori

By fixing somea say /4 we can express o as union of two solid torg; =
Uwero,7/41Ce @nd B2 = Uqer/a.7/21Co. The two tori are glued together at their
common boundary along the Villarceau circles. dsaries from 0 tar /2 we get
the following picture of the stereographic projectionssfin R3. (see Figure 5)

Villarceau triangles

The following picture shows the triangles*(A), n~1(B) andn~1(C) of M3 C 53,
linking each other ifR3. They triangulate three Villarceau circles piC,,4), and
the fourth triangley (D), which links them all, triangulate€+. We remark that
this is a nonlinear imbeding df/lg in R3: the edges ACy, A,B; and BC, (not
drawn in Figure 6) bend when they cross the line segmeiis 8,Cy and GA;
respectively (these line segments are not edg@g)f
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Figure 6.

In the next section we shall construct the triangulation of the complex projective
plane. The construction is the simplicial analogue of the well known factirat
can be obtained by identifying the boundary of a 4-ball withunder the Hopf
maph: §° — S2.

5. Construction of the 4-BallDf,

We divide ourSf’2 into five 3-cellsA1, Ay, Az, AqandAs as shown in Figure 7.

The cellA, is generated by the 3-simplic€&,BoB1C1, AgBoCoCy, AgA1B1Cy,
BoB1C1Dq, BoCpCiDy, ApA1C1Dy, AgCoC1Dy, BoC1D1D5} and the Simplices of
A, and Az can be obtained from these by using the permutat@nsB,.; C;,»)
Vi € Z/3. The 3-simplices of\4 and As are{A BoB1D1, AgB1DoD4, B1C,C,D5,
B1CoDoD1, AgA2C:D1, AoCoDoD1} and {AgB1DgD2, A¢A1B1D,, B1CoDgDy,
B1B,C,Dsy, AgCyDgD52, AgCoCoDo} respectively.

Now take five new vertices 1, 2, 3, 4, 5 and consider the simplicial conipfex
generated by all 4-simplices of the type: 6, where). is a simplex ofS3, andg C
{1, 2, 3,4, 5} isdefined agi:|1| C |A;|}. Here we take the empty géts a simplex
of $3,500%12345= 12345 is a simplex oD7,. Note thatDf- is subdivision of the
ten vertex 4-ball obtained by deleting the interior of the 4-simplgB+,D1D,
from the hyperoctahedral triangulati¢@,, 1}« {Ag, 2} % {B1, 3} % {Dy, 4} % {D4, 5}
of §%.
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Figure 7.

Our 4-ball D, contains eighty-eight 4-simplices; thirty-two of them are listed
below and remaining fifty-six simplices can be obtained from these by using the

permutations (123)(AB;,1 C;2) Vi € Z/3.

1A¢BoB1Cy
1A¢BoCoCy
1A0A1B:C;
1BoB1C1D;
1BoCoCiD;
1A¢A1C1D,

1A¢CoCiD;
1BoC1D1D;
4AoBoB1D;
4AoB1DoD;
5A0B1DoD;
5A0A1B1D,

13A0BoCo
13B,D1D;
23A,B,D;
25A:B1D
45A0B1Dq
34A,BoD1

14A0BoB;
15A0A 1B,
15A0A1D>
34A0A,D;
145A0B,
125A.D,

234A;Dq
123D,D,
125A1B;
134AyBg

1345A
12340,
12350,
12345

Construction ofCP2. The 9-vertex simplicial complex obtained from{, by
identifying verticesA; —- A, B, - B,C; —» CandD;, — D Vi € Z/3, has
following 4-simplices. This simplicial complex @sz because by replacing the
vertices 1, 2, 3, 4, 5, A, B, C, D by respectively 1, 2, 3, 8, 7, 4, 6, 5, 9 we see that
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Figure 8.

the following list coincides with the list of top simplices 6fPZ given on page 15
of Kiihnel-Banchoff [1].

Simplices ofC P¢
12ABC  45ACD 12345 13BCD 34ABD 235BD
23ABC 45BCD 1234D 35BCD  134BD 23ABD
31ABC 45ABD 1235D 14BCD  234AD 235BC
1345A 125AB 15ACD 135AC 145AB 125AD
1245B 12ACD  345AC 25ABD 135CD 134AB
2345C 124BC 24ACD  245BC 124CD 234AC

6. Remarks

(a) Minimality of : 3, — S2. Note that any map in the homotopy claso$® —
52 is a fibration and we know that in a fibration all fibers are of same homotopy
type. As one needs at least 4-vertices to triangusdtand at least 3-vertices to
triangulate the circular fiber over each of the four vertices so we need at least
12-vertices in the triangulation ¢f in order to get a fibration.

(b) We show thatS?, can be obtained by subdividing tigriickner sphere
(Figure 8) as explained.

Subdivision of Figurel. Cone the boundary 2-spheres of the three, 3-cells (i)
AoBoD2C1 U AgBoD,Cs (ii) B1C1D2A0 U B1C1D,A (i) A ,C,D2Bo U A,C,D,B;
over three new vertices@CA; and B, which have been placed in the interior
of these 3-cells, respectively. Now insert a vertexibthe 1-simplex BD, and
cone over this vertex by the boundary of the 3-cell generate@Ai3,D,D, U
B1C,D1D, U CA0D1D,}.
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Subdivision of Figure. JoinD; and D, to replace two 3-simplices /8,C.D1
and AByC,D; by three new 3-simplices 89D1D;, BoC1D1D5, C;A,D1D,. Note
that simplices in the subdivision of 1 and 2 are same as the simplicgs.in

(c) Any S* bundles: E3 — S2is obtained from the two copies of the projection

D? x S' — D2 by identifying the boundary tof'2 = R2/7? under[ ot fl]

with -d being thedegree of the classifying mapt — S of this bundle: cf.
Steenrod [3], Section 18. Triangulations analogous to one above seem to give some
useful upper bounds for(8), the least number of vertices required to triangulate

§. We note that(§) — oo asd — Fo0.

(d) However there seems to be no obvious ways of triangulating the bundle
structure of a nontriviab by using only finitely many vertices. For example sup-
poseK triangulatesS?, and that there is given, for each ordered pair6) of
2-simplices ofK which share an edge, a rotatigp, of a fixed polygonP (i.e. a
fixed triangulation ofS*) such that (a)Xg,s) ™! = g6s and (D)go10, © 8opos © - -+ ©
8, 10, = 1 as one goes cyclically around any vertexf We can now patch
together the projections x P — o by using these,,’s, but this only gives —
becauses? is simply connected while the structure group Rot. (P) is finite — the
trivial bundle $? x §* — S*: cf. Steenrod [3] Section 13.

(e) The mapy is by no means the only 12-vertex simplicial map intioenotopy
classof i, e.qg. if we alter Figure 1(a) so that all its oblique edges become paral-
lel, then the same method gives another. However the new map won't be in the
homeomorphism clasx i because it transforms a tetrahedron of the new solid 9-
vertex torus to an edge 6f. We recall that £] generates the infinite cyclic group
3(S?) of homotopy classesf[] of maps 7: 2 — 2, and that if[ f] = ¢ - [A],
thenr is calledHopf invariantof f. Analogous triangulations can be used to esti-
mate from above the least numbdrf] of vertices required to obtain a simplicial
representative dff].

(f) It seems that up to simplicial homeomorphisjms the unique 12-vertex
triangulation (of the homeomorphism class}of\s far as the automorphism group
Aut. (53,) is concerned, itis cyclic of order three, viz. that generated by-AB; 1,

B, > C,1,,C - Aand D — D; Vi € Z/3. On Mg this automorphism
coincides with the order 3 homeomorphism, zo) — (€273 . z1, &%/3 . 7).
However this fre€Z /3 - action differs from the simplicial action — which keeps the
fiber h=1(D) fixed — onS3,\ M.

(g) We note that the quotient map;, — CPZ not only identifies points of
the boundingS® under the Hopf map, but also leads to some additional internal
identifications. Nevertheless the quotient space is@titP! Also it is not known
whether there is any other simplicial 4-ball with bound&fy which givesC PZ in
the same way.
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