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KURATOWSKI COMPLEXES
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§t. INTRODUCTION

AN n-dimensional simplicial complex K. n > 1. which does not embed in R?", is said to be
minimally non-embeddable in R*" if all proper subspaces of the same are embeddable in R*".
The well known planarity criterion of Kuratowski [6]. 1930, tells us that, for n= 1, there are,
upto homeomorphism, only two such simplicial complexes, o} and . 63. (Here, and below,
o} denotes the j-skeleton of an i-simplex, and, while taking joins, it is understood that
dlb]()lnl copies of the simplicial complexes are being used.) However, for n 2 2, it is easy to
sce that there exist infinitely many non-homeomorphic simplicial complexes, all minimally
non-embeddable in R?". The object of this note is to show that a higher-dimensional
analogue of Kuratowski's theorem is valid, provided minimality is replaced by an (at least
for n # 2) stronger notion.

An n-dimensional simplicial complex K, n > 1, which docs not embed in R*", will be
called critically non-embeddable in R?" if, for cach pair (x, y) of points lying in some pair of
disjoint simplices of K, one can find a continuous map f,: K — R?" which has no other such
pair of points as a double point; and morcover, locally, these maps f,, can be chosen to
depend continuously on the parameters {x, y).

We recall that the deleted join K, of a simplicial complex K is the subcomplex of K. K
(i.e. of 'K.2K, the join of two disjoint copies 'K and *K of K; the simplices of K.K
are usually denoted (a, 6) rather than ' U 20) consisting of all simplices (g, 0) such that
ont = ¢.

THeOREM (1.1) An n-dimensional simplicial complex K, n =1, n # 2, is (a) critically non-
embeddable in R*" iff (b) its deleted join K is Z,-homeomorphic to the antipodal (2n + 1)-
sphere iff (c) K, is a homogenously (2n + 1)-dimensional pseudomanifold iff (d) K is a join of
some simplic ml complexes of the type 62 |, s > .

Thus there are, upto simplicial isomorphism, n(n + 1) such Kuratowski n-complexes,
¥ ol .. .., onc for each partition of n+1 as a sum s, +s;+...+s5, of
positive integers, | €5, <5, <. .. <5, <n+ L.

The purcly combinatorial implication (¢)={d) will be established in §2. The rest of the
proof, which essentially depends on the idcas contained in van Kampen [15], 1932, and
Flores [2]. 1933, will be given in §3.

Though our argument yulds (a)=(c) only under the condition n # 2, the above result is
probably truc for all n >

(1.2) Notation. Since the context (¢.g. the mention of a simplicial, continuous, or linear
map) leaves little room for confusion. we will usually employ the same letter K when
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referring to a combinatorial simplicial complex, i.e. a finite set K of finite sets obeying ce K.
0 < o =>0€K. or to a topological or geometrical realization thereof. Likewise. depending on
the context, the same letter o will stand for an abstract simplex. i.e. a finite set of vertices, or
for a closed simplex occuring as a topological or geometrical realization thereof. (In
addition. in the context of integral (co) chains, it is understood that ¢ carries an orientation.)
The elements of the closed simplex are called the points of . If one excludes from ¢ those
points which belong to the proper faces of g, then one gets the open simplex associated to o;
this will be denoted by int . The star. closed star, and link of ¢ in K are defined in the usual

way, and denoted by Styo. St co. and Lk o (notation to be interpreted combinatorially,
topologically. etc.. depending on the context). And, as usual. superscripts will often be used
to indicate dimensions.

Two simplices will be called disjoint iff their sets of vertices are disjoint. otherwise they
are called adjacent. The set of vertices of K will be denoted by F (or just }') while the subset
of vertices occuring in the link (resp. the closed star) of & will be denoted Lo (resp. Sio). The
cardinality of Lo is also called the valence of 6. A subset ¢ < Vy is called a circuit of K if
c¢ K but all proper faces of ¢ belong to K. A full subcomplex of K is one which contains all
simplices of K whose vertices are in the subcomplex. A simplicial complex is determined by
its maximal or basic simplices. If all of these are of the same dimension, then K is called
dimensionally homogeneous. If further any codimension one simplex is incident to precisely
2 basic simplices, then K is called a pseudomanifold.

As usual the join K- L will be defined only for disjoint simplicial complexes, and consists
of all simplices s U, geK, 0 L. Quite often disjoint unions ¢ U will also be written (a, )
org-orr,...v.-0(where r; are the vertices of o) ete. Recall that as a space K- L is made up
of the points of the line segments having one end in K and the other in L. Joins of oricnted
simplices or spaces will be equipped with the orientation of the first factor “followed™ by
that of the second. On joins K- K of disjoint copies of the same simplicial complex one has
the simplicial Z y-action (3, 0)— (0, 6). A Z ,-(co}chain of a Z,-simplicial complex will be one
which is preserved upto sign by its Z,-action. An elemenary Z ,-cochain, i.c. one which can
be nonzero only on one pair of oriented simplices, will be specified by the value it takes on
one member of this pair.

§2. CLASSIFICATION
Proof of (¢)=(d). Let K denote an n-dimensional simplicial complex for which K is a
(2n + 1)-pscudomanjfold.

(2.1) K must be homogenously n-dimensional, with each (n — 1)-simplex incident to at least
3, and at most n+3, n-simplices. Further, K can have an (n—1)-simplex incident to n+3
n-simplices only if K is the n-skeleton of a (2n+ 2)-simplex.

Given any «eK, the fact that K, is homogenously (2n+ 1)-dimensional gives us a
(w". pMeK, containing (x, ¢). Thus €K is contained in some ¢"eK, ie. K too is
dimensionally homogenous. Next, given any 6"~ 'eK, veLga" "', choose a (6"~ !, w")eK,
containing (6" !, v). In order that this 2n-simplex of K, be incident to two (2n + 1)-simplices
of K, it is necessary that there be at least two other vertices in Li6” ™. On the other hand if
Lxo" ! had more than n + 3 elements, then 3 or more of these would be outside @, and so
("', ") would have valence bigger than 2. Finally, let Lyo" ™! have exactly n + 3 elements,
and lct w be any vertex of K. Ifwis notin ¢* !, then it must be in Lga" ™ ': otherwise a (6" ™',
¢")e K, containing (6"~ !, w) would have valence > 2. Thus K is a subcomplex of 73"* 2 the
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n-skeleton of the (2n + 2)-simplex t°"* % formed by the 2n+ 3 vertices of S, 6" ~*. Any two (2n
+ 1)-simplices of (12" *2), can be “joined™ to each other via a sequence of (2n + 1}-simplices,
each sharing a 2n-face with the preceding. Hence K, < (t2"*?), can be a pseudomanifold

2n+2

only if K, =(12"*?), and so K =13"*2,

(2.2) For all ¢" 'eK, 6"eK and seLyc" " '\0" the simplex (6"~ '\0")(Lya" " '\0"\4)
lies in K.

We will prove this by induction on the cardinality of 6"~ '~ 6"

If 6"~ ! is disjoint from 6", then 6" contains all but 2 of the vertices of L,o" " !: otherwise
(0. 6"~ ')eK, has valence #2. Thus Lya" " '\6"\ 4 consists of a single vertex ueL,o"™ ",
and we are merely saying that "~ ' uek.

To prove the inductive step choose any rec” "'~ 0" and then a we I, if possible from
outside Lye"™ ', in such a way that &"=wu(6"\v) is an n-simplex of K disjoint from
v U (6"~ '\ 0"): this can be done because K, is dimensionally homogenous (we'll use this fact
repeatedly below also). Note that ¢" ' \&"\v=¢""'\". If w¢Lyo" ! then (Lyo" '\ ")
=(Lxo" "\0")s0 the result follows immediately from the inductive hypothesis
(6" N\E(Lxo" " "\EM\AeK. If welgo" ' then for any ieLye" '\0" one has
AU(™\r)eK: if not, 4 # w belongs to Lya" '\&"=(Lgo" '\ 0")\w, and any 2n-simplex
0"\ v, ") of K, containing (0"\r. (6" " '\E"}(Lga" '\ "\ A)) would have valence < 1.
Next, let m; be an n-simplex of K which is disjoint from 6" and which contains the simplex
(" T \E"\e)(Lxo" PN\ E"\p), e Lgo" "\ E Since K, is a pscudomanifold we can further
arrange that uédw; (or else that wém]). We assert that wew] (or else that pHewy): otherwise
since 07\ ¢ has all the vertices of Lya” ™'\ 0", and also v, in its link, (0"\ ¢, ) would have
valence >3. Within all such simplices wje K we have thus all simplices of the type
(6" I\ (L™ " \O™\A), AeLya™ \O" = (Lea" "\ E)Uw.

As a corollary of (2.2) we see that

(2.3) K consists of all the independent sets of a matrotd Mg on its set of vertices V.
By definition this means that the following is truc.

(1) Buse Exchange Axiom. ¥ 0"eK, w"eK, uew\0" 3 ved"\ " s.t. (" \u)urek.

If no such v were to exist, then, by applying (2.2) to 0" and 0" ! = w™\u, we see that
Lga" "\O0"\i=L,o" "\ belongs to K. But this is not possible because then any
2n-simplex (6”7, w") of K, containing (6" "', Lya" '\ 4) would have valence < 1.

We recall (see e.g. Welsh [17]. pp. 13 -15) that (1) is equivalent to saying that

(2) all full subcomplexes of K are dimensionally homogenous, ic., that K obceys the
following

(3) Augmentation Property. 1f 2eK, fe K and dimx < dimf, then x can be augmented
to a (dim ff)-dimensional simplex, x-y€ K, by means of some y < 8.

Also (1) implies ([17]. p. 68) that the circuits of K obcy the following

(4) Transitivity Property. If the vertex u belongs to a circuit containing the vertex v, and
v belongs to a circuit containing the vertex w, then u belongs to a circuit containing w,

As another application of (2.2) we now determine the exact nature of the circuits of K:

(2.4) A subset of Vi is a circuit of K iff it is of the type Lya" '\i for some ¢" ‘€K,
ielya" L. '

While proving the base exchange axiom (2.3.1) we checked that Lio™ '\ i¢ K. On the
other hand. by applying (2.2) to 6" " 'eK and 0" = /i-6" " 'eK, we sce that all proper subsets
of Lya" '\ belong to K. Conversely, given any circuit ¢ of K, choose an n-simplex
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v-6" " 'eK containing a vertex v of ¢, and disjoint from the simplex ¢\ veK formed by the
remaining vertices of c. Note that ¢ is disjoint from ¢"~*. Choose any n-simplex 2-(c\v)eK
which is disjoint from 6"~ '. We assert that a-(c\w)eK for all wec: otherwise, ¢ being a
circuit, we will not be able to augment ¢\ w by means of some subset of 2:(c\ ). And. all of
these n-simplices x-(c\w), wec. being disjoint from ¢"~*, must have all but 2 of the vertices
of Lyc"~*. This is only possible if, like ¢, all the vertices of ¢ belong to Lya"~!.

Two vertices are called connected in the matroid M if they belong to the same circuit
of K. The transitivity property (2.3.4) tells us that this is an equivalence relation on V.
The equivalence classes are caled the components of M. From (2.4) we see that the
components are at least as big as the codimension-one links Li¢” ™ !. In order to obtain an
upper bound on the components of M., we will now verify that (2.2} is best possible.

(2.5) For all 6" €K, 07K, the simplex (a" ™'\ 0")-(Lyo"~ '\ 0") does not lie in K.

Once again the proof will be by induction on the cardinality of 6"~ ' n 6",

If ¢"~! is disjoint from 6", then (6"~ '\8"):(Lgo""'\0") has n+2 elements, and so
cannot be in K.

Now for the inductive step. If possible assume that (6"~ '\ 0")-(Lyo" '\0"eK and
choose any ve Lya" '\ 0" (such a v exists because Lyo" ™' < 0" would yield Lyo" 'eK).
Case 1. If the dimension of (6"~ '\ 0")-(L 6"~ '\ 0" ) is less than n, then we can augment it by
a vertex w#v of the n-simplex v-0" !, So wea" '~ Now let ¢" = u-(0"\w) be an n-
simplex of K disjoint from w+(a" ™ '\#")(Lga" " '\0")eK. Since u¢Lgo""" the inductive
hupothesis now gives us the dcesired  contradiction  w-(a” '\ 0")(Lga" "'\ 0")
= (0" "\ @")(Lgo" "'\ @")¢ K. Case 2. If the dimension of (a" 7'\ 0")-(Lgo" "'\ 0") is n, then
we use the basc exchange axiom (2.3.1) to find a vertex w# v in v6””! such that
we(@" "'\ 0")(Lgo" "\U"\v)e K. Note that wee" ' n 1" Since K, is a pscudomanifold
there exists a vertex ug 0", u # v, such that (6" "'\ 0")(Lga" "'\ 0"\ v)-ue K. Also, because of
the same reason, we can find an n-simplex @" = z+(0"\w), z # u, which is disjoint from
w (6" \O")(Lga" " '\0"\v). But this is possible only if z=uv: otherwise (z-(0"\w),
(6"~ '\ 0")-(Lgo" "'\ 0"\ v)) would have valence 3. Since 6" ' no" = ("' n0")\w, we can
now use the inductive hypothesis to get the desired contradiction (6" ™'\ ¢")(Lgo" "'\ ¢")
=w(a" "'\ 0")(Lga" " '\ 0"\ v)¢K.

The required upper bound follows as an easy corollary:

(2.6) If veLya" "' then the (matroidal) component C, of v is contained in Sga" ', In
particular, if 6"~ ' is incident to less than n+ 3 n-simplices, then C, is a proper subset of V.

If some vertex w, not lying in the closed star of 6" ™!, were connected to v in M, then, by
(2.4), we would have an &" " 'eK such that v-&" " 'e K and w-&"~'e K. Applying (2.5) to 6" !
and v-&""! we see that (" '\E" ) (Lo P\ E" I\ )¢ K, while applying (2.2) to 6"},
w-&"" ! and veLga" P\ w-E""! we see that (6" "'\ &) (Lga" "'\ &" " "\v)e K. The second
part follows by noting that, under the given hypothesis on 6" !, a vertex w¢S,a" ™! docs
indeed exist: otherwise any (6" !, 0")e K, would have valence <.

We can now show that

(2.7) An n-dimensional simplicial complex K, n>=0, for which K, is a (2n+1)-
pseudomanifold must be a join of some simplicial complexes of the type a2, s> 1.

We will use induction on n.

For n =0 we note that each zero dimensional simplex of K, has valence one less than
the number of vertices in K. So a2 is the only 0-dimensional complex for which K, is a
1-pseudomanifold.
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If n> 1, and K has an (n — 1)}-simplex having maximum possible valence n+ 3, then the
result follows by (2.1). Otherwise, by (2.6), we can choose a vertex v of K whose matroidal
component C, is a proper subset of V. Let L? (resp. N9) be the full subcomplex of K
spanned by the nonempty set of vertices which are in C, (resp. not in C,). We assert that
K = L-N.The inclusion K = L-N is trivial (and is valid for all disjoint partitions of V). To
see L' N = K we note that if some xe L, Se N, were such that x-f¢ K, then any circuit of K
contained in 2- 8 would have a vertex of 2 = C,, and also a vertex of § = V¢ \ C,. This is not
possible because C, is the component of v.

The easily verified join formula

(L'N),=LN, (n

tells us that L, (resp. N, )is a (2p + 1)-dimensional (resp. (2g + 1)-dimensional) pseudomani-
fold. Since p+q+ 1 = n both p and 4 are less than n. So. by the inductive hypothesis, L and
N, and thus their join K = L-N, are of the required type.

§3. CRITICALITY

Before continuing the proof of Theorem (1.1) we recall some well known

Obstruction Theory (3.1). If a continuous map f: K — R2" obeys
Sl YA fi0") = V(" 1, )eK,, ()

then one can define a (2n+ 1)-dimensional integral Z,-cocycle v, of K, by

’(.‘b (Rln).]. (2)

s, @") = deg [w", @)

Here /2 = f-f denotes the Z,-map K, —(R?"), defined by /' (1x + uy) = tf(x) + uf(y), and
3(a”, ") denotes the boundary of the oricnted (2n + 1)-simplex (", ¢”); the degree is well
defined because (R?"), (i.c., R R2" minus points of the type $x + §x) has the oriented Z,-
homotopy type of the antipodal 2n-sphere S From (2) we sce that

") flo"y = d= v (0, ") =0; (3

thus .., measures the extent to which ffails to separate disjoint n-simplices of K.
Itis casy to see that any two continuous maps f,, f,: K — R?" obeying (1) can be joined
by a homotopy f,, te[0, 1], obeying

SR N fi(EN = V(27 EYe K (p+ g =2n=-2)Ve[0, 1] (4)
Hence we can define a 2n-dimensional integral Z,-cochain c;, of K, by
ep(a 1, 07) = deg[ (0™, 07) x [0, 1]) B(®?),]. 5)
This cochain satisfics the coboundary formula
Scp = vy = vy, (6)

which shows that the (2n+ 1)-dimensional integral Z,-cohomology class vy of K, deter-
mined by », is independent of f, and depends solely on K. (We remark that the mod 2
reduction of van Kampen's obstruction class »y is the (2n+ 1)th power of the
Sticfel -Whitney class of the 2-fold cover K, = K, /Z,.) Also from (S} it follows that

L@ f(0")=¢ V [0, 1]=c ("L, 0") =0, @)

thus ¢, measures the extent to which the homotopy f, fails to obey (1) for 0 <t < 1.
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From the definition of » just given it is easy to see that
vg =0 iff there exists a Z,-map K, —S*". (8)

For n # 2 this homotopy theoretical condition is known to be equivalent to a topological
one:

VAN KAMPEN-WU-SHAPIRO THEOREM (3.2). An n-dimensional simplicial complex K.n > 1,
n# 2, embeds in R iff 14 = 0.

The original argument of van Kampen [ 15, corrected version], 1932, contained an
unproved lemma, viz, the p.l. version of the (now) well known Whitney Trick [20]. The first
complete proofs were given (independently) by Wu [21] and Shapiro [13].

(3.3) Proof of (a)=(c). We first show that K, is homogenously (2n+ 1)-dimensional, i.e.
that any (z, fi)e K, is contained in a (2n + 1)-simplex (6", 6")€ K, : Being non-embeddable in
R2", K has certainly more than n+ 1 (in fact more than 2n+ 2) vertices; so w.l.o.g. we can
assume 2 # ¢, f # ¢. Choose any xeintx, yeintf, and let f,,: K = R*" be continuous with
no double points other than (x, y) contained in disjoint simplices of K. Thus f,,, and so also
any sufficiently near general position map f: K —R*", obeys fle")nfitl)=¢ for all
(6", 8")e K, other than those for which xeo”, ye 1", i.e. other than those for which a < a”,
p < 0. Since », # 0 it follows from (3.1.3) that there must be a (a7, 6") of the last kind.

Now we show that K is a pseudomanifold, i.c. that any (x" "', f")e K, is incident to
precisely two (2n+ l)-simplices: Again, choose xeintx” !, yeintfi", f,,; K-> R and a
sufliciently ncar genceral position map f: K — R2", so that f(6") n f(0") = ¢ for all (6", 0" e K,
other than those for which a" 24"~ !, (" = " If there were only one such ¢, then (3.1.3)
shows that », is the coboundary of some multiple of the clementary Z,-cochain (277, 7).
Since vy # 0 it follows that there are at least two such a”s, say 67, 0%, . .. a7, r 2 2. We have
to show now that r = 2. Choose any arc x,, 0 <t < 1, in St 2" 7!, from an x, € inta] to some
x, €inta} via x, = xeintz" . The homotopy f, =/, ,: K — R*" satisfics (3.1.4); besides, the
two ‘ends’ fy,. fy., satisfy (3.1.1). Thus v, v, ¢, are well defined. Morcover, by using (3.1.3)
and (3.1.7), we sce that v, (resp. »,) is some multiple k, (resp. k) of the elementary Z,-
cochain (6%, p7) (resp. (6%, ), while ¢, is the some multiple & of the elementary Z,-cochain
(a"~ 1, ™). The coboundary formula (3.1.6) shows that this can happenonly if k = —k, =k,
and r=2.

The remaining argument will be more gecometrical than combinatorial or topological.
We first need a straightforward generalization of a method employed by van Kampen [15],
pp. 77-78 (to show that 62" *2and 6} . ... . 6} (n+ 1 times) are non-embeddable in R2"). It
depends on the following lemma whose proof is omitted.

(3.4). Let g: a2"*2 - R?" be linear with the images of 2n+ 1 of the vertices determining a
2n-simplex of R*" whose interior contains the images of the other 2 vertices. Then, there exists
a unique pair of disjoint simplices (x, ) of 63"*? with g(inta)g(int f) # ¢.

2n 2n

In fact if g(v)=1/2n+1. Y gl gw)=Y c;gu). 0<¢; <1, co+...4+ca=1, and
0 o

o<, €. .. € thena={v}u{w:c,>c,} and f={w}uly:c, <c,},is the unique pair
of disjoint open simplices intersecting under g.

(3.5) Proof of (dy=(a). Let us first consider the join-irreducible case K =g2"*2. For any
given pair of points (x, y) contained in the interiors of disjoint open simplices (2, f/)amap £, :
K — R?" of the required kind can be constructed as follows. Choose rex, we ff. We imag-
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the other 2n + 1 vertices to the vertices of a 2n-simplex = R*", and then image v to their
barycenter &. On K Stgw, f,, will coincide with the linear map thus determined. Let x
denote the image of x. The image ¥ of y will also be %. If y = w = f, the linear map K — R*"
thus determined is our f,. If ¥ # w, then f,, will be linear only on K, the simplicial complex
obtained by deriving K at y. Note that now ) is the interior point of a unique line segment
zw with ze K\ St,w. Join its image 2 to ¥ = ¥ and extend to some w lying in the interior of
the 2n-simplex. We let & be the image of w. Note that under this linear map f,,: K, - R?", the
images of the simplices are the same as under the linear map g: K — R*" defined by the
values of f, on the vertices of K. Applying(3.4) to g we see that (x. y) is the unique double
point of f,, which is contained in a disjoint pair of simplices of K. (See Fig. 1.)

Fig. 1.

If further 2, f# arc disjoint n-simplices (the subcase considered by van Kampen) then the
cocycle »pis defined for f = /. and is zero on all (2n + [)-simplices of K, other than (2, f), on
which + (2, = £ 1. Thus the valuc of +; on an integral Z,-cycle formed by suitably
orienting all the top-dimensional simplices of (62" ), cquals + 1. This shows that ., #0,
i.c. that there exists no Z,-map K, — S*". (Anticipating (d)=(b) - sce (3.6) below —we see
that van Kampen's argument of 1932 also yields the Borsuk -Ulam Theorem of [1], 1933:
“There exists no Z,-map from $2"*! to §2*") Thus K is non-embeddable in R2",

We next show that £, can always be prolonged to a continuous family f,.,. of such maps
defined for all (', y') close enough to (x, y). To do this let 4 = yw/yw (if y=w take A=1) and
repeat the above construction with (x', ') taking care that y'w'/y'w = 4. For all (x', y') close
enough to (x, y), w’ will still be in the interior of the 2n-simplex, and so each of these maps
Sy will also have a unique double point (x’, y’) which is contained in some disjoint pair of
simplices of K.

Reducible case. Let K"=LP-NY n=p+q¢+1, where L? (resp. N¢) is critically non-
embeddable in R?? ( resp. R?¢). We assert that K" is critically non-embeddable in R*”, We
will only indicate how a map f,, of the required kind can be defined when x (resp. y) is an
interior point of a segment x, Xy, X, € L?, xye NY(resp. y, ¥y, V. ELP yyeNY). Note that x, y
lic in disjoint simplices of K" iff x,, y, and xy, yy lic in disjoint simplices of L and N
respectively. But R =R2P*24* 2 = R2P* ' @R ! Let A2P (resp. A29)denote a hyperplane
in R?”* ! (resp. R** V) at distance 1 from the origin. Let f, ,: LP— A22,f, , : N9— A% be 2
maps furnished by the criticality of L? and N9, Their join, perturbed slightly (see Fig. 2), will

Zest

Tuiya p—

Fig. 2.

TOP 10:t-¥
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give an f,,: K — R*" having just one double point (x, y) which is contained in some pair of
disjoint simplices of K".

(3.6). Proofof(d)=(b) (Flores [2], 1933). For the join-irreducible case K = ¢>"*2,n >0,
this follows by verifying (cf. also Griinbaum [3, 4]) that the vertices v of a regular (2n + 2)-
simplex of R*"*2 centred at the origin, and their antipodes ¢, determine a convex (2n + 2)-
dimensional polytype whose boundary is combinatorially isomorphic to (s2"*2),. (See
Fig. 3 for the case n = 0.) The reducible case follows from this and the join formula (2.7.1).
(Flores had used his lemma K, = Si*! and the recently established Borsuk-Ulam
Theorem [1] to give an independent proof of the fact that there exists no Z,-map K, —» %",
and so that K is non-embeddable in R".)

Y]
o

Fig. 3.

Since the implication (b)=(c) is trivial, this concludes the proof of Theorem(1.1)

(3.7) Remurks.

(1)} The above theorem suggests that an n-dimensional simplicial complex K, n 2 1, does
not embed in R?" iff a Kuratowski n-complex “occurs™ (in some sense which we hope to
make precise elsewhere) in K.

However (and this must have been known to van Kampen) if K*, n 2 3, is minimally non-
embeddable in R?", and a p.l. space X" is obtained from K" by identifying two p.l. homeomor-
phic subpolyhedra, of codimension 2 2, contained in the interiors of adjacent simplices of K,
then X" is also minimally non-embeddable. In fact, if there were a one-one continuous map ¢:
X"—R?", then, for any general position map f: K - R" sufficiently close to the composi-

quot.

tion K" X" - R?" one would have », =0, and so by (3.2) K" would be embeddable in

R2". On the other hand all proper subspaces of X" are obtainable from the embeddable
proper subspaces of K" by making codimension 2 2 identifications, and so, by Hilfsatz 6, p.
153, of [15], are also embeddable in R2". (A different, but related, way of exhibiting an
infinity of non-homcomorphic minimally non-embeddable spaces is given in Zaks [23].)

Thus, in higher dimensions, one cannot always expect the aforementioned “occurrence™
to be as a subspace. We do not know whether it must be as a subspace modulo identifica-
tions of the above kind. Another related question: are the Kuratowski n-complexes the only
ones which arc minimally non-embeddable in R?" and for which cach (n— 1)-simplex has
valence >3?

(2) In the definition of “critically non-embeddable™ it is nccessary to assume that (x, y) is
in a pair of disjoint simplices: othcrwise » . = 0 for any g.p. map near to f,,. and so, for n # 2,
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K embeds in R>". Note also that the argument given in (3.3) works with notions of
“criticality” a priori weaker than that given in §1; however we do not know whether (a)=(c)
holds without any local continuity condition whatsoever.

Let us say that a K", which does not embed in R?", is subcritically non-embeddable if, for
each (x, y) lying in a disjoint pair of simplices, there exists a continuous map f,,: K —»R*"
under which K has a unique simple self-intersection at (x, y). For n # 2, the deleted join K, of
such a K must be a minimal (2n+ 1)-dimensional mod 2 cycle. The homogeneity of K, can be
checked as before. The remaining conclusion follows by noting that there is a nonzero (2n
+ 1)-dimensional minimal Z,-cycle z, over coefficients Z,,, [ large. such that ux(z) = +1
mod 2' (this follows because » is of order 2), and, since vx(z) = v, (2) for (x, y)€(int o™
int 8"). every (2n+ 1)-oriented simplex (6", 6") must occur in z with coefficients + 1.

Thus (63 . ... . ci(n+1) times) is the only n-dimensional simplicial complex which is
subcritically non-embeddable in R*" and for which each (n—1)-simplex has valence 3. This
follows because the mod 2 cycle K, is clearly a pseudomanifold, and so we can use (¢)=(d).
Yet another corollary is that there are only finitely many n-complexes K which are
subcritically non-embeddable in R®" and for which the codimension one valences are all odd
and less than a given number. The finiteness can be checked by an easy combinatorial
argument starting from the fact that, K, being a mod 2 cycle, each 0" must meet any given
Stya" L.

(3) Biblioyraphical. Kuratowski's thcorem was anticipated by Pontrjagin —see note §
of [6] —and discovered simultaneously also by Frink and P. A. Smith: scc Whitney [18].
{The many known proofs of this theorem—sce ¢.g. [14]). and also [7] for a recent
gencralization to 2-manifolds other than R?-— can be interpreted as methods for eliminating
double points in some low dimensional cases.) It still scems unknown whether + =
guarantees the existence of a linear embedding of K™ in R*™ see Grinbaum [4]. (Some ~csp.
lincar - embedding problems scem to be easier if onec works only with matroidal K's:
matroids were introduced in Whitney [[19].) Lastly, note that Hacefliger [5] discovered a
generalized Whitney Trick which eliminates some higher dimensional non-isolated general
position double points; this resulted in the genceralization of (3.2) due to Weber [16].

(4) Classification theorems analogous to that of §2 are valid also for the higher order
deleted joins of [10]. e.g. one characterising those Ky for which the pth join configuration
K{” is a homogenous mod p cycle. These higher deleted functors measure (cf. Wu [22] and
[11]) some obstructions to removing p-uple points, to embedding in dimensions lower than
2n, etc. Thus these generalized classification theorems can also probably be put into a
format analogous to that of Theorem (L.1). It still remains to work out the relationships
between these developments, the known combinatorial interpretations of some character-
istic classes, and the coloring results of [9], [10], etc. We hope to give a more leisurely and
extensive account of the numerous combinatorial and topological applications of deleted
functors in [12].

REFERENCES

1. K. Borsuk: Drei Siitze, iiber dic n-dimensionale cuklidische Sphiire, Fund. Math. 20 (1933). 177-190.

2. A. Frores: Uber a-dimensionale Komplexe, dic im R,, ., absolut setbst-verschlungen sind, Ergeb. math.
Kollog. 6 (1933/34), 4 -7,

. B. GrRONBAUM: Conrex Polytopes, Wiley, New York (1967).

. B. GRONBAUM: Imbeddings of simplicial complexes, Comm. Math. Helv. 45 (1970), 502 -513.

. A. HAEFLIGER: Plongements des variétés dans le domaine stable, Sém Bourbaki no. 245, 15 p. (1962).

. C. Kuratowski: Sur le probléme des courbes gauches en topologic, Fund. Math. 15 (1930), 271-283.

. N. ROBERTSON and P. D. SEYMOUR: Graph minors VIII. A Kuratowski theorem for general surfaces, J. of
Combin. Th. B (to appear).

NV S W



76

8.
9.
10.
11

12

13

14.
ts.

23

K. S. Sarkaria

K. S. SarkARIA: Embedding and unknotting of some pplyhcdra, Proc. Am. Math. Soc. 100 (1987), 201-203.
K. S. SarkARIA: Kneser colorings of polyhedra, [1l. J. Math. 33 (1989), 592-620.

K. S. SARKARIA; A generalized Kneser conjecture, J. Combin. Th. B (to appear).

K. S. SARKARIA: A generalized van Kampen--Flores theorem, Proc. Am. Math. Soc. (to appear).

K. S. SArkArRiA: Van Kampen Obstructions. under preparation.

A. SHAPIRO: Obstructions to the imbedding of a complex in a Euclidean space. I. The first obstruction, Ann.
Muath. 66 (1957), 256-269.

C. THOMASSEN: Kuratowski's Theorem, J. Gr. Th. 5 (1981), 225-241.

E. R. Vax KaMpeN: Komplexe in euklidischen Riumen. Abh. Muth. Sem. 9 72-78. and Berichtigung dazu,
ibid.. (1932), 152-153.

. C. WEBER: Plongements des polyédres dans le domaine métastable, Comm. Math. Helv. 42 (1967), 1-27.
. D. J. A. WELSH: Mutroid Theory. Academic Press. London (1976).

H. WHITNEY: Planar graphs. Fund. Math. 21 (1933). 73-84.

. H. WHITNEY: On the abstract properties of linear dependence. Amer. J. Math. §T (1935), 509-533.
. H. WHITNEY: The self-intersections of a smooth n-manifold in 2n-space, Ann. Math. 45 (1944), 220-246.
. W.-T. Wu: On the realization of complexes in euclidean spaces [II, Acta Math. Sinica 8 (1958), 79-94

Scientiu Sinica 8 (1959), 133-150.

. W.-T. Wu: A Theory of Imbedding. Immersion, and Isotopy of Polytopes in a Euclidean Space, Science Press,

Peking (1965).
J. Zaks: On minimal complexes, Puc. J. Math. 28 (1969), 721-727.

9166 Barrick St, Apt. 203,
Fairfux

VA

22031

US.A.

Current Address:
Department of Mathematics
Punjab University,
Chandigarh 160014,

India



