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ABSTRACT

For n = 3, the ordinary Whitney trick shows that a simplicial complex K” having
van Kampen obstruction class 0(K”) = 0 embeds in R*". We give a one-
dimensional version of the Whitney trick, by means of which any graph K! satis-
fying 0(K') = 0 can be, step by step, embedded in R2. We then deduce some
other planarity criteria, including Kuratowski’s, from this result. As a byproduct
we also obtain a fascinating description of the mod 2 homology of the deleted
product of a graph.

§1. Introduction.

The well-known graph planarity criterion, which now bears his name, was pub-
lished by Kuratowski [5] in 1930.

Somewhat less well known is the contemporaneous paper of van Kampen [11],
1932, in which is defined, for any n = 1, an obstruction 5(K"), which measures
the non-embeddability of an »-dimensional simplicial complex K" in R?". One
of the results of [11] is that 3(K") # 0 when K" = ¢2"*2, the n-skeleton of a
(2n + 2)-simplex; thus this n-complex does not embed in R?". More significantly,
van Kampen also outlined, in the converse direction, a general procedure by which
any K" satisfying 5(K") = 0 could be embedded in R?". However, this method —
which was made precise only much later, and independently of each other, by Wu
[15] and Shapiro [10] —makes essential use of the well-known Whitney trick [14],
1944, and thus works only for n = 3.

The main object of this note is to show that van Kampen’s method extends also
to the case n = 1; in fact there is a one-dimensional version of Whitney’s trick by
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means of which any graph K' satisfying 5(K') = 0 mod 2 can be, step by step,
embedded in R?. Furthermore, from this planarity criterion, we will directly de-
duce some others, including Kuratowski’s. The latter, in fact, fits into van Kam-
pen Theory very nicely, being a homological reformulation of the cohomological
condition 5(K!) = 0.

As a byproduct we also obtain a fairly complete and fascinating description of
the mod 2 homology of the deleted product of K'.

§2. Planarity of graphs

(2.1) DerNITION OF 0{K). Our graphs will be without loops and multiple
edges, i.e. will be one-dimensional simplicial complexes K.

The deleted product K, of a graph K is the sub cell-complex of K X K defined
by K, = {0 x 6|0 N6 =¢}. We equip it with the free Z,-action o X 6 ~ 6 X .
From now on we only consider symmetric cochains of K,, i.e., those which are
preserved by this action. Furthermore, it will suffice to use cochains with Z,-
coefficients only. (For n > 1, van Kampen Theory needs integer coefficients.t) The
ith symmetric cohomology of K, with mod2 coefficients is denoted
H{(K,;Zy).

Van Kampen [11] defined his obstruction class o(K) € H%(K,;Z,) as follows:

Take any (semilinear or simplexwise smooth) general position map f: K — R?.
Such an f has only finitely many double points, all contained in the interiors of
the edges. For any two disjoint edges a,8 of K let os(a,8) = | f(a) N f(B)]
mod 2. Then o(KX) is the symmetric cohomology class of this symmetric two-dimen-
sional cocycle o, of K,.

That o(K) is indeed an invariant of K follows from the fact that the obstruction
cocycle o; depends on f only up to an equivariant coboundary: see [11], Hilfsatz
4. This is also clear from Fig. 1, which shows how a perturbation of a general po-
sition linear map f, which moves a vertex v to the other side of an edge 8, adds to
oy the coboundary of the elementary cochain [v, 8], viz. that whichislonv X g
and 8 X v, and O elsewhere.

From its definition it is clear that for all planar graphs K one has o(K) = 0.
Conversely,

(2.2) If o(K) = 0 then any simplexwise smooth general position map f: K — R?
can be changed to an embedding as follows:

+Modulo remarks enclosed within such brackets, we restrict ourselves exclusively to the graph the-
oretical case n = 1.



Vol. 73, 1991 WHITNEY TRICK AND KURATOWSKI’S CRITERION 81

Fig. 1.

(2.2.1) Step 1. As in [11], Hilfsatz 3, we start by noting that any elementary
coboundary 8[v, 3] can be added to the obstruction cocycle by changing 8 to 8,
as in Fig. 2. The point to note here, and also in many other pictures below, is that
“modulo” some thin even tubing 8’ is the “same” as 8. So any general position edge
which was cut by 8 an even number of times, will also be cut by 8’ an even num-
ber of times.

Since o(K) = 0 we can thus, without loss of generality, assume that

(A) the f-images of any two disjoint edges have an even number of intersections.

Self-intersections, if any, of edges are removed easily (see Fig. 3).
Adjacent edges, too, can be made to cut an even number of times. To do this,

Fig. 2.
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Fig. 3.

the first intersection of two such edges « and 8 can be replaced by two intersec-
tions, as shown in Fig. 4.

Hence we might, if necessary, by replacing X by an appropriate subdivision, sup-
pose in addition to (A) that

(B) all double points of f: K — R? belong to disjoint pairs of edges.

(2.2.2) Step 2. We now choose a total order < for the set of edges of K. Let «
denote the first edge which, under £, cuts any other edge, and out of all such edges
cut by « let 8 be the first edge. So a and 8 have disjoint vertices and cut each other
an even number of times. We plan to reduce the number of these cuts by 2, with-
out introducing any intersections on edges before the ath, and without losing the
properties (A) and (B) of f.

If two consecutive cuts of o with 8 are in the same direction, then they can be
removed as shown in Fig. 5.

We now come to the main case, i.e., any two consecutive cuts of o with § form
a Whitney loop ! o Z We first ensure that any other edge intersects this loop

B
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B
Fig. 4.
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Fig. S.

only on 8 or on the right portion of o. To achieve this we push 3 to the left, as
shown, in Fig. 6 in the first step, and then eliminate the new self-intersections of
B, as shown in the second step.

For this Whitney loop we can perform the straightforward one-dimensional an-
alogue of the standard Whitney trick [for n = 3], as shown in Fig. 7, if and only
if there is no edge v which cuts the bottom portion of 3 an odd number of times.

So assume that there is such a v. One of the segments of y joining the top and
bottom portions of 8 will cut o an even number of times. Furthermore, by using
the construction of Fig. 5 on +, we can assume here that any two consecutive cuts
are in different directions. We use the first and last of these cuts as “inlet” and
“outlet” of a tube running parallel to, and to the same side of, the entire right por-
tion of «, to alter the 8’ of Fig. 7 to 8", as shown in Fig. 8.

LN

N/
i

Fig. 6.
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Fig. 7.

Note that | 3” N y| is even and, once again, since §8” is the “same” as 8 “modulo”
even tubing, the number of cuts with any edge other than v also remains even.
Further, any self-intersections which may be present in 8” can be removed, as in
Fig. 3.

The number of cuts of o with 8 has thus been reduced by 2 in the desired man-
ner. Continuing this process, f eventually becomes an embedding of K in R?.

§3. Variations

(3.1) INTEGER COEFFICIENTS. Let f: K — R? be a general position map. Fix an
orientation of R?, and, for any two disjoint oriented edges o and 8 of K, count an
intersection where the orientation of f(o) followed by that of f(#) agrees with that
of R? as +1, and —1 otherwise. Then 5(X) € H2(K,;Z) is the class of the cocy-
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cle o7(o,0) which counts the intersections of f(o) and f(6) algebraically in this
fashion.

From the mod 2 planarity criterion of §2 it follows a fortiori that K is planar iff
3(K) = 0. [For n = 3 the van Kampen method uses integer coefficients, and thus
only establishes K" G R?" & §(K") = 0; however, I do not know of an explicit
K", n =2, for which 5(K") # 0 and o(K") = 0.]

(3.2) ConTiNUOUS Z,-MaPs. Let S' denote the unit circle of R? equipped with
the antipodal Z,-action. Since the integer 3,(0,8) can be identified with the degree
of the map F:9(a x ) —» S' defined by

S(x) = f(»)
F s = T N
59 =5 =7

it follows that 5(K) = 0, i.e., that K is planar iff there exists a continuous Z,-map
K. — S'. (This homotopy-theoretic criterion has a higher dimensional generaliza-
tion even more extensive than that of the cohomological one. It can be shown that,
for 2m = 3(n + 1), K" § R™ iff there exists a continuous Z,-map K, — S™!; see
Weber [12].)

An alternative formulation using the deleted join K, is sometimes more useful.
Recall that K, is obtained from the join K. K of two disjoint copies of K by delet-
ing all simplices of the type 6.6, ¢ N 6 # ¢. A similar proof shows that X is pla-
nar iff there exists a continuous Z,-map K, — S°.

(3.3) Kurarowskr’s CRITERION. The mod 2 symmetric cochains a, and sym-
metric chains ¢ = 24 ¢,8 of K,, are dual to each other under {a,c) = 24 cya(8),
where in the summation only one § is to be chosen from each antipodal pair of
cells. One has (da,c) = (a,dc), so there is also an induced duality ( , ) between
symmetric cohomology H2(K,;Z,) and symmetric homology H3(K,;Z,).

The S-minimal nonzero cycles z € H2(K,;Z,), or symmetric circuits of K, de-
termine a matroid on the set of 2-cells of K,. Obviously they constitute a set of
generators of the Z,-vector space H2(K,;Z,). Thus the class 0(X) can be non-
zero iff there is a symmetric circuit z with (0(KX),z) # 0. Let K, € K denote the
support of z, i.e. the subgraph determined by the edges which occur as one of the
factors of the 2-cells of z.

(3.3.1) Such a K, is homeomorphic to one of the Kuratowski graphs, o} or

ol o¢.

First note that K, is a minimal graph whose deleted product contains z, and that
the restriction o(K;) € H2((K)s;Z,) of o(K) € HX(K,;Z,) satisfies (0(K,),7) =
(0(K),z) # 0.
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Fig. 9.

We will see later that (K). contains no symmetric circuit other than z. So the
graph K, cannot possibly contain two disjoint 1-circuits ¢, and c,, because then
we would have z= (¢ X ¢;) + (¢, X ¢,), and so K, = ¢; U ¢,, for which o(K;) = 0.

K, can have no vertex v of valence 1, because the subgraph L obtained by omit-
ting v and the edge incident to it still has o(L) # 0 and so z < (L),, which is not
possible because K, is the support of z.

The vertices v of valence 2 can be eliminated one by one as follows. If v is
incident only to vw, and vw,, then the edge w;w, cannot be in K : otherwise
o(L) # 0 and so z € (L), for L = K\ {w;w,}. So K is a subdivision of M =
(K \ {v,uw;,ow,}) U {ww,], which has one less vertex of valence 2, and is the
support of the unique symmetric circuit contained in M,.

So without loss of generality we can assume that all vertices of K, have va-
lence = 3. A theorem of Dirac [3],T of which a purely combinatorial and elemen-
tary proof is given in Lovasz [6] (see §10, ex. 4, and pp. 377-378), now tells us that
K, is either (i) of, or (ii) a graph containing o¢-o¢, or else (iii) a wheel as in Fig. 9.
In case (ii) note that (o2 -0a). is itself a symmetric 2-cycle. So, by using the mini-
mality of K, , we must have K, = ¢3-¢. The third possibility is ruled out because
then o(K;) = 0.

If (K,). were to contain a symmetric circuit w other than z, then we could
choose a cell @ X 3 of w not in z, and obtain a graph L from K, by identifying an
interior point & of o with an interior point B of 8, and replacing both « and 8 by
two edges each. It is easily verified that L, contains a Z corresponding to z on
which o(L) is nonzero, and that L is the support of Z. But L, has less symmetric
circuits than (K),. So, by above, we might as well assume that L is homeo-
morphic to a Kuratowski graph. Since the identification point & = 8 has valence
4, L must be homeormorphic to a o having & = 3 as one of its five nodes. This

1tWhich classifies all graphs having vertices of valence = 3 and not containing any 2 disjoint circuits.
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is not possible, because then K is homeomorphic to a ¢} with two edges dupli-
cated, contradicting o (K) # 0. So no such w exists.

(3.3.2) The planarity criteria “o(K) = 0” and “6(K) = 0” were known previously
but only as corollaries of Kuratowski’s criterion.

Such a proof —given in Wu [16], p. 210—of “p(K) = 0” must have been known
even to van Kampen, because from his results 0(s{) # 0, 0(02-03) # 0, it follows
at once that o(K) = 0 only if K does not contain a homeomorph of of or ¢ - oZ.

Flores [4], 1933, established the criterion that “there exists a continuous Z,-map
(K1)y —» §2”—or, equivalently, “5(K') = 0”—by observing that for X = o or
0¢-0¢, Ky is Z,-homeomorphic to the antipodal 3-sphere. So, for any non-planar
K, one can have no continuous Z,-map from K, to S2. [Flores is using the
Borsuk-Ulam Theorem [1], 1933, which had just become available: “There exists
no continuous Z,-map S2**! — $27”_ It is amusing to note that this itself follows
easily from the result, o(K") # 0 for K" = o¢- . .. -6¢, contained in van Kampen
[11], 1932, because the deleted join (o2- ... -0&)s is Z,-isomorphic to the (n + 1)-
fold join $2"*! of the circle (0é)s.]

We remark that many other useful planarity criteria, including the well-known
ones of Whitney [13] and Maclane [7], are known to be easy corollaries of
Kuratowski’s criterion, but are not quite so easy to prove directly.

(3.4) HoMoLroGY oF K,. A fairly complete picture of the 2-circuits of K, re-
sults from the above discussion:

(3.4.1) The minimal nonzero cycles 7z € H,(K,;Z,) consist of

(i) some TORI ¢, X c,, one for each ordered pair of disjoint circuits
of K,

(i) some SURFACES OF GENUS 4, one for each homeomorph of
oé-o¢ contained in K, and

(ili) some SURFACES OF GENUS 6, one for each homeomorph of a}
contained in K. The free Zy-action of K. preserves the 2-circuits of
types (ii) and (iii) and pairs each torus c; X c, with its opposite
c; X ¢y,

To determine the topology of (03-04)s and (of'), we verify, by counting their
cells, that they have Euler characteristics —6 and —10, respectively. That they
are manifolds follows by checking that each vertex-link is indeed circular. Finally,
note that they are orientable because they are embedded in Flores’ 3-spheres
(0(%‘03)# and (7).
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[For n > 1 there are infinitely many non-homeomorphic minimal KX"’s with just
one non-zero 2n-cycle z in (K™)., and this even if we demand that z be a 2n-
manifold. However, we have shown in [9] that there are only finitely many K"’s
for which (K"). is equal to a 2n-pseudomanifold, and that in fact any such
n-complex must be of the type oflsil- f:fl- . -a::’j ,- Topologically this corre-
sponds to the fact that there are only finitely many n-complexes which are
critically —a notion stronger than minimally —non-embeddable in R2".]

Note that there is a 1-1 correspondence between the 2-circuits of K, and the 3-
circuits of the deleted join K;; however, the latter are all topologically the same,
viz. 3-spheres. The ones which are preserved by the free Z,-action of Kj, i.e.

those corresponding to types (ii) and (ii), constitute obstructions to planarity.

(3.4.2) The dimension of H,(K.;Z,) is either equal to the maximal number of
independent toral circuits contained in it, or else one more than this
number. The first alternative occurs if and only if K is planar.

This follows because the toral circuits generate the kernel of the linear functional
(o(K),) : H3(K.\; Z,) - Z,.

The above result corrects an error in Copeland [2] where it is asserted that
the toral circuits always generate H,(K,;Z,). The zeroth Betti number of K,
can be computed easily as in [2], e.g., if K is connected and has more than two
vertices, then K, is connected. Lastly, an Euler characteristic computation yields
dim H, (K,;Z,). [For n > 1 very little is known about computing H;(K.;Z;).
However, note that the well-known Richardson-Smith Theorem [8] —see also Wu
[16], chapter IV —gives a computation for all 7 = 1, of the related mod 2 (co)ho-
mology of the pair (K X K, diagonal) in terms of the Steenrod squares, or Smith
operations, of K.]
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