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§1. Introduction

(1.1) Definitions. _ r - : _
In order to state our results we will first fix the definitions of the
notions mentioned in the title. o '

SIMPLECIAL COMPLEX XK: by this we mean a finite set whose
members, called its simplices, are themselves finite sets, a;id which ig
closed under subsets. The members of the simplices of & ave called K's
wertices. ‘ ' : i . S

Its realization K: If K has N vertices, then by thinking of these as
the canonical basis vectors of R and of each simplex as the convex hull
of its vertices, one obtains a subspace of RY, which too will be denoted

K.

LINEAR EMBEDDABIXITY CF K IN B™: a one-one map e [ —
R™ (from this realization K) will be called a linear embedding if 1t is the,
restriction of a linear map H’V ~y F . o E

Note that for m > 2(dimK )+ 1, any general position linesr map
RN s B will restrict to such a linear embedding of X in B™. Thus
the cases of interest are demK < m < Wdim ).

PIECEWISE-LINEAR EMBEDDABILITY OF K IN R™: this means

that, for some r > 0, the rth derived K of K embeds linearly in R™.

Here the rth derived is defined inductively by K = K and K )
(K=Y where L' denotes the simplicial complex whose simplices are
sets of nonempty simplices of I which are totally ordered under ¢, _

By mapping each vertex of K’ (a simplex of i) to its barycentre, one
sets the linear barycentric embedding of K onto &, and so, hy iteration,
K IR . _ _ _ ‘

Composing with tim'in‘sf@?r{s&: of this barycentrie subdivision map, each
linear embedding 1707 2 R™ determines a one-one precewise-linear em-
bedding e K — R™, : ' - :



The notion of piecewise-linear embeddability has been much studied -
see e.g. Hudson {7] and Rourke-Sanderson [8] which will be our references
for all other piecewise-linear terminology — because it avoids the possible
wikdness of topological embeddings, but is at the same time flexibile
enough to make it much easier to handle than linear (or ‘simplex-wise-
linear’ or ‘geometric’} embeddability.

(1.2) Statements of results. .

As an easy consequence of a theorem of Steinitz [14], 1922, it follows
that a one-dimensional complex, i.e. a graph K, will embed piecewise-
linearly (or even topologically) in &%, orly if it occurs as a subcomplex
of the boundary of a simplicial 3-polytope: so & fortiori such a K must
also embed linearly in R*. See also Wagner [17], Fary [3], Stein [13] and
Stojakovié [15].

In 1969, Grimnbaum {6, p.502] a,ongectumd thai, hkewme, for alln > 2,
the piecewise-linear emnbeddability of & K" in W” will be sufficient to
guamn?ee its linear embeddability in R2*. We show that this conjecture

s false in the following very strong sense.

Theorem A, For ecachn > 2, r = @‘ there is o simplicial n-complex 1
which embeds piecewise- Zmem‘iy " H‘m but whose vih derived LU d@m
not embed linearly in R*"™,

By virtue of a theorem of van Rampen [16, p.152], 1932, it is known .
that if K™ is a pseudomanifold, i.e. if each of its (n — 1)-simplices is
incident to at most two n-simplices, then it embeds piecewise-linearly in
R**, Though the K™’s of Theorem A are not pseudomanifolds, we do
have, for ambient dimension one less, the following result which exhibits
a similar phenomenon on the part of some ‘higher-dimensional Mébius
strips’,

Theorem B. For each n = 2% | > 1, there is a K™ homeomaorphic
to M", the piecewise-linear wmmf&lkﬁ»wz‘th«ﬁmndwy obtained by delet-
ing an n-ball BT from veal projective space BFP™, such that K™ embeds
pieceunse-binearly, but not linearly, in R#"1 '

The case n = 2 of Theorem B, viz. that of the ordinary Mébius strip,
was dealt with by the ﬁrat au”rhor n [2].

Method of pmof. The constructions given below to establish Theorems
B and A are based on the notion of linking, and follow the basic strategy
already used in [2]:



First, we arrange that, under any arbitrary piecewise-linear embed-
ding, some two spherical :,ubwmp]exe‘a will link each other with linking
number > 2,

Second, we take care to triangulate these two spheres by so few vertices
that, under a linear embedding, this would be impossible. :

We now recall what we need about linking, for more see e.g. Rourke-
Sanderson [8], pp. 68-73, and Wu [19], pp. 175-181.

LINKING NUMBER: of any oriented p.l. sphere §%71 . R™, with
a disjoint oriented closed p.lLmanifold M™% < R™, ig the intersec-
tion number, ie. counts the algebraical number of intersections, .of
any bounding compatibly oriented general position-pd. disk D*, dD% =
Se=3 with Af™=¢, This is done by assigning an otientation to R™, and
counting each of th@ se intersections as -1 or —1 depending on whvfher
the local orientation of D followed by that of M agrees with that of R™
or not,

If this number is zero, L.e. if $471 does nef link M™%, then $%7! s
M™% extends to a map f of D* into B™ sach that f(D*)NAI™ 4 = §)

Upto sign, the linking number of %71 ¢ R™ with a sphere §™7¢ ¢
R™, is same as that of $™7* with $471, and coincides with the degree of
an associated map — ¢f. proof of {8.1.1) — of the join §™ = Fo—1. gm-n
into itsell.

§2. Higher M_ﬁbiué strips

(2.1) Proof of Theorem B,

As is well known the manifold-with-spherical boundary, M™ = RP™ —
(intB™), GM" = OB™ = S§" ' can be considered as a tw:ts’red line
bundle over a core submanifold RE? M "

(2.1.1) M™ embeds piecewise-linearly i RE™T,

To see this we can e.g. first embed (some triangulation of} the core
RP™1 piecewise-linearly in R®"™%, and so a trivial line bundle over it
into R*"1, The agsertion now follows hecause we can locally twist the
trivial bundle, for each of the R*~" worth of directions along RP™!, in
the corresponding direction from the R* ! worth of directions available
complementary to the embedded trivial bundle.

(2.1.2) The bounding sphere of M™ links zt@ core under any pzf’("("wélﬁf’w
linear embedding e + M™ — R¥1,



We give below, for all k£ > 2, a geometric argument; another more
algebraical proof is sketched later in (2.2).

Assume, if possible, that ¢(S™!) does not link e(RP"™1). So we can
extend the embedding e to a general position map f (of some triangu-
lation) of RP™ into R**~1, such that fF(RP"™1)n f(B") =0

We will now use some well-known-constructions — of. Zeeman [20] and
9] - to modify f to a piecewise-linear embedding g of RP™ in R*"~:
this suffices to furnish the desired contradiction because a theorem of
Thom - see e.g. Steenmd [1‘3‘] p. 34 - t«: I1s us that if n = 2%, then RP"
does not embed in R#?1 : :

We begin by noting that the singularities sing(f) of f constitute an,
at most one-dimensional, subset of the open n-ball RP? — RP™!. So
we can find a 2-dimensional conical subset A of this open n-ball such
that A D sing(f).

In case k > 8 one has 3 4 n < 2n — 1, so in this case we can enlarge
the 2-dimensional subset f{(A) of F(RP") ¢ R {0 a 3-dimensional
cone C ¢ R**1 which meets f(RP") only in f(A).

We now choose regular neighbourhoods N(A4) of 4 in RP", and N{C')
of € in R**~!, such that the exterior, boundary, and the interior of
N{A) are mapped by [ into the exterior, boundary, and the interior,
respectively, of N(C). Note that N(A)} is an n-ball, while N(C') is a
(2n ~ 1)-ball, and that f is one-one outside int(N{A)). So, by con-
ing f(H{N(A))} over an interior point of the ball N{C), we obtain an
embedding ¢ : RP™ — R¥"~1, :

In case k = 2 we can, in the first instance, only ensure that the cone
' meets f(RP®) in ﬁmtely many points besides f(A). But then, by
using a prelininary modification of f near some one-dimensional tree
containing this zero-dimensional singular set, we can replace f by an f'
such that ¢ meets f/(RP®) only in f'(4) = f{A4). After that we proceed
as above to modify ' to an embedding ¢.

(2.1.3) The image of the E)(mn(img sphere of M"™ has a nonzere and

even self-linking number under any piecewise-linear embedding e : M® -
[2tached

Here, by gelf-linking number of 8M™ = & ””ﬂ we mean its Lnking
5 2% X g
number with a disjoint isotopic L*~1 € j‘u{ it

To see the above note that any general position n-disk D™ ¢ R*™*~1,
with 8™ = ¢(§"!), hits the core e(RP"™1) transversely in finitely
many points. By (2.1.2) we know that the algebraical munber ¢ of such
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dntersections is nonzero, _

Now push 5771 uniformly, dlong, the fibers of fhe Emo bundle 51.1' " oaver
RP™ 1 to obtain an isotopic sphere £ arbitrarily close to the core
RP"‘”. Then the n-disk D™ ¢ R?"™1 will intersect this double cover
e(L"1) of ¢[RP™ 1) transversely in 2¢ points.

(2.1.4) CONSTRUCTION OF K™: Triangunlate the boundary §7 1
and the isotopic sphere T%7! of (2.1.3} as boundaries 3™ and do™ of
n-stplices s™ and o™ We choose any triangulation K" of M" which
extends - f. Armstrong [1] - this trmngu‘mtwn Bs™Bo™ of 71U,
For example one can choose the explicit K'™'s of (2.2.5).

(2.1.5) K" dees not embed hinearly in R*F,

Oihf‘YW’I se, there will be some g;encral position Linear map ¢ : BY —
R#1 whose restriction to the realization K™ is one-one.

The e-images of the closed simplices 3 and o™ will either not intersect,
or intersect in a line segment. In the latter case, if both ends of the
line segment lie on the boundary of the same closed simplex, say on
eld(s™)), then there is no linking, because e{s™) N e(do"} = §. And,
if the two ends of the line seginent lie on different boundaries, then we
have card(e(s™) N e{0o®)) = 1. e B :

So the linking number of 77 and %7, under a linear embedding
¢, would be 0 or 1, which contradicts (2.1.3). q.e.d.

(2.2) Deleted joins. L .
Embeddability questions - see e.g. [10] and its references — are inti-
mately related to the followlng notion.

DELETED JOIN K. subénmple‘*{ of K- K, the join of two disjoint
copies of [, consisting of all simplices o - & such that o N8 = 0, and
equipped with the fxee Zy-action o 8+ 6. 7.

Remarks {2,2.1) - (2.2.3) below sketch an alternative proof of (2.1.2)
via deleted joins.

(2.2.1) If (8™ 1) were nat linking ¢(RP™ ) under the embedding

c Mo BEL ) then dhere would be a continuous To-map from the

deleted join T, of some triangulation of RP", into the antipodal (2n—1)-
sphere §40l,

This is not hard to thé{','i\ie of. proof of (3,1.3‘).. In fact there would also
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be such a Zs-map from the deleted product T, i.e. the ‘mid-section’ of
p i mmszshmg of all cells o x @ such that o N @ = 0, mto ‘fhe antipodal
sphere S%7% of one dxmonsmn less.

(2.2.2) WU LEMMA, Tia,r* Lo-homotopy types of the deleted join and
the deleted product of a simplicial compler are topo?ogzmi mvarionts of
the space underlying ﬁw campfm:,

This is harder — of. Wi [19, Ch.2] for produets - but it will be shown in
[11] that, with some care, this important fact generalizes even to higher
deleted joins, i.e. analogues of K, for groups G other than 7.

(2.2.3) So, using any convenient triangulation of RP™, n = 2%, it
suffices to show by a calculation of the characterisiic classes of the free
£3- hmuompy type (RP™),, that thvr@ is no continuous Zs-map frc)m it
T G

This calculation, which will be included in [11], is reminiscent of, but
maore general than, the proof of the C '

BORSUK-ULAM T‘HFQRRM Tﬁem 8 1o cam‘mumm ?‘rg map f*mm
5P to 5% for p > g '

However for k& = 1, the Borsuk-Ulam Theorem itself provides the
desired contradiction because of the following remarkable fact,

(2.2.4) The deleted josn of the G-vertex real projective plane RP? is
Zy-homeomorphic to the antipodal 4-sphere.

We recall that HP? is a Za-quotient or, if one prefers, one of the two
parts of a vin-yang decomposition — of, Grothendieck [3] — of the
regular 12-vertew J-sphere, i.e. the ubiquitous scesahedron.

The above result is not hard to check. In fact the second author
hopes to include in [11] a complete classification of all K™'s for which
K is a closed pseudomanifold. For example, i this psendomanifold is
n-dimensional, then it has to be the ectahedral n-sphere {o7), and -~
see [10] — if it is (Zn + 1)-dimensional, then it has to be a join of some
Flores” spheres {02 ). Here and below cy; denotes the j-skeleton of an
t-simplex, ' o

(2.2.5) The omission of the n-simplez 5%, from the simplicial join
across ¢, of any trianguletion of BP™ and the oclahedral n-sphere
(on)s, results in o K™ which satisfies the requirements of (2.1.4}).



This is straightforward. Here, by simplicial join RP"4#(al), across
o™ we mean the operation of first omitting an open n-simplex from
the fiest factor and ¢” from the second factor, and then glueing the
remaining complexes together by identifying the boundaries of these n-
simplices.

Note in particalar that (RPF#(02).) — o7 gives ahe 9.vertex Mo?)zw
strip [2] which fails to emb@d lmeari;y in R3 : :

(2.2.6) The chamcsemsmc class computatlons {)f (2.2, 3 m«rgeﬂt rimt if
a(n) denotes the number of 1’s in the binary expansion of n. then the
simplicial Mébius n-strips K™, n > 2, of (2.1} embed piecewise-linearly,
but not linearly, in the space Rz""“”(”). : ' :

§3. Griimbaum’s conjecture

(3.1) Proof of Theorem A,
We will first consider the case no= 2,

Let Mg denote the B-veriex Mdbius dirip, ile. RFP? mimis one of
its 2-simplices which will be called s*. We note that, with appropriate
orimtaticm, Mag's boundary 9s* is homol%,«ms to twice its core (’)rf
where o* ¢ RP? denotes the mmpi@mmﬁazy 2-sumplex vemt WP Y s?

Besides My, we will albo use a disjoint 6-simplex 7%, one of whose -
fam«-: will also be caﬂed 5° . with the mmpiam@mary 3-simplex v ert{r9)—
5% denoted by %,

(3.1.1) THE 2-COMPLEXES L. Each of these will contain a 1m'mgﬁ}e
called Js*. For ¢ = ¢ we set

. o
L{) = 7"5’ e

and having defined L,, t > 0, obtain ]}H from L, by identifying its 9s”
with the core dv? of a disjoint copy of M3s. So, after this 1deut1f1catmn
the boundary Js* of Mds becomes the ds? of Ly

7



(3.1.2) The 2-complexes Ly embed piecewise-linearly i BY.

This is clear for { = €.

So, assume inductively that there is a piecewise-linear embedding ¢
L, — R, for some t > 0. Since Mg embeds piecewise-linearly even
in R%, we can extend e to a general position piecewise-linear map f
Liyyy — RY, with its finitely mauy:double pomts (,y) all such that
z € Ly and 'a; € Mg, For each such y choose a disjoint arc of Mo from y
to its boundary 9s*. R@II_](}VHI@:, s from Leqq small mgular neighbourhoods
of all these arcs we get a subspace X piecewise-linearly homeomorphic
to Leyy on which the map f is one-one.

(3.1.3) The disjoint spheres O0° and 8s* of Ly maust link under any
piccewise-linear embedding € : Lo — R,

By a lemma of Flores [4] the deleted join (7§}, is an antipodal 5-
sphere. So Borsuk-Ulam tells us that there can not be a continuionus
Z,-map from it to §* | ‘

But, 5* has the same Z3- hnnm‘topv ’{vpeﬁ* as the join Rt-RE minus its
diagonal, i.e. all points of the type 2.2: “+ w:ru And there is a continuons
Zo-map of {Lp). into this space, viz. the map e. definied by

Az A4 (1 = A = Ae(x) + (1 = Mye(y).

The clesure of (7§, — (Ly)a consists of the 5-ball 9p” . 53 and its
conjugate. The restriction of e, to the boundary of this 5- ball has degree
sero i the linking number of the spheres ¢(9”) and e(8s?) is zero. So,
if this were the case, e, wounld extend to yield a continuous Zz-map
(r$)e ~» S*, which is not possible.

(3.1.4) The disjeint spheres Op® and 8s% of Ly, t = 0, must have
linking number at least 2¢ (in absolute value) under any piecewise-linear
embedding ¢ : L, — R

We argue by induction starting from the above case ¢ = 0. The
fmcmgfis? 3s? of complex Ly, t > 1, is homologous to twice the triangle
da? ¢ Mg which was }d.(:*lltlfi(,d {3.1.1) to the triangle 5% of L.y to
formn L,. So each transverse intersection under e of the latter, with a
general position 3-disk spanning e &), gives rise to two intersections
of the former having the same intersection number.



(3.1.5) For any r 2 0 we can choose t so big that the rth derived of
L = L, docs not embed lincarly in R,

The number of simplices, contained in the simplicial 2 and 1-spheres
occuring as the rth deriveds of 8w and ds?, is bounded in terms of r.
From this it follows easily that, under any linear embedding of the unien
of these spheres in R%, the absolute value of the linking number is. al*
bounded by a aonatané depending only on r. Choose any ¢ such that 2
is bigger than this number and use (3.1.4).

This concludes thr‘ proof of ’111901‘6;51 Aforn = 2.

(3.1.6) For n > 3 the abave argument modiﬁefas as follows

(a) Instead of Mds we use its {n - 3)-fold suspension S*3 Moy ).
Note that in it-the ('n — 1)-sphere $773(8s%) is homologous to twice the
(n - 1}sphere S"3*(Ja?}. : : :

(b} The n-complexes L, , ¢ 2 0, are defined almost as before except
for one small change. Instead of the n-skeleton of a "2, minus one
r-face u”, we start with

«Z:/n . W(,?Mn%z T«!“N‘)U‘Aw,

where A" is a simplicial ennulus §* % x I having boundary 84" =
Hu™ U S*3(8s?). So we have a §"38s?) in L, ¢ which is homologous
to Ou™. For any t > 1, we now obtain L, ; from L, .1 by identify-

ing thw S73(85%) of L1, W}i’h the S””“g({)ag) of a dm olnt {’opy of

[;n ( AL 66}
The rest of the argument is unchanged: the piecewise- linear embed-
dability of these n-complexes in B*" follows just as in (3.1.2), and the

same argument as in {3.1.3) shows that the disjoint spheres ™™ and
du™ of L, o link under any c*nﬂ:mddmg, in R, from which it follows al-

most as before that the linking number of 6(,.9”“ and 3 i "‘( fstyis > 2t
for any embedding of L, ¢ in R*" ... g.e.d.

(3.2) Concluding rermnarks.

We will now consider some variations of the above construction which
give in particular a generalization (3.2.3) of Theorem A and a corollary
{3.2.5) pertaining to linear immersions.

(3.2.1) Bzamples L, , analogous to those of (9.1} can be made .wa,rim
from any Kuratows kl n-complex 9] '

e L 2R . Ing ALY ) . o
T o= Tl " Taocd " <++ " Trpogs P10 Fnp=nt+ 1,

9



instead of just r2mF2

For instance had - we started off by setting Ly = 7§ 78 —st+s", then the
a,ualxwuo of {3.1.3) is that the 2- Sphf’]’"(““ 34?841, formed by the vertices
of Ly ot in the omitted 2-simplex s* - 5%, always links the boundary of

¢l " under any embedding of Ly into R

(3.2.2) Analogous consiruciions also give some n-complezes Ly ¢
which embed piecewise- Zmecwl; but not lnearly wm R™, fm' seme other
n’s and m’s such that n < m < 2n.

We now start Wﬁ;h different T™'s. For example, we can start with the
J()lll of m~n disjoint copies of 7§ (i e. three pomt%) and Zn—m disjoint
copies of 70 (i.e. one point). Then the deleted join T 1s an antipodal
(m + 1)-sphere; so there is no Zy-map from it to $™. Omitting an n- face
from this 7% and proceeding as in {3.1.6) gives m.mh complexes.

Their piecewise-linear embeddability in RB™ follows from arguments
a,nalomm to those of (3.1.2) which remain valid at least under conditions
like m > 3n 4+ 1 - cf. [18] - and thus we obtain examples of the above
sort,

23 For eachn 2 2, r 2 1, n < m % < 2n, there 15 a .sz'mpff.iréaq
n- mmplem which embeds piecewise- IETM'(LI’ZJ in R™, but whose rth derived
does not embed linearly in R™,

Purthermore, if n 2> 3 we can take n < m < 2n in the ﬂb@”\"@\

These genemhmtmm of Theorem A follww by using {3.2.2): e.g. one
takes disjoint union of an Lz and & o, etc.

We note that a finesse is mqmmd when dr*almg with the case n = 2,
m = 3 of (3.2.3) since, by attaching Md¢’s & la (3.1.1), one now loses
piecewise-linear embeddability. To overcome this, attach instead, at
each step, an RP? minus a 2-simplex 5 having exactly one vertex on
the attaching triangle do?.

3.2.4) By iteraling the comsiruction (§.1.1) indefinitely one obiains
en infinite 2-complex Lo, which embeds topologically, but not precewnse-
linearly, in R4,

This is C},G’«‘M‘. Here, by topologically embedduble, we mean simply that
there exists a continuous one-one map from L, into R

Cm‘is’nru%mu of such finite complexes is much harder, but might be
implicit in the well-known work of R.D . Edwasds and M.H Freedman.

14



(3.2.8) For each n > 3, r > 0, max{n,4} < m < 2n, there is a
simplicial n-complex which embeds precewise-binearly in R™, but whose
rth derived does not even vmmerse linearly m R™. :

This follows either by considering cones over suitable examples from
(3.2.3) or formulating an analogue of (3.2.3) for embeddings in §™.

(3.2.6) Embeddability of K in R™. Thinking again, as in §1, of the -
N vertices of J, as the canonical basis vectors of RV one gets a higger -
(non-compact) space K, if with each simplex of K is associated the affine
hull of its vertices in B” instead of the convex hull of its vertices.

Note that I collapses to K, from which it follows that the topological
embeddability of I in B implies that of K. But it is very easy to see
~ e.g. consider a segment and a disjoint point in R -~ that the linear
embeddability of &7 in B™ is a strictly stronger notion than that of K.

There will be included in Chapter IV (on “Linear Embeddability™)
of {11] some interesting results involving this stronger nétion, which
incidentally makes sense not only for an ordered field like R, but for any
fleld whatsoever, '
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