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K. S. Sarkaria

A Look Back at Poincaré’s Analysis Situs

§1. This is a very brief report on a year-long Topology Seminar which I ran during 1993-94
at Panjab University. The detailed lecture notes of this seminar will be published elsewhere.”

Our object in this seminar was to get an over-all picture of what had been happening in this
century’s Topology, and with this in mind we had adopted the following strategy.

(i) To understand the mathematics of Poincaré’s “Analysis Situs” and its five Compléments
as clearly as possible, and

(ii) to understand the threads connecting Poincaré’s ideas to future developements as clearly
as possible.

In the course of doing (i) and (ii) we also got
(iii) some new results.

§2. There is no doubt that Poincaré’s Analysis Situs and its five Compléments (1953), 1892~
1904, constitute a breathtaking, epic, monumental (almost any superlative seems inade-
quate!) work.

In fact if I were merely to make a list of the big ideas which occur one after another in it, I
would over-step my time.

Nevertheless, let me at least starf making such a list: —

— Boundary operator, Beiti numbers, homologies (using smooth and oriented singular chains
of a differentiable manifold: §§ 1-6). (However we note that Poincaré became aware of tor-
sion only later, in the first Complément, while giving another definition of homology via in-
cidence matrices of cell complexes.) :

(The extent to which Poincaré’s ideas have overshadowed this century’s mathematics can
perhaps be gauged from this simple little fact:

"

A first edition of most of these notes (about 150 pp) is available.
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Out of all the Fields Medallists, with the exception of perhaps three or four, every one of
them — irrespective of his domain: number theory, algebra, analysis, ... — has used some ho-
mology in his work!!

Perhaps not since the invention of the calculus has a single tool so strongly influenced
mathematics as homology. )

_ Periods of indefinite integrals (= differential forms) and (implicitly) de Rham cohomology
§7.

_ Intersection matrices and Poincaré’ Duality in orientable closed manifolds (§9, with a cor-
rect proof only later in §1X of the first Complément).

(Again it is remarkable how many fantastic results of this century — going back from Freed-
man and Donaldson, through Rochlin and Whitehead, to this beautiful duality of Poincaré —
are at heart really assertions about the intersection matrix of an M4k 1

— Triangulability of differentiable manifolds (assumed in §10, with attempts at proof later in
§16 via quadrillages, and in §X1 of the first Complément via a method of rays.)

— Monodromy of integrable linear PDEs (= flat connection) on a manifold and definition of
the fundamental group © (M) as the “most general” such group of M (§12).

(This definition of 7t; was later put on a firm footing, and used in his de Rham homotopy the-
ory, by Sullivan (1977).)

_ Also the now standard (via homotopy classes of loops based at a point) definition
of m;(M), and again a third combinatorial definition which gives relations for 7tr;(M) if M is a
CW complex obtained by pairwise identification of facets of a polyhedron (§§12-13).

— Many computations of fundamental groups and homologies, and a classification theorem
for some affine 3-manifolds (which is perhaps the deepest result of the main paper: §§10-
11, 13-14).

(In Dennis Sullivan’s words this result is “1/8 th of Thurston ’s theorem”: the latter says
roughly that any irreducible 3-manifold can be equipped with one of 8 specified geometries.)

The above is only the beginning (based on §§1-14 of the main paper), but let me just stop
here, and now tell you some more about the first and last items of the above partial list.

§3. Poincaré’s first definition of homology. He starts off Analysis Situs by defining what we
would now perhaps call a differentiable quasi-affine non-singular complete intersection
V" = RN, i. e. a clean intersection of N-n smooth hypersurfaces of an open set of RN defined
by so many smooth equations.

The aforementioned open set is assumed defined by some inequalities. He now starts replac-
ing, one-by-one, these inequalities by equations, and by adding these, one-by-one, to the N-n
defining equations of V, gets the complete boundary of V. Then the boundary dV of V is
defined by dropping further the singularities: so e. g.



Each V is (transversely) oriented by ordering its defining N-n equations (so a transposition
of 2 of these equations gives not V but —V), and the boundary components are oriented by
placing the new equation in the end (this is what gives the arrows in the above picture).
Poincaré realizes (unlike Betti before perhaps?) that “varieties” can repeatin dV, e. g.
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Whenever an integral linear combination of r-dimensional “varieties” equals a boundary dV
he writes .

C1W1+CZWZ+.H =)

Starting with these primitive relations (with all W; € M) he now generates all homologies of
a manifold M (see below for his definition of manifold) by “treating them just like equa-
tions”: i, e. by allowing such relations to be added, and terms taken to the other side if one
changes sign, or multiplied by integers (and occasionally — and this of course makes a big
difference! — even division by nonzero integers).

We break here for Poincaré’s definition of a manifeld M: First he sort of retreats and con-
siders more restrictive parametrized varieties 1. €. vi < RN with a 1-1 onto 0 from an open
subset of RN to v given. But next he generalizes enormously via the idea of continuation:

vy and v, are called continuations of each other if v; m v, is nonempty and is also a
parametrized n-variety, e. g.
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not continuations continuations

He defines M as a graph ( = réseau connexe) whose vertices i are parametrized varieties
v; (of RN) with edges {i,j} corresponding to pairs of varieties which are continuations of
each other. In modern terms he has defined the notion of an abstract manifold M together
with an immersion into some RN (but for him the latter is always extra baggage, and this is
quite explicit as one reads on the paper).

Returning to homologies, we now see Poincaré defining Betti numbers b, (M) as the cardi-
nality of a maximal set of linearly independent (i. e. no non-trivial homology between them)
and closed (i. e. with dc = 0) combinations of r-dimensional subvarieties of M.

(Betti’s numbers on the other hand had been defined restricting the coefficients ¢; to be al-
ways {-1, 0, +1}: so Betti was in fact talking of the least number of generators required to
generate H; (M) — see below.)

In modern terms, Poincaré’s definition re-interprets as follows: Let C,(M) be integral com-
binations of (oriented) “r-varieties” of M, generalize d by linearity to all these to get
d: C,(M) — C,_;(M) and since dod = 0 define Hx(M) = kerd/Imo. Then Poincaré’s b, (M) is
the Z-dimension of H, (M) mod torsion. (As mentioned before Poincaré did become aware of
torsion too, but later.)

Relationship of this definition with singular homology. There are essentially 2 differences, If
we use all continuous (instead of just smooth) oriented v°s we get the definition of singular
homology as given by Lefschetz (1933). If we further use ordered (instead of oriented) vs,
we get the current definition of Eilenberg (1944). We note finally that standard techniques —
cf. Eilenberg (1947) — show that, for the case of smooth manifolds M, the aforementioned
Poincaré homology groups Hy(M) coincide with the singular homology groups of M.

§4. Poincaré and 3-manifold theory. Extrapolating from the case of 2-manifolds (also from
his experience with fundamental domains of some Kleinian groups) Poincaré assumes the
triangulability of closed 3-manifolds, i. e. that they can be obtained from a 3-polyhedron by a
pairwise identification of its facets.

Since analysis of similar identifications had led to a classification of 2-manifolds, Poincaré
now quite naturally wants to make lists of the 3-dimensional ones the same way.
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Like always he starts off from something very simple. He points out that the 2-torus is a
square, with opposite sides identified, and it is the only orientable 2-manifold obtained this
way. So what can we say about the parallel 3-dimensional case of the cube? (Note also that
any 3-polyhedron is a subdivided cube, so the undivided cube can serve as a starting point as
one scans for all closed 3-manifolds: e. g. the famous homology sphere P? of Poincaré would
be encountered at the “next” level in such a scan because the dodecahedron is combinatori-
ally a very simple subdivided cube.)

fe2l]
o]

The cube. Bven if we only allow its opposite facets to be identified, we have much more
leeway now than for a square: we are allowed (see fig. above) to first rotate a facet (through
0, ©/2, w, or 3n/2) and then identify with the opposite one. (We disallow reflections because
we want orientable 3-manifolds only.)

Accordingly let us adopt the notation abe, 0 < a,b,c < 3, to denote the cell complex obtained
by rotating three compatibly oriented adjacent facets of the cube through these multiples
of /2, and then identifying with the opposite facets.

Poincaré’s first five examples are (in the above notation) 000 (the 3-torus), 113 (a non-
manifold), /i1 (quaternionic space), 001 (a twisted 3-torus), and 222 (projective space,
which he defines a little differently by using an octahedron).

In each case he tests for non-singularity by computing the Euler characteristic of the /inks at
the vertices of the cell complex (the other points are obviously non-singular) and computes
(for the four manifolds he gets) the fundamental group and the Betti numbers to show that
they are topologically distinct.

During our seminar we checked that there are exactly three more manifolds of this kind:
002, 022, and 122 (Poincaré was certainly aware of at least the first of these because it be-
longs to the series below).

Poincaré’s series 00T, T € SL(2,Z). These manifolds are defined combinatorially as fol-
lows. Each integral matrix T with det(T) = 1 determines in a natural way (see fig. below) a
T-subdivision of the unit square. Use this to subdivide the top of the cube, and analogously
subdivide the bottom using the inverse matrix, and leave the vertical faces of the cube un-
subdivided. Then 00T is obtained by identifying opposite pairs of vertical faces without do-
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ing any preliminary rotation, and by identifying each piece of the subdivided bottom with the
corresponding piece of the subdivided top.

Alternatively 00T is also defined group-theoretically (Poincaré uses this for all his computa-
tions) as the quotient of 3-space by the discontinuous group generated by the three affine
motions

(xy,z) = (x+HLy,z), (x,y,2) = (x,y+,z), and
((x¥),2) > (T(x,y),z+1).

(These manifolds play a bis role in the third and fourth Compléments — which deal with
monodromy, etc., of algebraic surfaces — where Poincaré thinks of 00T as a forus bundle
over the circle, viz. the mapping torus of the toral automorphism T: R¥Z72 — R%/Z2 more
generally he also considers surface bundles over the circle.)

Using his group theoretic definition of these manifolds Poincaré now proves the following
(which he had announced in his 1892 Comptes Rendus note).

Poincaré’s rigidity theorem. 00T is homeomorphic to 00U if and only if T is conjugate to U
or its inverse in GL(2,Z).

We remark that the above is in fact a corrected version of the result stated in the paper (the
“or its inverse” is necessary, also Poincaré seems to conjugate within SL(2,7) which won’t
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do). In our seminar we checked that the above is true even if det(T) = -1 = det(U) (when of
course these manifolds are non-orientable) and we also obtained the following arithmetical
addendum to Poincaré’s result,

Enumeration of Poincaré’s series. There are infinitely many topologically distinct manifolds
00T with w(T) = = 2. However for all t other than * 2, the number P(t) of such manifolds
with tr(T) = t is finite, and is given by
h(t)+n,(t)+1

2

where h(t) = number of ideal classes of Z[(1*—4)'2] and ny(t) = number of elements of order
2 in this class group.

P(t)=

A similar rigidity and enumeration result can most probably be established for another infi-
nite series 227 containing the manifolds 222, 221, and 220. Since these manifolds 22T are
definable “like” Lens spaces (starting from RP3 minus a disk instead of a disk) we see that
Poincaré’s result is close (in spirit at least!) to the classification of lens spaces given in Rei-
demeister (1935).

More obviously Poincaré’s rigidity theorem is akin to the later rigidity theorems of Bieber-
bach (1911), and of Mostow (1966). The former deals with conjugacy, by means of affine
motions, of discontinuous groups of Euclidean motions, and thus is especially close to Poin-
caré’s result, which deals with a similar problem for some discontinuous groups of affine
MOtions.

We remark also that some definitive general results on the conjugacy of discontinuous
groups of affine motions of 3-space have been proved by Fried-Goldman (1983). For exam-
ple they show that a closed 3-manifold is affinely flat if and only if it is finitely covered by a
torus bundle over the circle (i. e. an 00T). These authors also show that these are all the
closed 3-manifolds which admit three (viz. the ones modelled by the left-invariant metric of a
solvable 3-dimensional Lie group) of the eight “geometries” of Thurston (1982).

From the above I think it is amply clear that Poincaré’s impressive contributions to
3-manifold theory are by no means limited to the very famous problem about closed
3-manifolds which he left to us (Is one of them an exotic homotopy sphere?) or to the en-
chanting (and ubiquitous!) exotic homology sphere P3 which he discovered in the fifth
Complément of this paper.

Acknowledgement. I would like to thank Denis Sullivan who made my visit to the 1994
Nancy Congress (where the above talk was given) possible.
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