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Chapter IV. Linear Embeddability

§1. Definition.

A simplicial complex K with vertices e;,...,en has a canonical geo-
metrical realization K in RV, obtained by thinking of these vertices as
the canonical basis vectors of RV . In this chaptér we plan to study
geometric or (simplex-wise) LINEAR EMBEDDINGS f: K — R™,
i.e. one-one maps which occur as the restrictions of linear maps f :
RN — R™,

This geometric notion is related to the previous, more flexible, notion
of piecewise linear embeddability, as follows.

The p.l.embeddability of K in R™ amounts to requiring only that
some linear subdivision K’ of K —i.e. a simplicial complex which embeds
linearly in RV with image K — be linearly embeddable in R™.

Further, one can here even assume (see Ch.I1.2, ...) that K’ is a stellar
subdivision of K, i.e. that K’ can be obtained from K as the end result
of a sequence of “starring”operations: one stars a simplex o by replacing
Sto by the cone of its boundary over a new vertex &.

It is natural thus to consider, for the set of all simplicial complexes,
the following two binary relations:

=gy = {(K,L): K and L have a common stellar subdivision}.

p; = {(K,L): K and L have a common linear subdivision}.

The second relation, i.e. that of being p. . homeomorphic , is obviously
an equivalence relation. On the other hand the answer to the following
purely combinatorial problem is still unknown.

Q. Is g an equivalence relation??
Despite this ignorance, the following fundamental result shows that

stellar theory provides a purely combinatorial development of piecewise
linear topology.

IN will always denote the number of vertices of K.
2 Answer is ‘yes’: the proof involves the old Newman-Alexander stellar theory.



NEWMAN’S THEOREM. The equivalence relation generated by
g coincides with =py.

Proof. By placing the new vertex & at, say, the barycenter of o, one
sees that starring o leads to a p.1l. homeomorphic complex. So [=g¢], the
equivalence relation generated by =g, is no bigger than =p;.

Before taking up the converse we first list the results from stellar
theory which we will use. Their purely combinatorial proofs are given
in full in Alexander]...]. «

- (a) A stellar (n — 1)-sphere, coned over a new vertex, yields a stellar
n-ball.

(b) The boundary of any stellar n-ball is a stellar (n — 1)-sphere.

(¢) The union of two stellar n-balls, intersecting in a stellar (n—1)-ball
common to their boundaries, is a stellar n-ball. ‘

Here, a simplicial complex B", resp. S"~!, is called a stellar n-ball ,
resp. stellar (n — 1)-sphere , iff B"[=g,Jo™, resp. S"~1[=g]00".

The required implication K" =p; [" —> K"[=g]L" will now be
established by induction on n.

It obviously suffices to show that any linear subdivision L of the closed
n-simplez o™ is a stellar n-ball . A little more thought shows that in
fact it would suffice to prove this assertion only for the case when the
subdivision L is related to a finite set Q of (n — 1)-dimensional affine
hyperplanes as follows:

Q determines a subdivision of o™ into convex cells {w'}. We want that
L should be a subdivision of this cell complex, with each L|w" = Sty w"
for some vertex w™ € L.

Assume inductively that the assertion has been established when the
number of hyperplanes is lesser.

Using (a) and the inductive hypothesis on n, each L|w™ is a stellar
n-ball. Choose any hyperplane w € Q. For each cell w®~! C w which is
incident to two n-cells w™ (c) shows that the subcomplex of L covering
these two cells is a stellar n-ball. We replace each of these balls by the
cone of its boundary over a new vertex. By (b) and (a) this too is a
stellar n-ball.

The stellary equivalent simplicial complex L’ thus obtained from L is
related to the smaller set Q' = Q\ {w} of hyperplanes in the required
way. So L/, and thus also L, is stellarly equivalent to . q.e.d.

An affirmative answer to the above question would improve the above
theorem to =g = Zpj.

However, as Milnor [..] first showed, the binary relation =y, i.e.
that of being homeomorphic , is strictly bigger. In fact Edwards [...] has
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even given an example of a simplicial 5-sphere which is not p. 1. homeomor-i ‘
phic to the boundary of a 6-simplex!!

§2. Radon’s Theorem.

For linear embeddability the following useful weakening of the defini-
tion is available.

THEOREM. A linear map f : RY — R™ is one-one on K if and
only if f(e) N f(0) =0 forallo € K , 0 € K, such'that o N0 = 0.

Proof. Restricted to each simplex £ such an f must be one-one.
Otherwise by Radon’s Theorem (see below) the f-images @ and 7, of
some 2 disjoint faces o, 7 C &, would intersect.

The possibility remaing that_there exist non-disjoint simplices £ and
n of K with € N7 bigger than ¢ where ¢ = & Nn. If so, consider such a
pair (§,n) with dim& + dimn) least. Any ¢ € (6n7)\¢ can not belong to
a proper face & of £, for then (¢’,n) would be another such non-disjoint
pair with lesser dimension sum. But then, the segment going from ¢
to W, w € (n\ () takes us from znt{ to a pomt outside €, and so, by
linearity of f, yields a ¢’ € (f n) \ ¢, with ¢’ belonging to a proper face
& of €. q.e.d.

The above theorem can be reformulated using deleted joins:

COROLLARY. A linear map f : RN — R™ is one-one on K if
and only if the induced linear Zy-map f - f : R2VN+! — R?™+! images
the deleted join K, into the complement of the fized subspace A™ =
{(u,u,0);u € R™}.

Here of course we think of R?™+! (and likewise R?NV*1 ) as the direct
sum R™ & R™ ® R with Z,-action given by (u,v,t) < (v, u,—t), and the
map f - f is defined by (z,y,t) — (f(2), f(),1)-

Note that we have thus globalized

RADON’S THEOREM. Any m+2 points of R™ admit a partition
into 2 disjoint subsets S and T such that conv(S) N conv(T) # 0.

This is indeed a special case of the previous theorem because, other-
wise, the (m + 1)-dimensional aﬁﬁ would embed linearly in R™.

Though Radon’s Theorem has been much generalized (see e.g. Tver-
berg’s Theorem below) the simple proof of the original result still retains
its interest:

Proof. Any cardinality m + 2 subset {e,...,€em4+2} of R™ is affinely
dependent, i.e. Zm"l'z z;e; = 0, for some real numbers z;, not all zero,
such that 2 4+ -+ + Zm42 = 0. So the subsets S = {e; : z; > 0} and
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T = {e; : ¢; < 0}, are nonempty and disjoint, and contain -szis% =
jes™?

Z:S'fT—(:—ze’ in the intersection of their convex hulls. q.e.d.
jer

A slight elaboration of the above proof shows that if the m + 2 points
are in general position, then there is only one such partition.

In general it is of interest to find the least number, of disjoint simplices
of K which must intersect under any linear map f : R¥ — R™. This
number is an obvious measure of the non linear embeddability, of the
given simplicial complex K, in R™.

We will see in §8 that a.suitable analogue of the notion “one-one”, (for
an integer ¢ > 2) enables one to globalize also the following more general
local result and conjecture.

TVERBERG’S THEOREM. Any (m+1)(¢—1)+1 points in R™
can be partitioned into q pairwise disjoint subsets whose conver hulls
have a common point.

SIERKSMA’S DUTCH CHEESE PROBLEM. In fact under
above hypotheses one must have at least ((q — 1)!)™ such partitions.

Proof (of Tverberg’s theorem). We use induction on q, starting from
the trivial case ¢ = 1.

Without loss of generality we can assume that the given set Q =
{eo, €1, . -+ €(m+1)(g-1)} is in a generic® position in R™. This ensures
that whenever Q4,%Q,,...,$; are disjoint subsets of {2 one has

t

codim (N2, aff (%)) = Z codim (af f ()).

i=1

The inductive hypothesis ensures that there exist g-tuples Qg, Q4, ...,
Q,-1 of disjoint nonempty subsets of E, such that ﬂ?;ll conv (§;) is
nonempty. Out of these select one for which the distance from conv (Qo)
to N2} conv (€;) is minimal.

If possible suppose this minimal distance is nonzero and let z €
conv () C aff () € H, and y € N2} conv () C NIZlaff () C
H, be two points between which this minimal distance is attained. Here
H; and H, are the hyperplanes of R™, through z and y, perpendicular
to the segment [zy]. So aff () and N{Z;aff () do not intersect,

which by genericity is possible only if 390 |Ei| < (m + 1)(g — 1).

T



So one of the points of €, say eg, is not contained in any ;. This
point ey can not be on the same side of H, as y, for then the distance
from conv (QoU {eo}) to NIZ} conv (Q;) would be even smaller than |zy|.

But the possibility that e is on the same side of H, as z can also be
ruled out as follows:

With y as origin we can — since (N/Z} aff(Q%))* = &2 (af f())* -
choose new affine coordinates t1, ..., %m, such that aff(2;) is described
by the vanishing of the first C; coordinates, aff(Q22) by the vanishing
of the next Cs, and so on ... . Also we can adjust these coordinates so
that eq is given by t; =ty = --- = t,, = 1. Thus Hy, which contains
ﬂ:-’;llaff(ﬂ,-), is given by a linear equation ajt; + - - -+ @ty = 0, with
a; =0Vi > |Cy|+ -4 |Cy-1]. Choose a j, 1 < j < g—1,such that
Q|Cy|4+Cjs|+1 F - -+ @Cy |+ +|c;| has the same sign, say positive, as
the nonzero number a;+- - -+a,,. For such a j we assert that the distance
from conv(§) to conv(Q)N---Neonv(; U{eo})N---Neconv(Qy-1) is
smaller than |zy|. For this verification we will, by a change of notation,
assume j = 1.

The point ey = (1,...,1,0,...,0) is in aff(y) for 2 < i < ¢ —

N e’

Citimes
1, and is also in aff(Q1 U {eo}) because it is the sum of ey and the
point e = (0,...,0,—1,...,—1) of af f(2;). So all points on the open
ey s’

Citimes

segment (0, e} ), which are sufficiently close to the origin, are contained in
conv(Q2 U{eg})Neonv(Q2)N- - -Neconv(Qy—1). But, since ay +---+ac, >
0, this segment is contained in the half space bounded by H, which
contains . Thus such points have distances from z less than |zy|. q.e.d.

In §8 we will use complex roots of unity to give another, more con-
ceptual, proof of Tverberg’s Theorem, which generalizes the proof of
Radon’s Theorem given before.

§3. Oriented matroids.

A free Zy-simplicial set O, consisting of circuits ¥ = (o,0)with o
and @ disjoint subsets of {ej,...,en}, and having no proper inclusion
relations, will be called an oriented matroid if the following axiom
holds.

[o.m.] For any 2 distinct circuits ¥ and © of O, having a common
vertex p, there exists a circuit ® of O contained in (ZU»(0))\ {p, »(p)}.

THEOREM 1. A simplicial complez K embeds linearly in R™ if
and only if its deleted join K, is. disjoint from some linear (m + 1)-
dimensional oriented matroid O.



Proof. Without loss of generality we can assume that the given linear
embedding f : K — R™ is in general position. Now consider minimal
simplices £ = (o, 0), with ¢ and @ disjoint subsets of {ej,es,...,en},
such that f(o) N f(8) # 0. These have cardinality m + 2 and obey the
above axiom [0.m] They furnish us with the required oriented matroid
O disjoint from K,.

On the other hand an oriented matroid @ of dimension m + 1 , and
having N pairs of vertices, is called linear if and only if it arises from N
points in R™ in the manner just described. So the converse follows by
using §2. q.e.d.

Identifying each vertex with its antipode one gets from O the matroid
O i.e. asimplicial set whose member circuits £ have no proper inclusion
relations, and which obeys the following axiom.

[m.] For any 2 distinct circuits T and © of O having a common vertex
P, there exists a circuit ® of @ contained in (Z U ©) \ {7}.

Note that @ does indeed “orient” © in the sense that each circuit
T of @ is covered by exactly 2 circuits of O. Generalizing this one can
analogously define G-fold coverings of the circuits of a matroid for groups
G other than Z,.

The oriented matroid @ of above theorem can clearly be assumed to be
simple, i.e. all circuits are of cardinality m + 2, and any set consisting
of m + 2 pairs of antipodal vertices contains (exactly) two antipodal
circuits.

Convex, projective, and combinatorial embeddability.

At this point it seems worthwhile to examine the definition of §1 more
closely, and discuss similar notions for other m-spaces.

Our canonical embedding of K was in fact in RAN~! C RV | the affine
space given by z; + -+ 2y = 1, and the linear embeddability* of K
in m-space amounts to the existence of an affine map RAVN-1 — RA™
— i.e. the restriction of some linear map RN — R™*! — which injects K
into RA™. One can assume this map to be in general position.

We will say that K is convezly embeddable in an m-sphere if there
exists a general position linear map f : RN — R™*! which injects K in
the boundary of the convex hull of the points f(ey),..., f(en).

The canonical embedding of K in RV also induces one in the projec-
tive space RPN~1 i.e. the space obtained from R by identifying lines
through the origin to points. We will say that K is projectively embed-
dable in projective m-space if there exists a projective map RPN~ —

4or, perhaps more suitably, the affine linear embeddability
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RP™ — i.e. quotient of some linear map RY — R™*! — which injects K
in RP™.

THEOREM 2. Conver embeddability into® an m-sphere =—> lin-
ear embeddability in m-space =—> projective embeddability® in projective
m-space, with both implications strict. Furthermore, if a projective em-
bedding K — RP™ lifts to the 2-fold cover S™, then K embeds linearly
in R™.

Proof. The convex embedding misses the interior of at least one
m-dimensional facet of the simplicial polytope of R™*! occuring as the
convex hull of the images of the vertices. So the first implication follows
by projecting into this facet, i.e. by considering the Schlegel diagram of
the polytope determined by this facet.

The second implication is trivial since the linear embedding in fact
induces a projective embedding into the open m-ball of RP™ determined
by the lines of R™*! passing through its origin and the affine subspace
RA™.

If a projective embedding lifts to S™ then by suitably projecting from
a point of S™, missing this lifting, one obtains a linear embedding in
R™.

The complete graph on 5 vertices is non-planar but embeds projec-
tively in the projective plane (see fig. I ), so the second implication is
strict.

Linear embeddability in R® is apparently much weaker than convez
embeddability into a 3-sphere. (And likewise for all m > 3. For m =
9 a theorem of Steinitz — see xxxxx— says that the two notions are
equivalent.) For example

(a)Briickner’s 3-sphere minus a suitable 3-simplex ,

(b)Rudin’s non-shellable linear subdivision of the tetrahedron (see
xxx), with boundary, excepting one 2-simplex, coned over a 15th vertex,
or

5j.e. as a proper subset of
Scf. Kempf et al



(c) Connelly-Henderson’s non-flezible linear subdivision of the tetra-
hedron (see xxxx), with boundary, excepting one 2-simplex, coned over
a new vertex,
are all linear subdivisions of the tetrahedron (with only 4 boundary
vertices) which fail to embed convexly in a 3-sphere.

For (b) and (c¢) this follows because convex simplicial polytopal bound-
aries are shellable and flexible — see xxxx and xxxx — while for (a) the
argument is given below. q.e.d.

BRUCKNER-GRUNBAUM-SREEDHARAN SPHERE. 3 «
8-vertex neighbourly simplicial 3-sphere which, minus a suitable, but not
any, 3- simplez, yields a linear subdivision of the tetrahedron.

Proof. Consider the trjangular prism abcABC of fig.2, whose bottom
is much larger than its top. Its faces, other than the bottom, have been
coned over the point P. Now, first derive this polyhedral subdivision of
PABC over the barycentre p of abe, and then make a small perturba-
tion to a general position subdivision. Note that this last process will
change the 3 quadrilaterals AabB, BbcC and CeaA into 3 tetrahedra,
and thus each of their incident quadrilateral pyramids will split into two
3-simplices.

The neighbourly simplicial 3-sphere B obtained by adding PABC' t6
this simplicial complex has thus the property that B\ {PABC'} embeds
linearly in R3(: so, unlike the examples to be considered in §5, the 2-
skeleton of B also embeds linearly in R3).

On the other hand B\ {AabB} does not embed linearly in R3, i.e. a
tetrahedron AabB C R® cannot be linearly subdivided by the simplicial
complex B\ {AabB}. To see this — cf. [xxx], p.447 — first put in the 4
tetrahedra incident to the bounding triangles. In this solid, the vertices
P and p occur as “saddle points”, and thus linearity forces the triangle
O(abe) to be such that abe (which is not in B) cuts pP somewhere in the
middle. So by adding Stz{pP} = pP - d(abc), which has to be convex,
we will be left with a 3-ball which is not star shaped with respect to
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any interior point, and so can not be triangulated linearly by coning its
boundary over a vertex C. q.e.d.

So it follows that B is not the facial boundary of a simplicial 4-
polytope. This conclusion can also be drawn by noting that otherwise
the simplicial 2-sphere Lkgp would extend to a simplicial 3-ball having
no vertices or edges in its interior. (This 3-ball is the “back” of the
polytope which would be determined by the 7 vertices other than p.)
Now an Euler characteristic calculation shows that the interior of this
3-ball must be made up of one 2-simplex and three 3-simplices, which is
obviously impossible.

Thus though the notign of “projective subdivision” coincides with
that of linear subdivision, that of “convex subdivision” is much more
restrictive, and of course of stellar subdivision even more so.

Also note that, analogously to Theorem 1, convex embeddability of K
in an m-sphere is equivalent to asking that the free Z,-simplicial complex
formed by all pairs of disjoint simplices, of which at least one is in K, be
disjoint from some simple linear (m + 2)-dimensional oriented matroid
on the N vertices.

Since all simple oriented matroids are not linear, Theorem 1 suggests a
notion of combinatorial embeddability of K in some (as yet undefined!”)
combinatorial m-space by requiring that the deleted join K. be disjoint
from some simple (m + 1)-dimensional oriented matroid.

Of course it would be still nicer if there were a definition of “combi-
natorial space” sufficient to change the above definition into a pleasant
combinatorial theorem, and to yield a useful notion of “combinatorial
subdivision”.

In any case for m = 2n, n # 2, such a K" does indeed at least embed
piecewise linearly in R?".

This last follows from the fact proved in §6 that if O is a simple ori-
ented (m+ 1)-dimensional matroid on the given N pairs of vertices,then
K.NQO is the support of a cocycle of the (m+1)th van Kampen obstruc-
tion class 0™+1(K,). The notation O for oriented matroids was chosen
to highlight this connection with the characteristic classes o.

§4. Extending triangulations.
We now discuss some p.l.topological results which will be used in §5
to construct examples of simplicial complexes which embed piecewise

"now done: om MacPherson type definition
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linearly, but not linearly in some higher dimensional Euclidean space
R™.

THEOREM 1. A simplicial complex K embeds piecewise linearly in
a p.l. manifold M™ if and only if it is a subcomplezx of some piecewise
linear triangulation L of M™.

Proof. K p.l. embeds in M™ if and only if some stellar subdivision
K’ extends to a p.l. triangulation L’ of M™. Without loss assume that
K’ is obtained by starring just one simplex o of K. We first retriangulate
the interior of the m-ball B™ = St;L’ by taking the cone of some vertex
v of o over the (m—1)-ball , §B™ \ Stgpmv, of the boundary. Some sim-
plices of L' not in K or B™ might occur in this new triangulation of the
m-ball. We take care of this by starring all of these, and then attaching
this newer triangulation of B™ to L'\ B™. This gives a triangulation L
of M™ containing K. q.e.d.

Addendum. On the other hand note that if X C M™ is the p.l.
subspace occuring as the image of some given p.l. embedding f : K —
M™, then it may NOT be possible to find an extension L D K such
that (L, K) p.l. triangulates the polyhedral pair (M™, X).

A straightforward elaboration of the above argument — c¢f. Armstrong
[..] — shows that this stronger conclusion also holds provided the pair
(M™, X) is locally unknotted, i.e. provided Lkxz unknots in the (m —
1)-sphere Lkpymz for all z € X. By Zeeman’s theorem regarding p.l.
knotting of spheres this is so for all p.l. submanifolds of codimension
=3

The aforementioned stronger conclusion is also easily seen to be valid
if X1 ¢ M™ is any p.l. arc. In fact this extendability property charac-
terizes manifolds.

THEOREM 2. Ifp.l. spaceY has the property that for any p.l. arc
X1 CY one can find a p.l. triangulation L of Y in which X' is covered
by just one 1-simplez, then Y must be a p.l. manifold.

Proof. We only consider the main case when Y is connected and
homogenously m-dimensional, m > 2. For any 2 points p and q of Y
choose a p.l. arc X! = apgbc. Now choose a triangulation L of Y with
X1 covered by a 1-simplex o. One easily sees that there is a p.l. self-
homeomorphism of Stzo , which is the identity on its boundary, which
preserves the arc X!, and which takes p to ¢ and ¢ to b. By prescribing
it to be the identity elsewhere one can also extend it to all of Y. In any
case it shows that if p is non-singular , i.e. has a neighbourhood p.l.
homeomorphic to R™, then so is ¢q. So all points of Y are non-singular
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and it is an m-manifold. q.e.d.

Alternatively, one can define a point z of ¥ to be non-singular if
dimyx = m. Here, the intrinsic dimension dimy z, is the largest num-
ber 7 such that there is some triangulation of Y for which z is in the
relative interior of some r-dimensional simplex . Any polyhedron Y
stratifies naturally into subpolyhedra over which this intrinsic dimen-
sion is constant. This stratification constitutes the so-called intrinsic
sekeleton of Y. '

§5. Skeletons.

We feel that for dimensions greater than or equal to the middle dimen-
sion, skeletons of manifold-triangulations must display a certain “rigid-
ity” which remains to be defined precisely.

For codimension one this “rigidity” can be expressed precisely as fol-
lows, where 2 p.l. embeddings are called equivalent if they are related
by some p.l. homeomorphism of the ambient space.

THEOREM 1. IfKp,_; is the (m—1)-skeleton of a p.l.triangulation
K of S™, m > 2, then any 2 p.l.embeddings of K1 in S™ are equiva-
lent.

Proof. We have to show that any p.l.embedding ¢ : K,,_; — S™
extends to a p.l.homeomorphism g : K — S™.

Let f;(K) denote the number of i-simplices of K. The number of
components of S™ \ g(Km,-1) is the same as those of K \ K1, i.e
fm(K), because, by Alexander duality, either of these numbers is one
more than dimHp,_1(Kpy-1;2Z5).

For each of these components C;, 1 < j < f,,(K), the mod 2 boundary
dCj, being a nonzero (m — 1)-cycle, must contain at least m + 1 (m —
1)-simplices of the topological simplicial complex K,—1 = g(Kpn—1).8
On the other hand each (m — 1)-simplex of Km—1 occurs in at most 2
boundaries C;. But (m+1)fp (K) = 2fm—-1(K). So it follows that each
dCj has exactly m + 1 (m — 1)-simplices of K,,_1, and thus dC; is the
g-image of some d(¢™); C K,,_;. Furthermore it follows also that each
(m — 1)-simplex of K,,_; occurs in precisely two of these boundaries
dCj. So Cj must be one of the 2 components of the complement, in S™,
of the (m — 1)-sphere 9Cj, and thus closure of each C; is a closed m-ball
with 0C; as its boundary (m — 1)-sphere.

Let L denote the m-dimensional simplicial obtained from K,,_; by

8For more details see also Chapter [...], §[..], where the same idea is used to prove
codimension one Heawood Inequalities for pseudomanifolds.
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sticking on an m-simplex (¢™); to each of these d(¢™);. Unknotted-
ness of codimension one p.l.(and thus tame) spheres, i.e. Schoenflies’
Theorem, now allows us to extend g to a homeomorphism g : L — S™.

The final step that in fact L = K follows from Dancis’ Theorem (see
below) and reflects the fact, evident from the above topological descrip-
tion of the C}’s, that the boundaries d(¢™); C K,,,—1 are precisely those
whose deletion from K,,_; does not disconnect K,,_;, a statement in-
dependent of the embedding g : K1 — S™. q.e.d.

The image S™~2 of a locally unknotted embedding S™~2 — S™,
which is not equivalent to the standard S™~2 < S™ is called a knot.
As is well-known, for m > 3, one does indeed have such codimension
2 knots, thus the existence of triangulations K of the following type is
guaranteed by §4. :

THEOREM 2. Let K be a triangulation of the m-sphere S™ ,
m > 3, containing the boundary of some (m — 1)-simplez ( this (m — 1)-
simplex is not in K! )which covers a knot S™~2. Then its codimension
one skeleton K,,_, can not embed linearly in R™.

Proof. Think of S™ as R™ U {cc}. Since linear image of a ¢™-1 is
not a knot, a linear embedding would yield a non-equivalent embedding
Kypo1 — S™. q.e.d.

We expect the aforementioned conjectural “rigidity” to likewise show
the non linear embeddability of some skeletons right down to the middle
dimensions. In fact we make the following precise

CONJECTURE. Let K be a triangulation of the m-sphere contain-
ing the boundary of some r-simplez, and that of some s- simplex, where
r,s <B4+ 1 and r+ s = m, which cover 2 disjoint (r — 1)- and (s — 1)-
dimensional embedded spheres which link each other with linking number
> 2. Then, for any t > 3, the t-skeleton K; can not embed linearly in
R™.

More evidence of the expected “rigidity” is provided by the result
alluded to in the course of the proof of Theorem 1.

DANCIS-PERLES THEOREM. Up to simplicial isomorphism a
triangulation of an m-manifold is determined by its t-skeleton if t > T.
If the middle homology is zero the same is irue even for m = 2t.

Proof. Call a (t + 1)-simplex o a hollow simplez of our simplicial
m-manifold K if 0o C K but 0 ¢ K. We will show that if t < Z,
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then o'+ is a hollow simplez of K iff Hy([K,\ 80]) % Hi(K;) for either *
i=m—tori=m-—t—1; and, ift = T with Hy(K) = 0, then iff
Hy_1([K: \ 00]) ¥ Hi—1(K:). Clearly this will suffice to determine K
from K.

The exact mod 2 homology sequence of the pair of spaces (K, K \ do)
gives

0= Hpoi(K\80) = Hnoo K) =2
- m—t—l(K\ao') —"-Hm—t—l(K) - (I

because by Poincaré Duality Hp,_(K,K \ d0) = H'(do) = Z,. By
exactness we must have here either Hp,_(K \ d0) ¥ Hp—i(K) or

Hpt-1(K \ 00) ¥ Hp_t—1(K) with the second alternative holdlng
if Hp_o(K) = 0.

If o ¢ K, then do is full in K, so K \ 8o has the homotopy type,
and thus the same homology, as the complex [K\ 8¢]. Furthermore, for
t > 5 resp. t = %, these simplicial homologies, in dimensions < m — ¢
resp. < m—t—1, coincide with that of the ¢-skeletons [K; \ d¢] and K,.

Conversely if o € K then [K \ d0] = [K \ 7] has the same homotopy
type as K \ {pt.} from which it follows quickly that now the homologies
in question have to be isomorphic. q.e.d.

This implies that in case the last conjecture is false with K, embed-
ding linearly with image X C R™ C S™, then we cannot extend to a
triangulation of S™ without introducing some simplices of dimensions
< ton ™\ X.

It is possible that for t > £, and for any triangulation K of S™, there
is (perhaps modulo some orientation reversal) only one Z3-homotopy
class of Z-maps from the deleted join (K}). to the antipodal m-sphere.?
If so, Weber’s isotopy theorem would yield the required “rigidity” un-
der appropriate dimensional restrictions. (Do here Mani-Kleinschmidt-
Perles also.)

No examples of the type given in Theorem 2 are possible for m = 2
because one has the well known (links with rigidity: separate §?)

FARY-WAGNER THEOREM. Any planar graph embeds linearly
in R2.

Proof. By §4 we can find a triangulation K of S? containing the given
planar graph G. But by Steinitz Theorem any such K can be realized as

9This can be checked when K has very few vertices, so perhaps encouraging here is
the result of Chapter [...], §[..], where the van Kampen-Flores Theorem was extended
to n-skeletons of all triangulations of $27+2,
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the facial boundary of some 3-polytope. From this the assertion follows
easily. q.e.d.

The idea of using links also figures in

BREHM’S MOBIUS STRIP. There is a 9-vertez triangulation of
the Mébius strip which does not embed linearly in R3.

Proof. For any M&bius strip embedded in R3 the bounding circle 1
links the inside middle circle J (see fig.1) . So it links another inside
circle J’, winding twice, with

linking number > 2 in absolute value. But in the triangulation of fig. 2,
I and J’ (and even J) are just triangles; so this cannot happen if the
embedding is linear. q.e.d.

So far no simplicial orientable 2-manifold has been shown to be non
linearly embeddable in R3.

However there are higher-dimensional Mébius strips analogous to the
one above.

THEOREM 3. Letn=2", r > 1. Then the manifold-with- bound-
ary M™ = RP™\n—ball p.l. embeds in R>~1, but admits a triangulation
K which does not embed linearly in R?"~1.

Proof. Since RP"~! embeds in R?"~2, it follows that the trivial
line bundle over it embeds in R?*~!. Now we want to obtain an em-
bedding for the twisted line bundle M™. For this we locally twist the
trivial bundle, for each of the R*~! worth of directions along RP™"~!, in
the corresponding direction from the R"~! worth of directions available
complementary to the embedded trivial bundle.

For any embedding of M™ in R®™~1, the bounding (n — 1)-sphere must
link the “core” RP™~1:

Because, otherwise, there would be a map of RP™ in R?"~! with
all double points off this core, i.e. in an n-ball. By standard coning
constructions of embedding theory (see Ch. II, pp. ...) we would thus
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be able to embed RP™ in R?®~! which, since n = 2", contradicts Thom’s
theorem of Ch. II, pp. ...

Thus the self-linking number of the boundary is nonzero and even:

This follows because the boundary can be isotoped (using the afore-
mentioned twisted line bundle), to another (n — 1)-sphere very close to
the core, and it is clear that any general position n-disk with boundary
OM , will hit this (n — 1)-sphere twice as many times as it hits the core.

Now we triangulate M™ by a K in such a way that its boundary,
and an isotope of the same (of the above kind) are both triangulated
as boundaries of n-simplices (not in K). Then this K can not embed
linearly in R?"~! because 2 such (n — 1)-spheres could then, if at all,
link with linking number only +1 or —1. q.e.d.

This method can be pushed further to give a double-dimensional ex-
ample thus disproving a conjecture of Griinbaum.

THEOREM 4. For all n > 3 there exist n-complezes K™ which
embed piecewise linearly, but not linearly, in R®™.

Proof. We define K™ as follows:

We start with 02"+2 and take out an open n-ball from the interior
of one of the n-simplices. (The triangulation covering the remaining n-
simplices spanned by these original 2n+3 vertices will remain unchanged
in the construction.)

On the other hand we take a cone over RP"~! and take out an open
n-ball from its non-singular part.

We now form the “connected sum” of these complexes. The resulting
complex L™ has “boundary” RP"~!. We will denote by P" the n-
complex obtained by coning this boundary over a new point.

Next, we take a higher Mobius n-strip and identify a “core” RP™~!
of the same with the boundary of L™. This gives K™. Note that in
it the codimension one simplices on RP"~! have valence 3, and the
“boundary” is now the bounding S"~! of the Mobius strip. We take
care to triangulate it as a simplicial boundary.

K™ embeds piecewise linearly in R?":

To see this we first embed L™. We start with a general position map
in which 2n + 1 of the original vertices enclose all others inside their
convex hull. This precaution ensures that any pair of double points can
be joined by an arc passing through at most one singular point. So we
can remove these pair of double points by using [...].

Now we extend this embedding of L™ to a general position map of
K™. By only retaining a portion of the Mdbius n-strip near its core we
can once again ensure the above at-most-one-singular-point condition.
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So another sequence of applications of [...] gives a p.l. embedding of K"
in R?",

However K™ does not embed linearly in R*™:

To see this we first note that P" does not embed piecewise linearly
in R?". This follows because its deleted join contains a closed invariant
(2n + 1)-pseudomanifold which admits no continuous Z/2-map to 5.

So, under any p.l.embedding of K™, one of the minimal n-sphere from
the original 2n+3 vertices, must link the RP"~1. Otherwise the embed-
ding of the subspace L™ can be extended to a general position map of P"
with the new cone imaged away from the union of all these n-spheres.
But then, using [...] again, we will be able to embed P", contradicting
the last paragraph.

Reciprocally, any general position n-disk, thrown across this mipimal
n-sphere, must hit RP"~!, This follows by the same homological ar-
gument which is used to show that the definition of the linking of two
spheres is in fact a reciprocal definition.

Hence it must hit any isotope (within the M&bius collar) of the bound-
ing S"~!, which is sufficiently near this core, an even nonzero number of
times. I.e. our minimal n- and (n — 1)-spheres have linking number > 2
in absolute value. Which is possible only if they have been embedded
non-linearly. q.e.d.

§6. Combinatorial characteristic cocycles.

We will now identify oriented matroids as “optimal” characteristic
cocycles of a free Zy-simplicial complex. Clearly it suffices to consider
the universal free Zo-complexes U, i.e. octahedral spheres on N pairs of
vertices.

THEOREM 1. A set O of (m+1)-simplices of U is a simple oriented
matroid if and only if it is a cocycle ofm € H™tY(U;Z,) having the
least number of simplices.

Proof. If U™*! is an (m + 1)-dimensional octahedral sphere formed
by any m+2 pairs of antipodal vertices of U, then it must contain exactly
2 antipodal (and thus disjoint) circuits of the matroid O. Otherwise,
some 2 circuits contained in U™*! intersect, and so using axiom [0.m.]
, one would have a circuit of cardinality less than m + 1.

To check that the matroid @ forms a mod 2 cocycle we have to verify
that any cardinality m + 3 subset A of U contains an even number of
circuits of @. We will show that it in fact must contain either none or
else 2 circuits of O.

Suppose circuit ¥ C A with {p} = {4\ £}. Out of all circuits of O
contained in U4, the (m+2)- dimensional octahedral sphere determined
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by vertices of A and their antipodes, let © be a circuit containing p, and
having a maximal intersection with . We assert © C A, i.e. that £\ ©
has cardinality 1. Otherwise note that the antipodes of all but one of the
points of £\ O, say ¢, are in ©. Since ¥ and v(0) share these antipodes,
axiom [0.m.] applied to them gives a circuit ® containing p, contained
in U4, whose intersection with ¥ is bigger than that of ©, since ¢ too
will lie in it.

Now take 2 circuits £,0 C A with {p} = A\ X and {¢} = A\ O.
Applying [o.m.] to these 2 circuits it follows that the two antipodal
circuits of U4, which miss a given vertex of £ N © and its antipode,
contain either {p,»(q)} or {v(p),q}.Thus A contains no circuits other
than ¥ and ©.

This Zy-cocycle O represents a nonzero Zs- cohomology class because
its Zy-value < O, [U™*1] > is 1 on any (m + 1)-dimensional octahedral
Z,-cycle. Since the real projective space U/Z, has the unique nonzero
(m+ 1)- dimensional cohomology class 7 , it follows that O must repre-
sent 0.

Next note that O has 2(m112) simplices, and any cocycle representing
? cannot have a lesser number of simplices, because < 3, [U™*!] > #
0V U™t forces it to have at least one pair of antipodal simplices on
each U™+1,

Thus, conversely, an (m + 1)-dimensional cocycle O representing 0,
and having 2(m112) simplices, has
(i) exactly one pair of antipodal simplices on each U™*! C U, and
(ii) has, in any cardinality m+3 subset A of U, either none, or else more
than one (in fact an even number of) simplices.

Under these conditions it follows from Folkman and Lawrence [F-L],
pp.228-231 — (i) and (ii) correspond to (c) and (e) of their p.228 — that
O obeys the required axiom [0.m.] of oriented matroids. q.e.d.

This result can be further precised by using integer coefficients.

THEOREM 2. A set O of (m+1)-simplices of U is a simple oriented
matroid if and only if it is the support of a cocycle of 0™+ € HP(U;Z)
which is nonzero on the least number of simplices. Furthermore this
cocycle is unique upto an odd integral factor.

Proof. Let us define the Folkman graph of our oriented matroid O to
be the one whose vertices are the circuits of @ with any 2 joined iff they
are contained in a cardinality m + 3 subset A C U. In [F-L], p.230, it is
shown that this graph is connected; further it can be shown (see below)
that it contains no closed loops of odd lengths. Thus upto sign reversal
there is a unique way of assigning signs 4+ and — to the vertices of this
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graph so that adjacent vertices get opposite signs. q.e.d.

Before proceeding further we take a quick look back at the
standard theory.

A REVIEW OF CHARACTERISTIC CLASSES

§1. Additional (e.g. a differentiable) structure on a space B is often
given in terms of a (real) wector bundle &, which assigns to each z € B
an n-dimensional subspace E, of R*, the real vector space of eventually
zero sequences of real numbers.

Under this Gauss map &, from B to the Grassmanian G,(R*) — or
BO(n) - of n-dimensional subspaces of R, the cohomology of the latter
pulls back to the ring of characteristic classes of €.

92. Obviously the cohomology of the base space B is isomorphic,
under the projection E, — =z, to that of the total space E = U, E,.
Moreover there is an n-dimensional orientation or Thom class u (= ¢(1))
along the fibers of (E, E \ B)!° | multiplication with which induces an
additive isomorphism ¢ : H*(B) & H*(E) — H**"(E,E\ B). Here the
coefficients are Z /2 unless the fibers are compatibly oriented when they
are Z.

3. The Stiefel-Whitney classes w(§) € H*(B;Z/2) of £ can now
be defined by Thom’s formula w(§) = ¢~'Squ, where Sq denotes the
Steenrod squaring operations of Chapter II.

Note that, in the oriented case, and for i odd or = n, this recipe also
defines integral obstruction classes 0;(€). For i < n these are of order 2
and just Bockstein images of w;_1(§). However, the highest dimensional
one of these, which is given by ¢~'u?, is more interesting, and is called
the Euler class e(£).

4. The functor £ — w(§), which is determined by its values on
the tautological or universal n-plane bundle v, over G,(R*), is non-
trivial, and is characterized by the fact that it obeys Whitney’s formula
w( & n) = w(l)w(n).

Moreover there is no universal algebraic relation amongst the w;’s as
can be seen e.g. by considering cartesian products of the tautological
line bundle of RP2.

10We identify B with the zero section.
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95.0n the other hand the number of monomials w;* - - - wy** of degree
r is easily seen to equal the number of partitions of r into at most n
parts. But this is also the number of r-cells in the following Ehresmann
subdivision of G,(R*) into a CW complex.

Here, for each Schubert symbol 0 =1 < 01 < --- < 0o, there is the
[(6y—=1)+(02—2)+- -+ (0, —n)]-dimensional open cell ¥ : it consists
of all n-dimensional subspaces U of R® whose intersections with the
standard flag R® C R! C --- have their n dimensional jumps of 1 at
UNR,UNR,.... )

So it follows that the mod 2 cohomology of the Grassmannian G, is a
free polynomial algebra over the classes w;(vy,).

§6. The highest characteristic class can also be obtained simply by
restricting the Thom class to B.

Hence, using tubular neighbourhoods, it follows that the highest, i.e.
kth, class of the normal bundle of a manifold M"™ smoothly embedded in
the cohomologically trivial R*** must be zero. Whence one has Whit-
ney’s embeddability criterion (w=1)x(M™) = 0 for the tangent bundle of
the manifold.

§7. Also, for the tangent bundle of a smooth oriented manifold, the
Euler class equals Euler characteristic times the orienting generator of
H*(M"™;Z).

This formula is proved in [...] by using the fact that the tangent
bundle is canonically isomorphic to the normal bundle of the diagonal
of M x M .So what is required is a computation of a restriction of the
Thom class of the latter.

The same basic idea gives the more (for Z /2 coefficients) general Wu’s
formula wy, = 3=, ;_; Sq*(vj) where v = 14 vy + -+ is the cohomology
class, multiplication by which, gives the squaring operation z — Sq z.

8. The original homotopy theoretic definition of the obstruction
classes 01(§) was as the primary obstruction to finding n — k + 1 linearly
independent sections, i.e a section of the associated bundle of (n—k+1)-
frames.

Its fiber, the Stiefel manifold V,_z41(R*) isn—(n —k+1) —1 ie.
(k—2)-connected. So there is no obstruction to finding a section over the
(k — 1)-skeleton, and the primary obstruction is in the kth cohomology
group of B with local coefficients {mx_1(V,—r+1(Ez)}, which, for k odd
or k = n, are twisted integers, and for k even, integers mod 2.

§7. Equiangular polygons.
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A convex polygon with all angles equal, and sides of lengths £g, ¢4, . . .,
£,_1, gives rise to a g-tuple of evenly spaced concurrent vectors (£o, ¢y, . . . ,I

2;_1), é: = Z;e"v-l, having vector sum E) + [1 + ---+£7;_.1 =0 (see

fig.1).

Allowing these real numbers ¢; to be possibly zero or negative, we will
refer to any member of Poly,(R), the real vector space of all such g-tuples
(2;,,[1, o .,!7;_1), as a (possibly degenerate) real equiangular g-gon.

Likewise, if the lengths £; are restricted to be rational or integral, then
we have the Q-vector space Poly,(Q) or Z-module Poly,(Z) of rational
or integral equiangular ¢-gons.

If a (degenerate) equiangular g-gon has exactly r nonzero lengths, all
equal to 1, then we will refer to it as an inscribed regular r-gon. Note
that r must divide ¢ and that there are £ such inscribed polygons.

SCHOENBERG’S THEOREM. The R-vector space Poly,(R), of
real equiangular q-gons,q > 3, has dimension ¢ — 2. On the other hand,
the Q-vector space Poly,(Q), of rational equiangular q-gons, has dimen-
sion only q — ¢(q). Furthermore, the Z-module Poly,(Z), of integral
equiangular q-gons, is generated by its inscribed regular p-gons, as p
runs over all prime factors of q.

Here ¢ denotes Euler’s phi function ,i.e. ¢(q) is the number of positive
integers less than and relatively prime to q.

Proof. For ¢ > 3, the R-linear map R? — C given by (€o,41,...,£4,-1)
>l + 0 + -+ 2;_1 is surjective. So its kernel, Poly,(R), has R-
dimension q — 2.

Likewise, the Q-linear map Q! — C given by ({,41,...,44-1) —

- - - - 27:‘—1 : 2xy/ =1 B

bo+ 0 +---+ Ly, {; =Lie” a , hasimage Q(e™ ¢ ), a cyclotomic

field extension of @, which is known (cf. e.g. [xxx], p. xxx) to have

Q-dimension ¢(¢). So its kernel, Poly, (Q), has Q-dimension ¢ — ¢(q).
Note that equiangular g-gons (1,’0,51, iy .,é;_l) identify with polynomi-

als 6(X) = Lo+ X+ -+L,_1 X971 of degrees less than q having value
ELNVESY

=1
(e~ a ) =0, and that the maps used above were restrictions of the
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evaluation map C[X] — C, given by £(X) f(eg_")éj‘), to subspaces of
R[X] and Q[X] consisting of polynomials of degrees less than g.

A complete verification of the last assertion can be found in [xxx]
where use is made of the fact that it is obviously equivalent to saying
that for any £(X) € Poly,(Z) C Z[X] one has

UX) =Y e X)L+ X7 4+ X5
plg :

for a suitable choice of the coefficients c;(X) € Z[X]. q.e.d.

Since ¢(p) = p— 1 for p prime, one has the following striking spe-
cial case of the second part of the above theorem, which can also be
proved directly by using the irreducibility (see e.g. [xxx], p. xxx) of the
polynomial 1 + X +---+ X?P~! € Z[X].

COROLLARY 1. Forp prime an equiangular rational p-gon (Z;), [1, .I
.y €p—1) must be regular , i.e. {o=4; =---=Lp_;.

As against this, for primes p > 3, there are many real non-regular, but
equiangular, p-gons. For example, by parallel displacement of a side of
a regular pentagon (see fig.2 ) one gets a one parameter family of real
equiangular pentagons.

COROLLARY 2. For all primes p > 3, the diagonals of a regular
p-gon, p prime, are incommensurable with respect to its side.

We omit the details, but note that for p = 5 this follows by Cor.
1 because the one-parameter family of equiangular pentagons of fig.2
degenerates into a triangle having the diagonal as one of its sides.

BEIJING POLYGON. There is an equiangular 1990-gon with sides
of distinct lengths from {1%,22,...,1990%}.

Proof. Since 2 distinct natural numbers can not yield the same 2
remainders after division by the 2 primes 5 and 199, it follows that the
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equiangular 995-gon corresponding to the polynomial

UX)=(045X +---+5-198X18)(1 4+ X199 4 ... 4 x*199)4
(142X +3X2+4X34+5XY)(1 + X5+ ... + X1989)

has sides of distinct lengths from {1,2,...,995}.

By doubling these vectors, and then reducing the length of each by
1, we get an equiangular 995-gon whose sides have distinct lengths from
{1,3,5,...,1989}. Now, in the direction having length 1990 — (2i — 1),
1 < i < 995, take a vector of length (1991 — i)?, and, in the opposite
direction, take a vector of length i?. Since the difference of these 2
numbers is always 1991 times 1990 — (2¢ — 1), it follows that these 1990
vectors also have vector sam zero, and so give an equiangular 1990-gon
of the required kind. q.e.d.

The same reasoning shows more generally that for any even ¢ having 2
distinct odd prime factors, there exist equiangular g-gons having sides of
distinct lengths from {12,22,... ¢?}. It would be interesting to precise
Schoenberg’s theorem further to obtain an explicit characterisation of
integer ¢g-sequences (or even of sets of integers) which arise from integral
equiangular ¢-gons.

§8. Carathéodory’s Theorem.

The notion of convexity makes sense for a vector space over any to-
tally ordered field, and it is useful sometimes to consider it in such a
generality: e.g. the following result (with F = Q) will lead to a more
conceptual proof of the theorem of Tverberg considered in §2.

BARANY’S THEOREM. Suppose that inside A, a d-dimensional
affine space over a totally ordered field F, there are given d + 1 subsets
Si, each containing the point v inside its convezr hull. Then these d + 1
sets have a section T, i.e. a set having one element from each S;, such
that v € conv(T).

Proof. It is more convenient to pass to a (d + 1)-dimensional vector
space (cf.p.6) V D A and to prove the equivalent linear version : if
v € pos(S;), the positive cone generated by each of d+ 1 subsets S; C V,
then v € pos(T'), for a suitable section T of {S;}.

We first treat the case F = R using the well known theorem (see
below) of Carathéodory, which in fact can also be viewed as a special
case of the result being proved.

We can obviously assume that each S; is finite, and thus that there are
only finitely many sections 7" = {vy,...,vi,...,v441}, vi € S;. Hence it
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suffices to show that whenever the point v’s distance from some pos(T')
is positive, then its distance from at least one other pos(7”) is smaller:

Let [vz], € pos(T'), be the segment realizing this positive distance.
The hyperplane H, through z perpendicular to [vz] is a codimension one
subspace which either (i) supports, or (ii) contains, the cone pos(T) C V.
In either case — for (ii), by Carathéodory’s theorem — there is a v; € T
such that z € pos(T \ {v;}). Further, since v € pos(S;), there must also
be a v; € S; on the same side of H, as v. Replacing v; by v! we get
another section 7" whose pos(T") is nearer to v.

To deal with subfields F of R we will now suppose that the above V
was a completion of an F-vector space Vp, and that the point v and
the sets S; were all in V5. From a section T such that v € posg(T) we
now extract a minimal subset 7' = {v;,, ..., v;, } such that v € posg(T).
By Carathéodory’s theorem the R-vector space W generated by 7' —
which is the completion of the F-vector space Wy generated by 7' —
is t-dimensional with 7' as a basis. Thus the positive real numbers a;
occuring in an expression v = ajv;, + - - - + a;v;, are in fact the nonzero
coordinates of the point v € Vy C V with respect to any F-basis of Vj
(so also R-basis of V') which contains T. Tt follows that these a; are in
F,ie. v € posg(T), and thus v € posg(T).

Likewise, for any totally ordered F, it is enough to consider its real-
closure F, when an argument similar to the case F = R works, provided
one uses a “distance” defined in terms of the valuation (see §10) associ-
ated to the new total order. q.e.d.

Putting S; = S for all ¢, one sees that Barany’s result includes

CARATHEODORY’S THEOREM. If v is contained in the con-
ver hull of S, a subset of affine d-space A, then it must also be contained
in the convex hull of a subset T of S having cardinality < d + 1.

Proof. Once again, we prefer to verify the equivalent linear version
in a (d + 1)-dimensional vector space V D A. Since v € pos(S), the
smallest positive cone containing S, we know that v is a positive linear
combination Y a;v; of the points v; of some finite subset 7" of S. If T
has more than d + 1 elements, they must also satisfy a linear relation
>_biv; = 0 with some coefficient positive. Amongst all indices i for
which b; is positive, choose that, say j, for which a;/b; is minimum.
Then, by subtracting a;/b; times this linear relation, we see that v is
also a positive linear combination of the points of the smaller set 7"\ {v; }.
q.e.d.

This classical result implies that if f is a linear map of a simplicial
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complez K into R?, then the f-image of K coincides with that of its
d-skeleton K4. Likewise, the more general theorem of Barany can be
globalized as follows.

THEOREM 1.Letf = fi-....f; : K =1K... 'K — R%....R? be the
join of any t linear maps f; : 'K — R%. Then all points of the diagonal,
which are contained in the f-image of K, must also be contained in the
f-image of its d-skeleton Kq.

Proof. ... ... q.e.d. (Repairs here)

It is time now to look again at a result of §2:

Another proof of Tverberg’s Theorem. It is more appropriate
to consider the given points as being in affine , rather than linear m-
space. Solet Q = {vo,v1,...,Ym41)q-1)} CRA™ C R™+1 where RA™
is givenby 1+ -+ &4y = 1.

Also, it is easy to see that there would be no loss of generality in
supposing that these points have rational coordinates. So we suppose
that they in fact lie in rational affine m-space QA™ C Q™+1.

Case ¢ prime. We treat this case separately because now the argu-
ment is easier to visualize geometrically.

For each of the points v; € Q"+ C R™*! C C™*! we construct a set

{"vi : 0 < r < ¢} of ¢q points of C™*!, viz. those obtained by rotating
2::‘—1

every component of v; by the same multiple of 27". SoTyy=€"" ¢ w;.
Note that these (m + 1)(¢ — 1) + 1 orbits of this rotation group lie in

2wy/—1
fact in (Q(e™ ¢ ))™*!, a Q-vector space having Q-dimension exactly

d = (m+1)(¢ — 1) because ¢ is a prime.
So Barany’s theorem applies, and we obtain non-negative rationals ¢;

having sum 3 ("= ¢ = 1 and integers n; from [0, ¢), such that

(m+1)(g=1) =
(1) Z t,-e""2 T u=0.

i=0

This equation of (m+1)-tuples is equivalent to m+ 1 scalar equations.
Besides, since the sum of the m + 1 coordinates of each v; is 1, one also
has an additional equation

(m+)e-1)
(1a) > e = g,

i=0



By Cor.1 of §7 the m+ 2 equiangular ¢g-gons, represented by the m+2
equations just mentioned, must all be regular polygons. So the ¢ vectors

(2) > tiwi,0<r<y,
0i<(m+1)(a-1)

are equal to each other, and likewise the ¢ (necessarily positive) scalars

(2a) E 1 . 0L r<q
0<i<(m+1)(g—1)
n;=r

are also equal to each other. -

The point of @A™, obtained by scalarly multiplying the reciprocal of
this scalar with this vector, is contained in the convex hull of each of the
q pairwise disjoint subsets of Q given by

(3) Q={w:m=r},0<r<q.

So conv(Qp) N - - - N conv(Qy—1) # 0.

General case. We first choose, e.g.by using Eisenstein’s criterion,
some irreducible polynomial ag + a1 X + - -+ + a,—1 X! € Z[X], with
all a;’s positive integers.

Now, for each v; € 2, we construct the ¢ vectors "v; = w”"v;, where w
is a root of the above polynomial. The irreducibility of this polynomial
shows that (Q(w))™*!, in which all these vectors lie, has @-dimension
d=(m+1)(¢—-1).

Further, since the positive linear combinations 23;3 a, "v; vanish, the
origin 0 is contained in the convex hull of each of these g-sets, and so

213‘—
Barany’s Theorem again gives (1) and (la) with e™ ¢ . replaced by w.
This time each component of the ¢ vectors given by (2), and also the
10

q scalars (2a), will be in the same proportion to each other as il
1

G g

So sqcalarly multiplying the reciprocal of any of these ¢ scalars with the
corresponding vector we will always get the same point of QA™, which
thus lies in the convex hull of each of the ¢ pairwise disjoint subsets €2,
of Q given by (3). q.e.d.

However we have been unable so far to adapt this new proof to estab-
lish the following generalization of Tverberg’s theorem which has been
conjectured by Tverberg-Vreéica [ ].

25



CONJECTURE. Let Q0,Q1,...,2%,0< k <m-—1 be finite subsets
of R™ with card(Q;) = (¢;—1)(m—k+1)+1 fori =0,1,..., k. Then each
Q; can be partitioned into q; pairwise disjoint subsets Q;;, j=1,...,7;
in such a way that some k-dimensional affine subspace of R™ meets the
convez hull of each ;.

comment

Attempted Proof. The case k = 0 is Tverberg’s theorem.

If no such k-flat exists, then the same wil be the:case for any neigh-
bouring sets. So we can assume that our points have rational coordi-
nates. As before it will be convenient to have them on the rational affine
m-space QA™ C Qmt1 c Rmt1,

Assume inductively that the sets Qp, ..., Qk—1 have already been par-
titioned into ©;;’s whose ¢onvex hulls have nonempty intersections with

some (k — 1)-flat A By perturbing it a bit we can assume that this
flat is in general position with respect to the finite set €, and that it is
rational , and as such, the completion of a Q-flat A¥~! C QA™ having
the same properties.

Choose in A¥~! any set W of k affinely independent points wy, . . ., wg,
and consider each of them as having multiplicity qi — 1.(The case g5 = 1
being trivial we are assuming ¢z > 1.) Adding these multipoints to Qj
we obtain a multiset Q of cardinality exactly (¢x — 1)(m + 1) + 1.

Choose now an irreducible polynomial ag + a1 X + - - -+ a4, -1 X* -
Z[X] of degree g — 1 with all coefficients nonzero. Let F = Q(w) be the
field obtained by attaching a root w of this polynomial to . Note that
F has Q-dimension ¢; — 1, and so F™*! has Q-dimension (g —1)(m+1).

Corresponding to each v € £, we now consider the set S, of the g
points {a,v,a1wv, ..., aq —1w™ v} of F™*!. The sum of these points
being zero, one has 0 € conv(S,) for all v € Q.

So, using the rational Barany theorem, we obtain a section v — T'(v) €
Sy, and some non-negative rationals ¢, with sum 1, such that

>t T(v) = 0.

vEN

Define Q/ = {v: T(v) = ajw’v}. By the irreducibility of our polyno-
mial the g vectors ) cqit,T(v) are all equal, and the same is true for
the g numbers ) cq;t,. The last because the sum of the coordinates
of each T'(v) is 1.

Thus there is a point @ common to the g convex hulls conv(Q), viz.
that obtained by scalarly multiplying the reciprocal of the aforemen-
tioned scalar with the aforementioned vector.
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By passing if need be to subsets of / we can assume that these
convex sets are geometric simplices. If a were in A¥~![The mistake
is here: argument given below is fallacious and this can occur] , then,
because of general position of the latter with respect to Qj, each of the
QY have to contain some point of W. And so in fact @ would be in the
convex hulls of the sets W N Q/. But if its barycentric coordinate with
respect to say w, is nonzero, then it can not lie in the convex hull of
that WNQJ which does not contain w,: there is indeed such a j because
any of the k new points w;, being of multiplicity gz — 1, is not contained
in all the Q/’s.

So it follows that the k-flat A* determined by A*~! and a meets the
convex hulls of each of the ¢; subsets Q; = QN Qy, which are indeed
pairwise disjoint as required. q.e.d.

endcomment (class numbers, Bernouilli etc 7)

Also we do not know of a refinement, of the above method of finding
“Tverberg partitions”, powerful enough to solve the problem of Sierksma
mentioned in §2.

§11. Posets of subspaces.

Generalizing the notion of “cell-subdivision” one can speak, for any
(finite) poset P, of a P-filtered space X, i.e. one equipped with a mono-
tone function v — X, from P to the set of closed subspaces of X. The
order complez K(P) of the poset P, i.e. that whose simplices are totally
ordered subsets of P, can still sometimes give a pretty faithful picture
of the topology of X. For example this is so for any “linear filtration”
of a Euclidean space, thus yielding the following result for the (reduced)
homology of the complement of some affine subspaces.

GORESKY-MACPHERSON FORMULA. Let P be the poset
under C whose elements are all the intersections of a given finite family
A of affine subspaces of R™. Then

(1) HiR™ \ UA) = @™ “mv ==K (P>"), K(P>" \ {R™}))

where v runs over all elements of P other than the mazimal element R™.

Proof. Stepl. A reformulation of the formula.

For z € R™ and y € |K(P)|, we denote by v, and ¢, the minimal
members of P and K(P), which contain z and y respectively. Now
define a P-filtered space C(P) by (C(P)), = {(2,y) : vz C min(oy) C
maz(o,) C v}. Also, equip R™ and K(P) with the P-filtrations (R™), =
v and (K(P)), = {0 : maz(c) C v}.
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The projections z + (z,y) >+ y of C(P) onto R™ and |K(P)| preserve  *
these P-filtrations. Furthermore, their fibers, {} x K(P[v,,R™]) and
min(oy) x {y} are contractible, and have contractible intersections with
all the subspaces (C(P)),.

From this, by working up the skeleta, it follows easily that R™ and
K(P) have the same P-homotopy type (i.e. that they are homotopy
equivalent via homotopies preserving their P-filtrations) and likewise
that, for all non-maximal v € P, R™ and K(P>") have the same P>"-
homotopy type. N -,

So (1) is equivalent to saying that the homology of the complement
of the family A = {Ao, A1, ..., Ar} is given by

Hi(RM \ U A;) 2 @H™ %™ =~1R™, U {4; : A; D v})
20 v i20

with v running over intersections of all nonempty subsets of A.

Let S; denote the sphere in S™ = R™ U oo occuring as the one-point
compactification of A;. Applying Alexander duality in S™ and noting
that R™ is contractible we obtain the equivalent formula

q ) o~ g—1—dimv o
@ HY(\Y,5) = QHITI 4™ (Y {4;: 453 v))

where ¢ = m — ¢ — 1 and, as before, v runs over intersections of all
nonempty subsets of A.

Step II. Requirements for an induction on k.

For k = 0 the only term on the right side of (2) is the summand
corresponding to v = Ay, i.e. the reduced cohomology of the empty
set, and so is nonzero (and = Z) only when ¢ — 1 — dimA4, = —1, i.e.
q = dimSy, and thus coincides with the left side, which is the cohomology
of the sphere Sp.

Now suppose that Ag is such that this last occurs as a summand in
the following direct sum decomposition of the left side of (2),

(3) H‘(I_LZJOS.-) > H9(So) ® H"(igIS;) @ H"“(iLZJlSD ns;),

and also is such that the right side of the formula admits the following
direct sum decompositions for the summands contributed by all v such

that v C Ao,
o . "
o a o s o s P . e ”
H (:‘LZJO{A' :A; O v}) = H (igl{A' 1 A; D v} )OH (igl{AonA' 2 Ay D v}?l
where p = q — 1 — dimw. 27 5
WA &
W \ >
28 7 » B
N - G o} &+
X ,\G}’ AT v LS
\/(\ e ) {’\‘ \\)
o \'J L £ \'—;“f\i . i
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In this case the inductive hypothesis, applied to the smaller affine
arrangements, {A;,..., Ax} and {AgN Ay,...,Ag N Ay}, immediately
implies (2) because of (3) and (4).

Step III. Satisfying the requirement.

If the affine arrangement is in sufficiently general position , i.e. if
any non-empty intersection becomes bigger if one of the A;’s occuring
in it is excluded, then the obvious Mayer-Vietoris sequences suggested
by (3) and (4) split into 3-term short exact sequences with all groups
free abelian , from which it follows that the requirement is satisfied by
choosing Ag to be any of the subspaces.

For the general case the proof of this last step will be given later.Thus
for the moment we have, only for the g.p. case, q.e.d. (Zeigler-Ziv best
now) .

comment

Notes. The Hauptvermutung i.e. that homeomorphic simplicial com-
plexes are piecewise linearly homeomorphic, was disproved by Milnor
[M], and, for simplicial manifolds, by R.D.Edwards [E]. The latter gave
a simplicial complex homeomorphic to S® with no subdivision in com-
mon with that of an ordinary triangulation, say o¢.

Hudson’s Problem is stated on p.16 of [H]. See also pp. - and Zee-
man[Z], pp. - . A very combinatorial treatment of basic p.l. topology
using stellar subdivisions was given by Alexander [A].

Radon’s Theorem appeared in [R] and Tverberg’s Theorem in [T], see
also [T2]. An extension to continuous maps was given in [BB] and [BLS]
(for p prime), see also [S1]. The globalization via linear embeddings is
apparently new. For Sierksma’s Problem and some others see Reay [Re].
See also §§ ... of this book.

A basic reference for oriented matroids is [BW]. The relationships with
convex polytopes and ... see Connelly and Henderson[CH], ...

Simple oriented matroids as characteristic cocycles is new. See how-
ever Gelfand and MacPherson [GM].

For extending triangulations see besides Armstrong [A] also Akin
[Ao], whoalsoisresponsible forintrinsicdimensionetc. Zeeman'sU nknottingT heoremappearedin[Z2)

The Rigidity Theorem, though possibly known, appears here for the
first time. Examples similar to that of Theorem 2, §5, were given first
by van Kampen [vK5], and were inspired by those of Cairns [C]. On the
same line is the example of Grunbaum and Sreedharan [GS]. Dancis’
Theorem appeared in [D]. The Fary [F]-Wagner[W] theorem has been
rediscovered repeatedly see [S], [Y], ... Brehm’s example appeared in[B].
The (in our opinion very optimistic) conjecture that all triangulations
of the 2-torus embed linearly in R3 is attributed to Dick [D] where more
can be found re such questions.
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