
Plain Geometry & Relativity, Notes 21 - 23

21. If positions P1 and P2 of the same particle occur at times t1 < t2 of an
observer S, and have components x1 and x2 in his euclidean space, then

−−−→
P1P2

parallel to a ray translates into ‖x2 − x1‖ < c(t2 − t1). For c <∞ this lipschitz
property enables us to get by – note 16 – without extra hypotheses like smooth
or p.l. on a motion. The half-space t > 0 of S is the euclidean product of his ray
and n-space t = 1 and is preserved only by the reflections of the cone preserving
this ray. The cone, the intersection of the half-spaces of all the observers, has
however a hidden product structure – Figure 5 – given by all the rays and the
reeb foliation τ = constant, which is preserved by all its reflections. If P1 and P2

occur at absolute times τ1 < τ2, and we use cayley’s distance, then the lipschitz

property can be reformulated thus : P̂1P2 < c log(τ2/τ1).

Figure 5

If P1 and P2 lie on the same ray the distance P̂1P2 between their rays is 0.
Otherwise we’ll use on their plane the coordinates (t, x) of the observer S whose
state of rest is the ray through P1 with the x axis towards the ray through P2.
So if P1 = (l, 0) then P2 = (l + lu,mlu) for some u > 0 and m > 0. The
two rays cut the ball of S in its centre A = (1, 0) and the point B = (1, mu1+u ),
and AB extended meets the boundary in X = (1,−c) and Y = (1, c). We

have XB
XA

Y A
Y B = XB

YB = c+(mu/1+u)
c−(mu/1+u) = 1+u+mu/c

1+u−mu/c . Also (τ1)2 = l2 and (τ2)2 =

(l + lu)2 − (lmu/c)2, therefore ( τ2τ1 )2 = (1 + u + mu/c)(1 + u −mu/c). Using

the definition of P̂1P2 in note 14 the above lipschitz property is equivalent to
XB
XA

Y A
Y B < ( τ2τ1 )2, so it holds iff 1 < (1 + u−mu/c)2, i.e., iff m < c. �
Since P1P2 extended may not intersect the boundary twice, in the above

proof we first replaced it by AB. Indeed if −c ≤ m ≤ c then P1P2 extended
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has an X ′ on the boundary but Y ′ is at infinity, and the distance between the
two rays is, excepting for m = ∓c, not given by the limit c

2 log X′P2

X′P1
. This is

bigger, for example, for m = 0 the two rays coincide, but this expression gives
us c

2 log(τ2/τ1), which is half the right side of our inequality!

The unrestricted use of Cayley’s formula—i.e. ÃB := c
2 log(XBXA

Y A
Y B ) always

with the limit to be used if X or Y is at infinity—is however natural and
gives us more. It gives a metric as against a pseudometric. We have ÃB > 0
because the complete line containing the points A 6= B is not in our cone, and
ÃB+ B̃C ≥ ÃC follows by taking the limit of the triangle inequality – see note
14 – for the cone truncated by a flat on the right. A linear isomorphism preserves
the ratios of segments of a line, so ÂB and ÃB are invariant under all linear
isomorphisms of the cone. Further this metric is well-behaved with respect to
the hidden product structure. On each leaf τ = constant it coincides with the
cayley distance between rays. On each ray it coincides with c

2 log(τ2/τ1), so
by analogy this expression will be called the cayley distance between the leaves
on which P1 and P2 lie. We recall that the factor c

2 was put only to get the
coincidence, of the riemannian metric of the particular leaf τ = 1, with the
cayley distance between rays. With this artificial factor now gone, the lipschitz
property becomes: for any pair of subsequent points on an absolute motion the
cayley distance between rays is less than twice the cayley distance between leaves.
Since 0 and 1 are the only whole numbers less than two, the thought arises that
the other side of the c < ∞ coin – see note 12 – is this discrete micro reality:
at the next instant of absolute time a ‘particle’ is either at the same or at one
of the adjacent spots of absolute space?

22. In mechanics one also considers motions of two, three or more particles,
even of fluids and plasmas with uncountably many, and collisions, fusion and
fission of particles too, but all in a still space. The ‘particles’ at the end of the
last note are different, they are not things in space, but things revealed by the
motions of space. Since space stays put, these motions are via bijections which
induce bijections of open sets, viz., homeomorphisms φτ of the absolute space of
all rays or of τ = 1, parametrized continuously by absolute times τ > 0. Also,
as before, the absolute motion Pτ of each point P of τ = 1 shall be strictly
increasing with respect to the partial order of the cone, i.e., if P1 = Pτ1 and
P2 = Pτ2 are the points of τ = τ1 and τ = τ2 on the rays through φτ1(P ) and

φτ2(P ) for any τ1 < τ2, then
−−−→
P1P2 is parallel to a ray of the cone.

The corresponding motion φτ of the ball Bn of any observer S extends to
homeomorphisms φτ of his euclidean space identity outside Bn. The lipschitz
inequality of note 21 applies to the absolute motion of any point, so φ = φτ is at

a bounded cayley distance A = c| log τ | from the identity, i.e., P̂ φ(P ) < A ∀ P .
So this homeomorphism φ of Bn maps its centre into the concentric open ball
of radius a where c

2 log c+a
c−a = A, i.e., a = c tanh(Ac ). More generally φ maps

any P ∈ Bn into the cayley ball of radius A around P , i.e., all points at cayley
distance less than A from P . The extension φ is a homeomorphism because,
in the euclidean metric of S, these cayley balls become arbitrarily small when P
approaches the boundary of Bn.
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If S uses orthogonal coordinates (t;x,y) in which P = (1; v,0), v > 0, the
linear reflection of the cone switching the rays through the centre and P – see

fifth para of text – is (t;x,y) 7→ (γt− γv
c2 x; γvt− γx,y) where 1

γ(v) :=
√

1− v2

c2 .

The rays through the boundary of the cayley ball around the centre constitute
x2 +y2 = a2t2. So the boundary of the cayley ball around P is given by putting

t = 1 in (γvt−γx)2+y2 = a2(γt− γv
c2 x)2, i.e. (γ2−γ2 a

2v2

c4 )x2−2(γ2v− γ2a2v
c2 )x+

y2 = γ2a2−γ2v2. Completing a square this can be written as γ2

δ2 (x−w)2+y2 =

β2, where 1
δ(a,v) :=

√
1− a2

c2
v2

c2 . So this is an ellipsoid – Figure 6 – with centre

Q = (1;w,0), with all semi-axes β, except that along the diameter on which P
lies, this semi-axis α = δ

γβ is smaller. Further, segment of the diameter through

P intercepted by the ellipsoid is bounded by the reflections T ′, U ′ of the rays
through (1;±a,0), viz., the rays through (1; v∓a

1∓ av
c2
,0). So 2α = v+a

1+ av
c2
− v−a

1− av
c2

and 2w = v+a
1+ av

c2
+ v−a

1− av
c2

which give α = δ2(a,v)
γ2(v) a and w = δ2(a,v)

γ2(a) v. Since w < v

we see that Q is nearer to the centre of the ball than P ; also that the semi-axes

β = δ
γ a and α = δ2

γ2 a of the ellipsoid approach 0 when v → c. �

Figure 6

We can’t resist remarking once again how plain it all is ! The linear reflection
A ↔ A′ of the plane of S and S′ gives us the smaller axis of the ellipsoid, so
in particular the factor by which a shrinks in this direction, in all orthogonal
directions it only shrinks by the square root of this amount. The infinitesimal
cayley ball at P is even easier to keep in mind : the ellipsoid with centre P with

the radius of the central ball shrunk in these directions by the factors 1 − v2

c2

and
√

1− v2

c2 respectively, where v denotes the euclidean distance of P from the

centre of Bn. This because δ(a, v) and γ(a) approach 1 when a→ 0. That is, the
cayley distance of the ball Bn arises from a riemannian metric which coincides
at its centre with the euclidean metric, and at all other points P stretches the
tangent vectors in these directions by the reciprocals of these factors.
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More generally, even if ‘motion’ is by bijections φτ , but the absolute motion
Pτ of each point is as before, our argument shows that, the extended-by-identity
bijections φτ of euclidean space are bicontinuous on the boundary of the ball.
When dimension n ≥ 2 all sorts of fissures can now develop within the n-ball,
for example, the points may be stationary till some radius r0 > 0, and for any
bigger radius rotating at a small nonzero speed. However continuity in time
implies that, the bijections φτ must be homeomorphisms for n = 1. If the order
of two points P and Q of the interval B1 is reversed under φτ their flow lines
intersect at some 0 < τ ′ < τ , i.e. Pτ ′ = Qτ ′ , contradicting injectivity of φτ ′ .
So these bijections are order preserving, and they have no discontinuity either,
because any such jump contradicts surjectivity. �

23. It seems that, any homeomorphism φ of the n-ball at a bounded cayley
distance from its identity map can be realized as a φτ of some motion. So these
bounded homeomorphisms are isotopic to the identity, however they form a
smaller group. For example, any homeomorphism of Bn which is radial, i.e.,
preserves each radius, is isotopic to the identity, but it may not be bounded.
Also, we’ll see later that, any strictly increasing curve passing through P for
τ = 1 can be realized as the flow line Pτ of some motion of space.

The projections of the flow lines Pτ on the absolute space of rays or τ = 1
are called the orbits φτ (P ) of the motion. Unlike flow lines, orbits can intersect
themselves or each other in all sorts of way but, if c < ∞ and n ≥ 2, an orbit

cannot visit all the points of a nonempty open set. Using P̂1P2 < 2(τ̃1τ2)—note
21—we see that in any time interval of cayley length 1

N the orbit stays in a
cayley ball of diameter 2

N , so over any unit time interval the orbit describes a
set which can be covered by N cayley balls of this diameter, but N( 2

N )s → 0 as
N →∞ for any s > 1, so this set has dimension at most one. �

Here we used hausdorff dimension of a metric space, viz., the infimum of all
positive real numbers s for which there exists a countable cover such that the
sum of the sth powers of the diameters is arbitrarily small. It is easy to see
that for submanifolds this is their usual dimension, and an argument similar to
the one above shows that, it is non-increasing under any lipschitz map, so it is
preserved by (bi)lipschitz homeomorphisms of metric spaces.

It follows that that amazing curve found by Georg and David while playing
dots-and-squares (!) can only be traced by an orbit of a motion with n = 2
and c =∞. For, it covered a 2-cell with 3 holes, so it can not be lipschitz; but
the reader can check that, the euclidean distance between its points at times
t1 < t2 is bounded by a constant multiple of the square root of t2− t1. Likewise,
any compact and connected manifold Mm ⊂ Rn can be traced in finite time as
an orbit of some motion of n-space, which moreover satisfies a ‘weak lipschitz
inequality’ involving the mth root of t2 − t1. �

Here t was the time of an observer S, for c =∞ it is the same as τ . For c <∞
it is not and, we emphasize that it is the absolute time τ which is parametrizing
the homeomorphisms φτ of absolute space, each observer S merely identifies his
ball B of radius c in his t = 1 with this space of all rays. These φτ were well-
defined because a line in the cone parallel to a ray cuts all the transversals τ =
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constant. This is not so, for c <∞, if we use the time t of S : a transversal t =
constant may not cut all the flow lines, for example, if the flow lines are parallel
to the same ray. So some points of B may not be on any flow line having a
point with a given t < 1, and following the flow to a t > 1 may give only an
injection, not a bijection : we would get a well-defined homeomorphism of B
for each t > 0 only when all the flow lines arise from the origin.

The foliation provided by all the flow lines has another interpretation when
we use the product structure of the half space of S – see Figure 5 – instead
of the hidden product structure of the cone : it is what S would observe if his
own euclidean space were undergoing a motion. This because, up to any time
t > 0, he can discern only the motions of those points of his space which are at
distance less than ct from him—that is why he’ll plot only a cone full of flow
lines in his half space—and the observed positions of any point at times t1 < t2
are subject to the condition ‖x(t2)− x(t1)‖ < c(t2 − t1).

The homeomorphisms φτ of the euclidean n-space t = 1 of S, identity outside
his ball Bn, give orientation-preserving homeomorphisms of the n-sphere having
an extra point at infinity. Only that about this hidden motion is heard which
persists under perturbations : so, for n 6= 4, the observer S can assume that
these homeomorphisms are lipschitz! Indeed, for n > 4 we’ll construct later, an
almost radial homeomorphism, identity outside the ball, which conjugates the
motion to one which is lipschitz. Spherically bending the flat mirrors of Bn

maximally inwards ensures that a lipschitz inequality holds if one of the points
is on the boundary. Within the ball we’ll make the homeomorphisms piecewise
linear. We’ll start with a simplicial approximation of the motion. This may
have some singularities, but for n > 4 these singularities can be engulfed away,
essentially because a simple closed curve on the already good part can be coned
away from it, cf. Embedding and unknotting of some polyhedra (1987). For n ≤ 4
this does not work, and the result is in fact false for n = 4, but for n < 4 there
are other constructions which show that the result is again true.

Even for c =∞—now the cone is a half-space and τ = t—the hidden product
structure is different from that of any observer : all the flats t = constant with
all the rays from the origin, instead of all the parallels to a ray S. Once again
it is this observer-independent hidden product structure only that we’ll use to
define the homeomorphisms φt of the absolute space t = 1 from any continuous
flow of the same for all absolute times t > 0. However for c =∞ the continuous
flow lines Pt may not be lipschitz, and these homeomorphisms of euclidean n-
space may not be at a bounded distance from its identity map, nor can S assume
on à priori grounds for n 6= 4 that they are lipschitz. These distinctions show
that, there is no time and order-preserving homeomorphism from the half space
onto the cone of rays through a ball Bn of finite radius.� On the other hand
any homeomorphism of Rn onto Bn determines and is determined by a time
preserving homeomorphism which maps rays to rays.

Given a flow of the space its invariant subsets are those on which the homeo-
morphisms φτ restrict to homeomorphisms, i.e., subsets A such that if P ∈ A
then the entire orbit φτ (P ) is contained in A. The minimal invariant sets of a
flow partition the space into topologically homogeneous parts. That these sets
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are disjoint or equal is clear. At points P and φτ (P ) of any invariant set A the
topology is the same because φτ restricts to a homeomorphism of A. If A is
minimal then its points are related by finite sequences of points each on some
orbit through the preceding.� Topologically homogenous spaces are nice, nicest
being connected manifolds, so we ask: what manifolds are born in flows?

Example. There is a smooth motion of n-space, n ≥ 2, with minimal sets
parallel 2-planes. Let the flow lines be tangent to the vector field on the half-
space whose component along the ray through that point is t, and whose compo-
nents parallel to a fixed frame of the n-space are (t cos log t, t sin log t, 0, . . . , 0).
Then the orbits, i.e., the projections from the origin of these flow lines on t = 1,
are all circles of radius 1 parallel to the first two vectors of the frame.� A similar
construction works also for c <∞, and though the invariant partition of a flow
is seldom a foliation as in this example, it seems that such constructions put
together will suffice to establish that, any smooth connected manifold occurs as
a minimal invariant set of some flow with c <∞.

However not all topological manifolds are relativistic : if a closed Mm occurs
as a minimal invariant set in a motion with c < ∞ then it admits a lipschitz
structure. We can assume m > 3 and so n > 4, but then S can perturb the
motion to a conjugate motion whose φτ ’s are lipschitz homeomorphisms of his
ball Bn; their restrictions to the perturbed copy of Mm give the desired lipschitz
structure.� We recall – see note 16 – that this only excludes some 4-dimensional
manifolds. Nevertheless it seems likely that, outside these wild 4-manifolds, any
closed connected topological manifold can be realized as a minimal invariant set
in a flow with c < ∞, and that, for the limiting non-relativistic case c = ∞,
even these exceptions can be thus realized.

A motion of space is steady in time if the flow lines through any ray are
positive multiples of each other, so τ 7→ φτ is a group homomorphism φτ1τ2 =
φτ1 ◦ φτ2 : see Figure 7.� For a steady motion, the minimal invariant sets have
just one orbit each. Further, if a point returns to its position, it must repeat its
journey, therefore : each orbit is homeomorphic to an open interval, a circle, or
a single point. So the minimal invariant sets of a steady motion are very simple;
only, if n = 3, some of these circles may be knotted in B3. On the other hand,
it may well be that any smooth closed connected submanifold Mm of an n-ball
Bn is a minimal invariant set of some unsteady motion?

Figure 7
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The homeomorphisms of the cone Φτ (P ) := Pτ (the point on the same flow
line with proper time τ times) map leaves to leaves. They map—Figure 7—rays

to rays iff the motion is steady. These motions preserve the metric ÃB of the
rays. However, when c < ∞ and n ≥ 2, no motion other than absolute rest
preserves the metric ÃB of the leaves ! If φ preserves the orientation and cayley
distance of Bn it is a composition of an even number ≤ n+1 of linear reflections
of the cone. If φ is not the identity map, and n ≥ 2, there is a line L whose
image φ(L)—also a line by linearity—is distinct from it. Since the cayley balls
of any finite radius become arbitrarily small – see note 22 – near the boundary
of Bn, the second line is not wholly within a bounded cayley distance of the
first line. So a cayley distance preserving φ can occur as a φτ of some absolute
motion of space only if it is the identity map of Bn. � On the other hand the
geometry of the infinite n-ball or the finite interval is not rigid : any orientaion
and distance preserving φ occurs as a φτ of some motion.

The cayley isometries of the cone are given by the compositions of its linear
reflections and time reversals τ 7→ a2/τ . If the homeomorphisms Φτ commute
with a group G of these isometries the motion is called G-periodic. Especially
alluring are the discrete subgroups G with compact quotients, for example, in
all dimensions there are groups G under which the conical spacetime covers a
closed and parallelizable manifold ! The n-ball, held taut at its boundary in his
euclidean n-space, and vibrating G-periodically, enables the observer to hear to
some extent the topology of this quotient. This discretization of spacetime is
available also for c =∞ and in this non-relativistic schrödinger theory examples
of such discrete subgroups are easier to give.

K S Sarkaria

(contd.)
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