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1. Towards the end of [1] on pages 553-554 Sullivan sketched why closed [and
almost-parallelizable]1 hyperbolic manifolds exist in all dimensions. We’ll aim
for this result1 starting from the much simpler goings-on of [2]. In like manner
we’ll review in a sequel1 how this fact was used in this amazing 1977 talk to show
that any non-four dimensional manifold admits a unique lipschitz structure,
surely one of the outstanding results of twentieth century mathematics.

2. In the eighth ‘lecture’ of [2] we saw that, once one thinks of lines as
‘infinite circles’ one is led to a notion of reflection in a circle (inversion) under
which a finite open disk is preserved by reflections in all circles normal to its
boundary. This much generalizes easily to higher dimensions. However, quite
unlike the {p, q} tilings of the finite open 2-disk constructed in [2], for n > 4
a finite open n-ball does not admit a regular tiling by copies of a spherically
curved regular n-polytope. We’ll come to the proof later2, for the moment we’ll
merely lower our ambitions from regularity to crystallographicity (as in the fifth
‘lecture’ of [2] for the classical case), i.e., the symmetries preserving the tiling
shall be required to be transitive on tiles (but maybe not vertices), and assume
first that such a tiling of the finite open n-ball B is given.

3. The symmetries of B—that is, compositions of reflections in (n − 1)-
spheres normal to ∂B—form a continuous group G, and those preserving the
tiling a discrete subgroup Γ thereof. The tiling being crystallographic, the orbit
space B/Γ is obtainable, from any tile of a simply transitive subdivision, by
boundary identifications. So B/Γ is compact, which is the same as saying that
the discrete subgroup Γ is co-compact, i.e., the coset space G/Γ is compact. This
follows because B is the quotient of G by the isotropy subgroup of any point,
and these are compact, for example, compositions of reflections in (n − 1)-
planes passing through the centre of B constitute the isotropy subgroup H of
the centre. Conversely, given a co-compact discrete subgroup Γ of G, one can
construct a crystallographic tiling on B, however to begin with we’ll focus only
on the compactum B/Γ. This is a manifold at least when Γ is torsion-free,
for then Γ ∩ H = {1}. We’ll show that, co-compact and torsion-free discrete
subgroups Γ of G exist in great abundance in all dimensions [and moreover, one
can also ensure that B/Γ minus a point is parallelizable]1.

∗August 6, 2012 (footnotes added in March 2016).
1I was unable to learn the hard part of this result to my full satisfaction in 2011-12, so it

is not in this unfinished paper ... the sequel also remains on my to-do list.
2Only references to Coxeter and Vinberg in an end note are there.
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4. However we’ll work not with G, but with an isomorph of it which con-
sists of linear transformations. To get to this representation we’ll use, a self-
homeomorphism of the closed n-ball, identity on its boundary, which straightens
its curved mirrors and transforms reflection into harmonic conjugation, that
is – Figure 1a – each circular arc normal to ∂B is mapped onto the segment
with the same end-points, and inversion P ↔ P ′, OP.OP ′ = OT 2 in the former
becomes harmonic conjugation Q ↔ Q′, QO/QM = Q′O/Q′M in the latter.
This homeomorphism simply pushes each P out radially to Q as in Figure 1b:
project B stereographically, from the north pole of an n-sphere having ∂B as
its equator onto the southern hemisphere, and then project this hemisphere
vertically back onto B. The stereographic map preserves angles, so the circular
arcs normal to ∂B first become vertical circular arcs on the hemisphere with the
same end-points, which project vertically back to the segments. The verification
of the new recipe for reflection is not so hard either, for we need to check it only
on its axis, i.e., the diameter incident to O, but we’ll omit the details.

Straightening

Linearizing

5. The symmetries of euclidean n-space are commonly linearized by identify-
ing it projectively – Figure 2a – with a constant-time flat of a vector space having
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one more dimension called ‘time’. Likewise, the reflections Q↔ Q′, QO/QM =
Q′O/Q′M of a finite n-ball B are linearized if we identify B projectively with
the surface obtained by revolving, around the time axis, a hyperbola asymptotic
to rays passing through the ends of any diameter. For, a computation which we
omit shows that, if Q and Q′ are on the axis of this reflection, and if the rays
through them meet such a hyperbola in R and R′ – Figure 2b – then the ray
through M shall pass through the mid-point of the chord RR′. So our identifica-
tion transforms the reflection of B into the linear transformation of space-time
which switches R and R′, and keeps the other n−1 components same; therefore
G identifies with the group generated by these linear reflections.

6. In the language of physics, Figure 2 identifies each point of a 3-ball with an
inertial frame, i.e., a parallel pencil of free particles in 4-dimensional space-time.
Since Galileo, the laws of classical physics – see Figure 2a – had been required
to be independent of the observer’s inertial frame, so invariant with respect to
the group of euclidean symmetries of an infinite 3-ball. The finiteness of B
allowed Poincaré to show that the equations proposed by Maxwell to explain
the propagation of light were, analogously, invariant with respect to the group
G of its noneuclidean symmetries. The finiteness of B encodes the law that all
particles must have speeds less than an absolute constant c : indeed, if in Figure
2b, the ball B is situated at time t = 1, then its radius is precisely c.

7. In cartesian coordinates (t, x1, . . . xn) the groupG consists of real matrices
preserving the quadratic form −c2t2 + x21 + · · · + x2n for the hyperbolic surface
of Figure 2b is given by setting it equal to a constant; indeed, G contains all
such matrices g = [gi,j ] with g1,1 positive. This extra condition ensures that the
g-image of the unit time vector is also in the forward cone; if it is distinct we
multiply g with the linear reflection which switches g(1, 0, . . . , 0) and (1, 0, . . . , 0)

to obtain

[
1 O
O h

]
– these matrices form the subgroup H of G – and use the

fact that h, an isometry of the euclidean vector subspace t = 0, is a product of
at most n reflections of the same, which can be proved thus: if h does not fix
any unit vector v, multiply it with the reflection in the right bisector of a v and
h(v), now consider the euclidean subspace orthogonal to v, etc.

8. For example, the ray through (1, c tanh θ, 0, . . . , 0) ∈ B meets the tangent

hyperbola in (cosh θ, c sinh θ, 0, . . . , 0) and

 cosh θ −c−1 sinh θ O
c sinh θ − cosh θ O
O O I

 ∈ G is

the linear reflection that switches this point with the unit time vector. Multiply-
ing this reflection with the reflection x1 ↔ −x1 one gets a one-parameter sub-

group

 cosh θ c−1 sinh θ O
c sinh θ cosh θ O
O O I

 of G consisting of translations – i.e., prod-

ucts of two reflections having the same axis – of B. Multiplying any orientation
preserving g ∈ G with a suitable translation one can fix the unit time vector,
i.e., obtain an orientation preserving euclidean isometry of t = 0, which can be
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decomposed into mutually orthogonal two-dimensional rotations.

9. For the infinite n-ball n independent translations generate a co-compact
subgroup of motions Γ ∼= Zn, and dividing out its action gives the n-torus, a
closed parallelizable manifold. Likewise, for a finite 1-ball B, the powers of a
non-identity translation form a discrete subgroup isomorphic to Z and dividing
by its action gives the circle. For n = 2 just two translations won’t do because
there is no rectangle with circular sides normal to ∂B, and for higher n also
n translations seem too few, however one should be able to do the job with
more: it seems to us that G should have discrete subgroups Γ of—or at least
generated solely by—translations which are co-compact, and that the closed n-
manifold obtained by dividing the finite ball B out by any such Γ should be
almost parallelizable? For n = 2 this is true and more: using the regular tilings
of [2] one gets lots of discrete co-compact groups consisting solely of translations
and any closed orientable 2-manifold is almost parallelizable. This last because
any closed manifold admits a nonzero tangent vector field in the complement
of a point—since the finitely many singularities of a generic vector field can be
enclosed in a ball—and when the dimension is two and one has orientability
there is also a second normal tangent vector field. However the torus does not
occur, more generally, for any even n, B/Γ can never be parallelizable, as follows
by using Gauss-Bonnet, see e.g., Ratcliffe [3], p. 528. On the other hand, when
n is odd, B/Γ may well be parallelizable, for example, all closed orientable
3-manifolds are parallelizable, so this shall always be the case for n = 3.

10. The group of motions of an infinite n-ball, assumed identified with the
flat t = 1, consists of all matrices which preserve this flat and its quadratic
form x21 + · · · + x2n. Its discrete subgroup, of all matrices with integer entries,
is co-compact because it contains the n translations xi 7→ xi + 1. The group
G of motions of an n-ball B of radius c on t = 1, assumed identified with
its tangent hyperboloid, consists of all matrices with first entry positive which
preserve −c2t2 + x21 + · · ·+ x2n. Is the discrete subgroup Γ of G, of all matrices
with integer entries, co-compact? A couple of examples for the case n = 1 will
show that the answer depends on the nature of c:-

(a) If c = 2—more generally if c is any rational number—then Γ is of order
2, i.e., it coincides with the isotropy subgroup Γ ∩ H of the unit time vector
(in general the n reflections xi ↔ −xi generate this subgroup of order 2n),
because the hyperbola −22t2 + x2 = −22 has no integral point with t > 1, this
because t2 − 1 is not the square of any integer for t > 1. (On the other hand
the ‘discrete pythagorean theorem’ of [2] shows that for c rational the hyperbola
−c2t2 + x2 = −c2 has infinitely many rational points.)

(b) If c2 = 2 then Γ is co-compact and the hyperbola −2t2 + x2 = −2 has
infinitely many integral points with t > 0 all obtainable from (1, 0) by the action
of an index 2 subgroup Z of Γ. We note that there is no integral point with
t = 2 but for t = 3 we have (3,±4); the linear reflection (1, 0) ↔ (3, 4) is

given by

[
3 −2
4 −3

]
and multiplying it with the reflection

[
1 0
0 −1

]
one gets
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the translation

[
3 2
4 3

]
whose powers applied to (1, 0) must generate all the

integral points of our hyperbola, for, if there was any other, then, by applying
a suitable power of this translation to it, we would get an integral point on the
hyperbola nearer to (1, 0) than (3,±4).

The above method works even if 2 is replaced by any whole number d which
is not a perfect square, and is essentially Brahmagupta’s, however the existence
of an integral point with t > 1—the least such t can be very big indeed!—on the
hyperbola −dt2+x2 = −d was proved much later by Lagrange, who also showed
that these integral points were intimately related to the continued fraction of

√
d.

For d square-free, these integral points correspond (cf. §18) to the first columns of
the matrices of Γ, which are also determined by their orthogonal second columns,
which correspond to the integral points on the hyperbola −dt2 + x2 = 1, and
its factorization (x+ t

√
d)(x− t

√
d) = 1 shows that this method gives also the

group of units of the ring Z[
√
d ] of algebraic integers. Lagrange’s argument

was simplified—using his pigeon hole principle—by Dirichlet, who also worked
out the group of units of any algebraic number field. Setting n = 1 one can
read §§ 11, 13 below as yet another proof of Lagrange’s theorem, and the fact
that this argument works for all n gives similar examples—see §12—of discrete
co-compact subgroups Γ of G in dimensions 2 and 3.

11. A lattice of Rn+1 consists of all integral combinations of any basis – so
two bases give the same lattice iff they are related by an integral matrix whose
inverse is also integral – and lattices are deemed close to each other iff they can
be generated by bases close to each other. The absolute value of the determinant
is the same for all generating bases and is called the volume of a lattice, and
another important invariant of a lattice is the minimum separation between
its elements. A set of lattices has compact closure if and only if separation is
bounded from below and volume from above over it; we’ll prove the non-trivial
‘if’ part of this criterion in §13, after giving some corollaries in §12.

These all pertain to the group G of linear isomorphisms of space-time pre-
serving the quadratic form Q := −c2t2 + x21 + · · · + x2n with c2 integral and its
discrete subgroup Γ of integral matrices. The matrices of G are those whose
columns have ‘squared lengths’ −c2, 1, . . . , 1 and are pairwise orthogonal with
respect to the quadratic form, and all such matrices have determinants ±1; so,
g 7→ g(Zn+1) identifies G/Γ with a closed subset of lattices of volume one; fur-
thermore, separation is bounded from below if and only if −c2t2+x21+· · ·+x2n = 0
has no nontrivial integral solution. Indeed, if Q(v) = 0 for a nonzero v ∈ Zn+1,
we can find gm ∈ G such that gm(v) is on the same ray as v and arbitrarily close
to the origin, for example, in any 2-plane through this ray—cf. Figure 2b—we
can reflect first in the time axis, and then use the linear reflection which inter-
changes the resulting point with the required gm(v); so separation cannot be
bounded below. Conversely, if vm is a sequence of nonzero vectors of Zn+1 such
that gm(vm) approaches the zero vector, then Q(gm(vm)) = Q(vm) approaches
zero, i.e., these integers are eventually equal to zero.

12. So integral matrices preserving −t2 + x21 + · · · + x2n give a non co-
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compact Γ for all n ≥ 1, while −2t2 + x21 + · · · + x2n gives a co-compact Γ for
n = 1 only. Again, −3t2 + x21 + · · ·+ x2n, more generally c2 ≡ 3 mod 4, gives a
co-compact Γ if and only if n = 1 or 2, because it is easily checked that even
the congruence −3t2 + x21 + x22 ≡ 0 mod 4 has no nontrivial integral solution.
Likewise, −7t2+x21+· · ·+x2n, more generally c2 ≡ 7 mod 8, gives us a co-compact
Γ if and only if n = 1, 2 or 3, because the congruence −7t2 + x21 + x22 + x23 ≡ 0
mod 8 has no nontrivial integral solution: for then it would have a solution with
one of the squares odd, that term would be 1 mod 8, but the remaining three
terms – each 0, 1 or 4 mod 8 – can’t add up to the requisite 7 mod 8.

However, for n ≥ 4, and any positive integer m, integer matrices preserving
−mt2 + x21 + · · ·x2n always give us a non co-compact discrete subgroup Γ of G.
Indeed, −mt2+x21+· · ·x2n = 0 has a solution with t = 1, because another famous
theorem of Lagrange assures us that any whole number m can be written as a
sum of four squares. (More generally, for n ≥ 4, and mi any positive integers,
it is known that the equation −mt2 +m1x

2
1 + · · ·+mnx

2
n = 0 has a nontrivial

integral solution. This means that we still won’t get this way, for n ≥ 4, a
compact G/Γ, even if we were to modify Figure 2b to an ellipsoidal hyperboloid,
with the n-disk B now an oblique section of its asymptotic cone.)

13. Since the set of lattices which admit bases whose members have lengths
in a closed subinterval of the positive reals is compact, the criterion of §11 follows
from: if a lattice L of Rn+1 has separation s and volume V then it has a basis

whose members have lengths ≤ ( 2√
3
)

n(n+1)
2

V
sn . To see this choose a nonzero v ∈ L

of minimum length s. Since v extends to a basis of L, orthogonal projection
of L gives us a lattice L in the n-dimensional orthogonal complement of v in
Rn+1. Clearly L has volume V/s. Further, if w ∈ L has a nonzero projection

ON ∈ L, then ON has length at least
√
3
2 s, because it is the altitude of an acute

angled lattice triangle OBC – see Figure 3 – on its smallest side BC of length s.
We can assume inductively that L has a basis of vectors u2, . . . , un+1 of lengths

≤ ( 2√
3
)

(n−1)n
2

V/s

(
√

3
2 s)n−1

. For each of these vectors u = ON ∈ L we define ũ ∈ L
to be either OB or OC depending on which makes the smaller angle with ON .
This gives us a basis v, ũ2, . . . , ˜un+1 of L with lengths at most 2√

3
times bigger,

so with lengths obeying the required bound.
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14. The natural idea of restricting c2 to Z gave us lots of discrete subgroups
Γ of G, and quite a few of these were co-compact in dimensions ≤ 3, but in
higher dimensions they were all much too small. This suggests using a bigger
subring of the reals than Z, but since such a subring is dense in R, the fear now
is that we’ll lose the discreteness of Γ in G. However, this is not necessarily so,
to show which we’ll now work out a third one-dimensional example:-

The two previous examples in §10 had dealt with c = 2 and c2 = 2, now we’ll
do c4 = 2. In particular we’ll find all points on the hyperbola −

√
2t2 + x2 = 1

with coordinates of the type p+ q
√

2 where p and q are integers. These numbers
p + q

√
2 are closed under addition and multiplication and replacing each t =

p+ q
√

2 by t = p− q
√

2 preserves these operations. Further, all pairs (t, t) form
a lattice of R2 – see Figure 4 – because any (p + q

√
2, p − q

√
2) is an integral

combination of the orthogonal vectors (1, 1) and (
√

2,−
√

2). Moreover, for the
sought-for points (t, x) on the hyperbola, the lattice points (t, t) must be in the

strip |t| < 2−
1
4 , this because −

√
2t2 + x2 = 1 implies x 6= 0 and

√
2 t

2
+ x2 = 1.

So, hoping that there exists a solution with a positive t, we’ll merely totally
order these lattice points in the strip by increasing first coordinate, and just
start checking one by one. The first such lattice point T1 = (1 +

√
2, 1 −

√
2)

does not work because −
√

2(1 +
√

2)2 + x2 = 1 gives us x2 = 5 + 5
√

2 which
is not equal to (p + q

√
2)2 = (p2 + 2q2) + 2pq

√
2 for any integers p and q;

likewise, T2 = (2 +
√

2, 2 −
√

2) leads to x2 = 9 + 6
√

2 which is not of the
desired type either; but quite fortunately for us, the very next lattice point
T3 = (2 + 2

√
2, 2− 2

√
2) gives x2 = 17 + 12

√
2 = (3 + 2

√
2)2.
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The solution (2+2
√

2, 3+2
√

2) nearest to (0, 1) on−
√

2t2+x2 = 1 determines

in turn the translation

[
3 + 2

√
2 2 + 2

√
2

4 + 2
√

2 3 + 2
√

2

]
∈ G whose first column is nearest

to (1, 0) of the required kind on −
√

2t2 + x2 = −
√

2. It follows – cf. the second
example – that, the subgroup Γ of matrices with entries p+ q

√
2 is discrete and

co-compact, is generated by this matrix and x↔ −x, and the Γ-orbits of (1, 0)
and (0, 1) give us all points with such coordinates on both hyperbolas.

Indeed ‘Brahmagupta’s method’ extends not just to
√

2 but to any positive
real algebraic integer whose square root is of a higher degree and whose other
conjugates are all real and negative: one strip-searches similarly for a non-trivial
solution of the required kind using a lattice whose dimension equals the degree
of the algebraic integer, with the success of the search now guaranteed – cf.
Fricke [4] – by Dirichlet’s generalization of Lagrange’s theorem mentioned in §10.
However, postponing all this, we’ll now show directly that our third example–
unlike our second–works in all dimensions.

15. Matrices with entries p+q
√

2 which preserve −
√

2t2+x21+ · · ·+x2n form
a discrete and co-compact subgroup Γ of G for all n ≥ 1. For the discreteness
of Γ in G we note from Figure 4 that, though any bounded open interval of the
reals has infinitely many p+ q

√
2 ’s, only finitely many of them have |p− q

√
2|

less than a given bound; and that this remark is applicable to our matrix entries
because their p−q

√
2 ’s are the corresponding entries of a matrix whose columns

are orthogonal and have squared lengths
√

2, 1, . . . , 1 with respect to the positive
definite quadratic form

√
2t2 + x21 + · · ·+ x2n, so |p− q

√
2| ≤ 2

1
4 .

The planar lattice of Figure 4 generalizes to the lattice L ⊂ Rn+1 ×Rn+1 of
all pairs of vectors (v; v) with corresponding entries p + q

√
2 and p − q

√
2, it

has as integral basis the 2(n+ 1) orthogonal vectors (. . . 0, 1, 0 . . . ; . . . 0, 1, 0 . . .)
and (. . . 0,

√
2, 0 . . . ; . . . 0,−

√
2, 0 . . .). Given any g ∈ G, a real matrix (with first

entry positive) which preserves Q := −
√

2t2 + x21 + · · · + x2n, and another real
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matrix h of the same size (no condition on the first entry now) which preserves
the positive quadratic form Q :=

√
2t2+x21+· · ·+x2n, we’ll denote by (g;h)(L) ⊂

Rn+1×Rn+1 the lattice consisting of all pairs (g(v);h(v)). We have (g;h)(L) = L
if and only if g ∈ Γ and h = g, the matrix obtained from g by changing each
entry p+q

√
2 to p−q

√
2: to see this note that (g(. . . 0, 1, 0 . . .);h(. . . 0, 1, 0 . . .)) is

the ith column of g followed by that of h. So (g;h)(L) 7→ g induces a surjection
from the set of all these lattices to G/Γ, and since it is obviously continuous, it
suffices to show that, this set {(g;h)(L)} of lattices is compact.

This we’ll check much as before in §11. That, this set is closed, follows from
the nature of the defining prescriptions on the columns of the real matrices g
and h, viz., that they be orthogonal and have squared lengths ∓

√
2, 1, . . . , 1

with respect to the quadratic forms Q and Q. Further, since g and h have
determinants ±1, all these lattices have the same volume as L, that is (2

√
2)n+1,

the (n+ 1)th power of that of the planar lattice of Figure 4. Finally, separation
is bounded from below on this set of lattices. Otherwise, we can find a sequence
of matrices gm and hm together with a sequence of nonzero vectors (vm; vm)
of L such that the 2(m + 1)-vector (g(vm);h(vm)) approaches the zero vector.
Evaluating the pair of quadratic forms on this sequence, the pairs of numbers
(Q(vm), Q(vm)) of type (pm + qm

√
2, pm − qm

√
2) approach zero. Applying

again the remark used before for discreteness, this means that for all m big
these numbers are zero, which means there exists a nonzero vector (v; v) of L
such that Q(v) = 0, an impossibility because Q is positive definite.

16. Matrices of the above Γ, which map to the identity matrix when p and q
are considered mod `, form a normal subgroup Γ`, and we’ll now show that, if `
is an odd prime, then B/Γ` is a closed hyperbolic n-manifold, i.e., it is compact
without singularities and has B as an unbranched covering space.

The group Γ/Γ` is finite, so the compactness of B/Γ implies that of B/Γ`.
Moreover, Γ` is torsion-free for ` 6= 2. Indeed, in §15, we saw that Γ was
isomorphic to a subgroup of isomorphisms of the lattice L ⊂ Rn+1 × Rn+1, so,
using that integral basis of L, to a group of integral matrices of size 2n + 2.
So it suffices to show: an integral matrix of type I + `dA, where d ≥ 1 and
the nonzero matrix A is not divisible by `, has no prime power k equal to the
identity matrix I. This is so because (I + `dA)k = I + k`dA +

(
k
2

)
`2dA2 + · · ·,

and, for k 6= `, resp. k = `, the second term is the only one on the right which is
divisible exactly by the dth, resp. the (d+ 1)th, power of `. On the other hand,
for ` = 2 = k and d = 1, the second and third terms are both divisible exactly
by 22; and indeed, Γ2 has some 2-torsion, e.g., the reflections xi ↔ −xi; the
remaining torsion of Γ lies outside these congruence subgroups Γ`.

The action of a discrete subgroup of symmetries is discontinuous on B, so,
each x ∈ B has a neighbourhood V such that g(V ) = h(V ) iff g(x) = h(x) and
g(V )∩h(V ) = ∅ otherwise. If the discrete subgroup happens to be torsion-free,
the compactness of the isotropy subgroup of x implies g(x) = h(x) iff g = h, so
then B is an unbranched covering of the orbit space.

17. All this and more, for example, fundamental domains and tilings, about
the action of discrete subgroups of symmetries, especially those of a disk—the
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case considered in the ‘eighth lecture’ of [2]—has been known for very long,
however we’ll approach these matters differently here.

We recall that it has often been argued—see for example [5]—that ‘physical
space-time’ is discrete. If so, a natural candidate for this appellation is the subset
of geometric space-time consisting of points whose coordinates are integers, or
perhaps, some algebraic integers. So, the associated cartesian subdivision S
of the hyperboloid −c2t2 + x21 + · · · + x2n = −c2 into closed cells, each made
up of points around an integral point which are separated from it by no more
than from any other integral point, deserves our close attention. Indeed, this
separation between two points P and Q of the hyperboloid, that is, the positive
length of the ‘space-like vector’

−−→
PQ with respect to our quadratic form, is a

physically measurable quantity for n = 3: see Synge [6], pp. 24-26.
The “cell” (the inverted commas here, and at some places below, are re-

minders that it may not be homeomorphic to a closed n-ball) around each in-
tegral point consists, alternatively, of points of the hyperboloid contained in all
the closed half-spaces containing our point and bounded by hyperplanes which
are right-bisectors, with respect to the quadratic form, of the segments joining
it to other integral points. So if, as before, we projectively identify the hyper-
boloid with the ball B of radius c which is tangent to it at its centre, then each
cell of B is convex in the usual sense.

We’ll see from the examples below that these convex “cells” are often com-
pact, even polytopes, however there is, as such, no reason to believe that S is
always crystallographic, or even that its polytopes are congruent to each other.
The point being that, though our hyperplane arrangement, so also our subdivi-
sion, is preserved by the action of Γ, it is seldom the case that Γ acts transitively
on the integral points of the hyperboloid. However, it may be transitive in some
examples in all dimensions, which shall suffice to give us, a crystallographic tiling
S of hyperbolic n-space by convex polytopes?

18. Indeed, Γ can act non-transitively even in dimension one. For example,
if (t, x) is an integral point of −2m2t2 + x2 = −2m2, then x is divisible by m,
and (t, x/m) is an integral point of −2t2 +x2 = −2, which we considered before
in §10. So now (3,±4m) are the integral points nearest to (1, 0). The translation

which moves (1, 0) to (3, 4m) is given by

[
3 2/m

4m 3

]
, and more generally its

jth power is given by likewise dividing and multiplying the off-diagonal entries

of

[
3 2
4 3

]j
by m. So, if m does not divide the second entry of the first row

of

[
3 2
4 3

]j
for 1 ≤ j ≤ k, these powers of the translation are given by non-

integral matrices. So, the translation generates all the integral points and only
these, but the subgroup of integral translations is smaller with an arbitrarily
large index. This doesn’t happen if c2 is a square-free integer.

19. Turning now to 2-dimensional examples, we’ll first work out the central
cell of the subdivision S of the disk B of radius c, tangent to the hyperboloid
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−c2t2 + x2 + y2 = −c2 at (1, 0, 0), for c2 = 1, 2, 3, 7, 11 and
√

2.
The points (t, x, y) equidistant—with respect to the quadratic form—to two

distinct points P = (tP , xP , yP ) and Q = (tQ, xQ, yQ), i.e., the right-bisecting

plane of PQ, has equation −c2(t− tP+tQ
2 )(tP − tQ) + (x− xP+xQ

2 )(xP − xQ) +

(y− yP+yQ
2 )(yP −yQ) = 0. So, if P and Q are on the hyperboloid, it is the plane

through the equidistant origin, which contains the line given by t =
tP+tQ

2 and

(x− xP+xQ

2 )(xP −xQ)+(y− yP+yQ
2 )(yP −yQ) = 0. The rays through the points

(
tP+tQ

2 , x, y) of this line meet B in points (1, X, Y ) satisfying (X− xP+xQ

tP+tQ
)(xP −

xQ) + (Y − yP+yQ
tP+tQ

)(yP − yQ) = 0, so this is the equation of the right-bisector of

the points P = (1, xP

tP
, yPtP ) and Q = (1,

xQ

tQ
,
yQ
tQ

) of B under our identification of

the hyperboloid with this disk. Using Q = (1, 0, 0) we see that, the central cell
of S is defined by the inequalities (X − xP

tP+1 )xP + (Y − yP
tP+1 )yP ≤ 0 as P runs

over all the integral points of the hyperboloid, however only a handful of P ’s are
needed to determine it in the examples considered:-

For c2 = 1 it is a 4-gon minus its vertices, which are on the boundary of B,
its sides being the bisectors of the segments from (1, 0, 0) to the four integral
points (3,±2,±2). Note that—in sharp contrast to §10—our hyperboloid has
an infinity of integral points (this is true for any rational c2), more precisely, a
theorem of Fermat tells us that, t2P − 1 is a sum x2P + y2P of two squares iff no
prime equal to 3 mod 4 occurs an odd number of times in either tP −1 or tP +1.
Also note that, if (t, x, y) is on the hyperboloid, then so is the point obtained by
interchanging, or by changing the sign of one or both of, the last two coordinates.
So, to confirm that Figure 5(i) is the central “cell” it suffices to check that, if
(tP , xP , yP ) is any integral point with tP > 1 and 0 ≤ xP ≤ yP , then the vertex
(0, 1) satisfies (X− xP

tP+1 )xP +(Y − yP
tP+1 )yP ≤ 0, i.e., − xP

tP+1xP +(1− yP
tP+1 )yP ≤

0, i.e., (tP + 1)yP ≤ x2P + y2P = t2P − 1, i.e., yP ≤ tP − 1, which is true because
tP has a bigger square than yP .

For c2 = 2 too – Figure 5(ii) – it is a 4-gon minus its vertices, its sides
the bisectors of the segments which join (1, 0, 0) to the integral points (3,±4, 0)
and (3, 0,±4). To confirm this it suffices to check that, if (tP , xP , yP ) is any
integral point with tP > 1 and 0 ≤ xP ≤ yP , then the vertex (1, 1) satisfies
(X − xP

tP+1 )xP + (Y − yP
tP+1 )yP ≤ 0, i.e., (1− xP

tP+1 )xP + (1− yP
tP+1 )yP ≤ 0, i.e.,

(xP + yP )(tP + 1) ≤ x2P + y2P = 2(t2P − 1), i.e., xP + yP ≤ 2(tP − 1). Which is
true because y2P = 2t2P − x2P − 2 = (2tP − xP )2 − 2(tP − xP )2 − 2 shows that
the square (2tP − xP )2 exceeds the square y2p but has the same parity, so it is
not the next square, so yp ≤ 2tP − xP − 2, i.e., xP + yP ≤ 2(tP − 1).
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For c2 = 3 it is a 4-gon – Figure 5(iii) – its sides bisectors of segments from
(1, 0, 0) to the integral points (2,±3, 0) and (2, 0,±3) of −3t2 + x2 + y2 = −3.
Simply by noting whether or not 3(t2 − 1) is a sum of two squares, and if it is,
writing it as such in all possible ways, it is easy to find integral points close to
(1, 0, 0), given below are all with 1 ≤ tP ≤ 10 and 0 ≤ xP ≤ yP .

tP 1 2 4 5 7
xP 0 0 3 6 0
yP 0 3 6 6 12

The circumcircle of our 4-gon has radius r =
√

2. Also, the right-bisector of
the segment from (1, 0, 0) to a point (tP , xp, yP ) on −c2t2 + x2 + y2 = −c2 is

tangent to the central circle of B of radius r iff tP = c2+r2

c2−r2 . For, this can happen

iff the mid-point (α, β) := ( xP

tP+1 ,
yP
tP+1 ) is its point of tangency, when −c2t2P +

α2(tP +1)2+β2(tP +1)2 = −c2 gives us −c2t2P +r2(tP +1)2 = −c2, solving which
quadratic in tP we get the stated value. For example, 3+2

3−2 = 5, and the bisector

of the segment from (1, 0, 0) to the point (5, 6, 6) of−3t2+x2+y2 = −3 is tangent
to the circumcircle at ( 6

5+1 ,
6

5+1 ) = (1, 1), a vertex of our 4-gon. Since bisectors
of segments to integral points with bigger tP ’s won’t intersect this circle, it only
remains to check that (1, 1) satisfies (X − xP

tP+1 )xP + (Y − yP
tP+1 )yP ≤ 0 for the

integral point (tP , xP , yQ) = (4, 3, 6). Substitution shows that it is so, in fact
one has equality, this bisector too passes through the vertex (1, 1).
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For c2 = 7 it is a 12-gon – Figure 5(iv) – its sides bisectors of segments from
(1, 0, 0) to the eight integral points with tp = 6 and the four with tP = 8. These
are the first two values of t > 1 for which 7(t2 − 1) = 7(t − 1)(t + 1) contains
any prime equal to 3 mod 4—so in particular seven—an even number of times,
a necessary and sufficient condition for it to be a sum of two squares, and given
below are all the integral points with 1 ≤ tP ≤ 26 and 0 ≤ xP ≤ yP .

tP 1 6 8 15
xP 0 7 0 28
yP 0 14 21 28

We’ll first work out the 8-gon determined by the points with tP = 6. The
bisector of the segment to (6, 7, 14) is (X− 7

7 )7+(Y − 14
7 )14 = 0, i.e., X+2Y = 5.

Its intersections with the bisectors of the segments to (6,−7, 14) and (6, 14, 7),
i.e., −X + 2Y = 5 and Y + 2X = 5, give us the vertices (0, 52 ) and ( 5

3 ,
5
3 ),

the other six vertices are symmetrical. Since 5
3

√
2 < 5

2 <
√

7, this 8-gon is

contained in B and has circumradius r = 5
2 . Also, since c2+r2

c2−r2 = 53
3 < 18, only

the bisectors contributed by integral points with tP ≤ 17 can cut its circumcircle.
The midpoint of the segment to (8, 0, 21) is (0, 219 ) and 21

9 < 5
2 , so the bisectors

of the segments to the four points with tP = 8 do chop off four corners of the
8-gon leaving us with, the 12-gon whose vertices in the first quadrant are ( 1

3 ,
7
3 ),

( 5
3 ,

5
3 ) and ( 7

3 ,
1
3 ). However, the points with tP = 15 don’t matter, because the

midpoint of the segment to (15, 28, 28) is ( 28
16 ,

28
16 ) and 28

16 >
5
3 .

For c2 = 11 too it is a 12-gon – Figure 5(v) – its sides bisectors of segments
from (1, 0, 0) to the four integral points with tP = 10 and the eight with tP = 12.
All the integral points with 1 ≤ tP ≤ 44 and 0 ≤ xP ≤ yP are given below.

tP 1 10 12 21
xP 0 0 22 22
yP 0 33 33 66

The bisector of the segment to (10, 0, 33) is Y = 3, and meets X = 3, the
bisector of the segment to (10, 33, 0), in (3, 3); so, since 3

√
2 >
√

11, the 4-gon
determined by the points with tP = 10 is not contained in B. The bisector of
the segment to (12, 22, 33) is (X − 22

13 )22 + (Y − 33
13 )33 = 0, i.e., 2X + 3Y = 11.

It meets Y = 3 at (1, 3), and 2Y + 3X = 11, the bisector of the segment to
(12, 33, 22), at ( 11

5 ,
11
5 ). So, the vertices of our 12-gon in the first quadrant are

(1, 3), ( 11
5 ,

11
5 ) and (3, 1). Since 11

5

√
2 <
√

10 <
√

11, this 12-gon is contained

in B and has circumradius r =
√

10. Also c2+r2

c2−r2 = 21, so the bisectors of the
segments to the eight points with tP = 21 are tangent to the circumcircle at
their midpoints. These points of tangency coincide with eight of the vertices,
for example, the bisector of the segment to (21, 22, 66) is tangent at (1, 3). The
bisectors of segments to points with tP > 21 don’t cut the circumcircle.

If c2 is irrational, (1, 0, 0) is the only point on −c2t2 + x2 + y2 = −c2, t > 0
with coordinates in Z, so our “cell” is all of B! However, the integers over which
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the hyperboloid is defined is the subring of R generated by 1 and c2, accordingly,
in the next example, it is this bigger ring Z[

√
2], not Z, that concerns us.

For c2 =
√

2 the central cell of S is an 8-gon –– Figure 5(vi) – its sides
bisectors of segments from (1, 0, 0) to the 8 integral points with t = 1 +

√
2 on

−
√

2t2 + x2 + y2 = −
√

2. The bisector of the segment to (1 +
√

2, 1, 1 +
√

2)

is (X − 1
2+
√
2
) + (Y − 1+

√
2

2+
√
2
)(1 +

√
2) = 0, i.e., X + (1 +

√
2)Y = 2, because

1
2+
√
2

+ (1+
√
2)2

2+
√
2

= 4+2
√
2

2+
√
2

= 2. It meets −X + (1 +
√

2)Y = 2 — the bisector

of the segment to (1 +
√

2,−1, 1 +
√

2) — in (0, 2
1+
√
2
) = (0,−2 + 2

√
2); and, it

meets Y +(1+
√

2)X = 2 — the bisector of the segment to (1+
√

2, 1+
√

2, 1) —
in ( 2

2+
√
2
, 2
2+
√
2
) = (2−

√
2, 2−

√
2). These then are two of the vertices of our 8-

gon, and the remaining six are clear by symmetry. The 8-gon is contained in B,
indeed all its vertices are on the circle of radius r where r2 = (−2+2

√
2)2 = 4(3−

2
√

2) = 2(2−
√

2)2 is less than c2 =
√

2. So c2+r2

c2−r2 =
√
2+4(3−2

√
2)√

2−4(3−2
√
2)

= 12−7
√
2

−12+9
√
2

=

(12−7
√
2)(−12−9

√
2)

144−162 = (−144+126)+(84−108)
√
2

−18 = −18−24
√
2

−18 = 1 + 4
3

√
2 < 2 +

√
2.

That is, less than all positive t other than t = 1 +
√

2 such that t ∈ Z[
√

2] and
|t| < 1 – cf. §14 and Figure 4 – a necessary condition for (t, x, y) to be an integer

point, for −
√

2t2 + x2 + y2 = −
√

2 iff
√

2 t
2

+ x2 + y2 =
√

2. So the bisectors
of segments to integral points with tP > 1 +

√
2 don’t cut the 8-gon.

That there are 8 and only 8 integral points with t = 1 +
√

2 can be seen
thus. We must have |x|, |y| < 2

1
4 , but 0, 1 and 1 +

√
2 are the only non-negative

integers ≤
√

2((1 +
√

2)2− 1) which satisfy this condition, from which it follows
easily that

√
2((1 +

√
2)2− 1) = 12 + (1 +

√
2)2 is the unique way of writing the

left hand side as a sum of two squares in Z[
√

2].

tP 1 1 +
√

2 3 + 2
√

2 5 + 3
√

2 5 + 4
√

2

xP 0 1 0 1 +
√

2 3 + 2
√

2 2 + 2
√

2

yP 0 1 +
√

2 4 + 2
√

2 5 + 4
√

2 5 + 3
√

2 6 + 4
√

2

We in fact computed, all integral points P with 1 ≤ tP ≤ 7 + 5
√

2 and
0 ≤ xP ≤ yP , these are shown above. Starting with 0, and adding 1 or

√
2

depending on which gives a number whose conjugate is less than 2
1
4 in absolute

value, we got a long list without gaps of such integers. Then, we squared them.
Then, subtracted 1 from each and multiplied by

√
2 to get the possible values

of
√

2(t2 − 1). Finally, we scanned the previous line to obtain all the ways, if
any, in which such a possibility is a sum of two squares.
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This computation is depicted in Figure 6, which uses again the lattice of
§14, but now that strip has width 2.2

1
4 . The list gives in order the x-coordinate

of its lattice points. That both operations—adding 1 and adding
√

2—can’t
keep us in the strip is clear because the vertical height 1 +

√
2 of the lattice

rectangles is more than the width of the strip. However, a machine performing
this computation shall eventually halt. This because Z[

√
2] is dense in the reals,

so we shall reach a lattice point whose distance from the upper boundary of
the strip is at most 1, and, from the lower boundary at most

√
2. Then neither

operation keeps us in the strip, and the next lattice point in the strip is the
diagonally opposite point of the lattice rectangle, so we must now add 1 +

√
2

if we want to continue the list. Alternatively, we can avoid this halting problem
by searching the slightly wider strip of width 1 +

√
2, when the machine won’t

stop because there is no lattice point with y = 1+
√
2

2 − 1.

20. To propagate the properties of the central cells of these examples to all
the cells of S we’ll use a method which is quite general.

The subdivision S of the open n-ball B of radius c is preserved by any sym-
metry of B which restricts to a permutation of the integral points. This is
immediate from the definition of the subdivision. From now on by a symmetry
of S we’ll always understand any such symmetry of B, and S shall be called
crystallographic if its symmetries act transitively on its cells.

We can join the centre to any integral point by a path which avoids points
on the boundaries of cells lying on more than one bisectors. Clearly the given
integral point can be enclosed in a concentric open n-ball Br of radius r < c.
Also, given any Br we can find another Br′ which contains it and is such that
the bisector of any segment PQ with P ∈ Br and Q ∈ B \ Br′ does not meet
Br. Indeed, this bisector is the member, of the pencil of hyperplanes orthogonal
to the line PQ, which passes through the mid-point of the segment PQ. As Q
recedes away from P along this line towards the horizon, so does this mid-point,
so there comes a stage after which this bisector does not cut the closed ball Br.
The assertion follows by using the compactness of the space of all directions at
all the points of Br. So, Br is covered by the cells σP of S around the finitely
many integral points P in Br′ and the boundaries in Br of these Br ∩ σP ’s are
on the bisectors of the finitely many pairs of integral points in Br′′ . The points
of these boundaries which are contained in more than one of these finitely many
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hyperplanes form a closed subset of Br of codimension ≥ 2, so its complement
in Br is path-connected. In particular, there is a path in this complement from
the centre to the given integral point.

Now suppose that, the central cell σ0 of S is a polytope, and its facial struc-
ture is known to us (some or all of its vertices may be on the horizon). Then,
for S to be a (face-to-face) crystallographic tiling by congruent polytopes, it is
necessary that each facet s of the central polytope is shared by just one other cell
of S which is its image under a symmetry fs of S (note that fs must image
some facet of the central cell, possibly s itself, onto s).

This obviously necessary condition is also sufficient. Consider any path of
the above kind from the centre to any integral point P , and write in order the
cells of S which this path meets: σ0, σ1, ..., σk. Since the path does not go
through any face of σ0 of dimension less than n− 1, we must have σ1 = fs1(σ0)
for some facet s1 of σ0. So σ1 is a congruent polytope, and, for each of its
facets fs1(s), the symmetry fs1fsf

−1
s1 of S throws this polytope on a unique

cell sharing this facet with it. Once again, because our path avoided the lower
dimensional faces of σ1, the next cell σ2 must be one of these, say fs1fs2(σ0).
Continuing in this manner we obtain after k steps a symmetry fs1fs2 . . . fsk of
S that throws the central cell σ0 on the cell σk around P .

The examples of §19 give crystallographic tilings S of the open disk B of
radius c. We’ll show this by displaying, for each of these examples, an fs as
above for a maximal set—it has cardinality at most two—of sides s of the central
polygon, which are inequivalent under the obvious symmetries, (t, x, y) maps to
(t,−x, y), (t, x,−y) or (t, y, x), of S around the centre. Therefore, the matrices
displayed below, together with these central symmetries, generate from (1, 0, 0)
all the integral points of the hyperboloid, for each of these examples.

For c2 = 1, let fs1 ∈ G be the reflection in the side s1 of the central “4-gon”
which bisects (the segment joining) the integral points (1, 0, 0) and (3, 2, 2) of
−t2 + x2 + y2 = −1. From the fact that fs1 switches (1, 0, 0) and (3, 2, 2) and
keeps all orthogonal vectors, e.g. (0, 1,−1), fixed, an easy calculation shows that

its matrix is

 3 −2 −2
2 −1 −2
2 −2 −1

. Since this matrix is integral, this linear map of

determinant −1 restricts to a permutation of the integral points of space-time,
so also to a permutation of the integral points on the hyperboloid.

For c2 = 2, the reflection in the side s1 of the “4-gon” bisecting the points

(1, 0, 0) and (3, 4, 0) of−2t2+x2+y2 = −2 has an integral matrix

 3 −2 0
4 −3 0
0 0 1

,

so again this reflection can serve as our fs1 .
The above two examples are in fact isomorphic in a natural sense, but we’ll

defer this to the next section. The other examples are not isomorphic to these
or to each other. However, it turns out that, with just one exception, reflections
in the sides of the central polygon continue to do the needful.
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For c2 = 3, let fs1 =

 3 −2 −2
2 −1 −2
2 −2 −1

, the reflection in the side s1 of the

4-gon bisecting the points (1, 0, 0) and (2, 0, 3) of −3t2 + x2 + y2 = −3.
For c2 = 7, the reflection in the side s1 of the central 12-gon bisecting the

integral points (1, 0, 0) and (8, 0, 21) of −7t2 + x2 + y2 = −7 has the integral

matrix

 8 0 −3
0 1 0
21 0 −8

 and it shall be our fs1 . However the reflection in the

side s2 bisecting (1, 0, 0) and (6, 7, 14) does not have an integral matrix, and
it maps the integral point (6, 14, 7) of the hyperboloid to its non-integral point
(6, 84/5, 63/5). So we turn to the half-turn fs2 ∈ G which switches (1, 0, 0) and
(6, 7, 14), and reverses all orthogonal vectors, e.g. (0, 2,−1). An easy calculation

shows that its matrix is

 6 −1 −2
7 −2 −2
14 −2 −5

, which is integral, so fs2 is a symme-

try of S. Moreover fs2(s2) = s2 because the mid-point (7/2, 7/2, 14/2) of the
segment joining (1, 0, 0) and (6, 7, 14) identifies with (1, 2) ∈ B which is also the
mid-point of the side s2 – see Figure 5(iv) – so, as required, the image of the
central 12-gon under fs2 is another cell of S sharing this side with it.

For c2 = 11, let fs1 =

 10 0 −3
0 1 0
33 0 −10

, the reflection in the side s1 of the

12-gon bisecting the points (1, 0, 0) and (10, 0, 33) of −11t2+x2+y2 = −11, and

let fs2 =

 11 −2 −3
22 −3 −6
33 −6 −8

, the reflection in the side s2 of the 12-gon bisecting

the points (1, 0, 0) and (11, 22, 33).
For c2 =

√
2, the reflection fs1 in the side s1 of the 8-gon bisecting the points

(1, 0, 0) and (1+
√

2, 1, 1+
√

2) of the hyperboloid −
√

2t2+x2+y2 = −
√

2 has the

matrix

 1 +
√

2 −
√

2/2 −(2 +
√

2)/2

1 1/2 −(1 +
√

2)/2

1 +
√

2 −(1 +
√

2)/2 −(1 + 2
√

2)/2

. The entries of this matrix

are not all in Z[
√

2], so fs1 does not induce a bijection of (Z[
√

2])3. Neverthe-
less, fs1 restricts to a permutation of the points (t, x, y) on the hyperboloid with
coordinates in Z[

√
2]. We note that (t, x, y) = (t1 +

√
2t2, x1 +x2

√
2, y1 +y2

√
2)

where x1, y1 and x2+y2 are either all odd or all even. For, equating the rational
parts on both sides of

√
2(t2− 1) = x2 + y2, we get 4t1t2 = x21 + y21 + 2(x22 + y22)

which shows that x21 +y21 , so x1 +y1, is even, so x1 and y1 have the same parity.
When they are both odd, x21 + y21 = 2 mod 4 which is possible only if x22 + y22 ,
so x2 + y2, is odd. When they are both even, x21 + y21 = 0 mod 4 which is
possible only if x22 + y22 , so x2 + y2, is even. These parity conditions and matrix
multiplication show that all coordinates of fs1(t, x, y) are in Z[

√
2].

§21. Brahmagupta’s (x21 + y21)(x22 + y22) = (x1x2 − y1y2)2 + (x1y2 + y1x2)2

showed that sums of squares are closed under products; this identity involves
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complex multiplication (x1, y1)(x2, y2) := (x1x2−y1y2, x1y2 +y1x2); when using
this operation we’ll put (t, x, y) = (t, z), where z = x+ ıy and ı2 = −1.

For example, (t, x, y) 7→ (t, x − y, x + y) is the same as multiplying z by
1 + ı, but x2 + y2, that is |z|2, is equal to 1

2 |z(1 + ı)|2, so this map throws the
hyperboloid −t2 + x2 + y2 = −1 onto the hyperboloid −2t2 + x2 + y2 = −2.
Further, this linear isomorphism restricts to a bijection of the integral points of
these hyperboloids. Indeed, t2 − 1 and 2(t2 − 1) are sums of two squares for the
same integral values of t, and since for any such t the two hyperboloids have the
same number of integral points—because 2 is a sum of a unique ordered pair
of squares (1, 1)—the induced injection between these equicardinal finite sets is
a bijection. So, as was stated already in §20, the subdivisions S1 and S2 of
the examples c2 = 1 and c2 = 2 are isomorphic to each other. Likewise, Sm

is isomorphic to S2m for any whole number m, and the same is true if m is
multiplied by a square which is not a sum of two nonzero squares.

However, the subdivision can be quite different if we multiply c2 = m by a
prime p equal to 1 mod 4, despite the fact that, by a theorem of Fermat, there
is one and only one pair {a, b} of whole numbers such that p = a2 + b2. The
point being simply that a 6= b, so we have now not one, but two ordered pairs
(a, b) and (b, a) to contend with, which makes all the difference! As the example
c2 = 5, which we’ll now work out in full, shall clearly show us.

The second table below lists, all the integral points (tP , xP , yP ) of −5t2 +
x2 + y2 = −5 with 0 ≤ xP ≤ yP and 1 ≤ tP ≤ 32. A comparison with the first
table, which lists the same points for the example c2 = 1, shows that for some
values of tP , we have now twice as many—or even more—integral points.

c2 = 1:-

tP 1 3 9 17 19
xP 0 2 4 12 6
yP 0 2 8 12 18

c2 = 5:-

tP 1 3 9 17 19
xP 0 2 0 12 12 6 30
yP 0 6 20 16 36 42 30

Our previous examples may suggest that the central cell of Sm is compact
if and only if m is not a sum of two squares; more so because this condition
on the whole number m characterizes the co-compactness of Γm; and indeed
co-compactness, i.e., the compactness of the cells of the Voronoi subdivision
determined by the Γm-orbit of (1, 0, 0) does imply the compactness of the central
cell of Sm; but the converse is false: the central cell of S5 is compact!

The central cell of S5 is an 8-gon – see Figure 7 – its sides the bisectors of
(the segments joining (1, 0, 0) to) the eight integral points on the hyperboloid
H5 with tP = 3. The bisector of (3, 2, 6) is (X − 2

4 )2 + (Y − 6
4 )6 = 0, i.e.,

X + 3Y = 5, which meets −X + 3Y = 5, i.e. the bisector of (3,−2, 6), in (0, 53 ),
and Y +3X = 5, i.e. the bisector of (3, 6, 2), in ( 5

4 ,
5
4 ). These then are two of the
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vertices of the 8-gon, the other six are clear by symmetry. Further, 5
3 <

5
4

√
2 <√

5, so our 8-gon is in the open disk B5, and since c2+r2

c2−r2 = 5+25/8
5−25/8 = 65

15 < 5,

only bisectors of integral points with tP ≤ 4 can meet its circumcircle, and since
we have taken account of all such, this is indeed the central cell.

In fact, the central cell of Sp is an 8-gon for any prime p = 1 mod 4! For,
as noted before, the integral points for the example c2 = pm are obtained from
those for the example c2 = m by complex multiplication by a+ıb or b+ıa, where
{a, b} is the unique pair of whole numbers such that p = a2 + b2. This implies
that the central cell of Spm is the intersection of the images of the central cell of
Sm under these two linear isomorphisms. In particular, for c2 = 1 the central
cell is the “4-gon” ABCD with vertices (1, 0), etc. – Figure 5(i) – so the central
cell for c2 = p must be, the 8-gon which is the intersection of the “4-gons”
A1B1C1D1 and A2B2C2D2 formed by the alternate vertices of the “8-gon” with
vertices (a, b), etc., on the boundary of the open disk Bp of radius

√
p.

Let us double-check this general fact for p = 5: now {a, b} = {2, 1}, and sure
enough, the alternate sides X + 3Y = 5 and −Y + 3X = 5 of the central cell
meet at A1 = (2, 1) on the horizon of B5. Quite special however to the prime
5 is the fact that, the only integral points other than the centre in this “8-gon”
are the eight points determining the central cell, and these are on its boundary,
viz., (3, 2, 6), i.e., P1 = ( 2

3 , 2), etc., shown starred in Figure 7. To prove this
assertion we note that any such point is obtained, from an integral point for
c2 = 1 lying in the images of this “8-gon” under complex division by 2 + ı or
1 + 2ı, by complex multiplying the same by 2 + ı or 1 + 2ı, respectively.
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These two image “8-gons” in B1 are bounded by four sides and four diago-
nals, one each from the primary reflections of the central “4-gon” of S1 in its
edges, the image under complex division by 2 + ı being as in Figure 8, because
B1 7→ B, P1 7→ P and linearity imply A2 must go to the opposite vertex of
the “4-gon” of S1 around P , etc. Since the centre and P,Q,R, S are the only
integral points in these five “4-gons” of S1, the assertion follows.

From the description of S1 worked out in §20, we know that if we now
add to Figure 8, ABCD’s secondary reflections, then tertiary, etc., we shall
exhaust the open unit disk. In fact, repeatedly reflecting any cyclic polygon in
its edges exhausts the enclosed open disk! In other words, no sequence of distinct
polygons, with the kth obtained by reflecting the previous in Lk, is such that
these non-intersecting chords or lines converge to a line L.

We equip the open disk with a distance preserved by all its reflections. The
minimum distance between parallel lines, i.e., those meeting on the horizon,
is zero, only that between ultraparallel lines, which don’t meet even on the
boundary, is positive. However, applying a parallel displacement, i.e., a product
of reflections in two parallel lines, repeatedly to any one of them, gives a non-
convergent pencil of parallel lines, see Figure 9(i). So we can assume that Lk
and Lk+2 are ultraparallel infinitely often. But, the distance between any such
pair of lines is at least ε, the minimum positive distance between the finitely
many edges of the given cyclic polygon, and those of its primary reflections. So,
not a single such pair can exist in the region – see Figure 9(ii) – bounded by
any line L and a line L′ at a positive distance less than ε from it. q.e.d.
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In particular, we can tile the open disk of Figure 7 this way using that “8-
gon,” which is pertinent for c2 = 5 because, the reflections of the “8-gon” have
integral matrices, so they are symmetries of S5. For example, the edge Y = 2
is the bisector of the segment joining the centre to the integral point (9, 0, 20)

and reflection in it is given by

 9 0 −4
0 1 0
20 0 −9

, while X +Y = 3 is the bisector

of the segment to (19, 30, 30) and reflection in it is

 19 −6 −6
30 −9 −10
30 −10 −9

.

So it suffices to know S5 in the “8-gon,” which is as shown in Figure 7, the
solid lines being (the restrictions of) the edges of the cells of S5. For example,
X+Y = 3 is the bisector of the segment joining (3, 2, 6) and (9, 12, 16), because
the second matrix above interchanges these two points, alternatively, a formula
given in §19 shows that the said bisector is (X− 2+12

3+9 )(2−12) + (Y − 6+16
3+9 )(6−

16) = 0 which simplifies to X + Y = 3.
Repeated reflections in the edges of the “8-gon” propagate this local picture

to the entire open disk. Thus, the cells of S5 are 8-gons or 7-gons, the former
compact and congruent to the central 8-gon, the latter non-compact and con-
gruent to any of the eight 7-gons encircling it, of which one-half of each is drawn
in Figure 7, and which have one vertex at infinity. So the group of symmetries
of S5 is no bigger than Γ5 and is generated by the two matrices above and
the obvious symmetries x ↔ −x, y ↔ −y and x ↔ y. However the symmetry
group of S5 does not act transitively on its cells, there are two orbits, one with
all cells 8-gons, the other with all cells non-compact 7-gons; note also that the
orientation preserving symmetries act faithfully on the second orbit.

In fact, Sp is non-crystallographic for any prime p = 1 mod 4, because we
saw above that the central cell is compact, while on the other hand, any funda-
mental domain of Γp, though non-compact, can be shown to have finitely many
integral points. However, working out the exact nature of these subdivisions for
bigger primes p seems to entail progressively more and more work.

§22. Multiplying the integral points of c2 = 3 by 2+ ı and 1+2ı gives those
of the example c2 = 15; we list below all with 0 ≤ xP ≤ yp and 1 ≤ tP < 14.
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c2 = 3:-
tP 1 2 4 5 7 11
xP 0 0 3 6 0 6
yP 0 3 6 6 12 18

c2 = 15:-
tP 1 2 4 5 7 11
xP 0 3 0 9 6 12 6 30
yP 0 6 15 12 18 24 42 30

Multiplying the central 4-gon ABCD—here A = (1,−1), etc., see Figure
5(iii)—of the subdivision S3 of B3 by 2 + ı and 1 + 2ı gives us two 4-gons
A1B1C1D1 and A2B2C2D2 in B15 whose intersection—see Figure 10—is the cen-
tral 8-gon of S15. But, as we’ll see, these images of vertices, A1 = (3,−1), A2 =
(3, 1), etc., are not vertices of S15, also, there are no integral points other than
the centre, either within, or on the boundary of their convex hull.

However, the eight integral points determining the central cell, viz., (2, 6, 3),
i.e., P1 = (3, 32 ), etc., are on A1A2 produced, etc., and a bigger 8-gon F , with
vertices (3, 2), etc., serves us well. For starters, the reflections of F have integral
matrices, so they are symmetries of S15, for example, the edge Y = 3 is the
bisector of the segment joining the centre to the integral point (4, 0, 15) and

reflection in it is given by

 4 0 −1
0 1 0
15 0 −4

, while X + Y = 5 is the bisector of

the segment to (11, 30, 30) and reflection in it is

 11 −2 −2
30 −5 −6
30 −6 −5

.
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Also, iterated reflections of F tile the open disk B15. That, by reflecting any
polygon, in an edge incident to the exit point of a curve CP going to a point
P , we’ll reach P in finitely many steps, is even easier when the vertices of the
polygon are not at infinity. However, in general, the choice of the curve CP to
P matters, this tiling process is not well-defined. It is so in our case because,
all angles of F are right angles, so four tiles around any vertex always bring
us back to the original tile. For this note that, the integral points (2, 3, 6) and
(4, 9, 12) are both on Y = 3, and the right-bisector of the segment joining them
is (X − 12

6 )6 + (Y − 18
6 )6 = 0, i.e., X + Y = 5. So the adjacent edges of F

lying on these two lines intersect at right angles at the vertex (2, 3) of F , which
corresponds to the mid-point (3, 6, 9) of this segment.

So it suffices to know S15 in F which is as shown in Figure 10, the solid
lines being (the restrictions of) the edges, and the black dots the vertices, of this
subdivision of the open disk B15. Essentially, it only remains to confirm that
there are no integral points on F other than the nine starred points, which can
now be done more easily and without using S3. The points (X = x/t, Y = y/t)
of the open disk with X2+Y 2 ≤ r2 correspond to points of −c2t2+x2+y2 = −c2

with 1 ≤ t ≤
√

c2

c2−r2 . So integral points in the circumcircle of F must satisfy

1 ≤ tP ≤
√

15
15−13 < 3, but these nine are the only such points.

Repeated reflections in the edges of F propagate this local picture to the
entire open disk. Thus, the cells of S15 are 8-gons or 6-gons, the former con-
gruent to the central 8-gon, the latter to any of the eight 6-gons encircling it,
of which one-half of each is drawn in Figure 10. The group of symmetries of
S15 is no bigger than Γ15 and is generated by the two matrices above and the
obvious symmetries x↔ −x, y ↔ −y and x↔ y. However the symmetry group
of S15 does not act transitively on its cells, there are two orbits, one with all
cells 8-gons, the other with all cells 6-gons; the index 2 subgroup of orientation
preserving symmetries acts faithfully on the second orbit.

§23. These examples have, as such, not much to do with the aim – §1 –
with which we had set out on this journey. Yes, in §16 we showed that there
exist, in all dimensions n, hyperbolic manifolds which are closed, but we have all
but forgotten that extra requirement of almost-parallelizability, i.e. that, their
tangent bundles be trivial outside a point-puncture, or equivalently, that they
admit, punctured immersions into n-space.(a)

Before we turn to these, there are some bits of wisdom, picked up in the
course of this journey so far, that can bear repetition at this point. For example:
limiting the physical space of all inertial frames to those with speeds less than
c replaces classical by relativistic physics. Likewise: limiting geometrical space
to an open ball of radius c, and thinking of its chords as lines, liberates us at
once from the strait-jacket of the parallel postulate. In stark contrast, from the
point of view of topology, that is, if we liberate ourselves from all the postulates
of geometry excepting those of continuity, the n-space and an open n-ball are
equivalent, and as Sullivan stresses in [1], some remarkable constructions of
topology are at heart based only on this obvious fact.
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But, even these postulates are moot: the continuum of physical space may
be something imagined by our mind around the matter of a discontinuum. And,
cartesian simplicity suggests this discontinuum: go up one dimension to linearize
the group of motions and consider all points of this space-time that are integral
in our coordinates. This discrete subset makes the continuum inhomogenous,
but in a controlled way: the points closest to any integral point are bounded
by only finitely many hyperplanes. However, some vertices of these polytopes
may be on the horizon in the relativistic case: but not, if we postulate c2 to be
a suitable integer. Strikingly, for dimensions bigger than one in the relativistic
case, the discontinuum also tends to become inhomogenous: two integral points
may not be related by a permutation which extends to a motion of the ambient
space. But once again, this inhomogeneity is controlled: there are only finitely
many such orbits or particles. Our closed manifolds are tied to these particles
as follows: we cut down the discontinuum to one orbit, consider the associated
bigger polytopal subdivision of the continuum, and roll up the same under a
subgroup of extendable permutations acting faithfully on the orbit.

In the classical case, this is the familiar picture of n-space rolling up under
integral translations to give the n-torus. Which is parallelizable, also some
direct recipes are known for its punctured immersions in n-space, but they all
use the special fact that it is the n-fold product of the circle.(e) We’ll keep things
more general by identifying the puncture with the orbit of integral points, and
imagine this discontinuum as having an equivariant force field which is smooth
on its complement, but blows up in the usual way on its matter.(f) This n-vector
field shall give the required punctured immersion if the zeros of its jacobian are
isolated, for then, there will be only finitely many of these zeros in each polytopal
cell, and so these can be swallowed with the central puncture in an open n-ball
which we can safely delete from our closed n-manifold.(g,h)

§24. The ‘obvious fact’ of §23 has this popular proof: contracting nonzero
n-vectors at a point by the tan of their lengths gives a homeomorphism from
n-space onto an open n-ball of radius π/2. The function tan of period π also
pops up if we assume, for the ‘force field’ of §23 for the one-dimensional classical
case, that the action of each point of the discontinuum Z is repulsive and varies
inversely with the distance, and that, at any x ∈ R \ Z, these infinitely many
contributions are to be added in order of proximity. This vector field gives us
a function R \ Z → R that is continuous, surjective, of period 1, and strictly
decreasing on each component interval. In fact, for 0 < x < 1/2, it is the sum
of the convergent alternating series 1

x + 1
x−1 + 1

x+1 + 1
x−2 + 1

x+2 + · · ·, which is
nothing but Euler’s partial fraction expansion of π/ tan(πx). So this periodic
function is an instance of the following general definition.

Central force fields. For any n-dimensional classical or relativistic case, let
each point a of the discontinuum A act repulsively with magnitude decreasing
smoothly from infinity to zero as a given function µ of the distance—a distance
ρ preserved by motions of n-space or open n-ball of radius c—with the force
field at any x the limit, of the sum of the actions of the finitely many points of
A that are within a distance d from x, as d approaches infinity; this gives us
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an equivariant vector field µ[A], defined at all x for which the limit exists, in
particular, note that it blows up on the discontinuum.

So this vector field µ[A](x) = limd Σa{µ(ρ(x, a))u(x, a) : ρ(x, a) < d}—
where u(x, a) denotes the unit vector at x along the ray from a—is well-defined
on the complement of A for any eventually zero µ. Besides, there are also many
real-analytic µ’s for which the same conclusion is true, but before reviewing
some of these examples, let us make another general definition.

Central potential fields. The positive function µ(A)(x) = limd Σa{µ(ρ(x, a)) :
ρ(x, a) < d}, defined at all x for which the limit exists, is likewise preserved by
all motions which restrict to permutations of A, i.e., by all the symmetries of the
cartesian polytopal tiling of A. Per §23, we’ll assume these tiles compact, and
that these symmetries act transitively on them; so there is a co-compact and
torsion free subgroup Γ of finite index acting faithfully on tiles, and à fortiori
our force and potential fields µ[A] and µ(A) are preserved by Γ.

The positive terms of the series defining µ(A)(x) dominate the lengths of the
corresponding terms of the series defining µ[A](x), so if the first series converges
the second converges absolutely, that is, its terms can be summed in any order
we like. The domain of µ(A) is thus contained in that of µ[A], but it can be
much smaller, for example, for A = Z ⊂ R and µ(ρ) = 1

ρ , µ[A](x) = π
tan(πx) i but

the domain of µ(A) is empty: its defining series 1
x + 1

1−x + 1
x+1 + 1

2−x + 1
x+2 + · · ·

for 0 < x ≤ 1
2 diverges because 1

x+r−1 + 1
r−x ≥

2
r−x >

2
r , and we know that the

harmonic series is divergent.
The same argument applies to any µ with µ(1) + µ(2) + · · · = ∞, which

is equivalent – using Figure 11 following Cauchy – to
∫∞
1
µ(x)dx = ∞; on the

other hand, if
∫∞
1
µ(x)dx is finite – e.g., if µ(ρ) = 1

ρk
with k > 1 – then both

µ(A) and µ[A] are defined and continuous in the complement of A = Z ⊂ R.

For, if 0 < x ≤ 1
2 , then µ(A)(x) = µ(x)+µ(1−x)+µ(x+1)+µ(2−x)+ · · · ≤

2µ(x) + 2µ(x + 1) + · · · ≤ 2µ(x) + 2
∫∞
x
µ(x)dx < ∞. Likewise, if we omit

terms after µ(x + r), the error is less than 2
∫∞
x+r

µ(x)dx < 2
∫∞
r
µ(x)dx for

all x, so the series converges uniformly, and µ(A)(x) is continuous. Regarding
differentiability, if the negative derivative −µ′ is also decreasing from infinity to
zero, then – since its integral from 1 to infinity is µ(1), hence finite – its force
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and potential fields are defined on the complement of A by series converging
uniformly, so the formulas − d

dx (µ(A)(x))i = (−µ′)[A](x) and − d
dx (µ[A](x)) =

(−µ′)(A)(x)i obtained by term-by-term differentiation are valid.
Indeed, the integral

∫
|x|≥1 µ(|x|)dx makes good sense for any n-dimensional

classical or relativistic space, if we interpret |x| as the distance ρ(x, 0) of x from
any chosen point 0, and dx as the value at x of the invariant volume form defined
by ρ. And, it seems to us that, the finiteness of this integral always ensures that
both the fields µ(A) and µ[A] are defined and continuous in the complement of
the discontinuum A, that is, the orbit of the ‘centre’ 0 under Γ. But, in the
proof given below, we’ll assume also that µ decays at most exponentially, more
precisely that, the ratio µ(ρ− 1)/µ(ρ) is eventually bounded.

Let τa be the polytopal tile around a = g(0), g ∈ Γ. It suffices to show
that the defining series of µ(A)(x) for x ∈ τ0 \ {0}, viz., the positive series,
Σaµ(ρ(x, a)) = Σgµ(ρ(x, g(0))) = Σgµ(ρ(g−1(x), 0)) = Σgµ(|g(x)|), converges
uniformly. Our compact and congruent tiles have the same finite diameter δ
and volume ν, also let Ma denote the maximal distance of a point of τa from 0.
Then ν times the series Σa6=0 µ(Ma) is less – cf. Fig. 11 – than the integral of
µ(|x|) over all the non-central tiles, which is finite, so this series is convergent.
Again, g(x) lies in τa, so its distance |g(x)| from 0 is at least Ma − δ, and by
the decay condition there is a C such that µ(ρ− δ)/µ(ρ) < C eventually. So C
times Σaµ(Ma) eventually dominates Σgµ(|g(x)|) which proves its convergence.
Further, since error can be bounded for all x in terms of the integral of µ(|x|)
over the tiles around the omitted a’s, this series converges uniformly.

Not only that, an analogous reasoning using minimal distances ma of the
points of the tiles τa from 0, as well as µ(ρ + δ)/µ(ρ) > 1/C eventually, shows
that, if the integral

∫
|x|≥1 µ(|x|)dx is infinite, then the domain of µ(A) is empty,

but of course, the domain of the force field may be non-empty.
The integral finite condition is more and more restrictive on µ as the dimen-

sion n increases, or, for n ≥ 2, as the radius c decreases. A calculation using
polar coordinates shows that

∫
|x|≥1 µ(|x|)dx =

∫∞
1
µ(ρ)Sn−1(c sinh ρ

c )dρ where

Sn−1(r) denotes the content of a euclidean (n− 1)-sphere of radius r : it is 2 if
n = 1, and a constant times rn−1 if n ≥ 2. If c→∞, c sinh ρ

c → ρ, so µ(ρ) = ρ−k

gives us a finite integral over euclidean n-space iff k > n, and no inverse power of
ρ works for all n. Or for that matter for any n ≥ 2 if c is finite, for c sinh ρ

c grows
like exp ρ

c , so the integral shall diverge, but µ(ρ) = ρ−1−ε(c sinh ρ
c )−n+1, ε > 0

gives a finite integral over the n-ball of radius c. Also, the decay condition is
obeyed by these µ’s, so by the theorem proved above, their fields are defined and
continuous in the complement of A. The same is, à fortiori, true for any µ which
is eventually dominated by these examples, e.g., the fields of µ(ρ) = ρ−1e−ρ

2

are always defined and continuous in the complement of A, even though this is
a µ(ρ) that does not obey the decay condition.

Central m-vector fields. Given any m functions µi(ρ) decreasing smoothly
from infinity to zero and satisfying above integral convergence criterion for the
n-dimensional classical or relativistic space under consideration, and any m
orbits Ai of a given torsion free and co-compact discrete group Γ of motions of
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this n-space, x 7→ (µ1(A1)(x), . . . , µm(Am)(x)) defines a Γ-invariant Rm-valued
continuous function on the complement of the m orbits. Starting with §25 we’ll
show how such Rn-valued functions can be used to obtain punctured immersions
of the closed smooth n-manifold of Γ-orbits into n-space.

For n = 2, using complex multiplication, we also get some nice non-central
fields, for example, limd Σa{(z − a)−k : |z − a| < d} converges absolutely and
uniformly, for each integer k > 2, to a doubly-periodic and meromorphic, i.e.,
elliptic function ℘k(z) on C, and the formula d

dz℘k(z) = −k℘k+1(z) obtained
by term-by-term differentiation is valid. In fact, averaging any rational function
Q(z) with deg(Q) < −2 in this manner over A gives an elliptic function, because
|Q(z)| is less than a constant times |z|−3 for |z| large, and we saw that µ(ρ) = ρ−3

satisfies the integral finite condition for the plane.
On the other hand we saw that µ(ρ) = ρ−2 does not satisfy this condition

for the plane, and its potential field limd Σa{|z − a|−2 : |z − a| < d} diverges
at all z ∈ C, nevertheless, limd Σa{(z − a)−2 : |z − a| < d} also converges to
an elliptic function ℘2(z) and d

dz℘2(z) = −2℘3(z). We’ll use the fact that at
each point of the discontinuum there is a well-defined field due to its remaining
points, i.e., G2(A) = limd Σ{a−2 : 0 < |a| < d} exists, for example, this complex
number is obviously zero for lattices A that are generated by periods of equal
length making an angle of 60◦ or 90◦ with each other. We shall show that
z−2+limd Σa6=0{(z−a)−2 : |z−a| < d} = z−2+limd Σa{(z−a)−2 : 0 < |a| < d}
converges uniformly on any given compact subset of τ0 \ {0}. The last equality
holds because a 6= 0, |z − a| < d implies 0 < |a| < d + δ and is implied by
0 < |a| < d− δ, so Σa6=0{(z − a)−2 : |z − a| < d} differs in absolute value from
Σa{(z − a)−2 : 0 < |a| < d} by at most Σa{|z − a|−2 : d − δ < |a| < d + δ},
which is bounded by a constant times d−2(πdδ). We now use the fact that
limd Σa{(z− a)−2 : 0 < |a| < d} = G2 + limd Σa{(z− a)−2 − a−2 : 0 < |a| < d},
and that—for z in that compact set—|(z − a)−2 − a−2| is eventually bounded
by a constant times |a|−3, so ℘2(z) has the uniformly and absolutely convergent
expansion G2 +z−2 +Σa 6=0((z−a)−2−a−2) whose term-by-term differentiation
is valid and gives us −2z−3 − 2Σa6=0{(z− a)−3} = −2℘3(z). We note also that,
limd Σa{(z − a)−1 : |z − a| < d} does not converge to an elliptic function, for
the integral of any elliptic function around the boundary of τ0 is zero—because
the contributions of sides paired under Γ cancel out—while Cauchy’s formula
tells us that such a limit function would have integral ±2πi.

But, for n = 1, limd Σa{(x−a)−k : |x−a| < d} converges to a singly periodic
and meromorphic function ek(x) on R for all k ≥ 1 and d

dz ek(z) = −kek+1(z),
because now µ(ρ) = ρ−k satisfies the integral finite condition for k ≥ 2, and for
k = 1 this limit has, as above, on any compact subset of τ0 \ {0}, the uniformly
and absolutely convergent expansion e1(x) = x−1 + Σa 6=0((x − a)−1 − a−1), so
e1(x) = π/ tan(πx) for the case A = Z ⊂ R.

So the question arises as to whether one can analogously define, on any
classical or relativistic n-dimensional space, a Γ-periodic and real-analytic Rn-
valued function that has only isolated poles and critical points? However we’ll
first consider, in the next two sections, the somewhat easier problem in which
one demands only smoothness instead of analyticity.
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Notes, Etc.4

(for §1)

The natural vector bundle to consider in the relativistic case is the space-
time bundle. To linearize the symmetries of the open n-ball B of finite radius
c, we have already gone one dimension up into space-time and identified it with
the hyperboloid −c2t2 + x21 + · · · + x2n = −c2. It is the bundle E with each
fiber Ex a copy of space-time which is the bundle of choice over B. Within
it, is the codimension-one tangent bundle T with fibers Tx all vectors of space-
time tangent at x to the hyperboloid, and E = T ⊕ N , where N is the line
bundle orthogonal to T with respect to the quadratic form −c2t2 +x21 + · · ·+x2n.
We’ve shown there exist free and co-compact discrete subgroups γ of unimodular
matrices preserving this form. Dividing out the diagonal action of γ gives the
corresponding bundles E/γ = T/γ⊕N/γ over the closed hyperbolic n-manifold
B/γ. The line bundle N/γ is trivial, but the tangent bundle T/γ may not be,
for example, by the Gauss-Bonnet theorem, it is non-trivial whenever n is even.
Is the space-time bundle E/γ → B/γ always trivial? The answer was unknown
when [1] was written.

However, its pull-back to some finite cover of B/γ is trivial, in fact any real
vector bundle over a finite polyhedron, having a discrete group of unimodular
matrices preserving a non-degenerate quadratic form, pulls back to a trivial
bundle over a finite cover. Sullivan says this follows, because all such complex
matrices have the homotopy type of all euclidean rotations, by using some étale
homotopy theory as in his paper with Deligne [DS]; also that it is not true, see
Millson [Mi], for all discrete groups of real unimodular matrices.

So, by replacing B/γ by this finite cover, let E/γ → B/γ be a trivial bundle,
then T/γ is almost trivial. Choose any continuous basis e1(x), . . . , en+1(x) of the
fibers of the trivial bundle E/γ and identify sections with their coefficient maps
B/γ → Rn+1 with respect to it. Let v(x) be an identically nonzero section of the
trivial line bundle N/γ. We recall that the first column map [v, v1, . . . , vn] 7→ v
from GL(n + 1,R) to Rn+1 \ {0} ' Sn has the covering homotopy property,
and that, if we puncture each top simplex of a triangulation of B/γ once, the
complement retracts to its (n−1)-skeleton which maps into Sn inessentially. So,
on this complement, E/γ has a continuous basis v(x), v1(x), . . . , vn(x), with the
vi(x)’s inducing a continuous basis of (E/γ mod N/γ) ∼= T/γ. The punctures
lie in a single n-ball, so T/γ is trivial in the complement of any point.

(for §2)

The result that there are no convex regular tilings of hyperbolic n-space
for n > 4 is in [Co 1] who seemingly attributes it to Schlegel ? Also compare
Vinberg’s ‘crystallographic’, is it just same plus convexity of tiles ? If so his
work shows there are no such for n ≥ 30.

(for §4)

4These have been severely pruned and Etc. is now redundant.
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Open disk with usual segments simplest way to break fifth postulate. What
about other open convex sets, esp., interiors of polytopes, these geometries pop
up later in cells of tilings.5

(for §6)

Its amazing how quickly above straight lines in open ball geometry ties with
relativity under linearization; the first part about Galilean frames and classical
relativity was also formulated by Poincaré – see Arnol’d.

(for §7)

A name theorem – Dieudonné ? – is proved jlt : reflections, right bisectors,
and not passing to orientation preserving subgroups kept algebra less fierce.

(for §8)

Last line – Bieberbach lemma – is usually via eigenvalues, but it was done
differently in Extracts.

(for §9)

Question corrected a little may be an open conjecture of Thurston ? The
invocation of Gauss Bonnet, a volume invariant, is premature – infinitesimal
distance is still way off, but in §17 we got to separation .. how do the two
connect? For the complex analogues another volume invariant, ‘Dirac one’ so
signature, proves analogue of Sullivan’s result is false here, see HGH.

(for §11)

Venkataramana’s notes [Ve] helped a lot in clarifying Sullivan’s hints. The
assertions made about the columns and the determinant of the matrices of G
can be seen thus. Any quadratic form can be written as X ′QX where Q is a
symmetric matrix and X ′ = (. . . , xi, . . .). In our case Q = diag(−c2, 1, . . . , 1).
Saying that a linear substitution X = PY of variables preserves the quadratic
form is the same as saying that Q = P ′QP . Now note that the (i, j)th element
of P ′QP is C ′iQCj where Ck denotes the kth column of P . So, in our case,
C ′iQCj = 0 if i 6= j while C ′iQCi = −c2, 1, . . . , 1. That the determinant of P is
±1 follows by taking the determinants of both sides of Q = P ′QP .

(for §12)

A whole number is a square iff each prime occurs an even number of times.
Fermat showed that it is a sum of two squares iff each prime equal to 3 mod 4
occurs an even number of times in it; this implies it is of the type 2a(4b+1) but
not conversely. However, Gauss showed that a whole number is a sum of three
squares iff it is not of the type 4a(8b− 1), e.g., if m is not divisible by 4 then m
or m − 1 is a sum of three squares, which is stronger than the earlier result of
Lagrange that any whole number is the sum of four squares, cf. [Se].

5In fact I’ve been subjecting Keerti and others to verbal versions of the opening paragraph
of PG&R (2013) since at least the mid-1990’s !
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(for §13)

That factor got pictorially explained thus from jail-book [Co 2], in [Ve] it is
called Minkowski reduction, but all this is definitely in Hermite too.

(for §14)

The conditional – strip, a most important picture – discreteness of Z[
√

2] in
R became clear from a remark (first sentence in proof on next section in [Fr-K]’s
last chapter, paper reference later from Shimura) clarified [Ve].

(for §15)

This section is the high point so far fulfilling Sullivan’s assurance only the
irrationality of 2 is needed. The one-line proof of Selberg’s lemma came from
looking at an argument in class notes of someone (?) on the web.

(for §17)

What we called cartesian subdivision is often called Voronoi subdivision in
honour of the substantial use he made of what he called Dirichlet subdivision,
the discrete subset being now a lattice of euclidean space. But long before them,
these subdivisions had figured – the definition is so natural its origin is probably
still older – prominently in Descartes’ theory of vortices [De] a pre-newtonian
attempt to give a conceptual description of the cosmos ...6

(for §19)

Regarding the computation of page 14, the machine halts after precisely
thirty-four steps at 20+14

√
2. This I owe to Keerti, who re-did this computation

on Mathematica. He found it easier to compute the list of conjugates, in each
step adding 1 if the number so obtained is less than 2

1
4 , and subtracting

√
2 if

the number so obtained is more than −2
1
4 . Likewise, he also found the first 200

outputs of the non-halting computation for the strip of width 1 +
√

2.

(for §20)

Our definition of crystallographicity of S is not stronger than the usual one:
any symmetry preserving the tiling automatically has to preserve the integral
points. This because centre is by central symmetry of our discrete set, the
intersection of any two diagonals of this tile, this geometric property is preserved
by the symmetry, thus integral points.

6There was much more here that I’ve omitted, and I’ve omitted entirely the very long notes
to the speculative §23 and §24. As PG&R and sequels show cartesian philosophy does give
us an intuitive, useful and cohesive picture of a large part of mathematics, but to define the
subset which will be seen in an experiment obviously requires more information.
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(for §21)

Brahmagupta of Bhillamala (598-668 A.D.) had found integral points on
hyperbolas via (a2 + Nb2)(c2 + Nd2) = (ac − Nbd)2 + N(ad + bc)2. Complex
multiplication and multiplication of matrices are implicit in his approach, and to
my mind, a lot of hyperbolic geometry seems to be nothing but Brahmagupta’s
method generalized to higher dimensions ! Besides this improvement on the
work of Diophantus of Alexandria (c. 200-284 A.D.) this mathematician was
apparently the first to have defined the number zero—thus the witticism: the
contribution of India to mathematics is zero!—and a beautiful formula for the
area of a cyclic 4-gon in terms of the lengths of its sides bears his name. There
has been much interest recently in generalizing this formula to cyclic n-gons.
See also [Sa 1, 2] and pp. 14-15 of “213, 16A.”

Brahmagupta’s identity (a2+b2)(c2+d2) = (ac−bd)2+(ad+bc)2 implies the
planar Bunyakowski-Cauchy-Schwarz inequality (ad+ bc)2 ≤ (a2 + b2)(d2 + c2);
more generally, an identity of Lagrange precises the general Schwarz inequality.
In [Sa 3], we had shown that this identity also implies an “odd” Schwarz inequal-
ity; and much before, in [Sa-Z], we had discussed an interesting Cauchy-Schwarz
inequality for vector-valued bilinear forms.

Vertices of S1 = all primitive pythagorean triples = all rational points on
unit circle. This plus argument used for 5 might show for any prime 1 mod 4
that fundamental domain of Γ contains finitely many integral points.
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