
Map-reading geometry and homeomorphisms

In Sirsa nadi we saw how terrain subdivided into many equal maps can be
read cohesively, with focus on any one of them, in an open rectangle U2 just
three times the size of a map. More generally given an n-cuboidal tiling of Rn,
there is a similar map-reading geometry on an open n-box Un just three times
the size of a tile, of which the n-torus Tn is a geometric quotient.

This evoked Sullivan’s Hyperbolic geometry and homeomorphisms (HGH) in
which hyperbolic geometry on an open n-ball Un is used to show that outside
dimension four any manifold has a unique lipschitz structure. Now for n > 1 the
n-torus cannot arise as a geometric quotient, but–this uses étale homotopy–the
hyperbolic n-ball does have compact torus-like quotients T n in the sense that
minus any point they can be immersed in n-space. This enables him to imitate
Kirby’s torus unfurling with lipschitz control.

The point being that a hyperbolic quasi-isometry of Un a bounded hyperbolic
distance from the identity gives a euclidean quasi-isometry of the closed n-ball
Un which is the identity on its boundary. Likewise a map-reading quasi-isometry
of Un a bounded map-reading distance from the identity gives a euclidean quasi-
isometry of the closed n-box U

n which is the identity on its boundary :-
The image of any point is a bounded number N of tiles away, so if the map-

reading distance between images of nearby points of Un is at most L times, the
distortion of the euclidean distance is at most 2N+1L; and a perturbation of this
basic map-reading geometry ensures also the second part.

Also the decomposition Un = Uk×Un−k of map-reading geometries enables
us to do the k-handle case even more simply than in HGH. Everything else, in
particular furling infinitely repeated to fill a deleted n-ball, remains the same
since no hyperbolic geometry was used in these steps.

Notes

1. Since there is a tgtbt feel to the above, so to lighten the mood and ensure
that this paper will have value even in the worst case scenario, shown below is a
concurrent but unrelated empirical discovery of mine which, despite its everyday
nature, may also be new:-
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That is, during my evening walk up and down a number of times on the left
side of a fixed trajectory between two stony paths, I observed that, irrespective
of my direction, the grass is greener on the other side!

2. About the proof of that ‘point’ in HGH after correcting typos, viz., “This
follows easily since the conformal factor is essentially the Euclidean distance to
the boundary, namely, (hyperbolic element)≈(Euclidean element)÷(Euclidean
distance to boundary)”, we note that more exactly dh = 2de

1−r2 for an open n-ball
of radius r = 1, so dh

de = 1
1−r + 1

1+r ≈ 1
1−r near boundary.

The hyperbolic distance from the centre
∫ r

0
2

1−r2 dr is N on r = eN−1
eN+1

, here
conformal factor 1−r2

2 = 2eN

(eN+1)2
. So if a homeomorphism of the ball distorts

hyperbolic distance between nearby points by at most L, and is at hyperbolic
distance at most N from the identity, then it distorts euclidean distance between
nearby points by at most (eN+1)2

2eN
L ≤ 2eNL.

3. On its middle third map-reading geometry of Un is euclidean; then in
the first ring of 3n − 1 tiles sharing some proper face the scale in all transverse
directions is halved; and so on; e.g., shown below is a cube and some of the 26
cubes of the first ring. So map-reading element is at most 2N times euclidean
element in the (2N + 1)n tiles up to the Nth ring, which was what we used for
the analogous bound ≤ 2N+1L.

4. So reverting from T n − ball of HGH to an immersion of Tn − ball in n-
space we lift “a homeomorphism defined near image (Tn−ball) and sufficiently
close to the identity to approximately Tn − ball. Thinking of the deleted ball
in polar coordination we can furl (see “furling” below) to obtain commutation
with a radial homothety and extend over the ball by infinite repetition. We
have extended the quasi-isometry defined near B1 and close to the identity to
a global quasi-isometry of T close to the identity”.
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Then unfurl, i.e., lift this quasi-isometry of Tn to the map-reading open box
Un and apply the point above “to obtain a quasi-isometry of Bn which is the
identity at the bdry and containing the original on B1. This is the 0-handle case
required for the construction of isotopies as in Edwards-Kirby”. For “identity
at the bdry” we use here a perturbed map-reading geometry:-

5. As is clear from the last figure for the basic map-reading geometry a
bounded homeomorphism of U2 preserving vertical lines may not converge on
bdry to a single-valued function, let alone the identity. So we perturb its defining
homeomorphism U2 → R2 to make the corner tiles of each new ring funnel out
and compensatingly contract others, so that the diameter of any tile sufficiently
close to the boundary is arbitrarily small.

Indeed we can as shown use even quadrilateral tiles such that the outer
boundary of any ring is subdivided with all segments equal. Since these segments
approach zero as N → ∞ and the sides of any tile are at most of this order their
diameter becomes zero on the boundary.

Also we fix a simplicial correspondence between tiles: each tile of a new ring
is subdivided into four triangles over the mid-point of the segment joining the
barycenters of the shared face (edge or vertex) and the opposite face. The ratios
of corresponding segments and angles stay bounded for neighbouring tiles, so a
quasi-isometry of U2 which is bounded in this perturbed map-reading geometry
is a quasi-isometry in the euclidean distance of U2 ⊂ R2.

6. More generally, any bounded pull-back of euclidean space shall be deemed a
map-reading geometry, and some used “in de Rham’s 1955 book” for “a smooth-
ing procedure for currents” also work:-

We pull back the euclidean distance of Rn by a radial (homeo or) diffeomor-
phism τ to a rotationally invariant distance on Un with element τ ′(r) times the
euclidean element along any radius. Further, by using a τ which is not too steep
(note 12), we can ensure that any homeomorphism f of the ball a map-reading
distance τ(c) away from the identity which distorts map-reading distance by at
most L is a euclidean quasi-isometry of the ball with distortion at most τ ′(c)L.
Also, since map-reading balls of radius τ(c) near bdry of Un are very small in
the euclidean distance, f converges to the identity on it.
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In my thesis, The de Rham cohomology of foliated manifolds, which pre-
dates HGH by a few years, there are some nice smoothing operators on foliated
manifolds and bundles. A non-euclidean geometry on U seems needed for “a
smoothing procedure with conformal symmetry properties” that Sullivan men-
tions; but for the main results of HGH such a map-reading geometry of de Rham
should to be the geometry of choice.

7. “Furling … is ingenious but only two lines”: in cylindrical coordination
linear stretching and curvilinear shrinking an “almost vertical” homeomorphism
of Sn−1 × I gives commutation with a translation.

8. Instead of immersing a deleted Tn an imbedding of Tn−1 in n-space can
be used to pick up a homeomorphism close to the identity to an almost vertical
homeomorphism of Tn−1 × I, which furled as above gives a homeomorphism of
the n-torus obtained by identifying the ends of the yellow collar. Full details
are in §8 of Edwards-Kirby (1971), indeed our figure is an uncluttered version
of the one given there. This torus furling idea was used first in Novikov’s 1965
proof of the topological invariance of rational Pontryagin classes, which led to
Sullivan’s thesis of 1966 and a partial proof of the Hauptvermutung, that is, but
for a possible 3-dimensional cohomological obstruction. Siebenmann showed in
1969 that this obstruction is actual, by an example tied to the fact that after
commutation with a radial homothety we cannot piecewise linearly “extend over
the ball by infinite repetition”; his remark that this can obviously be done in
the lipschitz context led in turn to HGH.

9. A hyperplane of euclidean n-space a height C above the origin, pulled
back by τ ≈ tan as in note 6 to a ball Un of radius π/2, becomes the hypersurface
obtained by revolving tan r sin θ = C, a curve which tapers down from a height
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of tan−1 C to 0 on the boundary; e.g., in this de Rham geometry the nine equal
rectangular maps of Sirsa nadi are roughly:-

10. For the k-handle case we choose a discrete action of Zn−k on Rn−k

and extend it by perpendicularity to Rk ×Rn−k. This action confined to a slab
{(u, v) : |u| ≤ C} and pulled back by τ becomes a Zn−k action, on a closed subset
with horizon Sn−k−1 of an open n-ball, with fundamental domains Dk ×Dn−k.
We’ll use this walnut (k = 1, n = 3 is shown) instead of the lens of HGH (its
“figure 2” is rescaled to interpret it as a closed subset of the open 3-ball between
two spheres passing through the circular horizon).

“Then we treat a homeomorphism defined near the core of a k-handle which
is close to the identity and equal to the identity near the bdry.” Use torus
immersion “to obtain an extension to the (fundamental domain - (n − k) ball)
×Dk compatible with” the Zn−k action. “Then since we have the identity near
the bdry we again have an n-dimensional hole which can be filled in by furling
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and infinite repetition.” Now unfurl to walnut “and apply the bounded quasi-
isometry remark to obtain a quasi-isometry of Bn which is the identity at the
bdry and agrees with the original near the core of the k-handle.”

11. Using above and induction on “a fine handle decomposition ... we find
in the context of quasi-isometries ... of any smooth manifold ... the Cernavskii,
Kirby-Edwards isotopy theory ... So we have ... the Schoenflies theorem, the
Annulus theorem, and the component problem in all dimensions.” Thus all these,
and likewise the results below of HGH, can be proved using map-reading geometry
instead of hyperbolic geometry and étale homotopy.

Sullivan switches on bottom of page 548 of HGH to: “We want to discuss
approximating arbitrary homeomorphism by Lipschitz homeomorphism. For
dimensions less than 4 there is a good classical theory (Moise). Dimension 4
is unknown and remains so. For dimensions greater than 4 we get full positive
results using Connell’s radial engulfing and Kirby’s Annulus theorem.” Most
striking is this upshot: “Topological manifolds of dimension ̸= 4 have Lipschitz
coordinate systems. Such locally Euclidean Lipschitz structures are unique up
to homeomorphism close to the identity.”

As we’ll see n > 4 is used in radial engulfing, the topological annulus theorem
was later proved also for n = 4 but: “Quinn doesn’t help ...” 1

12. Indeed we can use basic round map-reading geometry which depicts Rn,
subdivided into an n-ball and n-annuli around it, all of radial width equal to its
diameter, in a Un just three times the size of this ball, by successively halving
the radial scale of each ring; i.e., we pull back the euclidean distance of n-space
by the radial homeomorphism τ : Un → Rn shown below.

Let f be any bijection of Un relating points {P, P ′ = f(P )} at most N (≥ 2)

rings apart, which is such that τ(A′)τ(B′)
τ(A)τ(B) and τ(A)τ(B)

τ(A′)τ(B′) are both less than L for
any segment AB. Then A′B′

AB and AB
A′B′ are less than 2N+1L :-

1This tip I owe to a 2010 email from Professor Sullivan, also the next note was sparked by
a resumption of this correspondence soon after this paper was first posted.
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(i) Any AB not collinear with O has a component (it is in the plane OAB)
tangent to the (n − 1)-sphere through its mid-point M , and a normal radial
component. (ii) For a small radial AB, the ratio τ(A)τ(B)

AB is the slope of the
above graph, so it is 2 if AB is in the first ring, then jumps to 4 in the second,
in the third ring it is 8, etc. (iii) For a small tangential AB the ratio τ(A)τ(B)

AB =
Oτ(A)
OA = Oτ(B)

OB , the slope of the chord from O of graph(τ), increases continuously
but less steeply from 2i−1

3−22−i to 2i+1
3−21−i in the ith ring.

So for any AB small, so also A′B′ small at most N rings away, τ(A)τ(B)
AB and

τ(A′)τ(B′)
A′B′ are each at most 2N+1 times the other, hence A′B′

AB and AB
A′B′ are less

than 2N+1L. Using convexity of Un – cf. Federer, Geometric measure theory,
page 64 – the same is true for any segment AB.�

13. What if graph(τ) has any positive constant slopes si? That asymptote
exists iff 1

s1
+· · ·+ 1

si
+· · · converges to an S < ∞; then τ pulls back the distance

of Rn to a ball Un which is 1+2S times the core. But that all-important ‘point’–
which we checked for the case si = 2i–may not hold: for it to hold it is necessary
and sufficient that si+1

si
be bounded above by some K:-

If no such bound, a translation of Rn pulls back to an isometry P → P ′ of
the pulled back distance on Un, but on and near the opposite end of the parallel
diameter there is AB with A′B′ an arbitrarily big multiple.

If there is such a K we can analyze as before, e.g., now for a tangential AB the
conversion ratio τ(A)τ(B)

AB increases continuously from 2i−1
1+2(S−Si)

to 2i+1
1+2(S−Si+1)

in the ith ring, where St = 1
st

+ 1
st+1

+ · · · . So there is hardly any increase
for this component of any AB after a while, compared to the discontinuous
jumps by ever increasing factors si for the radial component. Yet no jump is
more than K times the last, so over N rings the euclidean distortion is at most
KN+1 times the distortion L of the pulled back distance. Where, to ride over
an initial superiority of the tangential increase of the above ratio, we might have
to stipulate also that N is bigger than a prescribed constant.�

In other words the sum of reciprocals 1
s1

+ · · ·+ 1
si
+ · · · should converge but

its convergence should be no faster than geometrical.
14. What if graph(τ) is smooth with a similar shape? That is slope dτ

dr is
also increasing, and there is an asymptote r = R, i.e.,

∫∞
0

dr
dτ dτ converges to R;

now the ‘point’ holds iff convergence is no faster than some 1/Kτ .
For example τ(r) = tan(r) will do, and τ(r) = log 1+r

1−r is hunky-dory. This
last gives us on the open unit ball a map-reading geometry whose element
radially is that of hyperbolic geometry. The conversion ratio for the tangential
element varies much more slowly so we still have that any homeomorphism of the
ball bounded and lipschitz with respect to this pulled back distance is lipschitz
also with respect to its euclidean distance. The upside of giving up conformality
being that we can now also pull back the action of Zn on Rn, so the good old
n-torus is again available to prove the main results of HGH in an “elementary”
way, that is without using étale homotopy theory.

K. S. Sarkaria
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