
24. The closed and parallelizable spacetimes that closed Note 23 deserve our
close attention. For all n ≥ 1 there are discrete subgroups G of cayley isometries
of our conical spacetime such that the quotient space is compact, and by using
instead a suitable subgroup of finite index we can always ensure not only that
this quotient is a closed (n+ 1)-manifold, but also that it admits n+ 1 smooth
linearly independent tangent vector fields v1, . . . , vn, vn+1. Further, some such
groups G are generated by a subgroup Γ of cayley isometries of the ball Bn and
a single homothety, i.e., a product of two distinct time reversals.

The closed spacetime is then a circle S1 times a closed n-manifold Bn/Γ
which may not be parallelizable, but Bn/Γ is parallelizable in the complement
of a point. For, this complement has the homotopy type of an (n−1)-dimensional
polyhedron. So, on it, the unit vector field w tangent to S1 is homotopic, via
never zero sections of the tangent bundle of the spacetime, to vn+1. Lifting this
homotopy we obtain, on this complement, n + 1 linearly independent vector
fields w1, . . . , wn, w. The first n of these give, under projection parallel to w,
the required parallelization of Bn/Γ minus a point. �

A smooth n-manifold without boundary immerses in n-space iff it is open
and parallelizable. Here ‘only if’ is easy and ‘if’ is nowadays an existence theorem
of flexible p.d.e. theory. However, even for the punctured n-torus Rn/Zn \ {pt},
an explicit immersion is not easy, and for its relativistic analogues Bn/Γ \ {pt},
we know in general nothing about the discrete groups G and Γ beyond what
we asserted above without proof about their existence. These existence proofs
are very pretty – especially an étale homotopy argument which shows why the
obstruction to parallelizability vanishes for a finite cover – but first, let us ponder
this painting of that river—Note 20—flowing north out of Africa ...

Sunset on the Nile (Jens, circa 1956)

25. Where do we come from? What are we? Where are we going? This is
the longish name of a painting by Gauguin. A paper by Gromov starts with that
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painting, and then, for its title, has Manifolds asking these existential questions
of themselves. Though surely very few can talk, closed manifolds have always
been, for me too, very natural objects. This belief is, I guess, what led me to
the results of Note 23, and the many related musings in these notes.

It seems that in recent times physics has returned to its cartesian roots, in
particular the dictum that, matter is but extension, and is differentiated only
by its various motions. Be that as it may, any closed topological manifold is
‘cartesian matter’ in the sense of this theorem : it can be created in finite time as
a compact minimal invariant set Mm of some continuous motion of a euclidean
space having sufficiently many degrees n of freedom.

A flow of Rn can probably also have other compact Mm’s—all necessarily
connected, topologically homogenous and homogenously embedded—but it is
manifolds that seem the most natural. Indeed, matter is discrete, so what matter
are maybe the triangulable Mm’s : these are closed manifolds. � This is easy,
but the Bing-Borsuk conjecture, that any locally contractible and topologically
homogeneous compactum is a manifold, is still open for m > 2. And, for m = 3
it would finish another proof of Poincaré’s conjecture, that a closed 3-manifold
with fundamental group Γ = 1 is the 3-sphere. Also, the unfolding classification
of triangulable Mm’s for m ≥ 5 is tied closely to that of homology 3-spheres,
i.e., closed 3-manifolds with Γab = 1. ‘His’ homology 3-sphere with Γ finite—the
Miss Universe of “213, 16A”—was discussed at great length by Poincaré, but
who knows, the infinitely many homology 3-spheres which occur as B3/Γ may
be there too in his pioneering and prolific writings on discrete subgroups Γ
preserving the geometry of a 3-ball of radius c < ∞ ? The unfolding work
on triangulations suggests that the above ‘cartesian matter’ can be analysed in
terms of these ‘elementary particles’ or ‘relativistic crystals’ ...

For c < ∞ it is in fact (Bn/Γ)×S1, and more generally any manifold quotient
Cn+1/G of the cone, that is more like a classical crystallographic manifold, for
it has a finite parallelizable cover. These closed spacetimes Cn+1/G have an
induced reeb foliation and transverse line field, since the cayley isometries of the
cone Cn+1 map leaves and rays to leaves and rays. � In this context we’ll think
of Cn+1 as the infinite cylinder over the ball Bn of any observer S :–

Figure 9
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This cylinderical representation is convenient for doing topology, but the
geometry gets distorted. The new coordinates are the logarithmic time u =
log t of the observer and relative velocity v with respect to him, so parallels
to S represent galilean motions. More generally, any smooth curve (u,v(u))
represents a possible motion iff it obeys the relativistic constraint |dv/du| <
c− |v|. Moreover, the lorentz contraction factor γ(v) is tied intimately with the
new equations u = log γ(v) + constant of the reeb leaves, that in the conical
picture were simply c2t2 − x2 = constant. The new cylinderical picture is
preserved by translations parallel to the axis just like the conical picture was
preserved by homotheties, however the cayley isometries of the ball moving its
centre are restrictions of nonlinear transformations of the cylinder.

Foliations are ‘cartesian’ partitions, for example it is likely that, any smoothly
foliated closed manifold (Mm,F) can be created in finite time as an invariant
set of a smooth relativistic flow of a high dimensional ball Bn of radius c < ∞,
each leaf of F a minimal invariant set of this flow. However a parallel gener-
alization of the theorem stated above to all continuously foliated topological
manifolds vis-à-vis continuous non-relativistic flows seems more iffy.

This was my cue to revisit my foliations days, doing which I noticed that, the
intermediate partitions used in all those constructions of foliations from that era
are most likely ‘cartesian’ too, at least as long as everything is smooth. Given
below are some other things from this trip back in time.

26. Besides the aforementioned real analytic reeb foliations of the closed
spacetimes Cn+1/G – are there some homology spheres here? – there was that
good old smooth reeb foliation of S3 which however I now found myself looking
at through the lens of my later deleted joins days :–

Let S3 be the round 3-sphere of circumference 4 centred on the origin of
R4 = R2 ⊕R2. Then the spherical distance between the first and second circles
in which S3 intersects these summands is 1 and S3 is the join S1 · S1 of these
two circles. That is, any other point of S3 lies on a unique great circular arc of
length 1 from a point x of the first circle to a point y of the second, and can be
denoted (1−α)x+αy, where α is its distance from the first circle. So, points at a
distance α from the first circle are at a distance 1−α from the second, and form
a submanifold Lα of S3 diffeomorphic to S1 × S1 = {(x, y) : x ∈ S1, y ∈ S1} if
0 < α < 1, while L0 and L1 are the first and second circles.

We now use the foliation of B2×S1, obtained by dividing the infinite cylinder
of Figure 9 by a translation, to desingularize this foliation-with-singularities of
S3 : that is we plug in a copy to refoliate the diffeomorphic neighbourhood
of all points within a certain distance less than one of each circle, smoothness
on the bounding toral leaf of this neighbourhood then follows from the fact
that log γ(v) and all its derivatives approach infinity when v → ±c. Also, we
can desingularize symmetrically with respect to the switching Z/2-action on
S3 = S1 · S1, and if we choose the ‘certain distance’ to be 1/2 for both circles
we would be left with just one toral leaf L1/2. �

Likewise, joining q+1 spheres gives a foliation-with-singularities of a sphere,
with generic leaf product of all these spheres, so it has codimension q, but there
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are also some singular leaves that are products of only some of the q+1 spheres,
e.g., the (q + 1)-fold join S2q+1 of S1 has such a ‘foliation’ with generic leaves
(q + 1)-tori. When exactly can the join of q + 1 spheres be desingularized to get
a codimension q foliation? Obviously this sphere should admit a codimension q
tangent plane field, for example, the join of two spheres can be desingularized
only if is odd dimensional, but this condition is not sufficient.

The join of two spheres can be desingularized iff they are odd dimensional
with one a circle. Given the above foliation-with-singularities of Si ·Sj , we want
to refoliate two disjoint open saturated neighbourhoods Si×Bj+1 and Bi+1×Sj ,
of the singular leaves Si and Sj , so that the new leaves approach the boundary
leaves Si×Sj . If i > 1 and j > 1 then Si×Sj is simply connected; therefore by
Poincaré’s original definition of the fundamental group, the global monodromy
of any multiple valued function defined on it is trivial; so that given by nearby
leaves of these refoliations would be trivial; which rules out approaching leaves.
So, because i+ j + 1 is odd, i and j are odd with one 1.

Conversely, Figure 9 modulo a translation refoliates the neighbourhood of a
singular circle, but refoliating Si ×B2 when i is odd but bigger than 1 is much
harder. However this neighbourhood obviously admits a smooth nonzero vector
field normal to its boundary – also we can ensure that it coincides with a given
nonzero vector field on the central Si – and it is known that the existence of
such a vector field implies that of the required refoliation. �

27. This end of the year note is being typed nine months after the one above,
but of course I had once again looked long and wistfully at Thurston’s “Existence
of codimension one foliations” (1976). The number of people who got it was
nonzero then, but now – four decades later! – it is (imho) even less than those
who dig Mochizuki’s “Inter-universal Teichmüller theory” (2012). This classic
characterized manifolds possibly with boundary that admit a smooth foliation
having boundary components as leaves. This is done using an explicit local
construction which spreads the required foliation steadily, and always transverse
to a given vector field normal to the boundary components, till it covers the
entire manifold ... so I imagine we should in fact be able to refoliate our Si×B2

in such a way that this new foliation cuts the central lower dimensional odd
sphere Si in a given codimension one foliation?

Unlike Thurston my ability ‘to see from within’ noneuclidean geometries is
very limited, may be that is why I’ve given primacy to familiar n-space only, with
indeed the—to my mind just pragmatic, but also called relativistic—restriction
that it ought to be of a finite radius c < ∞. In this receptacle are born from
its own cartesian motions all lipschitz manifolds, and if smooth enough, its
cayley distance induces on them a riemannian metric. The usual tools of vector
calculus and forms, tensors, etc., are available chart by chart – with an occasional
sign ambiguity for orientation dependent quantities – so existence of smooth
foliations translates into existence theorems of analysis, for example, the partial
differential equation −→

E ·curl−→E = 0 has an always nonzero solution on any closed
3-manifold, because this is the same as saying that the 2-dimensional plane field
orthogonal to −→

E is tangent to a foliation.
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The story in fact began when this problem of vector calculus was posed for
S3 by Hopf in 1935. It was solved by Ehresmann and Reeb in 1944, but then
there was an extended drought of interesting foliations, till Lawson got infinitely
many odd dimensional spheres in a clever way, but it was Thurston soon after
who reached the bottom of the well, his chart by chart approach akin to how
Edwards et al were trying to triangulate topological manifolds.

Which reminds me of another problem about vector fields that was posed to
me in late 1969 in a very kind letter from Professor Steenrod :-

Working out by myself what in the topology of D prevents this factorization−→
P =

−→
E × −→

H was a wonderful way of learning some obstruction theory, and so
appreciate later on Haefliger’s necessary conditions for the existence of foliations
in all codimensions, which prepared the ground for Thurston to complete the
job from the other end. Also it helped me move to virtually a ring side seat
even as this dénouement was about to be played out.

There was much else equally exciting going on then, e.g., the index formulas
of Atiyah et al. Trying to make their analysis less messy I stumbled on the
smoothing operators in de Rham’s Variétés Différentiables. If there are enough
flows preserving leaves they generalized to foliated manifolds and gave finiteness
theorems. In the cartesian context a smoothing operator comes with the primal
motion that gave birth to our manifold.

The charts lipschitz if c < ∞ come too, so abstract manifolds are natural.
Poincaré’s crossword dissection of smooth manifolds, perfected by Cairns, used
a quadrillage of the ambient space. For topological manifolds we use a grid in
each chart, and puzzle out if two overlapping dissections can be made to fit,
then three, etc. For lipschitz structures Sullivan played the same game using
1/c > 0 tilings, so these crosswords or torus tricks quantize manifolds.

The new year is here and I’ll return to a sequel to auNgLIAW Aqy twielW – its
translation Fingers and tiles will be available soon – which I posted in July 2015.
This gave four proofs of a cute problem tied to the burgeoning Thurston lore,

5



viz. the first of the ten (!) stories about him that Sullivan relates in the November
2015 issue of the Notices of the A.M.S. I thought this was an auspicious way to
start (re)learning the constructions needed to understand better some questions
that have arisen in this work. For example the sequel that I am working on
dwells on constructions used to study the embeddability of simplicial complexes
in double dimensional space.

There is also a considerable backlog of older things that need to be typed
up, so I hope to continue this series of notes as well. For example given below
is a cute picture, scanned directly from my notebook of 2014 to save on time,
exemplifying how deleted joins, to wit Flores’ spheres, join the fray as cayley
balls if we replace the ball B of radius c by a regular simplex.

K S Sarkaria (contd.)
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