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$1. INTRODUCTfON 

AN n-dimensional simplicial complex K. n 2 I, which does not embed in R*“, is said to be 

minimally non-tvd~ddable in W’” if all proper subspaces of the same are embeddable in l&F*“. 

The well known planarity criterion of Kuratowski [6], 1930. tells us that, for n = I, there are. 

upto homeomorphism. only two such simplicial complexes, 0: and rr,$&$ (Here, and below, 

c$ denotes the j-skeleton of an i-simplex. and, while taking joins, it is understood that 

disjoint copies of the simplicial complexes are being used.) However, for n Z 2. it is easy to 

see that there exist infinitely many non-homcomorphic simplicial complcxcs, all minimally 

non-cmbcddablc in R’“. The object of this note is to show that a higher-dimensional 

analoguc of Kuratowski’s thcorcm is valid, provided minimality is replaced by an (at least 

for TV # 2) stronger notion. 

An n-dimensional simplicial complex K, II >, I, which dots not embed in (W’“, will be 

callcd c~ritic*ul/,v non-c~,rlhrddahlc. in OX’” if, for each pair (.Y, _r) of points lying in some pair of 

disjoint simpliccs of h’, one can find a continuous map,/;,: K -+ R*” which has no other such 

pair of points as a double point; and morcovcr, locally, thcsc maps j;,, can be chosen to 

dcpcnd continuously on the parameters (.v. _v). 

We recall that the drlrtedjoin K, of ;I simplicial complex h’ is the subcomplcx of K. K 

(i.e. of ‘h’.*h’. the join of two disjoint topics *k and ‘hI of K; the simplices of K. K 

are usually dcnotcd (a. 0) rather than ‘au*(I) consisting of all simplices (a, U) such that 

anU=cb. 

THEOREM (I. I) An n-dimensionul simpliciul complrx K, n 2 I, n # 2, is (a) criricufly non- 

~~mhrdduhle in R2” iff (b) ifs drletd join K + is Zz-hclnreonlorphi~ to the anfipodul (2n + l)- 

spl~rrr iff (c) K, is u homoyrnously (31 + I)-dimcv~sionul p.srudomuni/;,ld iff (d) K is a join of 

some simpliciul conrpl~~xrs of thr lppe u,21 ,, s 2 I. 

Thus there are, upto simplicial isomorphism, n(n + I) such Kurutowski n-complexes, 
021: a2.y . . . . g2lC one for each partition of n + I as a sum s, + s2 + . . . + sk of 
pLfi;e”integers. I cs,‘: s2 <. . .Gs,Gn+l. 

The purely combinatorial implication (c)*(d) will be established in $2. The rest of the 

proof, which essentially depends on the ideas contained in van Kampcn [IS], 1932, and 

Florcs [2]. 1933, will be given in 43. 

Though our argument yields (u)=-(c) only under the condition n # 2, the above result is 

probably true for all n 2 I. 

(I .2) Notution. Since the context (e.g. the mention of a simplicial. continuous, or linear 

map) leaves little room for confusion. we will usually employ the same letter K when 
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referring to a combinatorial simpliciul complex. i.e. a finite set K of finite sets obeying UEK. 

H E a=-&K. or to a topological or geometrical realization thereof. Likewise, depending on 

the context. the same letter 0 will stand for an abstract simplex. i.e. a finite set of rertices. or 

for a closed simplex occuring as a topological or geometrical realization thereof. (In 

addition. in the context of integral (co) chains. it is understood that 0 carries an orienturion.) 

The elements of the closed simplex are called the poinrs of 6. If one excludes from u those 

points which belong to the proper faces of g, then one gets the open simplex associated to a; 

this will be denoted by int 6. The stur. closed SW, and link of 0 in K are defined in the usual 

way, and denoted by St,o. 5,~. and Lk,a (notation to be interpreted combinatorially. 

topologically. etc.. depending on the context). And, as usual. superscripts will often be used 

to indicate dimensions. 

Two simplices will be called disjoint iff their sets of vertices are disjoint, otherwise they 

are called u[lj~lccnt. The set of vertices of K will be denoted by l’K (or just 1’) while the subset 

of vertices occuring in the link (resp. the closed star) of CT will be denoted L,a (resp. S,u). The 

cardinality of L,u is also called the valence of U. A subset c E VK is called a circuit of K if 

c$K but all proper faces of c belong to K. A full suhcomplex of K is one which contains all 

simplices of fi whose vertices are in the subcomplex. A simplicial complex is determined by 

its maximal or husic simpliccs. If all of these are of the same dimension, then K is called 

dimensionally ho,?~oycr~c~orrs. If further any codimension one simplex is incident to precisely 

2 basic simpliccs. then K is called a psc~udomcrnijold. 
As usual thcjoin h’*L will bc dcfinod only for disjoint simplicial complcxcs, and consists 

of ail simpliccs au0, ~EK, OEL. Quite often disjoint unions UUO will also be written (a. 0) 

or 0.0 or r,. , .r,.IJ (whcrc ri arc the vcrticcs of a) etc. Recall that as a space h’.L is made up 

of the points of the lint scpmcnts having one end in K and the other in L. Joins of oricntcd 

simplicos or spaces will bc cquippcd with the orientation of the first factor “followed” by 

that of the second. On joins h’.h’ of disjoint topics of the same simplicial complex one has 

the simplicial Zz-ucfion (n, O)w(II, u). A ZL-(w)chuin of a %,-simplicial complex will be one 

which is prcscrvcd upto sign by its %,-action. An elemenury Z2-cochain. i.c. one which can 

be nonzcro only on one pair of oricntcd simpliccs, will be spccifisd by the value it takes on 

one mcmbcr of this pair. 

52. ~‘l.AS..IFI<‘ATION 

Proo/‘of(c) a(d). Let K denote an n-dimensional simplicial complex for which K, is a 

(2~ + I)-pseudomqifold. 

(2. I) K tnu.s~ hr /~l)r~~o~lrnousl~ n-dimensionul. with each (n - I)-simplex incidmt IO UI leust 

3, und UI ntos~ n + 3, n-simplices. Further, K con huce an (n- I)-simplex incident to n + 3 

n-simplices only if’ K is the n-skeleton of a (2n + 2)-simplex. 

Given any SK:. the fact that K, is homogcnously (2n + I)-dimensional gives us a 

(oJ", cp"kh', containing (X 4). Thus zcK is contained in some w*EK, i.e. K too is 

dimensionally homogcnous. Next. given any u”-‘EK, t~~L~u”-*, choose a (a”- ‘, w”)EK+ 

containing (a”- ‘, r). In order that this In-simplex of h’, IX incident to two (2n+ I)-simplices 

of K, it is necessary that there be at least two other vertices in LKu”-‘. On the other hand if 

LK;d”-’ had more than n +3 clcmcnts. then 3 or more of these would be outside w”, and so 

(n”- ‘, w”) would have valcncc bigger than 2. Finally. let LKu”- I have exactly n + 3 elements, 

and Ict w’ bc any vertex of K. If wr is not in o”- *, then it must be in LKu”-‘: otherwise a ((T’-‘, 

cp”)E K, containing (n”- ‘, W) would have valcncc > 2. Thus K is a subcomplcx of rinCZ. the 
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n-skeleton of the (2n + 2)_simplex rz”+ 2 formed by the Zn + 3 vertices of S&- ‘. Any two (3 
+ I tsimplices of (r,Z” + ’ )* can be “joined” to each other via a sequence of (Zn + I )-simplices. 

each sharing a ‘n-face with the preceding. Hence K, E (T:"+')* can be a pseudomanifold 

only if h’, =(~f"+')* and so h’= T:"+'. 

(2.2) For ull a”-‘EK, 0”~h’ and i.~L,a”-‘\O”. thr simplex (a”-‘\B”).(L,a”-‘\O”\E.) 
lies in !i. 

We will prove this by induction on the cardinality of a"- ‘nB. 
If a”- ’ is disjoint from 0”. then 0” contains all but 2 of the vertices of L,a”- ‘: otherwise 

(fl”. a”-‘)EK* has valence ~2. Thus LKan-’ \O”\i. consists of a single vertex ~ELma”-‘. 

and we are merely saying that a”- ’ .peK. 

To prove the inductive step choose any L’E a”-’ n 0”. and then a H’ E I*, [f possihlr from 
oiitsiclr LEian - ‘. in such a way that <” = w u (f?“\c) is an n-simplex of K disjoint from 

ru(a”_‘\, I” t 1: this can be done because K, is dimensionally homogenous (we’ll use this fact 

repeatedly below also). Note that a”-‘\{“\‘?=a”-*\O”. If rr$L,a”-’ then (L,a”-*\f”) 

= (L,a”- '\O"):SO the result follows immediately from the inductive hypothesis 

(fT”-‘\~“).(L*fT”-’ \r”\L)EK. !f wELKan-’ then Jiw any 2~L~a~-‘\tI” ante bus 
i.u(O”\‘*)EK: if not, L # w belongs to Lye”-‘\<” =(L,a”-‘\fl”)\w, and any Zn-simplex 
(fl”\c. cp”) of K, containing (8”\r. (a”-‘\sr”).(L,a”-*\f”\~)) would have valcncc < I. 

Next. Ict (ol bc an n-simplex of K which is disjoint from 0” and which contains the simplex 

(a”-‘\f”\r).(Lh.n” -‘\<“\p). /JE L&-l \i”. Since K, is a pseudomanifold we can further 

arrange that r[$($ (or clsc that W&U,:). WC assert that ~E(u,” (or clsc that !~E(u;): otherwise 

since On\‘. has all the vcrticcs of LK;6”- ’ \I)“, and also ‘7. in its link, (P\I,, co:) would have 

valcncc 23. Within all such simpliccs co:tzh’ WC have thus all simpliccs of the type 

(a”-‘\(I”).(I.,a”-‘\U”\i.). j.~t_Ln”~‘\~~“=(~.,a”-l\~“)u~. 

AS a corollary of (2.2) WC’ SW that 

(2.3) K con.si.sl.s oj‘ull rhc* inclcp~vtclcnr srls of u matroid hl, on its .w 0j’wrticr.s V,. 
Uy delinition this means that the following is true. 

(I) Blisc~ Esr&rnyc* Axiom. V fJ”E K, UI”E K. ufzw”\fl” 3 ‘~~f)“\d s.t. (~u”\II)u “E K. 

If no such r wcrc to exist, then. by applying (2.2) to 0” and a” - ’ = w”\u, WC SW that 

L,a”-‘\f)“\L = LKu” -’ \L belongs to K. But this is not possible bccausc then any 

Zn-simplex (n”- ‘, 0~“) of K, containing (a” - ‘, L,a”-‘\i.) would have valcncc Q I. 

We recall (see e.g. Welsh [ 173. pp. 13 -15) that (I) is equivalent to saying that 

(2) ull Jill suhcontplr.~~ of Ii urc dimrnsionullp homoycwous, i.e., that h’ obeys the 

following 

(3) Au~qmcwfutbn Property. If ZEK, /~EK and dimr <dim/I, then z can be augmcntcd 

to a (dim/l)-dimensional simplex, z.;‘EK. by means of some ;’ c 11. 

Also (1) implies ([ 173, p. 68) that the circuits of h’ obey the following 

(4) TrunsifiL’it) Property. If the vcrtcx u belongs to a circuit containing the vcrtcx L’, and 

L’ belongs to a circuit containing the vcrtcx w, then II belongs to a circuit containing w. 

As another application of (2.2) WC now dctcrminc the exact nature of the circuits of h’: 

(2.4) A .s’rh.sct of C’, is u circuit oj K # it is of the t~pr LKnn - ’ \I. /or st~tr~ a”- ‘E K, 

i.ELrrr”-‘. 
While proving the base exchange axiom (2.3.1) WC chcckcd that L,a”- ’ \i.$K. On the 

other hand, by applying (2.2) to on- ‘E K and 0” = ):a”- I EK. WC SW that all proper subsets 

of L&-l \i. belong to Ii. Convcrscly, given any circuit c of K, choose an n-simplex 
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c’.o-“-‘EK containing a vertex c of c, and disjoint from the simplex c\txK formed by the 

remaining vertices of c. Note that c is disjoint from cr”- ‘. Choose any n-simplex Z+(C\U)E K 
which is disjoint from 8-l. We assert that a.(c\w)~K for all WEC: otherwise, c being a 

circuit, we will not be able to augment c\, w by means of some subset of z.(c\ c). And. all of 

these n-simplices I.(c\w), WEC. being disjoint from c”“-‘, must have all but 2 of the vertices 

of L,a”-‘. This is only possible if, like c, all the vertices of c belong to LKcrnT1. 
Two vertices are called connected in the matroid M, if they belong to the same circuit 

of K. The transitivity property (2.3.4) tells us that this is an equivalence relation on VK. 

The equivalence classes are caled the components of Mk. From (2.4) we see that the 

components are at least as big as the codimension-one links L,u”-‘. In order to obtain an 

upper bound on the components of AI,, we will now verify that (2.2) is best possible. 

(2.5) For all CT”-’ EK, ~PEK. the simplex (a”-‘\~“).(LKun-l\tln) does not lie in K. 
Once again the proof will be by induction on the cardinality of a”-‘no”. 

If cr”- l is disjoint from (I”, then (~I”-~\O”)~(L~~“- l \f?“) has n+2 elements, and so 

cannot be in K. 
Now for the inductive step. If possible assume that (a”-‘\a”).(L,a”-‘\f~“)~h’ and 

choose any UEL~U”-‘\fP’ (such a 11 exists because L&‘-’ c 0” would yield L,a”-l~K). 

Case I. Ifthc dimension of(u”-‘\fI”)~(LK~“-l \fP ) is less than n. then we can augment it by 

a vertex w fo of the n-simplex u.rr”- ‘. So ~EQ”-~~II”. Now let r~P=u.(fl”\w) be an n- 
simplex of K disjoint from w~(~“~‘\II”)~(L~~“~‘\IJ”)E~. Since u#L,u”-’ the inductive 

hupothcsis now pivcs us the dcsircd contradiction w.(u”-’ \II”).(L,a” _ ’ \fI”) 
= (u”-‘\cp”).(LKf7”-’ \$)I# K. Cuse 2. If the dimension of (rr” * ’ \fP’).(L,u” - ’ \fP) is n, then 

WC USC the base exchange axiom (2.3.1) to lind a vcrtcx W#U in 0.8-’ such that 

w(u” - l \fl”)~(L,U” - ’ \fY’\u)EK. Note that WEU”- ’ nP. Since K, is a pscudomanifold 

thcrc exists a vcrtcx u$fP, u # r, such that (a”- ’ \V’).(L,u”’ ‘\f~“\o).u~K. Also. bccausc of 

the same reason, wc can find an n-simplex @’ = z+(ft”\w), z # u. which is disjoint from 

w.(u”-‘\On)~(LKun-‘\fY’\u). Rut this is possible only if z= u: othcrwisc (c(U”\w), 

(u”_‘\U”)(L,u”-1 \O”\n)) would have valcncc 3. Since an-l ncp” = (u”-’ nU”)\w. we can 

now use the inductive hypothesis to get the dcsircd contradiction (~“-‘\cp”)~(L&‘-~ \cp”) 

=w+r”-l\U”)(Lmu”-‘\U”\u)~K. 
The required upper bound follows as an easy corollary: 

(2.6) ff CE L*u”- ’ lh f/w (murroidul) component C,, of 0 is conruined in S,u”- ‘. In 
particulur. if u ” - ’ is incident to less thun n + 3 n-sirnplic~s, then C,, is u proper subset of V,. 

If some vertex w, not lying in the closed star of u”- ‘, wcrc connected to L’ in AI,, then, by 

(2.4). we would have an <“-~EK such that ~.<“-*EK and w.<“-‘~k’. Applying(X) to u”-l 

and o.{“- l we see that (u”-~\~“-~).(L~~“-*\~“-‘\~‘)$K, while applying (2.2) to u”-l, 
u?.t”- 1, and u~L~u”-‘\w~~“-~ wesee that (n”-l\~“-‘)~(Lnu”-‘\~n-l\t~)~K.Thcsecond 

part follows by noting that, under the given hypothesis on u”-‘, a vertex w$SKun-’ does 

indeed exist: otherwise any (a”- ‘, fI”)eK, would have valence < I. 

We can now show that 

(2.7) An n-dimcnsionul simpliciul complex K. n 2 0, for which K, is a (Zn + l)- 

pseudoman$rld must he a join of some simplicial compleses of the type a,? 1, s 2 1. 

We will USC induction on n. 
For n =0 we note that each zero dimensional simplex of K, has valence one less than 

the number of vertices in K. So ui is the only 0-dimensional complex for which K, is a 

I -pseudomanifold. 
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If n 2 1. and K has an (n - Itsimplex having maximum possible valence n+3, then the 

result follows by 12.1). Otherwise, by (2.6). we can choose a vertex c of K whose matroidal 

component C,. is a proper subset of VK. Let Lp (resp. Nq) be the full subcomplex of K 
spanned by the nonempty set of vertices which are in C, (resp. not in C,). We assert that 

K = L..V. The inclusion K E L.R: is trivial (and is valid for all disjoint partitions of VK). To 

see L.A’ E K we note that if some ZE L, BEN, were such that 2.84 K. then any circuit of K 
contained in 2.8 would have a vertex of z E C,, and also a vertex of b c P’K \ C,.. This is not 

possible because C, is the component of r. 

The easily verified join jorormula 

(L-N), z L;N, (I) 

tells us that L, (resp. N,) is a (2p+ I)-dimensional (resp. (2y+ t)-dimensional) pseudomani- 

fold. Since p + q + 1 = n both p and y are less than n. So, by the inductive hypothesis, L and 

N, and thus their join K = L.N, are of the required type. 

$3. CRITICALITY 

Before continuing the proof of Theorem (1.1) we recall some well known 

Ohstrucrion 7Icory (3.1). If a continuous mapJ K 4 R*” obeys 

flr7”_ ‘)n_f(O”)= bV(a”-‘, O”)EK,. 

then one can dcfinc a (2n + I)-dimensional integral %,-c.ocycle ,)I oJ’ Ka by 

(I) 

,,,((fJn, cp”) = dcg(Z(&, cp”) - ‘lJ’ (P”,,]. (2) 

Hcrc/“’ = .f,fdcnotcs the %,-map K, +(I&!*“)+ dcfincd by/‘*’ (r-r + uy) = !f’(x) + @f(y), and 

ii(o)“, cp”) denotes the boundary of the oricntcd (2n + I)-simplex (oJ”, cp”); the dcgrec is well 

dclincd bccausc (R*“), (i.e., R*“*R*” min us points of the type 1.x + 1.~) has the oriented Z2- 

homotopy type of the antipodnl Zn-sphcrc S*“. From (2) WC‘ see that 

f(t0”) A/‘(q”) = f/I = L’~((!J”, Cp”) = 0; (3) 

thus P, measures the extent to whichj’fails to separate disjoint n-simplices of K. 
It is easy to see that any two continuous maps/;,, f,: K + R*” obeying (I) can be joined 

by a homotopy j;. IE[O, I J. obeying 

f;(rP) nS,(:‘) = Cp V(sp, tq)e K,(p + q = 2n - 2)Vre[O, 1 J. (4) 

Hence we can define a 2n-dimensional integral Z,-cochuin cl, of K., by 

C/,(8 - ‘, U”)=deg[i?((a”-‘, On) x [O, I], ‘I,]. (5) 

This cochain satisfies the coboundary formula 

SC,, = L’f, - “f”. (6) 

which shows that the (2n+ I)-dimensional integral Z2-cohomology class Us of K, dcter- 

mined by ,sI is indcpendcnt of/. and depends solely on K. (We remark that the mod 2 

reduction of van Kampcn’s obstruction class ZJ~ is the (2n+ I)th power of the 

Sticfcl -Whitney class of the 2-fold cover K, -. K./Z,.) Also from (5) it follows that 

/r(U”_’ )f-l/;(O”)=# v IE[O, lJ=C/,((l”-‘* O”)=o; (7) 

thus c,~ measures the extent to which the homotopyj; fails to obey (1) for 0 < I c I. 
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From the definition of ~1~ just given it is easy to see that 

tjK = 0 ifl there exists a Z,-map K, -+ S’“. (8) 

For n # 2 this homotopy theoretical condition is known to be equivalent to a topological 

one: 

VAN KAMPEN-WU-SHAPIRO THEOREM (3.2). An n-dimensional simplicial cumplex K. n 2 1, 

n # 2, embeds in W’” if tiK = 0. 

The original argument of van Kampen [IS. corrected version]. 1932, contained an 

unproved lemma, viz. the p.1. version of the (now) well known Whitney Trick [ZO]. The first 

complete proofs were given (independently) by Wu [2 I] and Shapiro [ 133. 

(3.3) Proof o/(a)-(c). We first show that K, is homoyenously (Zn + I)-dimensional. i.e. 

that any (z. /?)E k, is contained in a (2n + I)-simplex (6”. 0”)~ k,: Being non-embeddablc in 

RZn, K has certainly more than n+ I (in fact more than ?n+2) vertices; so w.l.o.g. we can 

assume z # 4. p # 4. Choose any XE intr, yEint/I. and let/;,: k + R?” bc continuous with 

no double points other than (x, y) contained in disjoint simpliccs of K. Thus/_, and so also 

any sufficiently near general position map J’I h’-+IW’“, obeys Jib”) n/(0”) = 4 for all 

(a”. 0”)~ K, other than those for which XE~J”, y~0”. i.e. other than those for which cx c (I”, 

/I c 0”. Since tsJ # 0 it follows from (3.1.3) that thcrc must bc a (a”, 0”) of the last kind. 

Now we show that K, is a p,sl~rrdonlclrri/i,ld, i.e. that any (2” _ ‘. /I”)E K, is incident to 

precisely two (2n + I)-simpliccs: Again, choose XE int 2” _ I, J-E int/I”. ,/;,: K + lRz”. and a 

suliiciently near gcncral position map/: h’ + R”‘, SO th;rt,/la”) nJ(O”) = (I, for all (0”. 0”)~ h’, 

other than those for which 0” 2 ,“-I, 0” = /P. If there wcrc only one such IT”, then (3.1.3) 

shows that ,, , is the coboundary of some multiple of the clcmcntary Z,-cochain (Y-l, /I”). 

Since ,,B~ # 0 it follows that thcrc arc at lcast two such rr”.s, say a;, a;. . . . a:, r 2 2. WC have 

to show now that r = 2. Choose any arc x,, 0 < t < I, in St,z” _ ‘, from an .x,, E inta; to some 

x,Einta; via x, =xEintr”-‘. The homotopy.1; =/I,Y: K + 08’” satisfies (3.1.4); bcsidcs. the 

two ‘ends’/,,,.f,. satisfy (3.1.1). Thus )ij,,, ,A~,. c,,, arc well dcfincd. Morcovcr. by using (3.13) 

and (3.1.7), we see that Us,, ( resp. v,,) is some multiple k, (rcsp. k,) of the clemcntary Z,- 

cochain (a;, /P’) (resp. (o;, s”), while c,, is the some multiple k of the elementary Z+ochain 

(a”-‘, /I”). The coboundary formula (3.1.6) shows that this can happen only if k = -k, = k, 

and r=2. 

The remaining argument will be more geometrical than combinatorial or topological. 

We first need a straightforward generalization of a method employed by van Kampcn [IS], 

pp. 77-78 (to show that u~“+~ and G: . . . . . CT: (n + I times) are non-embcddable in &I’“). It 

depends on the following lemma whose proof is omitted. 

(3.4). Let y: 0;” + 2 -+ &P be linear with the images of 2n + I oj the certices determining a 

Zn-simplex of R’” whose interior contains the imuyes of the other 2 t7crticr.s. Then, there exists 

a unique pair of disjoint simplices (a, 0) of a:” + * with g(int z)ng(int /I) # 4. 

In fact if y(o)= l/2n+ 1. ~(I(Ui). y(w) =Fc,g(u,). O<c, < I, c,, +. . . + c2”= I, and 
0 0 

cg < c, <. . . s C2”, then z = {v}u{u”:c~ >c,} and /?= {w)u(u,: c” < c”}, is the unique pair 

of disjoint open simpliccs intersecting under y. 

(3.5) Proofof (d)=-(a). Let us first consider the join-irreducible case K = q$” *. For any 

given pair of points (x, y) contained in the interiors ofdisjoint open simpliccs (2. /I’) a map/,,: 

K -+W*” of the required kind can be constructed as follows. Choose L’E~. &E/J. We imag 
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the other 2n + I vertices to the vertices of a 3n-simplex c R’“. and then image c to their 

barycenter L;. On K ,SrK~./,, will coincide with the linear map thus determined. Let 2 

denote the image of x. The image .i; of y will also be .C If p = w = /?. the linear map K + W’” 

thus determined is our/,,. If y # w. thenf,, will be linear only on K,. the simplicial complex 

obtained by deriving K at y. Note that now y is the interior point of a unique line segment 

:H’ with :E ~‘\SC,IV. Join its image 5 to f = .f and extend to some W lying in the interior of 

the ‘n-simplex. We let E be the image of w. Note that under this linear map_/-,,: K,+ R*“. the 

images of the simplices are the same as under the linear map g: hI + R’” defined by the 

values off’, on the vertices of k’. Applying (3.4) to g we see that (x. y) is the unique double 

point ofJ;y which is contained in a disjoint pair of simplices of k’. (See Fip. I.) 

Fig. I 

If further z. /I arc disjoint n-simpliccs (the subcase considcrcd by van Kampcn) then the 

cocyclc ,‘/ is dcfincd forS=j;,. L *tnd is zero on all (21r+ I)-simpliccs of &I, other than (z. p). on 

which ,1/(x. /I) = + I. Thus the value of ‘6, on an integral %,-cycle formed by suitably 

orienting all the top-dimensional simpliccs of (a:” ” )+ equals 5 I. This shows that rhK # 0, 

i.e. that tl~~rc~ exists no %,-nrcrp K, 4s”‘. (Anticipating ((f)=-(h) SW (3.6) below --WC see 

that van Kampcn’s argument of IY32 also yields the Horsuk Ulam Thcorcm of [I], 1933: 

“There exists no %,-map from S’” ’ ’ to S’““. ) Thus h’ is non-cmbcddablc in Rgrn. 

WC next show thatj,,, can always bc prolongd to a continuous family/,.,. of such maps 

dclincd for all (u’. y’) close enough to (x. y). TO do this Ict E. = $G/yw (if y = w take i. = I) and 

rcpcat the above construction with (.x’, y’) taking care that j’ti’/y’w = I.. For all (x’, y’) close 

enough to (x, y), G’ will still bc in the interior of the 2n-simplex, and so each of these maps 

/i.,. will illso have a unique double point (.x’, y’) which is contained in some disjoint pair of 

simplicos of K. 

Kducihk CUM. Let h’” = Lp.Nq, n = p+y + I, where Lp (resp. N“) is critically non- 

embcddablc in R’P ( resp. &I”). We assert that h’” is critically non-embcddablc in R’“. We 

will only indicate how a map/;, of the required kind can bc defined when x (resp. y) is an 

interior point of a scgmcnt .~,..x,~. rl eLp. .u,~N“(resp. y,.y,v,y,,~f~P. J,~EN“). Note that .x,y ,_ 
lie in disjoint simpliccs of h’” ilf .Y,.. y,_ and .v,V, yN lit in disjoint simplices of L and N 
r~spe~tively.~ut~‘“=~‘P+2Y+Z=[W~P+LQ[W2~+~. Let A ” (rcsp. A Lq) denote a hypcrplane 
in R’P + 1 (f-csp. R’4 + I ) at distance I from the origin. Let fV,.y,_: Lp+ AZP.fxvVV: NY+ Azq be 2 

maps furnished by the criticality of Lp and NY. Their join. pcrturbcd slightly (see Fig. 2). will 

Fig. 2. 
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give an fiY: K + R’” having just one double point (x, JJ) which is contained in some pair of 

disjoint simplices of K”. 

(3.6). Proofof( (Fiores [Z], 1933). For thejoin-irreducible case h’ = a;“+‘, n 2 0, 

this follows by verifying (cf. also Griinbaum [3,4]) that the vertices u of a regular (2n + 2)- 

simplex of UP+* centred at the origin. and their antipodes I;; determine a convex (2n +2)- 

dimensional polytype whose boundary is combinatorially isomorphic to (a$+*),. (See 

Fig. 3 for the case n = 0.) The reducible case follows from this and the join formula (2.7.1). 

(Flares had used his lemma K, zSZncl, and the recently established Borsuk-Ulam 

Theorem [I] to give an independent proof of the fact that there exists no Z,-map k’, + S’“, 

and so that k is non-embeddable in Rrn.) 

Fig. 3. 

Since the implication (b)-(c) is trivial, this concludes the proof of Thcorcm( 1.1) 

(3.7) Remurks. 

(I) The above theorem suggests that an n-dimensional simplicinl complex h’. n 2 1, dots 

not embed in R’” ifT a Kuratowski n-complex “occurs” (in some scnsc which WC hope to 

make precise elsewhere) in K. 

However (and this must have been known to van Kampcn) i/‘K’“, n 2 3. is minimtrlly non- 

emht~dduble in Iw “‘, und u p.1. spucr X” is ohtuinrd from K” by idrnrijjiny two p.1. homtwnor- 

phic subpolyhedru, of codimtwsion 2 2, contuined in thr in~tv+iors of udjucrn~ simplicrs of K, 
[hen X” is also minimully non-rmbeddublr. In fact, if there were a one-one continuous map (1: 

X”+ Rzn, then, for any general position mapJ K -+ Iw2” sufIiciently close to the composi- 

quo,. 
tion K”-X” 4 [W’“, one would have V, = 0, and so by (3.2) h’” would bc cmbcddablc in 

R”‘. On the other hand all proper subspaces of X” are obtainable from the cmbcddablc 

proper subspaces of h’” by making codimcnsion 2 2 identifications. and so. by Hilfsatz 6, p. 

153, of [IS], are also embeddable in R’“. (A di!Tcrent, but related, way of exhibiting an 

infinity of non-homcomorphic minimally non-embeddable spaces is given in Zaks [23].) 

Thus, in higher dimensions. one cannot always expect the aforcmcntioned “occurrence” 

to be as a subspace. WC do not know whcthcr it must bc as a subspace module idcntifca- 

tions of the above kind. Another related question: arc the Kuratowski n-complcxcs the only 

ones which arc minimally non-embcddablc in R2” and for which each (n- I)-simplex has 

valcncc 2 3? 

(2) In the definition of”critically non-embcddable” it is ncccssary to assume that (.K. _v) is 

in a pair of disjoint simplices: othcrwisc ‘1, = 0 for any g.p. map near tof;,,. and so, for n # 2, 
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K embeds in R’“. Note also that the argument given in (3.3) works with notions of 

“criticality” ci priori weaker than that given in $1; however we do not know whether (a)=(c) 

holds without any local continuity condition .whatsoever. 

Let us say that a K”. which does not embed in R 2n, is subcritically non-embeddable if, for 

each (x, y) lying in a disjoint pair of simplices. there exists a continuous mapf,,: K + R’” 
under which K has a unique simple self-intersection at (x. y). For n # 2. rhe deleted join K, of 
such a K must be a minimal (2n + l)-dimensional mod 2 cycle. The homogeneity of K * can be 

checked as before. The remaining conclusion follows by noting that there is a nonzero (3 
+ l)-dimensional minimal Z,-cycle Z, over coefficients Z,,, 1 large, such that ~~(2) = + 1 

mod 2’ (this follows because t~k is of order 2), and, since ‘A~(:) = V/~,(Z) for (x, ~)~(int 8. 

int 8”). every (2n + ltoriented simplex (8. 8”) must occur in z with coefficients f 1. 

Thus ((7; . . . . . oi(n + 1) times) is the only n-dimensional simplicial complex which is 
subcritically non-emheddahle in R2” and for which each (n - 1)-simplex has valence 3. This 

follows because the mod 2 cycle h’, is clearly a pseudomanifold, and so we can use (c)=+(d). 

Yet another corollary is that there are only finitely many n-complexes K which are 

suhcriticallg non-emhrddahle in (w’” und jar which the codimcnsion one valences are all odd 

and less than (I yiwn numht~r. The finiteness can be checked by an easy combinatorial 

argument starting from the fact that. K, being a mod 2 cycle. each 0” must meet any given 
--. 
St, f7” - ‘. 

(3) Bihlio!lrtrp/lit.nl. Kuratowski’s theorem was anticipated by Pontrjagin --see note 5 

of [63-and discovered simultaneously also by Frink and P. A. Smith: set Whitney [IS]. 

(The many known proofs of this theorem-see e.g. [ 143. and also [7] for a recent 

gonoralization to 2-manifolds other than IX--. can be interpreted as methods for eliminating 

double points in some low dimensional cases.) It still seems unknown whcthcr flL = 0 

guarantees the existence of a litwctr twht~ddiru~ of k:” in R”‘. . see Grunbuum [4]. (Some -tsp. 

linear cmbcdding problems seem to be easier if one works only with matroidal K’s: 

matroids were introduced in Whitney [IY].) Lastly, note that Haclligcr [S] discovered a 

generalized Whitney Trick which eliminates some higher dimensional non-isolated gcncral 

position double points; this resulted in the generalization of (3.2) due to Weber [ 163. 

(4) Classification theorems analogous to that of $2 are valid also for the higher order 

deleted joins of [IO]. e.g. one charactcrising those KS for which the pth join configuration 

KY’ is a homogenous mod p cycle. These higher deleted functors measure (cf. Wu [22] and 

[I I]) some obstructions to removing p-uplc points, to embedding in dimensions lower than 

2n, etc. Thus these generalized classification theorems can also probably be put into a 

format analogous to that of Theorem (1.1). It still remains to work out the relationships 

between these developments, the known combinatorial interpretations of some character- 

istic classes, and the coloring results of [9], [IO], etc. WC hope to give a mom lcisurcly and 

extensive account of the numerous combinatorial and topological applications of d&ted 

functors in [ 121. 
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