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KNESER COLORINGS OF POLYHEDRA

BY
K.S. SARKARIA

1. Introduction

(1.1) It is well known that if a 1-dimensional simplicial complex, i.e., a
“graph”, K!, embeds in a 2-dimensional manifold M?, then its chromatic
number is less than a certain constant ¢, which depends only on the topology
of M?. We have proved elsewhere various generalisations of this result which
apply to higher dimensional simplicial complexes K": see [18], [19] and [20].

In this paper we turn things around and show that if a simplicial complex
K" can be suitably colored by not too many colors, then it p.l. embeds in a
given R™. As typical specimens of such results we have the following two:

THEOREM 2 (2.5.1). Let G(K[) denote the graph whose vertices are pairs
(v,0) where v is a vertex of K" and 6 a maximal simplex of K" not containing
v, with (vy,0,) adjacent to (v,,8,) iff v, € 8, and v, € 0,. If G(K[) has
chromatic number < m+ 1 and 2m >3 (n+ 1), or else n =1 and m = 2,
then K" p.l. embeds in R™. .

THEOREM 6 (3.2.1). Let G(X") denote the graph whose vertices X' are
closures of the non-singular edge-less components of the underlying polyhedron X"
of K", with X' adjacent to X! iff X! is disjoint from X'. If G(X") is
bichromatic and n # 2 then K™ p.l. embeds in R*".

Note that Theorem 6 above includes the well known fact that an n-pseudo-
manifold p.l. embeds in R?>". The hypotheses of this theorem are relaxed
considerably in Theorem 8 (3.4.2) whose statement involves some equivariant
cohomology.

In Theorem 2 above, K[ denotes a self-dual poset, the dual deleted product,
which we associate canonically to each simplicial complex K". Theorems 3
and 4 of (2.5) are analogues of Theorem 2 for graphs G(K§) arising out of
some sub self-dual posets K§ of K. Theorem 3 is in fact a common
generalization of Theorem 2 above and the Lovasz-Kneser Theorem [12] which
appears in this setting only as a very special colorability implies embeddability
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ENESER COLORINGS OF POLYHEDRA 593

theorem. We thus obtain, besides the classical Kneser graphs, a host of new
emmpias of highty chromatic graphs which are triangle-free (and much more).

(L.2) Method of pmof : S 2

There are two main ingredients iavolved in our pmwf@; : i

The first of these is the idea, going back atJeast to van Kampen [25 j 1932
of using the deleted product K of a simplicial complex K™ Recall that K7 is
the celt complex consisting of all cells of the type ¢ X & where ¢ and § are
disjoint simplices of K% OUne equips K with the tnvolation (x, y) = {y, x).
The deleted product is important in Embedding Theory hewuw ﬁmbeddmg%
f Iﬁ' " s R yield Z,-maps f* KD S"" L by .

f(x} mfv{y)
£ol5 90 = (G RO

Copversely, Weber's Theorem [28], 1967, tefls us that for Z2m 2 3(n + 1) the
existence of such an f, implies the existence of an ﬁmhﬁddmg 7.

The second ides came to the fore wmh Lovasz's proof [12], 1978, of Kneser’s
Conjectire iﬂ} 1935, viz. the idea of wsing a mlorxzezgf to construct G syitable
Zymap, We do not however use Lovase's © nenghborh@od mmpiem@; and
instead, taking our cue from a m’bsequam paper [13} of Lovasz dn “strongly
seif-dual polytopes”, find it convement (o work with self-dual posets, L.e., fimte
partially ordered sets equipped with non-degenerate order reversing involu-
tions. This idea ties up with deleted products because the latter are self-dual
pm@m provided one ses ﬂm oppe:}me order on'the wmwd fa&:mx :

(i.3)  Summary.

T (2.1} to (1.3) we review the basic definitions. Then we prw&, Theorem 1
(24.2). The graph of a self-dual pmet has chromatic mumber < k + 2 miy if
there is o Fpriap fmm fis spme te &% In (2.5) we prove the a?ﬁmmammnad
Theorems 2, 3 and 4 pertaining to the sell-dual poset K and its subpmm«;
EX In psmmuiar we obiain o new proof for the Iﬂfzﬁsrnﬁf@mw Theorem. Then
we show in (3.1) that an “cbvious™ genevalization of the classical Kneser
graphs i3 not of much interest. In (3.2} we gwe g direct pmwf mf Tﬁwomm 6 by
using the van Kampen cone construction” in (3. 3) we review the equivariant
cohomology of fixed point free -spaces. This is used in (3.4.1) to obtain
some corollaries of Weber's Theorem, e, that for n # 2 a polyhedron X™
unknols fn RV only if it embeds tn B2, Next we staté apd prove Theorem 8,

“This is one of the two main consiructions seeded in Embedding Theory. The other s the
Whitney Trick {291, . . :
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the aforesaentioned stronger form of Theorem 6, using Weber's Theorem. To
do this we infroduce a certain interesting sub Z-polyhedron of the deleted
product which we call the Kneser deleied product (3.4.2). For some combinato-
rial purposes delered joins K —which go back at least to Flores [4], 1933 —are
more convenient than deleted products K. We use this idea in (3:8) to give a
polynomial bound for the codimension ong least valence of K in termis of the
“oxtent” to which K" canpl koot in R¥*1 We conclude by pointing oul
some evidence which tends to support the conjectures made n {19

Since we are going to stick to the piccewise linear category the adfective p.{.
is quite often omitted. Unless otherwise stated all spaces, maps, embeddings,
homeomorphismns, etc., showld be assuimed p.l. (The main exteption will be the
use of some projection maps. These too can be replaced by p.l. maps by means
of the standard way of getting around “the standard mistake™; e.g., see [10],
Pl 2021

i, Seli-dual posets

@1 me‘&, mmp?«?xm bpé{(_aﬁ‘ _

(2.1.1)  We will deal mainly with the foﬂowmg cazegﬁﬂes ‘

{A) i?mam pamaﬁy ordered sets o P@S‘MS and funigtions bmw&en ihem
Whmh are M@NO TONE, i.e., order pwse*rvmﬁ@, or order rwemng ‘

(B) Finite ahsmam sxmp%ma;& i"‘{}MPLPX}mz &nﬂ fzxw:mom hetwr*m ﬂwm
which are SIMPLICIAL. '

(C) Piecewise lmear &PA&‘PS md MAP& be&we@m ﬁ:hezm whmh am pm{ ﬁﬁW‘iS@
linear.

The momm‘ph%am& of cmegory {(“) are mﬁwd paemwsse hm.w ﬁwmmm@%
phisms. We suy that X, embeds plecewise linearly in an X, if X, is homeomor-
phic to 2 closed subspace X, of X,

(2.1.2) Aﬁw we wﬂi ﬂeed the mwmp{mdmg {aquwamam m%gsme’% m the
group L,:

A Lyobject i at @bj@cﬁ e:qm'pp@d with an mvoﬁutwe morphasm emd be&we:en
ﬂzwm‘&'sgm,w ong mmadwg R rriorphisms, ie., those wimh mmmum with the
mwimzms

(2 2} Spaw uf i pme;f _

{2.2. 1) We haw me f@iiuwmg, hmcmm hmwgﬂm the &bmfﬁ“ aamgones

{3 5 (A} E:,dch simphicial wmphx is mrmdﬂmd as. 8 poset under the
pammi arder < . This meakes () into 8 wﬂnaﬁegmy of (A). o

(A) - (B). The a’immd functor associates to each poset P ihe Mmphmal
complex P’ of chainy (ie., totally ordered subsets) of 2.

e simplices W.EH tr e empzy fimite sets,
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(B} —~J» {C} This functor associates to each sbstract simplicial complex K
the piecewise linsar space [K| underlying the corresponding- geometrical
simapiicial complex obtained by thinking of each vertex v as the vth unit
vector of the vector space RH5, : :

A simplicial complex K is called a pmwwm Emear zrm:?w!augm (‘sf me
compact piecawise linear space X if | K1 is pl. homeomorhpic to X, :

(223 A simplicial complex X embeds rectilinearly in a ‘real vecior space V'
if one has a linear map

Tavert K W:?W, 74

which is one-one on |K i

It is known that each compact piecewise Hnear space X ocours as the | 1mﬁge:
n(]K]) of some such rectilinear embedding (Swh a K may be called a
rectifinear triangulation of X.) Likewise each pxmm% linear map 1+ X, —» X,
between compact spaces can be written as w,|g{u " for suitable rhosw:% uf
K, K, 0y m,, and simplicial map @1 Ky -~ K.

Examples of Cairns [3] and van Kampen [26] show that the pl. embeddabil-
ity of a |K} in ¥ does not guarantes the rectilinear. embeddability of K in V.

(2.2 Auy homeomorph of [P'] will be denoted by X, and said to be the
space of the poset P. Note that for any simplicial complex K, K' cap b
identified with the first baryeentric decived of K and so | K’} is homeomorphic
to {1, Hence the space of amy poset is homeomorphic to that of its dertved,

By & celi we undersiand the convex hull of a non-empty finite subsét of a
vector space V. A finite set P of cells of ¥ constitutes a cell complex if (1) the
relative interiors of any twe distinet cells are dm}@mt andd (1) the relative
bmumdﬁry of any édimensional cell o, 7 > 0, is a union of cells of dimensions

< i: these, and o iself, are called the facee of . We make P into 3 poset by
k:m;:g, § <o iff @isaface of o. If P is a cefl complex P’ cas ence again bé
identified with the simphicial compmx arising as the first baryeentric derived of
P and so the space of the posel P is hom%mmphm m the subspace 1P of 14
covered hy the ¢ell complex P,

Note ‘that a cell complex is a gmzmmcai qampiicmi mmp‘ﬁex iff it s
isoworphic as a poset to an abstract simplicial complex.

{2 ’%}1 E)efeced pmcéurzsf Webw g T hemem

(2.3.1) . The cartesian pmﬁuﬂi X% Xofa SPACE ¥ with itself s;hal bc @qmpped
with the involution s which switches the coordinates: 5(x;, Xa) = {x 20 Xy 'E’he
deleted pmducz X, of X is'the Z Zw«;uhsp&ce of XX X copgsting of all pairs
(0 X)), Xy # Xy Pach embedding g2 X — ¥ m«:ﬁuaea a2 -map py Ky = Y,@,

by

‘é”m(xssffz} (‘F’{xx) W(:ﬁ))
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Mote that if an embedding g, is isoropic to @, via the embeddings ¢, 0 £ 7 2 1,
then wy, is Ly-homotopic to gy, via the Zp-maps pa. 0 s 1.

Any space pi homeomorphic to an m-dimensional cell (resp. its boun&«uy)
is called an m-Ball B™ {resp, (m - Lj-sphere S™ 1), The C-sphere §° consists
of 2 points and has the involntion which interchanges ihe 2 points, We will
equip S, the (k + Upfold join of $°, with the mup@daf mwfmm Le.; the
{k + fold join of the wvolution of S“’

Levoaa Y. There iv a strong Eo-deformation of the deleted product of an
wn-dimensional Euclidean space, or of an we-ball, onto an {m — L-sphere,

Proof.  Consider the orthogonal projection of B” X RB™ onto the orthogonal
complement L L

t={{o,-v)i0E ]Ewi”'“‘}
of the diagonal subspace
= {{», m} y € R’"}

Thus each isotopy
. | X -t
dﬂtgﬁmﬁhﬁs al zwhwmm'apy |
| x T, gt
(2. 3.3y The following msuh ﬂius&mies the nmpmmnce oi the del e@m‘f prod-
uet iuxmiemr

WEBER'S &Lmswzmrwm THEOREM. If 3(m i) {resp. Trit =
Ym A+ 1Y), and XV s compact, thén 9 = g qu pr a bijective {resp. swyec!me}
correspondence between isotopy clusses of mgbwddmg& of X% in B™ and # y-hormo-
topy classes of Tpmips X3 — S”’ .

This theorern is due to Weber [28], 1967; the surjectivity of {p] = [p,] o
the special case m = 2n,1 2 3, was cmx}emum:i {and pmﬂv proved) by
van Kampen [25], 1@432 and pmwd mdepmdmﬁ% by Wua Hi} 1956, and
Shapita {22}, 1957 A theoremi exacﬂy atzlogous to Weber's is valid for
smooth embeddings of smoom neinanifolds in i&’“ and was pmveii by Hm&««_
fliger [8], 1962. ‘

(2.32a) The results of van Kampen-Wu- Sh&pim were stated differenty in
terms of the vanishing of some cohomology classes (see (3.4.1) below). It was
Haefliger who reformulated this vanishing condition into an equivalent one
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involving the existence of a Zmap: this quickly led to the aforementioned
stronger resulbts of Haefliger and Weber. We note the following addendum 10
Weber's Theorery for the case mo= §om = I

A GRAPH PLANARITY mwmmm A gmp}u Xi s pgamr :_;‘}’" fheze is
F-map fmm X o S

This surpmsmgiy imk known result muﬁ;'& have been kuﬂwn to van Kampm
by 1933, but the ouly g}iam wheve I could find it explicitly stated (in its
cohomological iormulatmn} is p. 210 of Wu's hook [32], One can prove it
divecily without defining the van Kampen Obstruction as follows.

It is easily woen that there is a & ,-map from X} to S iff there is a Z. L -TRAp
from the defeted join (see (3.5.1) below) Xy ! 1o S$% But the deleted joins of the
Buratowski Graphs are & zwhﬂme@morpmg: to §° (see (3.5.2)). Hence by the
Borsuk-Ulam Theorem, X' cannot have a subspace homwmorpm woa
Kuratowski Graph, and so must be a planar graph.

We will show elsewhere that one can tum things around and prove this
criterion without using Kuratowski’s Theorem, and then deduce the latter
from it. By using Weber's Theorem such techuigues also vield some higher
dimensional generalizations of Kuratowski’s Theorem: see {34}

(2.3.3) f(’m* any posst P (ami in pmiwmr for %imﬁli@i.ﬂ wmpﬁweﬁ) we

g §J>,J, and the involution s whnfh swztches ?he wordkmim %t(al, ay) =
{a,,a). H K is a simplicial complen its deleted product K, will be the
Zsubposet of K X K consisting of all pairs (o, o), 6, O 0y = & Wote that
K, can be considered as a Z-cell complex covering 2 compact portion of the
deleted product of the space X e m fact one can say mere.

Prorosirion 1. For any ssmpz’u ierd mmpfe,\r K, Xy isa .sz“mr'?g &deefwma»
tion retract of (gl : . :

‘Thus the ﬁjyhmmtopy type of the space of E, dﬁp@m&a onfy on ihe
homeomorphism type of the space of K. This result is due to Wu [30}. {Cr else
see [321 or [9] Note that the argament on p. 257 of {22} is flawed because
B p, ) does not vary continnousty with p and 4.}

(2.4 Self-dual posets.

{241y A Tposet {F,r) i called a self-dual poser if its involution » is
opder reversing and non-degenerats, Lo, if o ;E playfora g P

The wproduct P, of 3 self-dual poser (P, ») is the .ﬂ?wm%}pm@i of Px P
wmmm% of alt pam {a, ), & < vk} :

E'In this context we wilt denote the calls of K A mﬂm thian ?(}y {5, 5y}
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Lemma 2. For m}y wif &’sz pmef (P #}, Xp aind Xf are By h(}m?mpv
equinalent. : : .

FProof.  Define 8 p) — P' by associating to each chain (¢, b)) < -+ =«
(ﬁ,,g byof P, thechain ay € . g0, <w(b) < - < #(b)of P Though
it is not sunplicial ¢ i sur;eciwe umhmmm preserving and commutes with the
s;mphmai mvolutions st P/ — B/ and »" P7 - P’ %m ma:‘h wampim

a e < <e)

of P’,: the subcomplex’ aftof ‘;IE [m es of ﬂf’” ‘has ay 125: yuﬂbém& the mbmmplﬁx
Yoy of £/ c-ﬁnsisémg {}f all z:fim.sm of the form :

(% 7Y ) SR (cg,w(ar ))
) 15 4 cone over

where 0 < ig < - % x,.ﬂ.hj,»,;; crel Gy &mw ﬁ 3( ar
the vertex (g, #{r, )} its space is contractible. Thus a & -section &1 Xp > X,
of the Zy-map {§'): X, - X, can be constructed by an apward induction o
the we-sheletons ¢ X, )""’ = U,WX - This @ is ﬂw wqm'»m homomfpy inverse e:)f
|674.

242y The gf ﬂplx of u s»ezf dwi pawf (J(P w) is me graph (1 &, g dua@w
sional simplicial complex) whose vertices are the minimal elements of P with 2
vertices ¢ and b joined iff 4 < »(d). The chromatic number of mm g;taph will
also be referred 10 as the chromatic mumimr of the self duﬁi POEE

EHI«:QMM 1. .4 mijf duaf poset F Ems ci;:mmatzf ﬁmm{w = & + 2 miy :f zﬁwre
is o &-map fmm Xp te 8% Thus if the space X, of o &*elf,f dual poset P ois
k-commected then iy aizmwm‘z‘c sgnber iy al !msf i+ 3

Proof.  Let PO denote the ﬁubwm of £ wnm«.amg aﬁ: the mmxmﬂ} Lleﬁ“mms
and let o Py~ {L4..., &k + 2} be a funciion such that « < v»{(b) implies
pla) = tp(f}) Let oft )} denm@ ihe sxmphmd} compler whose simplices are all
the pon-empty subsets of {i,w, sko+ 2}, We can define a Zmonotons
function ' LR ~ S

£: 2, - (o),
by
(6# b) > (fp(ﬂ) »{B))

whem A {resp. ﬁ} denows the subset of all mjmmm eﬁemmm ¢ < a (resp.
¢« b). This follows becavse if 4y € 4, by & B, then gy < o =5 w{b) < v(by)
and so @(ag) * @(hy): thus @{A) N o(B) = &, Since of ) m:mguiams a
(& + Ly-disk its deleted product has, by Proposition 1, the Z-homotopy type
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of the deleted product of a (k + Tpdisk, and so, by Lemma 1, that of the
kesphere §% (In fact it is easy 1o see directly that [(of] et is & -homeomor-
phic to 8% On the other hand Lenua 2 gwm HE 4 JL’? map imm Ky 1o X
Thus we get a Z,-map from X, 1o 84 :

To see the second part note thay under the. given mﬁmwﬁ,dm% ’Q’aypothwﬁ;
one has a Tmap S - X for each 0 < r < & suitably exiend the Z-map
§7 = X, from the equator §” of $77 to the northern and sonthern hemi-
%phere& I chromatic pumber were less than & o+ 3 we wuum have a Z.,-map
S8 s 8% This contradicts Borsok’s Theorem [2) 0 g

The following cases of Theorem 1 are due to Lovasz 512; HE} and Walker
[27): (1) P is a “strongly self-dual polytope™; (2) # is “the proper part FG)
of the ortholattice #(G) of a graph G7: such an F(G) has the same

Y ¥3

homotopy type as 4 Gy« the nmghhmimmi complex of the graph &7,

(2.5)  Fhead defeted product,
(2515 3 we cauip the set

{{o). )0, € K, 0, € K, o, Doy = &)
of all ordered pairs of disjoint simplices of X with the involution » and the
partial order (o, 0,) =« (@1. ) iff o C 8,8, G o, (instead of the product
partial order of (2.3.3)) then we get a self-dual poset K, which wﬂl be a;zdﬁﬂd
the dual deleted product of K.
"fm:mwm I GUEL) has ckmmam vwmkw gm+ L, (hé*r«" m o> G‘) mm.

o= awd m =2, then X, o mﬁbe v i W*

Prooj. The second part will follow from Weber's Theorem. To prove the
first part we note that by Proposition 1 it mﬂiam w find 3 Zo-map

K " 5m ’
Under ‘m«:& gji;ram chrothatic hypiﬁhesis Theorem 1.sup§5ﬁm .us.with ) Zz;map
- o .X%@gmwlh | | -
Thus the xm%xh f{}imws fmm the k\alic‘e%ng, memfi

LLMMA 3. }?W Gy Mmp!mﬂf camp!ex K X K é’ms s’?:e seong Z o frammﬁpy
type as Xy . | . . _

Pm@f L@‘k Y= |K and xdmhﬁ‘y K with the g,aimmmmai samphmaﬁ Comm-
p§m covering X and thus K, < & % K with the cell complex consisting of all
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cells a X o= K, 8 &€ K, 08 =&, The space |K,} covered by E, is thus
a compact Loy %uhhpau;, Y of the deﬁemd pwdum, Xy © X X X = (K] X K|,
of X. :
Choose a barymnﬁw & in each o & K amﬁ thinek oﬁ" K as ﬂ}m b;ﬂywﬁmc
derived of X, ie., each o' € K’ which is 2 chain 6, € ++* Co, of K, is
thought of as the geometrical simplex which is the convex hull [8, ..., 6] Let
us now cut wp the cells o >< 8 of Kx K into smaller cells of the form
o' X 80" & K\ & & K 6" G o, 6" ¢ 8 This gives us the cell complex K7 X
K7 we denote by C the subcampiex of X' % K’ mvmmg | K41

(?s:msxd&f t}m mﬂ«; a X af C :

o’ Eﬁﬂ, ﬁkg {Xﬂ[:_: e g'@'fm

ﬁ {gﬁu *<3@]Ew g()g e (;@f‘
We can further cut them up into simplices

[(6,,8.).-.(6,6)], 0sihs - si,skOshs - <jsh
This gives us a simplicial complex rnmmarphm . Ky, Alternatively we can cut
them up into the simplices _ : :

E( M,-ﬂ,&%ﬂ),.“,(éi?,é;)‘i, Q‘ = eig o & 3,,5 k;,i&f}ﬂ}i e _f; et {1
This gives us a simphcial complex somorphic to & subcomplex of K. Thus
[Kgd = ¥ and [KL 2 ¥ {this already safices to complete the proof of
Theorem 2). Figure 1 shows an exataple where [K 241 is not homeomorphic
0¥,

To get an isomorph & ;3 of K5 we hawe thus o mmidm zﬂw the simplices

[(ﬁ"o” é:fn)’ ( By fr}}

Ogigs - 8l l2h% - 2/pe 08 = - =0 NE = J, aris
ing in the above {ashion, wzﬁhm cells & X 8 of :P% x K Whmh a,m not in K.
Siace o N @+ @, note that any such simplex of K cannot have the b&rywnw
ter (&, ) of (o, #) as a vertex. For each cell o X 5? of (KX Ry — K, let v,

denoie the radial deformation of (e X 8} ~ (4, §) from the barveenter {4, ﬁ)
towards the boundary #{o X §). This deformation v,y maps [K§5] 0 jo X §
inte iself. To see this we note that a simples of above type hios outside
o x ﬁ} iff 6, = ¢ and o, = ¢ and that under the deformation it moves over
the region gwe;n as the convex hull of the vertices of the simplex and the points
{d,, @;) Usk<lgrd =80 =0 (cf shaded areas in Figore 1). Since
o, X 8, & K, it is easy i,o e;;heu& that this région s covered by simplices of
I o We can now obtain g Zdeformation of | K4 onto 1K,] by a step-by-step
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(8, 8 ) (w?r.f) _{f;,f“) .

- ..........4@.‘......,_ .._.?.ﬁ . ” ;;
! i
(6.58) M,
CotERL
o .
(G, B B = o e “:'“ e "\ (&,
!
[ i
\ ( \
l : {&,ab)
| i
n i

F TR

procedure in which at each step these radial defdrmations are used in those
highest dimensiomal antipodal pair of cells {o X 8,8 X o} of KX K~ K,
which still contain some part of the deformed (K[

(2.5.2)y  Remarks,

(a) Twisted triangulations maiﬂgow m K/ can be deimed also on higher
“deleted powers” and “configaration compﬂem of K. We will show else-
where that this leads to interesting gmemhmﬁmm of the vesults of this p&per
for finite groups G other than &,

(by Mote thas the argument wsed to pmve Lemma 3is apphmh NG cmy
Lesubcomplex of K x K. Thus one has: :

Lemma ¥, If a Zysubcomplex E of the cell complex K X K is considered as
a poset P under =, then Xp has the same §.phomotopy type as X,

This observation will be used i the proof of Theorem 3 below,

{c) In the above pxmf of Thmmm 2 one can avmcf mmg Theorem 1 by means
of the following direct constriction.

Let § < K denote the sm of all mxmmai d@mmm Let

S8 {0,1,...,m} = o™
denote the given colorng. So

(00,8, (02, 8) & 8,0, € 0,0, 8, = [0, ) # [0, 8). (3)
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We now define a (non-simplicial}) Paction Fr B — o (the simplicial
complex containiag all faces of o™} by

F(a,8) = (/(0,0)| (0,0} € S,0€ 0,82 B). @

Note that Fe, 8} is indeed always a nowempty subset of o (Had we
started from a coloving f defined over some other § < Ky, we would have got
an F with a possibly smaller dmmam Sc K..) Mext we note that F{a, §) is
always disjoint from F{8, o) because

RN Y N I N {Sf?,mz & 8, = o, &) v!-f(f)%uﬁw)
by {1} I?inaﬁy note that
o G, BB, Fla, b)) C F(mmﬁ?_‘)‘;

Thus we can dpﬁ‘ ne a simphcial map £ KL~ (07, by mapping each
simmpsle

{(mz,ﬁ}’ (ix;,ﬁp} § o Cay (—:ﬁﬁz Qﬂgfﬂ‘ ok

of K to the simplex

{{F(“h ) F(ﬁ}*ﬂk}) (f‘(%? ) }’{ﬁ,&»‘xz)\} }

of (a7}, ’]ihm ol is the mqumm orrnap fmm K, m KA ‘.1.

(d} Fven the graph-theorstical case n = 1, m =, “of Theorem I seems to
be new. 1t says that for any now-planar graph K !, the associated graph G(KL)
must have chromatic nunher bigger than 3. In the opposite direction we have:

A Foui Corow TusoreM. * For CM}? pfamzr gmp& K the msmzaied Wapb;
G{K LY has chromatic number < 4.

We will %how eﬁsewhere mhmt it is m@ugh to mmmdm' the msa, whem K Ly
hamittomian. Let 1! ¢ &' be a circle mmaimng aHt the wertices of K2, & hwasm
an embedding of X% in B® and let the vertices QE" K' be1,2,..., ¢ as one
pmcmds along L' in a elockwise direction. A vertex {{a}, {f; ¢ }), b<e, of
G(R LYy will be given () thecolora if a < b < ¢, (i thecolor B il b<a < ¢
and {b, c) is either {1, ¢} or an edge lying in the bounded component of

- (LM, (i) the color ¥ if & <a < ¢ and {b, ¢} is in the vnbounded
component of B2 — LM, and (v} the color § i b < ¢ < a. it is easily verified
that this is a good 4-coloring of the veriices of G{KL).
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I do not know whether the above bound is the best possible.

Also one has Heawood-type upper bounds for the chromatic number of
G{K}) as K runs over all gmpﬁ:&s embeddable in any ﬁxa_d 2 p&feudwmam-
fold X2

fer Itis easyio chmk that for any gmph ié‘ the assmtamd gfmph (x{K 3
does not contain a complete graph on four vertices, However there are graphs
K' for which the chmmam number of G(KL) can be arbitrarvily big. For
example let of = {0,1,. 5 N} and let KL= o, the mmpiew graph on
N + 1 vertices. Suppose thr;m 5 & gﬂm‘i w,ﬂfsx coloring of :G{(o])) with m
colors, To awy Z-simplex {a, b, ¢} < o, @ = b < ¢, assign the color of the
vertex (b, {a, ¢} of G{(a{)). We note ‘!;hw; any G-simplex {e, f, g A} ©
oM, e < f«g<h has two incident Z-siraplices, namely {e, f, g} and
{ f. g &} which have ﬁiﬂ@mﬂ& colors. By Ramsey’s Theorem no such m-color-
ing of the 2-simplices of o™ is possible if N is sufficiently big.

(2.5, ’é} Let G{K ) 5 2 0, denote the graph whose vertices are pdm {o*, ﬁ‘;
where o* is an s-sitiplex of K and 8 2 maxiroal simplex of K {il‘Sjomi from &°,
with (o], 8,) adjavent to (of, 6,) iff 6§ € 6, and of C 6,80 (}{g(}’( (;{Kn)
WNote further that if & vertex (6%, §) of G{K ) has dim@ < s, Ihm it i an
isolated vertex. Modulo such vertices G,{ K3} coincides with G{ Xy}, the graph
of mimimal elements of the sub self-dual poset K+ of K, c:omistimg, of all
pairs (o, f) with dime 2 5, dim £ 2 . The following result gmma izes Theo-
rem 2. '

TueowreMm 3. If G (K} has chromatic mumiber < m + 1 — s {here m >
28), then there is a Zymap (Xya) — 5™ o Thus if fwtﬁwr Imz 3dn+ 1)
then Xy embeds in B : ‘ "

Proof. Because of Theorem 2 we can assume that Ky is a proper subset of
K. Sinee m - 1 - 24 2= 0, the given chromatic hypothesis and Theorewm 1 (or
else the construction of (2.5.2%c)) supply us with a Z-map

I(KgY) = mi R,

Any chain of K72 is built up in a unigue way from a chain of K and a chain
of the mmplvmemary seff-dual poset P = KJ ~ Ke We note thzat HESY|
and [P} are disjoint subspaces of (K3 )’i anid that aoy point x of |{ Km)i
which is in neither of these subspaces is an interior poind of a unigue
geometrical simplex of { K 2) having some vertices in (XY and some in P, 1n
other words (KLY is 2 Z-subspace of the join {{ K3 |P/]. Hence if we
could produce a »@’Zgwﬁmp & §P i - ;‘325 L them we wmﬂd have %;he desired
ayﬂzmmap . , .

X&“\:t{*g}i Sm“i.éxﬁcg?slwsml
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Note that the cells o X # & £ are all those cells of K3 for which either
dimo or dim & is less than s, Thus they constitnte a subconiplex £ of the cell
cormaplex K. By Lenwoa 3, [P| has the same Ephomotopy type as it
subspace |E’]. Thus there will be a Z-map g1 [P} — 8§27V iff such a Z,-map
can be defined on the subspace |2}, Let T denote the full subcomplex of £’
spanned by vertices of the type (4, 6y where either dimo = 5, dim# < 5 (the
full subcomplex of T determined by all such vertices will be called T7) or
dimo < 5, dim @ = s (these determine the subcomplex T, of T'). We note that
an edge of T capnot have one vertex in T, and the other in 7, 8o T is the
dhiggoint union of ihe mtnp@dal mhcomplexes T, and 7. Thus we can find a
L -map : :

|Ti e ‘%‘Q

The remaining veﬁm@s of £’ m‘u of ﬂm &fo: {4, ), dnmg <5, dam@ <y, ‘and
thus determine a full nubmmp‘im U of B of dimension = 2(s ~ i} By
working up mdurtw&ly on the skeletons of U we ‘see tha&ﬁ_ there 18 0o
obstruction to finding a ,-map

W! B, ga0- L
This gives us the required Z,-map

8’?’1
I

IFr SU 32(3--' iy = S:QS"“?

(2.5.4) Remarks. (a) The gmpf@s GAEDY cannat contain a commplete gmph on

more than
‘ ) wi» 1

verdices: W {al, 8. .. {g}, &) are all mumaﬂy adjacent, then o], 0f,..., 070
would be muotually dm}mm subsets of the simplex 8. Since dim ¥, < n we thus
get ({ — s+ sn-+landso
il
P mwi* + 1.
(b ??zeawm 3 wives @ host of new exomples Of m?mgé’f’ fref* gmp}m
G, {K LA é’izrge* Eszmg large mmmatﬁc ?mmfirem

Fie or instance if we mak& sure that the - dmwmwm)& sxmphuzl% mmpiﬁx £
does not pl. embed in B, then, by Theorem 3, the chromatic number of
G (KDY will be at least 2n — &) + 2. O, again, if # is 2 power of 2, and X"
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is & triangolation of RP”, the real a-dimensional projective space, thea the
chromatic number of G (K2) is at least 2{n ~ s) + 1. This follows because
such a projective space does not pl embed in B (g, see Steenvod [24],
p- 34, or Milnor {15}, p. 120).

Since n = 75 the high chromaticity of these graphs is obviously not due to
any contained isomorphs of the “classical Kneser gmphﬁ“" sge proof of
Theorem 4 below.

(¢} Comjecrure. The chromatic numbm“ of the graph G,_(K2) is bounded
as K" runs over all n-dimensional stonplicial complexes embeddable in R
and, more genierally, as K" rons over all p-dimensional stmplicial complexes
embeddable in a fixed X (s::f the analogous Comyscmre 2 of 1197 which deals
with “Ramsey Colorings”, -and (2.5.2)d) above).

{25.5) We now take a closer look at the chromatic Iower bounds which
must be satisfied ‘by the graphs G (K o) merely by virtue of the lecal wpologi-
cal fact that K7 is s-dimensional. Since there is no Zg--map Trom [KJ| to
5§72 the following resalt is included in Theorem 3. We give below another
‘u‘gumem which further clarifies the constructions m‘&mduced ahove.

Taropsm 4. For any re-dimensional s*mzpfmaf mmpfex K* the chromatic
number of GA{KL) (heren 2 25) s gzmzer ﬁwrs B 28

Proof For any subcomplex L of K OnE Can ﬁamﬁ an momumh of GALg}in
the graph G,(K ) assign to each vertex (v, §) of G ALy a vertex (o, 8") of
GLE L) whem # is o maximal simplex of K disjoint from o® and containing #.
Thus i is enough to prove the result whm K" =g the simplicial complex
consisting of afl the faces of an s-simoplex o = {0, 'i n}. But G (o))} is
obviously isomerphic to the sk classical Kneser gmph F Loy of o], Le., the
graph whose vertices are the s-faces of o™ with 2 vertices adjacent iff they are
disjoint. The theorem follows because the well-known Kneser Conjecture [11]
1955, proved by Lovése [12), 1978, tells us that the choomatic number of this
graph is exactly #n — 25+ L

The Lovdsz-Kneser Theorem can also be proved as follows. That n — 25 + 1
colors suffice is very easy to sce: assign to each s-face having a vertex in

{0,1,...,m— 15 ~ 1}

its fivst vertex and to all other s-faces the vertex n -~ 2s. ("‘%mﬁy i~ Zs == 0 or
1 colors won’t do if # = 25 or # =25 4 1. So assume m — 1> 2w, M m 25
colors would do, then Theomm 1 (m glse the mmimc tion of (2.5.2)ch
auppium s mﬁz a2 rmap

(o)t = §7 58,
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Tet e fa, b, e}

P UIREY LS

where {a,'}y is the subposet of (9.}, consisting of all disjoint pairs of faces
(e, By of o with dime = 5, dim B = &, Lo, all pairs (o, £y with :

s dimadimf s -5 1.

Consider also the subposel (o)) of {0}, consisting of all (o, #) with
dim o 4 dim 8 m a1, 1e., all (&, ) for which # = ¢" ~ @, Any chain of
{¢, )y has at most » members (corresponding o O € dime < n ~ 1), out of
which at most # — {& — 25) = 1s (i.e., those with dim e not in {5, # — s — 1]}
are outside ()5 5o (as in the proof of Theorem 3) we can construct a
Z-map from [{o") ] 0§75 2w 8% 1w §772 This is not possible because
the poset (8 ) 1v womorphic to the poset underlying the simplieial complex,
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al_,, of all proper faces of 0" (under (a, £} - a), and 80 ity &pam i(ﬂf“}fml is
homeomorplic to the (» — Dpsphere Jol,

One can check either directly, or else u@mg ‘i@mm&s 0 md 3, thai fciﬂea
U n — 1)-dimensional A?;Qu@,wm |{zr”*){ji has the same ,,&”inmmompv type as the
Z-subspaces [{o) gl and }(o)4], these being 7.~homeomorphs of S,
Figare 2 shows all these spaces and the deleted gmm i(n“}%} {ses (3 5, 1}} f&}r
B ow= . . _

3. Kneser graphs of pulyhedra

A1y Fmerior of K. .
(31.8)  Besides the peneralisation G {KJ)—or even G(8). § C K{l—of the
classical Kneser graphs, it is of interest also to examine some others, For
cmmpla o can dsﬁﬁm thﬂ Mh meer gmph &, (I( } ofa mmphmai mmpkm K

Treorem 5. Let K7 be a fmmogmmwfy nmdmwﬁsmm{ wmp!’fum’ cﬂmp{ex
whose deleted product has the same L. -homotapy type as s interior in { Xgo )y
i (;N{K Y has chromatic number- < m -+ 1, then there is a Fopmap (X wﬁm b
S8, Thus if further Tm = 3n + 1Y then X embeds in B™, :

CProoft. Let 85,(K) be the set of @.ﬂ rzwmmphws oi" K and iet

M{K)"*a' m{i?; mk}i}

be am pusﬁuiamd m’l@mmg 80 of Moo = PS tmplies (p{(x 3 rp(@g‘) Le&
P(KY denote the sub Zpposet of K X K consisting of all cells o) X oy ©
int { K, 1. (Since we are considering elements of K X K a8 cells we write them
as o, X o, instead of as pairs {gy, o) fﬁmm the m;mz viewpoint we
have P(K) = {(0,, 0,): 0, € K, 0, € K, Sto 8o, = B1) For each
oy X iy & P(K) the sets 2 and £, of all s-sumplices meident to ai and oy
respectively, are mn»mnpty and each o in. El is disjoint from ea@h al in X,
Thus we can define an order veversing & nmmp}mm : .

f P{K) o ("m}m
by )
e X Y {‘P{EJ X S‘J(Ez)}j

YSee also | ’%ﬁ] wh{m a variant of this azmph mgumem is z.md 1o &xmbimh & geﬂemlm*d
Erdas-Kneser Conjecture. . . : :
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In the baryeentric subdivision { K X KV, the derived comiplex ( P(K)Y occurs
as the subcomplex made up of all simplices havmg vertices in int] K.} Fach
point of | K x K| lying in neither [{P{K)Y] nor in the mmpiemem of it | K|
lies in = unique open simplei of {K % K'Y baving some vertices in (P(K W

and some outside int{X.7]; thus it is ai interior point of 4 unigue ling segment
having orie end in |{ P(K)Y| and one outside int{K}|. By pushing along thesé
line segments towards |( P(K)Y] we see that [(P{E))] s a &,-deformation
retract of int) K] Also, by hypothests, | K] —which by Proposition 1 has the
Zyhomotopy type of (Xgs)e—has the same Z,-homotopy type as imt]&JH,

and we know that l(ex )| has the Z,-bomotopy type of §% % Thus f
furnishes us with a Z-map { Xen)e — S .

(3.1.2) Remiarks. (1) The mnmtmm 1E 5] = mﬂﬁi"i u,s»ad in the abo‘ve
theorer holds whenever K" is an a- mamf(ﬁd and its deleted product KJ
2 n-mianifold-with-boundary. However very few such K*s will satisfy &he:'
chroteatic hypothesis of Theorem 3. _

{2y A colorability implies embeddability theovem of the above tipe cannot
hold unconditionally. To see this consider the n-skeleton of a (2n + 2)-simplex
o 22, It was proved by van Kampei [25] and Flores [4] that o7"*? does not
embed in B, On the other hand the Lovisz-Kneser Theorem tells us that the
chromatic number of G,{o?**?) is only 3. ‘

(3y However that is about a5 bad as things can be. Amy K7 with G (K™
Bichromatic embeds in B2, Indeed we will proceed now to show that there are
graphs much smaller than G{&™), and depending only on the homeomor-
phisea type of the underlying polyhedron X" = |X"}, whose bichromaticity
stitt forces the same conclusion, . ; . :

(3.2) The van Kamgpen consiruction. : :

(3.2.1) A point x of a compart n-dimensional space X%, A a1, is called a
singular point {or “of intrinsic dimension < n — 1” in the t@rmmoiog,y of Akin
{11y if no tdangulation of X* ‘containg x in the m&emm of an mmnpﬁux A
smguim point will be said 1o lie on the edge of X7 if, in some triangilation of
X%, it is incident to exactly one wesimplex. Let sing{ X™) denote the subpolyhe-
d.ram of all singular points, and X the closares, in X, of the components of
X - sing{ Xy, We define G{X"), the Kneser graph of polyhedron X", 10 have
as vertices 21 those X7 which have no points on the edge of X7, with vertices
X7 and X7 joined if X7 N AT = &,

A polybedron X7 is sald to wwknot in B” if X7 ambede in B, and any two
embeddings of X" in B™ are ambient isotropic 1o each other. Hudson's
Isotopy Bxtension Theorem—see Hudson [10] for background aad Akin [1],
Corollary 17, p. 465 nssures us that, for m — »n 2 3, this is equivalent o just
demanding that any two embeddings of X" in B™ be isofopic 10 each other.

We now strengthen the theorem of Sarkaria [21] to the following.
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Teworem 6. The graph GUX™), n # 2, can be Z-eolored only if X7 embeds
i B2 And G(X"), n # 1, can be l-colored only if X™ unknots in R2HL

Progf Well color the vertices of G(X") by w and 5. Let ¥ be'the umion
of all X" & G (ie., those having a point on the edge of X™), and all those
X! e G which have color w; and Jet B be the union of all X' € G having
color b Since W B has dbmension 5 s — 1 5 embéds in the 2a -~ 1
dimensional vector subspace &

RZN-'l"m {(XU }r:?ﬁ x;?n) xz»:“ U}
of W” an¢l we can extend lhiS embeddmg o gcm,mﬁ pmmﬂn map {1 X " s
R which images W — W N B (resp. B~ W N B) into the kalf space x,, < 0
(resp. x,, > U The map £ is one-one except for a finite nmﬂbm of pa;rs of
double points { py, py) which are non-singular, : P

if one of these double points lies o an X" & & we join ﬁ via nonnsmgui,&r
non-double points, 10 a peint on the edge of X" and delete from X" an open
regular neighborhood of this arc. The resulting polybedron bmmg humwmorw
phic to X*, this pair of double points gets eliminated.

Otherwise p, € X € G, pp, € X7 € G with X7 and A havmg Eim SaIme
color, and so X N X" @. Such .a pair { py. pz) is ehmmamd when n 2 3,
by means of &he van Kampen-Penrose-Whitehead-Zeaman cone constraction.
(See [25), p. 152, and [16]; also [33], p. 66.) Briefly, as in [21], join py 10 p, via
an arc 4, all of whoss {other) points are non-singular non-double points, with
at most one exception, which is a singular point. Since n z 3, the circle
¢ = f(4) bounds a 2disk D C B meeting f(X") only in O lts regular
neighborhood N(D}--a Zn-disk—meets f{X") in FIN(AY) with dN(D)} N
FUX™Y = F(IN(AY). Here N(A) denotes regular neighborbood of 4. From
hypotheses on 4, N(A) is a cone over its boundary dN(4). So we can alter [
on N{A) by coning f{IN{A)} over an interior point of N{D).

The graph-theoretical case n = 1 is trivial. In fact, there is no X' = EK"}
which satisfies the hypothesis and for which all vertices of X' have valence
= 3 This follows by noting that the subcomplexes W' and 8 of K!
determined by the white and black edges of K must in fact be in the closed
stars of two vertices w and b, but one canpot have K7 = (Siaw) U (51,.0).

The second part follows by noting that if » > 2 and G(X") has no edge,
then an analogous ehmmwon of double points converts any general position
Papy : .

. Xﬂ % [@;ﬂ oy JpRH 1 X W&}
into a concordance between the pair of mnbﬂddiéng's

X" % {0,1} — R {01}



610 Lo ELE. SARKARIA

(3.2.2) Remarks. (1) The first part of Theorem 6 is probably true also for
n = 7 but we have not written a complete proof for this so far® The second
part of Theorem 6 is not trme for n = 1: G(SY) = pr. is L-colorable but §'
knots in B, However note that any two embeddings of &% in B are il
isolopic ‘zh{mgh of course not necessarily ambient isotopic, -

(2) - If X" s | K7, then G{X™) cain be identified to a subgraph &f (»,E(K”} %w
choosing an n-simplex in each vertex X of G{X ”) Ubvmumy G{A ’"‘} i
nsually rauch smaller than G (K"}

(1 And thus Theovem € easily checks the &miﬁeddamhﬁ'y in W"’ md ?:im
unknotting in B! of many interesting n-dimensional spaces, However the
sufficient conditions for embeddability and wnknotting given in Theorem 6 are far
fmm being necessary. These exist polybedra X", with chromatic number of
G{X™) Mbmmm}y big, which embed in 82 {or unknot in B mEVY R X s the
disjoint union of N a-spheres then - X" embeds in '} and G(X") has
chromatic number N. Again take the Zeeman Dwnce Hat 77 Tiis 2 con-
tractible 2-dimensional polyhedroh without an edge. ﬁﬁ K7 s the disjoint
undon of N copies of 2 g2 AFCXTY 15 once again the complete graph on
N vertices. That X” uaknots in ‘RIL follows from Price’s Theorem 1 It
n oz 2 and H"‘(X”, Z) = 0, then X" unknots in W‘” e} o s

(3 £y Fc;mm; fent wkamafngy - '

“We recall some simple facts mgardmg the miwmaiogy of a p{}%srhedron ﬁ
equipped with a fixed point free involution p.

(3.3.1)  The (angular, integral} cochain complex %C{ iz} Of ﬁ the mmi a,pac,e
of the 2-fold cover o2 B ~ E/%,, has two important subcomplexes, The first,
C,(E), consisting of symmelric cochaing ¢ invariant nader the involnton of E,
wEe = ¢, can be identified with the pull back of cochains of # /7., The second;
C,(E), consisting of antisymmetric cochaing ¢ which change sign vader the
invalution of £, v¥c = ¢, can be identified with the pull back of cochains of
E /%, with twisted integer coeflicients 2=E Xg, &. The cohomologies of
these two m@ammp&ews can thusg E:w denoted by S i

g,ﬁ/z;” :z:} and @ {M% ,;ﬂ)

Lestiaa 4. In H ’”(E S/ %2, 2y or HYE"/Ep & ), muh‘zp&mimﬂ b} @ s
surjective ifF it is Bijective iff this group is ﬁmﬂe and has no elemenis of order twar
Further, this happens iff HE" /&, 4y =

Proof. The first part follows becatise H g m 8 Ty and H™(E"/Z, 1)
ave finitely generaied Abelian groups. To see the second part ome recalls that

5, proof of this deficate case is proposed in {34].
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the short exact cosflicient sequances

wWE

I A A The ¢ and 0 - ?L RN > by s £}
give rise to long exact B@ckzswiﬁ sm;xéénws | o
, - W{Em/zz; rzi) L% ﬂf”(ﬂ'm/:éi;_; z_) — (BB Ty} - 0
asnd
e H”‘(}T"*/&w Z) 2% H ”’(ﬂ”’/ﬁ%, 2) - JM(F”"/%»%) = 0.

(Note timﬁ for H ’“(l* ”‘/E; PY .i)) one h&w an &m?og,u& for prmm“ p#2 &Isc} )]

(3.3.2) There {s a natural bijective correspondence between equivariamt
maps £ — 8§ and sections of the i-sphere bundle E Xy, ST E/ %, assock
ated to the 2-fold cover v E — E/F,. For each i 2 0, i even (resp. § odd),
obstruction theory (Steenrod [23}, pp. 177-198, or Milnor {15], pp. 139--148)
provides us with an ebstruction cfass

0 E) € WU E/L3E) (resp. 0,,,(E) & HWYE/Ly; 2))

which is zero i this isphere bundle has a cross-section over the 7+ 1-skeleton
of any triangulation of £/Z,. In particular if m = dim E there is an equivari-
ant map E® -» 87 Further, there is g Hopf classifieation  of such maps: the
equivariant homotopy classes of equivariant maps E™ — §% can be put in
bijective correspondence with the elements of the cohomology group
i’"(E””/E.z, ?} or H™E ’”/El, A d@pmdmgb on the pamy of . ‘

LinMa 5. A non-zero obstruction class has order .

Proof. Under the map w: £~ E/Z,, o, ,(F) pulls back to the i + 1-th
obstruction class of the puiled back isphere buadle 7¥(E X, 87). But this is
just the trivial i-sphere bundle £ X 8~ E. Thus if i is even (resp. odd), and
antisymmetric (resp, symmetric) cocycle z represents o, ((#), then we must
have a cochain ¢ of E such that @r = 25 therefore 8(c — v¥c) = 2z (resp.
8o 4 vPe) = Ty and so 2o, (E) =

{333y One checks emﬂv that cochzﬁﬁn mmpﬁ@x SEIENCes

0= C (}}( ((@5} wd 2 C(E} ~a'0
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ard ;
5 4 el 4 »* i
0= C{B) ¢ C(E} = C(E) ~ 0

are exact. Their Jong exact sequences, which run

(1) oo HUE/E B H*(E; ) - H;’(E}/;’é‘:z; Z) |
. Y E/By L) - L,
(2) H"( E/Ty 8y = HI(E:Z) - B(E/ T, 2)
Py H*”(E/z% i

are calied Eh(: Smith-Richardson sequences {8, see Wa g?@{ Lh D of B One
has the following characterisation of the obstruction cl%sm ‘i terms 0}‘ the
oonnecting hommm@rphtsms of these sequences: :

(3} Giiﬂ) ‘?G(M 92(5) = 5i(ﬂ:(F)) ‘3’3{E} = ﬁ')(”z(ﬁ)}

Lemma 6.
HO(E™ /T, By 2 Ho(EE) (resp. B E7 /T, 8) -2 HO(E™, 7))
is surjective iff it is bijective iff _
CHYE"/L,,8) = 0 (vesp. HM(E"/2,,2) = 0).
Proof. That surjectivity is f,qmmiﬁm to the vaiis shing of the, stated gmup is
clear from the eract sequence (1) (resp. (D). But this in turn ensures, by
Lemma 4, that in H™(E™/Z,; &) (resp. H™(E"/L,, .'ﬁ)} muhxpﬂwanan by 2

is bijective. At the cochain level multipheation by 2 can be wrilien as_the
composite '

1d 4w

(’(E) C(I;) XY C(E) {mp C (E) & c{ﬁ}"‘i = C(EJ}) |

Bo w*, Whﬁ:h is induced by the first famm CLEY ¢ C(E) (zesp. C (E} c
C{ED must be injective.

3.4y Kneser defeted prodhct. '
(3.4.1) Before retutning to the Kneser gmph GLA™) Jet ws record some
consequences of Weber's Theorem.
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VAN KAMPEN-WO-Sgapire THEoREM. Jf n 5 2, X7 embeds in R iff the
abtruction class ’33”( Ka) & ?“( X, ”/’222, I} sram&fae& i

Since ihere isa Zzwmmp X7 - 5%V 0,,( Xy = O this older result is, for
w = 3, merely a special case of Webee's Theorem, If n = 1 the above charag-
terization of planar graphs Tollows easily from the well-known Kuratowski
Theorerm; see Wi {32}, p. 210. The 4-dimensional methods of Frwdman [5}
may have a bearing on the unknown case 2 = L. o

Tugorsm 7. {8} Ifn = 2, isotopy classes of embeddings X" — "1 are
in bijective correspendence wrf!e the elements of H¥{( X2/ Ly yAR

by For n iz 2, 0% H?“(X’*/E;z, Ty - HAXLE iy surjective i it iv bi-
Jjective iff H*"{( X3/ 2y, 2y = 0 iff X" wnknots in R*"*1, _

() Forn#2, X mz!frmm in R* Y ouly if it embeds in. W”

Pmof ' l‘d se (d} amfi (b} use Weber's Theorem in wujr,.xmiio.n wiﬁ? {332
and Lemma 6. (Wote that (a) and (b} are not true for i = 1: a circle §* has
H*E/Z,; %) = 0 but does knot in E@?) To see {s} for n = 3 note that if

ﬁ?”{mﬁ%; 2) =0

then, by Lemma 4, H*( X2/, ) is finite with no elements of order two,
and so, by Lemma 5, 0,,( X&) = 0. (It would be interesting to have a pumlv
geometric proof of this.) For n = 1, {c) follows because an X" unknots in &’
ifT it has no loops, in which case it does embed in B2, '

Pricg's TeroREM. §f H X Ty = 0, then H X;/E;».; 2) =0

Proof. In fact, H*{( X" ﬂ) = imphes X x XmZy=10 (hm&usé 1f
n-cochain 5" is coboundary of ¢"% in K", then (¢ X g} = b" X ¢”
Knx By which in tarn fmphes HMM X Ty =10 (by exact whﬂmology
sequénce of pair (X" X X" X)) and this implies H¥(X/Zy Z)=0=
HA( X5 /8y, Ty by using exact sequences (1) and (2) of (3.3.3),

(3.42) We define X7, the Kneser deleted pmdmf of a:ha p@iyhedmn B A o)
be the Z,-subpolvhedron of X7 given by

U{ A x X;ﬁ{ «Wu X}‘} an adge; of &E(X*’*}},

a4 disect proof is proposed in {34]
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1t is important 1o observe that in general X does not have the same
2, ~homotopy type as Xi e.g., in the case of a circle 87 the deleted product 5§
has the homotopy type of §' while the Kneser deleted-product 84, is empty.
Again, note that the 2-fold cover XY ~ X /%, is hardly ever trivial; the only
connected X g for which it is trivial are the poing and the closed mtewaﬁ On
the othm band the bzchmmmmw of G(X ”‘} £nsures &%:m the 2-fold -cover
XM - it Sy 18 trivial. o :

HUWENH‘ we will now checl that Xw da&s mmm some of thc mfc»rmanm
contained in A2

PrOPOSITION 2. The inclusions Xy C X& and Xy /@5 Xw:? induce
isomorphisms for the 2n-th homologies and s:ghamoi‘agm .

Proof. Choose a triangulation K™ of X" Since each X is covered by a
wbc@mpi@x K of K7 it follows that X2, is coversd by a ‘»ubcmmplw Kl of
2. ?ropasmon 1 shews that our result will follow if we can show that
,;‘* o K induces isamorpmsms for the Zn-th m?rmrmﬂozs,ies and homologies.
Any 2n-cell W3 = o" X 87 of K ~ K, either (1) les il an A X X with
AP0 XD = @ or (3) lies moan X[ X X wath X0 X7 = g wﬂ,h at k&sl one
nf the X S, A (say X7 baving some pmnm on the @dgsﬁ of X7 DNote that
it X {s‘mp it X" X X7} is a connected open a-dimensional (resp. Za-di-
mc,mzomi) mamfoﬂd fn case (1) choose a sequence of {open) n-simplices
o" =@, of,..., 0" of int X" (zesp. 87 = G, 87,..., 8" of int X'}, each shar-
ing a common (n — 13- s.impiﬁx of int X" {vesp. int X ) with the nem oue, such
ﬁ}m@ o NG % @ byt o NI = @ 1f a < porh<gs Then

I o e d in L \ AN ird
Y 4 o X 87,4 of X ], 9
—— ] # LE P s
= o X B W = et XA

is a sequence of open Inecells of Ky E M ikl X X X7, each sharing a common
{In — ln-face, B 11 g i s <{-1, of xm(}{" X X1y . with  the
next one, with the very last one ‘%} havmg a(Zn— 'E}*gaw @’2" D gl
CARNY D whsch is incident to no other Enwmﬂ Gf K. In case (}) @:Emose a
sequmm of n- sme'h(:es o™= 87, @1,“.._ » 07 of ind X" each shating a common
{n — E)-»mmp}ex ni nt X thh the next one, and w;th the last, o}, having an
(r ~ ly-face £7% incident to no other M wmpim of K " Naow

y 5 ' o -3
T o P AP o X 87, P = o] X B, P = 7 X

bas exactly the same properties as before. With appropriste orlentations of the
cells one has the coboundary formula 8(L) @27 %) = ¥ this shows that
any Zn-cochain of &7 i cohomologous o one which is supported on K3
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Likewise the boundary foromla,

e
L]

; : :
&i 3 e Wi 4+ terms involving other 2a-cells of K,;”'g
= }M e €umt YOI+ B terms mw)lvmg mimr

Coge

{(2n ~ I}MWMS 05 K

shows that ¥2" cantot ocour (wzih & nOn-Zero s;oeﬁicmm} in my 2?@ nyde 0[
;2. and thus any 2a-cycle of | is suppdrted on K.

With reference to the above prmf let us observe that with the’ appmpﬂate
orientations all 2a-cefls of each X X X © X, occur with the same coelf-
cient in a Zrecyele of Kl Thus e:axch ?n cycle ¢ € Hoy (X3 /2y RY is sup-
ported (1.6, has DON-ERIC cﬂeﬁ‘icwm%} o a Ezmsubspam E of X7, which is a
unon of. mee X” X X7 (XD XTY an edge of G(X"). For any such E the
corresponding bubgmph of {x(}‘( ")y deternyined by these adgw and thew
vertices will be denoted by G(E} ;

Livamia 7. G(EY is bichromatic only If there is w0 E?—map [l =5 b also
cmwemdy provided G(E) is known to be o full triangle-free s&d}gmph of G ( X7y

Pmaf Lt us d@m)w g h}f 1,2 zmc;i fet 1 aﬂd 2 aEso {imma v,he Ewo
colors. I G({E) is Zawiomd then the E;Z«fmcmm )‘ E - S0 imaging each
X[ K to the color oi X ¥ is easily checked to be wummmm Cfmvemdy,
G(E} m m&ngl&fmg 50 X”ﬁ Xl = B =X 00X mly if X” XY B,
and thus for any Zmap f: E - §° one has j(X” XX f{X“ X X7 So
wWe Can 2%010}{' G(E) by assigning to X the color f(X] o » X“) P

If cach element of H,, ( X/ Ly R can be written as a. sum of @iements e
with chromatic number of G(E} < k, then we say that HM{ /2’;2, R} hgs
chromatic number < k.

For all k sufficiently Piarge HQ,,, X‘"‘/&ZE, ch} i$ mdapmdf'm of ﬁc ﬂ‘m
homology group will be denoted by H,,( X/, o). .

We now strengthen the first part of Theorem 6 to the {ﬂﬁowmg

THEOREM 8, If Ho (X}/Ly; Eow) i bichromatic then there is o Lywmap
X2 s S Thug if we further have n # 2 then X" embeds in R¥",

FProof. Let us choose k& $o km‘ge that H2( X2 /%, Z) has vo eleménts of
order 2X*1, The short exact coefficient sequence

PRGN W
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induces the Bockstein sequence

o = HNX2/L3T) 2 B X0 ) H“iwz?,w = 0.

Chserve that w(o, (X7 = ¢ hoplies 2, (X)) = 4, for some ,, €
H* XI5 E‘; but, by Lemma 5, 20,,{ X5 = 28Ny, = 0, and so, by our
choice of k, 2%, ie, o, (X5, is 0. Thus it would sufﬁm to check that the
given hypotheses ensure x{o,, (X5} = 0. But H ZW{X”/XZ,.&?A} is dual to
K, (X3/8.: %) (e.g, see Maunder [14], p. 166). Hence it would suffice to
prove that (k{s,4 X0 e) = & whenever e & H, (X2/%,;, %) has a bichro-
matic G(E). Observe that e lies in the subgroup H, (£/%,; Z,) and that the
restriction of 0, (X8} to £ is 0,,(F) (this follows for e:,mmpﬁe by (%) of
{3.3.30. Thus

K(Uzn 'X”))(é) = k(%,,(&?}}(e}

and it wmz};d suﬁ’isﬁ: to prove that o 2y =0, ie., that there is a Z.-map
E s §21 mut this follows 2 once from Lemma 7 (}{E y i is bichrématic so
there is in fact a Z,-map E ~ 8§

(3.5)  The deleted jain. o '

(3.5.1) Since the deleted pmdzm K of a simplicial complex K7 is only a
cell complex, for some purposes it is more copvenient to use instead the
dilered join Kj, of K™ Take a disjoint copy K of K. Thej > join K - K—iz., the
&kH{E_@iCia wmp{ex generated by all simplices of typ&: m?(w sUB,oce kK, &
& K-—is equipped with the involution of -» §5. - K, is the éﬁgwsubmmp ex
of K K thmmd by ommmg i%mse off foa” Wm:]h o (] éiﬁ‘ m mm»fmpty
of the typ@ zx + ix ﬁmm th%: join of %paws X K &mﬁagmua}y to Proposi-
tion 1 one can verify that if X mrmnguimw X, then 1&#1 and ?( haw the
same Z.,-homotopy type. :

As in [19] we denote by 8,(K ) the it least valence {i.e., the least m&mbﬁr of
{i + 1-simplices incident 1o an - wmp lex) of snmp‘ixcm} wmpﬁm K. '

As an iflusiration of the use of the d@imed 303“ ﬁum,mg we pmw: the
following polvnomial inequality.

TuEOREM 9. }'W any mdmmmmmi wmplwmi wmp!ex R

&I@f)»@ n-1

4y & _{KYy<3a4+1 v
() r_;ll(_ ) ._(ﬁ } " 2i+ 3

) < dim M?n(xﬁ,,:& )

Proof ‘The space |KJ] consists of points of the type o+ {1 ~ 1)y,
0 <¢<l, where x and y He in disjoint closed simplices of |K". We note
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that the sobspaces K7, , and K7, ., of K@i, defied by r<1/2 and
t 2 1/2 respectively, retract to the two ends r= 0 and 1= 1, which are
bomeomorphic to | K"]; aed their intersection, defined by £ = 1 /i i homeo-
morphic 1o the deleted product K. Thus the Mayexm‘%’mwm ‘\@@ pence of the
pair [ K%y, K%y ) vields &he wxact sequence a4

() K © (K"~ B(KD) » H_(KD)
| o 1‘-»1{%"}‘@_ _i,w_;(Kﬁ) B ooy . :

In particular H,, (K5 Zy) & Hy (K5 4L so by appiymg Theorem 1 {}f
[19] to the simplicial complex K2 we get

B (K3) + 2n

< dim Hy (K2,
2n+2 ) Pow, b 2’(-.* 7}

{6 52”(‘5,’;)42?{«%2 or {

’I’he e ed mequainw {4 foi%ws from (6) and thu ffmt {mmpare (2.2, 3} of
[2@}) that for any sxmplmai mmpim: K, '

(7} n 1{’%} " Gf é?r:(}i#} ﬁﬁn E(R) = ﬁ)n(}{#} ton }

By Theorem 7(a), K", n 2 2, unlknots in R+ if H2(K} ”/{;2, 2y = 0 and
so only it H 3"‘(K "/Ez, Z, 2} = and so (using exact serquence (1) of (‘% 3.3}
with Z., coefficients) only if H**(KJ 2.) = 0. Thus Theorem ¢ iraphies the
following result of Sarkaria [20]. - '

Comorrary 1. I K7 unknots in R hen 8, J(K)Y<3n+ 1)

As in [19] the weak i-th chromatic number of a simplicial complex, ¢,(K), 15
the least number of colors which can be assigned to the i-simplices of K in
such a way that no (i + 1)-simplex has all its 7-faces of the same color.

We have conjectured [19] that there exists a constant €, depending only on
nosuch that o, (K™ < €, for all simplicial complexss K" embeddable in
R In this context we imw: the following results.

CGROM ARY 2, Ifw' nw zhe class of compfwreﬁ K" which unkﬁm in R’"”
is contained in the class of complexes which embed in R* mzd fw this vmaﬁer

class one has ¢, (K™ £ 3(n -+ 1)
This follows from Coreflary 1 and Theorem He).

COROLLARY 3. For n # 2, the class of complexes K" for which the Kneser
graph of the underlying polyhedron is bickromatic is comtained in the closs of
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complexes which embed.in R*" and fﬁr this smaller class ong fms e LK™y =
6(n + 1). : 2 o § ;

Em fact if G{ Xpi) can be well colored by N colors, then for each color 7, one
gets a subpolyhedron X, € X which is the union of all X"s colored 7, Since
any two XP’s in X, intersect Txemem 6 implies that X, unkﬁms in B and
so the Subc;ompkex Krof K" covering X, can have its (# — 1)-simplices well
colored by 3w+ 1) cois}rs Taking N disjoint sets of 3(n + 1) colers 1o color
each K[ ¢ K" we see that the (n ~ X}«sam@hw&; of K7 can be well colored by
IN{n + 1) colors. |

Further results re:gardmg the afomem&mmd umgaﬂma wﬂi be gwc,n ina

sequel to this paper.’

(3.5, i?) Remarks, The following interesting ﬂbsm‘v&ﬁmm %gardmg the
deleted join are due to Flores [4].

{1y The defezmd Join of the ﬁ~ske§eﬁaﬂ af a {Zn+ ?}«yzmpfe;a is 2 whm@eomaw
phic to S 11

By exploﬁ.mg the fﬁmmﬁa (K- L) o K L Fior% in f«za,k gowa o o
give some more examples-—the join of n + 1 copies of three pmmq the join of
gi*t? and a2TEDE eteof mecomplexes whose deleted join is also
é?mhomeonmorphm to §7+1 (See also Griinbaurn [6], exercise 26, p. 67, pp.
210-212, and {71} ‘

) "The deleted jam af @ .sampfmaf wmpiex is %zuhummmarphm ter fﬁe
deleted pmdmf of its coné. '

To ‘see this homeomorphism

. “f‘f:“”’ (o K)ei,

map gach Hne segment | %, 71 to the broken line {{x, v), (x, v¥ U [(x, ), (v, y)]
with x going to {x, ), 3 + P to(x, yYand ¥ to (4, y) Since K" ernbeds in
R™ i ity cone embeds in B it follows from (2) that d K™ embeds in R”
only if there is a Zo-miap from the deleted join of K" to 8™ So Borsuk’s
Theorem implies (hat the emmpi% of {1} do not embed in B, Griinbaum {7}
proves that if one knocks out an n-giraplex froms any of these complexes then
the resulting complex embeds rectilinearly in R?". Optimal rectilinear fmumer-
sionis {with just one double point) of some of these examiples K" in R
had been considered also by van Kampen {25] who used them to show
0, K&y s O by a direct computation.

"Ry incorporating Kalal's “ algebraic shifting” into the above cobomological setup we have now
proved the eonjectuees of [19] as well ag (2.5 4}{6) see [34), However the xpcma% CASES wﬁsadem:ﬂ
hete continue to rétain their interest, .
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