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          Abstract.  The locally nilpotent part of a linear transformation f of a vector space V 
is its restriction to the subspace Kf : = Un

f -n(0), and it is called a direct summand of  f 

if there is a subspace C of V such that f(C) ⊆ C,  Kf ∩ C = 0 and V = Kf + C.  We show 
that such a C exists only if a whole slew of non-trivial necessary conditions hold, one for 
each limit ordinal, and that these conditions are independent of each other.  Moreover, 
our examples are simplest possible—there is a basis in which the matrix of f has all 
entries zero excepting at most one in each row—and amongst these transformations we 
characterize those whose locally nilpotent part is a direct summand. 
 
          § 0.  This paper is a compendium of examples from infinite dimensional linear 
algebra, starting with Example 1 (2.3)—circulated in  June, 2005—which settled the 
following problem of Dinesh Khurana in the negative: given a linear map f: V → V, let 
Kf = Un

ker(f n), can one always find a subspace C such that f(C) ⊆ C and V = Kf ⊕ C ?    
          This example was found interesting1, in particular, the necessary condition (*) of 
(2.1) whose failure had been used to detect the non-existence of C.  This has transfinite 
analogues (*)α which are given in (3.3).  Here α is any limit ordinal, so there is a trans-
infinity of necessary conditions for the existence of C.  We show by means of extra 
examples (3.4)—I knew of all the conditions (*)α in June, 2005, however these additional 
examples were observed much later—that all these necessary conditions are non-trivial 
and quite independent of each other. 
          These conditions are topological, they say (2.2) that certain vector subspaces are 
closed in suitable adic topologies, and are tied with the stability of the transfinite 
completion fα(V) of the sequence of iterated images.  So we begin with some remarks on 
stability, then give a construction in (1.5)—with transfinite generalization later in (3.1) 
and (3.2)—that shows that this sequence may not stabilize till any ordinal whatsoever.  
The examples mentioned so far are all particular cases of this construction.  
          The search for more examples is driven by the harder and still open problem: when 
exactly can one find a subspace C such that f(C) ⊆ C and V = Kf ⊕ C ?   In all the 
examples mentioned so far, the space fω(V) = In

fn(V) is nonzero, put otherwise, the 
adic topology is non-hausdorff.  The suspicion that this might always be so was laid to 
rest by the quite different Example 2 (2.4)—found in mid-August, 2005 very soon after I 
was laid up in bed for a couple of months by a cycling accident, the ‘types theorem’ 
below was also discovered then—which has fω(V) = 0, yet a C of the desired kind may 
not exist, the detection is however done again by using the same condition (*). 
          This multiplicity of examples is subsumed in § 4 in a single theorem.  Treating its 
vertices as a vector space basis we associate to a directed graph G with at most one 
                                                 
1 For instance by two well-known algebraists who had misproofs showing that the answer to Dinesh’s 
question was “yes”, indeed I too had a misproof of my own, an analysis of a gap in it led to Example 1 



arrow  coming out of each vertex the linear map fG defined by these arrows.  We show 
that the locally nilpotent part of fG is a direct summand iff the conditions (*)α hold, 
indeed this Theorem (4.2) gives a full classification of such graphs: the components of 
any G are of the five mutually exclusive types described in (4.1), and the locally nilpotent 
part is a direct summand if and only if only Types 1, 3 and 5 are present. 
          Such maps fG are the simplest possible (5.2): each row of the matrix of fG with 
respect to the basis of vertices has at most one nonzero entry.  However our methods hold 
promise for any f, notably they show that the existence of C puts  serious restrictions on 
the dynamics, i.e., the nature of the saturated orbits (5.3) of the linear transformation f.   
          The questions treated in this paper could have been considered by Hamel et al. 
even in the early 1900’s, a perusal of the literature however revealed nothing of that 
vintage.2 We found out however that Ulm [3] had already used Cantor’s transfinite 
completion in linear algebra to work out the structure of locally algebraic linear 
transformations of countable dimensional vector spaces in the 1930’s, and I suspect he  
knew the answer to Dinesh’s question. My secondary evidence is Exercise 33(a) on page 
32 of Kaplansky’s wonderful 1954 book [2]. This exercise is about infinite abelian 
groups, i.e., Z-modules, however later, in § 12 of this book, its author switches to 
modules remarking that many previous results hold for modules over principle ideal 
domains.  Since linear transformations identify with F[X]-modules, I presume Kaplansky 
was aware of the linear transformation analogue of Exercise 33(a).  However, he does not 
take credit for the exercise, and its context – the exercise is used to show that the 
countability hypothesis cannot be dropped from Ulm’s  theorem –  leads us to suspect  
that Ulm knew.  Anyway, it is quite certain that the answer to Dinesh’s question was 
known – but obviously not well known! – when he posed it to me in April, 2005.  
However this ‘known example’ – see (5.1) – is inferior to Example 1 in one important 
respect, it requires a much bigger uncountable dimensional vector space.  In fact, all these 
‘Kaplansky type examples’ fit into our scheme of things as follows: they pertain to the 
linear transformations ϕG  dual to fG. 
 
          Acknowledgement.  I am indebted to Dinesh Khurana for posing his problem to me, 
and for his interest in my work.             
 
          §1.  A subspace C of a vector space V (the field of coefficients F is arbitrary)  is a 
complement of another subspace K if K ∩ C = 0 and V = K + C,  the last two equations 
are often rolled into one: V = K ⊕ C.  The study of a linear transformation f: V → V 
leads one to focus on subspaces W that are f-invariant, i.e., such that f(W) ⊆ W.  Of 
particular interest are the following two monotonic sequences of invariant subspaces, 
namely, the iterated kernels ker fn = f -n(0) and the iterated images im fn = fn(V) of f :  
           

0 ⊆ ker f ⊆ … ⊆ ker fn ⊆ ker fn+1 ⊆ …, 
 

V ⊇ im f ⊇ … ⊇ im fn ⊇ im fn+1 ⊇ … . 
 

                                                 
2 Added July 12, 2006: From a footnote in a paper of Baer in the Annals of 1936, see p. 767, it seems that 
the group theoretic Exercise 33(a) of [2] might even be traced back to a 1919 thesis of F. Levi! 



We shall often denote the union Un
f -n(0) and the intersection In

f n(V) of the terms 
of these two sequences by Kf and If  respectively.   
 
          (1.1) A term of either sequence is called stable if it equals the next, then it equals 
all the subsequent terms: if f –(n+1)(0) = f -n(0) then f –(n+2)(0) = f -1(f –(n+1)(0)) = f -1(f –n(0)) 
= f -(n+1)(0), and likewise if fn+1(V) = fn(V) then fn+2(V) = f(fn+1(V)) = f(fn(V)) = fn+1(V). 
 
          (1.2) The nth kernel ker fn is stable if and only if ker fn ∩ im fn = 0.  To see this 
note that the intersection is nonzero if and only if there is a v with fn(v) nonzero but f2n(v) 
zero, that is, if and only if ker fn is strictly smaller than ker f2n, now use (1.1).            
 
          (1.3) Easy examples show that, in general, the stability of ker fn

 does not imply that 
of im fn, however there is one important case in which it does.  For the case dim(V)  
finite dimensional, ker fn is stable if and only if im fn is stable, and then each is the 
unique f-invariant complement of the other, i.e., V = Kf ⊕ If uniquely.  
 
           This follows from (1.2) because now codim (ker fn) = dim (im fn) tells us that the 
dimensions of the kernel and image of any fn must add up to the finite number dim(V), 
and for uniqueness check that if C is f-invariant with V = ker fn ⊕ C, respectively V = C 
⊕ im fn, then fn(V) ⊆ C, respectively f -n(0) ⊆ C. 
 
          The locally nilpotent part is known to be a direct summand in many other cases 
also—but a proof hinging just on the aforementioned can usually be made—however we 
don’t intend to review these arguments, but will now turn to something else. 
 
          (1.4) Let us look again at how the above two sequences run. The increasing 
sequence is obtained, starting from the zero subspace 0, by applying at each step f -1 to the 
previous term, while the decreasing sequence is obtained, starting from the vector space 
V itself, by applying at each step f to the previous term. The two operations behave 
differently in one important respect.  If we apply f -1 to the union of the increasing 
sequence, that is, to Kf , we get nothing bigger, we only get back Kf .  We express this by 
saying that the sequence of iterated kernels stabilizes at the first infinite ordinal.  On the 
other hand, the analogous statement is by no means true for the operation of taking 
iterated images: applying f to the intersection If of the decreasing sequence can give us 
something smaller, in fact even the following is true. 
 
          (1.5) Any linear map g: U → U can be realized as the restriction to If of an f: V → 
V with im(fn) strictly bigger than im(fn+1) for all n ≥ 0. 
 
           Choose any set of elements v of U such that the union of the (forward) orbits {giv : 
i ≥ 0} spans U and, for each v, a distinct set {vi,j} of new linearly independent symbols, 1 
≤ j ≤ i.  Let V be the linear span of U and these symbols, and define f: V → V to be the 
same as g on U, while on the new symbols f is defined thus: it takes any vi,j with j ≥ 2 to 
vi,j-1 while all the vi,1 go to v (cf. the ‘tail’ of v in Figure 1, which depicts the special case 
when the forward orbit of v forms a basis of U).  This f has the desired properties.   
 



          So the second sequence has a non-trivial transfinite completion, however we shall   
postpone these ordinal-theoretic generalizations to §3, and first present the main idea vis-
à-vis the incomplete sequence only.  
 
         §2.  Though in the following, and its later transfinite analogues, K can be any f-
invariant subspace, we’ll be using these criteria almost always for K = Kf. 
 
        (2.1)  Let  f: V → V be any linear transformation, then an f-invariant subspace K of 
V can have an f-invariant vector space complement only if  

 
                       K + I

n

fnV  =   I
n

(K  + fnV).                           (*) 

 
          Proof.  If V = K ⊕ C with f(K) ⊆ K and f(C) ⊆ C, induction shows that one must 
have fnV = fnK ⊕ fnC for all integers n ≥ 0, so I

n

fnV  = I
n

fnK ⊕ I
n

fnC.  It follows 

that both sides of (*) are then equal to  K ⊕  I
n

fnC,  q.e.d. 

          (2.2)  The f-adic topology, on the underlying vector space V of a linear 
endomorphism f, is the one whose open sets are all unions of cosets of the type v + fnV , 
v ∈ V, n ≥ 0.  In this f-adic topology In

(K  + fnV) is the closure K of any f-invariant 

subspace K, for example, the closure 
__
0  of the origin is If = In

fnV.   Thus (*) is the 

same as saying  K + 
__
0  = K .  The f-adic topology is hausdorff if and only if 0 = 

__
0 , so in 

this case (*) is just saying that K is closed in V.   In general, (*) is saying that K is quasi-

closed in V, by which we mean that it projects, under the canonical surjection V → V/
__
0 ,  

to a closed subspace of this associated Hausdorff quotient topological space.   We omit 
the verifications – the later conditions (*)α also have similar topological reformulations – 
because no topological arguments are used in this paper.  
 
          There is no dearth of invariant subspaces without an invariant complement, for 
example, the subspace of all (0,y) is such for the transformation (x,y) → (0,x) of F2, and 
in general (*) is not of much use in detecting them, for instance, it obviously holds for all 
finite dimensional vector spaces V.   
          However, it is a relatively delicate job to find examples of linear transformations f 
whose Kf does not have an invariant complement, and we’ll see that (*) and its transfinite 
analogues are quite useful in detecting these.  A preliminary remark about this case is the 
following: (*) holds for K = Kf iff it holds for each  direct summand of f.  This is so 
because the iterated kernels and images of a linear transformation are the direct sums of 
the corresponding subspaces contributed by its direct summands.  This remark applies to 
the later conditions (*)α also.  
          We’ll come across the non-triviality of (*) for K = Kf in both the examples worked 
out below, note that the second has If = 0, that is, its f-adic topology is hausdorff.   
       



          (2.3)  EXAMPLE 1.  Let V be any countable dimensional vector space, and write a 
basis of V as {vi,j  : 0 ≤ j ≤ i}.  Let f : V → V be the linear map defined by f(vi,0) = vi+1,0 ,  
f(vi,1) = v0,0 , and f(vi,j) = vi,j-1 if  j > 1 (see Figure 1).  Then the f-invariant vector 
subspace Kf = Un

ker fn does not have an f-invariant vector space complement in V. 
 
 

[Figure 1] 
 
 

            Proof.   Note that  In
fnV  is the linear span of {vi : i ≥ 0}, and that  ker f  is the 

linear span of all differences  vi,1 – vi’,1 ,  ker f2 the linear span of ker f and all differences 
vi,2 – vi’,2 ,  etc.  So  Kf  consists of all those finite linear combinations of the vi,j ’s, with j 
≥ 1, such that the sum of the coefficients for each fixed j is zero.  Thus  Kf + In

fnV  is 
strictly smaller than V.  On the other hand, fnV is the span of all basis elements other than  
vi,j’s  with j  > i – n.  For each j, if i is big enough, this inequality is false, so  Kf  +  fnV  
equals V.  Therefore  In

 (Kf  +  fnV)  = V and (*) does not hold for K = Kf .  q.e.d. 
 
          (2.4)  EXAMPLE 2.   Let V be any countable dimensional vector space, and write 
a basis of V as { vi,j  : 0 ≤ j ≤ mi + c}, where m and c are two fixed non-negative 
numbers.  Let f : V → V be the linear map defined by f(vi,0) = vi+1,0 ,   and f(vi,j) = vi,j-1 if  
j ≥ 1 (see Figure 2 which shows the case m = 4/3, c = 1).  Then the f-invariant vector 
subspace Kf = Un

ker fn has an f-invariant complement in V if and only if m ≤ 1.  
 

[Figure 2]  
 

 
          Proof.    Note If = 0 and that Kf is a proper subspace of V because the basis 
elements are not in it. Any difference of the type vi,i+t – vi’,i’+t , i’ > i, i.e., a difference of 
two basis elements lying on the same parallel to the line j = i, is an element of Kf  because 
fi’+t maps both elements to vi’,0  (these differences constitute a basis of Kf).  The subspace 
im fn is spanned by all basis elements satisfying j  ≤ mi + c – n, i.e., all elements on or 
under the line parallel to the ‘roof’ and n units below it.  In case m > 1, for any t we have 
i+t ≤ mi + c – n for all i  sufficiently big.  This shows that Kf + im fn = V for all n,  so 
In

 (Kf + im fn) = V is bigger than Kf .  Thus (*) does not hold for K =  Kf and it cannot 
have an invariant complement. 
          In case m ≤ 1, there is a t such that j ≤ i + t for all basis elements vi,j , we choose the 
smallest such t, this is also the biggest t such that there is a basis element of the type vi,i+t .  
Look at the basis elements lying in the orbit of such a vi,i+t.  For each c ≤ t, there is one 
and only one element vi,j of this orbit such that j = i + c –– i.e., this orbit has one element 
on each parallel to j = i that contributes the aforementioned differences to Kf ––which 
shows Kf + C = V, where C denotes the linear span of the orbit; the linear independence 
of the orbit’s elements ensures the other condition Kf ∩C = 0.  q.e.d. 
 



          § 3.  The transfinite completion of the sequence fn(V) of iterated images is defined3 
thus: for the first infinite ordinal ω we’ll use fω(V) = If = In

fn(V), for bigger ordinals α 

having an immediate predecessor α-1 we shall put fα(V) =  f(fα-1(V)), while for all limit 
ordinals α,  fα(V) shall be the intersection I αβ <

fβ(V).   

          Using (1.5) we know already that fω+1(V) can be strictly smaller than fω(V), that a 
similar statement is true for any α > ω follows likewise from (3.2) below. 
   
          (3.1)  Tails Tα shall be directed graphs with a unique final vertex which are defined 
inductively, for all ordinals α, as follows.  T0 is just a vertex. If α > 0 has an immediate 
predecessor α-1, then an α-tail Tα is obtained by drawing an arrow from the final vertex 
of a Tα-1 to a new vertex.  On the other hand, if α > 0 is a limit ordinal, then we take 
disjoint copies of all the graphs Tβ with β < α, and make Tα by drawing arrows from the 
final vertices of all these graphs to a single new vertex.  So, for n finite, Tn is a chain of n 
arrows, while the subgraph of Figure 1 spanned by v and all preceding vertices is a Tω.   
          It is easy to check that two tails are isomorphic iff they correspond to the same 
ordinal, and that the subgraph of Tα spanned by vertices preceding or equal to a given 
vertex v is isomorphic to Tβ for some β ≤ α, we assign to v the label β.  An easy 
induction shows that no vertex of Tα  has an infinite chain of arrows ending in it. Note 
that this is a reformulation of the elementary fact that a strictly decreasing sequence of 
ordinals is necessarily finite for it has a smallest term, indeed one might think of tails as a 
graphical construction and definition of the ordinals themselves. 
 
          (3.2) THEOREM.  Given any linear map g: U → U, and any ordinal α, we can 
realize g as the restriction to fα(V) of some linear map f: V → V having  fβ(V) strictly 
bigger than f γ(V) whenever β < γ ≤ α. 
 
          Proof. Just as in (1.5) we choose any set of elements v of U such that the union of 
their orbits {giv : i ≥ 0} spans U, but now, we’ll make each of these v’s the final vertex of 
a disjoint copy of Tα, the new vertices of all these tails being treated as linearly 
independent symbols.  Let V be the linear span of U and these symbols, and define f: V 
→ V to be the same as g on U, while on the new symbols it is defined by the arrows of 
the tails themselves.  Then, for any β ≤ α,  fβ(V) is the span of U and all new vertices 
having labels γ ≥ β, and so this map f has the desired properties, q.e.d. 
 
          We now generalize (2.1) to obtain a trans-infinity of necessary conditions (*)α for  
an invariant subspace to have an invariant complement, with previous (*) = (*)ω.    
 
          (3.3)  THEOREM.  Let f: V → V be a vector space endomorphism, then an f-
invariant subspace K of V can have an f-invariant vector space complement only if  
                                                 
3 This idea is old, in fact from pp. 32, 36 of P.E.B. Jourdain’s “Introduction” to Cantor’s papers [1] it seems 
that the ordinals were perhaps discovered thus in 1870-71: Cantor, while generalizing a theorem of 
Riemann on trigonometric series, noticed that the decreasing sequence A(n), n ≥ 1, of derived sets of a set A 
of real numbers, can often be continued non-trivially past infinity in just this way.   
 



 
                       K + I

αβ <

fβ(V)  =   I
αβ <

 (K  + fβ(V)),                            (*)α 

 
where α is any ordinal whatsoever. 
 
          Proof.  For α = 0 the intersections on both sides are vacuous, so equal V per the 
usual convention, and for an ordinal α having an immediate predecessor (*)α is trivially 
true, since both its sides are then equal to K  + fα-1(V).   
          For other, that is, limit ordinals α, we use the given hypothesis, viz., that there is a 
direct sum decomposition V = K ⊕ C into f-invariant subspaces.  This implies—as can be 
verified by a straightforward induction—that fβ(V) = fβ(K)  ⊕  fβ(C) for all ordinals β, 
which in turn implies that both sides of (*)α are equal to K ⊕  fα(C),  q.e.d 
 
          Note that if K has an f-invariant complement in V, then the above conditions  also 
hold if V is replaced by any f-invariant subspace W containing K, for intersection with 
W provides us also with an f-invariant complement of K in W.  
 
          We ask next whether for K = Kf the conditions (*)α are non-trivial and new for 
limit ordinals α > ω ?  At first sight the obvious generalization of Figure 1—identify v0 
with the final vertex v of an α-tail—seems inadequate, for surely (*) will fail for this new 
tree also since it is so much more complicated ?  Luckily, this is not so—now (*) = (*)ω 
holds, only (*)α fails!—and is the key point of the the next argument. 
 
 
           (3.4) THEOREM.  Given any  set Ω  of limit ordinals, there exists a linear map  f : 
V → V for which (*)α  fails for K = Kf  if and only if α belongs to Ω. 
 
           Proof.  Let Gα denote the directed graph obtained by identifying the initial vertex 
of the infinite chain v0 → v1→ v2 → v3 → … with the final vertex v of a disjoint tail Tα 
(so Figure 1 is a Gω).  Treating the vertices of Gα as linearly independent we let V be 
their linear span and define f : V → V by the arrows of this graph. 
           Being a particular instance of the construction used in (3.2), fβ(V), β ≤ α,  is 
spanned by {v = v0 , v1 , v2 , v3 , …} and those vertices of Tα that have labels ≥ β,  in 
particular, fα(V) is the linear span <v = v0 , v1 , v2 , v3 , …>.   
           We note next that Kf + fα(V) is strictly smaller than V, it cannot contain any vertex 
w of the tail other than v.  For, if such a w were equal to an element u of Kf plus an 
element of <v = v0 , v1 , v2 , v3 , …>, then applying f enough times to this equation we’ll 
get a non-trivial linear combination between the vi’s. 
           On the other hand for any β < α it is true that Kf + fβ(V) = V.   To see this take any 
vertex w of the tail, with say ftw = v.  The ordinals β+1, β+2, … , β+t-1, are strictly 
between β and the limit ordinal α.  Choose an arrow of the tail ending at its final label β 
vertex v and starting from a vertex vβ+t-1 with label (β+t-1)-tail, then an arrow ending at 
vβ+t-1 and starting from a vertex vβ+t-1 with label (β+t-2)-tail, etc., finally an arrow ending 



at vβ+1 and starting from a vertex vβ with label β.  So w = (w-vβ) + vβ where ft(w-vβ) = 0 
and vβ ∈ fβ(V) which shows that w ∈ Kf + fβ(V). 
          It follows that both sides of (*)β equal V for β < α, however (*)α fails since its right 
side is V, but its left side is strictly smaller.  Finally, using fα+n(V) = <fnv, fn+1v, …> and 
fβ(V) = 0 for β ≥ α + ω, we see that both sides of (*)β are equal to Kf for all β ≥ α + ω, so 
these conditions also hold.    
          Since (*)α holds for K = Kf if and only if it holds for each of its direct summands, it 
follows that the direct sum of the maps constructed above, one for each α ∈ Ω, will have 
the desired properties, q.e.d. 
 
          (3.5)  Given an f: V → V we have stability fα+1(V) = fα(V) for some α with card(α) 
≤ dim(V).  To see this recall that the cardinality of the set of ordinals having cardinalities 
≤  ℵ is strictly bigger than ℵ.  So, if the assertion were false, by choosing for each α an 
element eα of fα(V) not in f(fα(V)) we would get a set of linearly independent elements 
with cardinality strictly bigger than dim(V), a contradiction.   
          The smallest ordinal α at which fα+1(V) = fα(V) occurs is called the length λ(f) of 
the linear transformation f. It is true that, if  λ(f) is finite, then the locally nilpotent part is 
a direct summand (note λ(f) = 0 iff f onto), accordingly the counterexamples above had 
lengths ≥ ω, but equally, for each α ≥ ω there is an example having length α and  locally 
nilpotent part a direct summand.  Indeed, if we let Hα—cf. Gα of (3.4)—be the directed 
graph obtained by identifying the final vertex of Tα to any vertex of a  doubly infinite 
chain …v-3 → v-2→ v-1 → v0 → v1→ v2 → v3 → … then the linear map f defined by 
using Hα has length α and C = <vi : i ∈ Z> is an invariant complement of Kf. 
 
          However, we’ll now cease further analyses of particular examples, and proceed to a 
general classification valid for all linear maps defined by one-way graphs. 
 
          § 4.  A one-way graph G is a directed graph—i.e., a set S of vertices, and a set A ⊆ 
S × S of arrows—with at most one arrow (v,w) ∈ A ‘starting at’ any v ∈ S (arrows are 
also denoted v → w, any number of arrows (u,v) can ‘end at’ a vertex v). Considering the 
vertices as linearly independent symbols, we denote by VG the vector space spanned by 
S, and by fG: VG → VG the linear transformation such that f(v) = w if  (v,w) is the unique 
arrow starting at v, and f(v) = 0 if no arrow starts at v.   The classification theorem (4.2) 
explicitly determines all one-way graphs G for which the locally nilpotent part of fG is a 
direct summand, all the relevant definitions are given first in (4.1) below. 
  
          (4.1)  The elements of VG are linear combinations Σcss , s ∈ S, cs ∈ F, with only 
finitely many of the cs nonzero.  This implies that fG is the direct sum of the linear maps 
associated to the components of G, i.e., the maximal connected subgraphs of G, where as 
usual, connected means that, given any two vertices u and v, there is a finite sequence u0 

= u, u1, … , ut = v of vertices such that, for each 1 ≤ i ≤ t, either (ui-1, ui) or (ui, ui-1) is an 
arrow.  Since G is one-way there is in fact at most one switch from the first to the second 
choice as we proceed along the sequence, i.e., a one-way G is connected if and only if any 
two vertices u and v have a common successor w—alternatively that u and v are both 
predecessors of the same vertex w—that is, there is a finite chain of arrows going from u 



to w, and another finite chain of arrows going from v to w.  We’ll now partition the set of 
all connected one-way graphs into five mutually exclusive types. 
 
          Type 1.  A connected one-way graph belongs to this type iff it has a  loop, that is, 
either a vertex v0 with no (case n = 0) arrow from it, or a finite chain of n arrows (v0 , v1), 
(v1 , v2), … , (vn-1 , v0), n ≥ 1, with the last arrow ending at the vertex from which the first 
started (so for n = 1, the single arrow starts and ends at v0).  It is easily seen that a Type 1 
graph has a unique (upto a cyclic permutation) loop and it is the sink of G, that is, starting 
from any vertex a finite chain of arrows brings us to a vertex of the loop.  A one-way G is 
of Type 1 if and only if it does not contain an infinite chain v0 → v1→ v2 → v3 → … of 
distinct arrows. For example, the tails Tα are Type 1 with n = 0.   
 
          Type 2.  A loopless connected one-way graph belongs to this type iff it has a 
vertex v of infinite height, i.e., there are arbitrarily long finite chains of arrows ending at 
v, this is denoted by ht(v) = ∞, but it has no doubly infinite chain …v-3 → v-2→ v-1 → v0 
→ v1→ v2 → v3 → … of arrows.  Of course there might also be vertices w of finite 
height, i.e., such that there is a chain of n arrows, but no longer chain, which ends in w, 
then we write ht(w) = n. The graphs Gα of (3.4) are Type 2. 
 
          Type 3.  A loopless connected one-way graph belongs to this type iff it contains a 
doubly infinite chain of arrows.  The graphs Hα of (3.5) are Type 3. 
 
          Type 4.  A loopless connected one-way graph belongs to this type iff it has no 
vertex of infinite height, and along an infinite chain v0 → v1→ v2 → v3 → … one has 
ht(vi+1) > ht(vi) + 1 infinitely often.  Note that ht(vi+1) ≥ ht(vi) + 1 always, thus we are 
demanding that height should jump by more than 1 infinitely often.  Since two infinite 
chains merge after finitely many steps, this condition is then true for any infinite chain.  
The graphs of (2.4) are Type 4 for slope m bigger than 1.  
 
          Type 5.  A loopless connected one-way graph belongs to this type iff it has no 
element of infinite height, and along one, and so all, infinite chains of arrows v0 → v1→ 
v2 → v3 → … one has  ht(vi+1) = ht(vi) + 1 for all sufficiently large i.  For example, the 
graphs of (2.4) are Type 5 if slope m is 1 or lesser.  
 
          (4.2)  THEOREM.  The locally nilpotent part of  f = fG is a direct summand  if and 
only if all the conditions (*)α hold for K = Kf, and this happens if and only if  each 
component of the one-way graph G is of Type 1, 3 or 5.    
          Furthermore, if a component is of Type 2 or 4 one and only one of the conditions 
(*)α fails for the corresponding summand of f, with α to be described below.  
 
          Proof.   Case G connected, Type 1: we assert that now Kf , f = fG, has codimension 
n, the length of the unique loop, and the f-invariant space C spanned by the n vertices of 
the loop is a vector space complement of Kf.  The empty loop case n = 0 is trivial, for 
then obviously Kf = V, so assume n ≥ 1.  Since f is one-one on C, we have Kf ∩ C = 0.  
Take any vertex w of G and suppose that starting from w we need t arrows to come to a 
vertex v of the loop.  Let t = nq + r where q and r are non-negative numbers with r less 



than n, and let u be the vertex of the loop r arrows behind v.  Since w = (w –u) + u, and 
ft(w-u) = v - v = 0, u ∈ C, we see that w ∈  Kf + C, therefore Kf + C = V,  q.e.d. 
 
          Case G connected, Type 3: now the invariant subspace C spanned by the vertices of 
a doubly infinite chain complements Kf.   Obviously C∩Kf = 0.  To see V = Kf + C, we 
express any vertex w as the sum of an element of Kf  and an element of C.  Suppose t 
arrows bring us from w to a vertex, say vi , of the doubly infinite chain.   Then w = (w – 
vi-t) + vi-t is the required expression, q.e.d.  
 
          Case G connected, Type 4.  This case will be ruled out by showing that (*) = (*)ω 
does not hold for K = Kf.  Its left side is Kf because I

n

fn(V) = 0, there being no element 

of infinite height, and Kf is of course smaller than V because no vertex of G is killed by 
any power of f.  On the other hand we assert that each vertex v is in the right side of (*) 
and so the right side is equals all of V.  To see this consider the infinite chain that issues 
out of this vertex v = v0 → v1→ v2 → v3 → … .  Given any n we can choose t so large 
that height of these vertices has jumped by more than 1 at least n times, i.e., we have a t 
such that ht(vt) ≥ ht(v) + t + n.  So we can find a vertex w such that fn+t(w) = vt , so v = 
(v-fn(w)) + fn(w) with v-fn(w) in Kf because ft kills it, while fn(w) ∈ fn(V).  Thus v lies in 
Kf + fn(V) for all n, i.e., it lies in the right side of (*), q.e.d. 
 
          Case G connected, Type 5.  Take any infinite chain v0 → v1→ v2 → v3 → … and 
assume that for all i ≥ t one has ht(vi+1) = ht(vi) + 1.  Choose a maximal finite chain w0 → 
w1 → … → ws = vt , s = ht(vt).  We assert that the invariant subspace C spanned by {w0, 
w1,  … ,ws = vt, vt+1, vt+2 , …} is a complement of Kf .  Obviously since f is one-one on C, 
one has Kf ∩ C = 0.  To see Kf + C = V we shall now check that any vertex v can be 
written as a sum of an element of Kf and an element of C.  Take any r such that  fr(v) = 
vt+i  for some i ≥ 0, we must have r ≤ s + i because ht(vt+i) = s+i.  Then v = (v-fs+i-r(w0)) + 
fs+i-r(w0) where fr kills v-fs+i-r(w0) while fs+i-r(w0) is in C, q.e.d.     
 
          Case G connected, Type 2.  This remaining case will be ruled out by showing that 
(*)α fails for α = λ, the length  of f = fG, when this limit ordinal—now λ is the smallest of 
the ordinals β such that fβ(S) = ∅—has no immediately smaller limit ordinal.  Otherwise, 
the subgraph of G spanned by fλ-ω(S) is of Type 4 or 5, and accordingly one has α = λ or 
λ - ω, the limit ordinal immediately preceding λ. 
          The graph has merging unique infinite chains of arrows issuing out of each vertex, 
but the maximal chains ending at each vertex are finite and issue from vertices which 
have no arrow ending at them.  This allows a labelling of the set S of vertices: the label 0 
is assigned to all vertices having no arrow ending at them, and inductively assuming that 
all ordinals less than β have already been assigned, we assign the label β to those and 
only those of the remaining vertices at which only those arrows end whose starting 
vertices have already been labelled, the process stops when there are no remaining 
vertices.  From this definition we see: given a vertex v having label β and any γ < β there 
is a vertex w preceding v and having the label γ.  We denote by Sβ the subset of S having 
labels ≥ β, we note that if this is nonempty then so is Sβ+1 and is strictly smaller than Sβ.  
This ensures that the process of labelling will stop, and that Sλ = ∅ must occur first at a 



limit ordinal λ > ω, the last because Sω ≠  ∅, there being given a vertex of infinite height.     
To identify λ with the length λ(f) of f = fG note that  Sα = fα(S) where the latter notation 
means: f0(S) = S, fα(S) = f(fα-1(S)) if α has an immediate predecessor, and fα(S) = 
I

αβ <

fβ(S) if α is a limit ordinal; so fα(V) is the subspace of V spanned by Sα , and these 

subspaces are strictly decreasing till fλ(V) = 0.  
 
          The left side of (*)λ is thus Kf which is strictly smaller than V since no vertex is 
killed by any fn.  Let us now compute Kf + fβ(V) for β < λ.  First assume also β + ω < λ. 
Then Sβ+ω is nonempty, so the infinite chain v = v0 → v1→ v2 → v3 → … issuing out of 
any vertex v of G enter Sβ+ω in finitely many steps, say vt ∈ Sβ+ω.  Amongst the 
predecssors of vt we can find a vertex vβ+t having label β+t, then amongst the 
predecessors of vβ+t  a vertex vβ+t-1 having label β+t-1, so on, finally amongst the 
predecessors of vβ+1 a vertex vβ having label β.  The infinite chain of arrows issuing out 
of vβ thus stays in Sβ and wends it way to vt after t or more arrows.  We choose in this 
chain a vertex u which is exactly t arrows behind vt.  Now write v = (v-u) + u and note 
that ft kills v-u while u ∈ Sβ which implies v ∈ Kf + fβ(V).  So for β + ω < λ one has V =  
Kf + fβ(V).  When λ has no immediately smaller limit ordinal β + ω < λ follows from  β < 
λ, so in this case we have shown that (*)λ does not hold. 
 
          If λ > β ≥ λ - ω, i.e. β = (λ - ω) + n, where λ - ω denotes the limit ordinal 
immediately preceding λ, then Sβ+ω is empty and the above reasoning is not valid.  A 
vertex u of the nonempty Sλ-ω cannot be the end point of arbitraily long finite chains of 
arrows with all vertices in Sλ-ω, we denote by htλ(u) the maximum length possible.  The 
infinite chain v = v0 → v1→ v2 → v3 → … emanating out of any v is eventually in the 
nonempty Sλ-ω.    If htλ(vi+1) > htλ(vi) + 1 infinitely often, we can find (cf. argument of 
Type 4 above) a vt in Sλ-ω having htλ(vt) > t+n  So a u in Sλ-ω+n such that ft(u) = vt = ft(v).  
Then v = (v-u)+u again shows v ∈ Kf + fβ(V), so (*)λ does not hold. 
 
          If   htλ(vi+1) = htλ(vi) + 1 eventually, say for i ≥ s, then (*)λ does hold.   If β = (λ - 
ω) + n, Kf + fβ(V) = Kf + <fi(w) : i ≥ 0>, where w is the initial vertex of a maximal length 
chain, in the subgraph spanned by Sλ-ω having vs as its final point (cf. argument of Type 5 
above) from which it follows that the right side I

λβ <

(Kf +fβ(S)) is also equal to Kf.  

          Now look at the left side Kf +fλ-ω(S) = Kf + <fi(w) : i ≥ 0> of (*)λ-ω .  This cannot 
contain any vertex u of G outside Sλ-ω for this is the same as saying that u is the sum of an 
element of Kf and a finite linear combination with nonzero coefficients of some iterated 
images of w.  Applying to this equation a suitable ft, t > 0,  iterates these images t more 
times, kills the element of Kf, and replaces u by a lesser iterated image of w.  Thus giving 
us a non-trivial linear combination in the orbit of w, a contradiction.  On the other hand 
we know that Kf +fβ(S) = V for all β < λ-ω, so the right side of (*)λ-ω is V.  Thus now it is 
(*)λ-ω that fails.  We have shown that a connected Type 2 graph fails some (*)α.  It is also 
easily seen that for bigger α this condition holds, in fact one only needs to verify (*)λ 
because, for any f, the condition (*)α obviously holds for all α > λ(f),  q.e.d.  



 
          General case. If the nilpotent part of f = fG is a direct summand,  then all the 
conditions (*)α hold for f, which happens iff these conditions hold for all the direct 
summands of f contributed by the components H of G.  This implies by above that none 
of these components H is Type 2 or Type 4.  Conversely, if the components H are of 
Types 1, 3 or 5 then by above Kf ∩H has an invariant complement CH in VH, and C = 
⊕HCH gives us an invariant complement of Kf =  ⊕H(Kf ∩H) in VG = ⊕HVH,  q.e.d.  
 
          § 5.   We shall now wrap up this paper with three concluding remarks. 
 
          (5.1)  One can also associate to G the dual map ϕG: FS → FS defined by ϕG(v)(s1) = 
v(s2) if (s1 , s2) is the arrow out of s1, and = 0 if there is no arrow out of s1.  This dual 
vector space FS of all functions on S is much bigger – its dimension is bigger than the 
cardinality of S – and is not the direct sum of the function spaces contributed by the 
components of G, so results are very different now. Even for a disjoint union of finite 
chains of unbounded lengths the nilpotent part of ϕG is not a direct summand: (*) does 
not hold for K = Kϕ  where ϕ = ϕG  is the dual map associated to any of the one-way 
graphs G = Gm , m > 0, with set of vertices {si,j : 0 ≤ j ≤ mi} and arrows (si,j , si,j+1).  One 
can check that Iϕ = 0, so the left side of (*) equals Kϕ .  Take any positive rational r less 
than m, and let v ∈ FS be the function which is 0 on all vertices other than those of the 
type si,ri on which it takes the value 1.  It is easy to check further that v is not in Kϕ but it 
belongs to Kϕ + Im(ϕn) for all n ≥ 0, so v is in the right side of (*). We remark that this 
example is inspired by Exercise 33(a), p.32 of Kaplansky [2] on abelian groups.   We 
won’t enter here into the details of the analogous and easier classification for these dual 
maps, but remark that, for any ϕ = ϕG , the non-existence of an invariant complement for 
Kϕ is once again reflected in the failure of at least one of the conditions (*)α. 
 
          (5.2)  The matrix M : S × S → F of a linear map f: V → V, with respect to a basis S 
of V, is defined by f(v) =  ∑w M(v,w)w, thus each row M(v, .) : S → F of M has only 
finitely many nonzero entries.  Alternatively, we can represent any linear map by a 
directed graph G on the given basis S, with at most finitely many arrows issuing out of 
each vertex, viz., all (v,w) such that M(v,w) is nonzero, with each arrow assigned the 
nonzero label M(v,w).  It is remarkable that the non-triviality of all the conditions (*)α 
was shown by using just the maps fG because these are the simplest possible: they have a 
matrix in which each row has at most one nonzero entry.  In fact, even this nonzero entry 
was 1, but a minor change in its proof generalizes (4.2) to all simplest possible maps: 
note now (while calculating Kf) that if two length r chains u = u0 → u1 → … → ur-1 → ur 
= w and v = v0 → v1 → … → vr-1 → vr = w end in the same vertex, then it is the non-
trivial linear combination  (∏iM(vi , vi-1))u –  (∏iM(ui , ui-1))v that is in ker(fr).  It seems 
that an analogous classification, for linear maps admitting matrices that have at most two 
nonzero entries in each row—using Jordan’s normal forms theorem this includes all finite 
dimensional complex linear maps—would be much more complicated. 
  
          (5.3)  The special nature of the maps fG stems from the linear independence of S.  If 
we allow linear dependencies—by adding a 0 vertex we can also insist now that there is a 



unique arrow issuing from every vertex—compatible with the arrows then these maps 
become very general indeed!  Indeed every linear map f: V → V is of this kind, now S = 
V, and the components of our one-way G are described by the restriction of f to the 
disjoint saturated orbits ∪nf–n{f i(v): i ≥ 0} into which V is partitioned by f.  It is not too 
hard to adjust the proof of (4.2) to show that in one direction it remains true even now.  
For any linear map f: V → V, if Kf admits an invariant complement C, or even if all the 
necessary conditions (*)α for this to happen hold, then each saturated orbit of f must be 
of Type 1, 3 or 5, where the five possible mutually exclusive types are defined exactly as 
in (4.1), except that ‘has a loop’ is replaced by ‘orbit of v is linearly dependent’ and 
‘loopless’ by ‘orbit of v is linearly independent’.  Thus the existence of C imposes strong 
conditions on the dynamics of linear maps of this type.  For the restriction of f to the 
putative C this is clear.  This restriction is injective—that is, given any point of C there is 
at most one arrow starting in C which ends at that point—so it follows at once that the 
intersection of any saturated orbit with C is a loop, a doubly infinite chain, or a singly 
infinite chain.  Conversely, one has locally – i.e., within the span of a saturated orbit of 
Type 1, 3 or 5 – defined invariant complements Cv , however it is not clear whether they 
can always be glued together to form a global invariant complement C.  We hope to give 
all this, and more, in a sequel to this paper. 
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