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ABSTRACT 

For n ___ 3, the ordinary Whitney trick shows that a simplicial complex K n having 
van Kampen obstruction class o(K n) = 0 embeds in R 2n. We give a one- 
dimensional version of the Whitney trick, by means of which any graph K I satis- 
fying 0(K i ) = 0 can be, step by step, embedded in R 2. We then deduce some 
other planarity criteria, including Kuratowski's, from this result. As a byproduct 
we also obtain a fascinating description of the rood 2 homology of the deleted 
product of a graph. 

§1. Introduction. 

The well-known graph planari ty criterion, which now bears his name, was pub- 

lished by Kuratowski  [5] in 1930. 

Somewhat  less well known is the con temporaneous  paper  o f  van Kampen  [11], 

1932, in which is defined, for  any n _ 1, an obstruct ion ~(K") ,  which measures 

the non-embeddabi l i ty  o f  an n-dimensional  simplicial complex K"  in R 2". One 

o f  the results o f  [11] is that  f i(K") :~ 0 when K "  = 0 2"+2, the n-skeleton o f  a 

(2n + 2)-simplex; thus this n-complex does not embed in R 2". More significantly, 

van Kampen also outlined, in the converse direction, a general procedure by which 

any K "  satisfying fi(K") = 0 could be embedded in R 2". However ,  this method - 

which was made precise only much later, and independently o f  each other,  by Wu 

[ 15] and Shapiro [ 10] - makes essential use o f the well-known Whitney trick [ 14], 

1944, and thus works only for  n _> 3. 

The main object o f  this note is to show that  van Kampen 's  method extends also 

to the case n = 1 ; in fact there is a one-d imens ional  version o f  Whi tney ' s  tr ick  by 
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means o f  which any graph K 1 satisfying 5(K ~ ) = 0 mod2 can be, step by step, 

embedded in R 2. Furthermore, from this planarity criterion, we will directly de- 

duce some others, including Kuratowski's. The latter, in fact, fits into van Kam- 

pen Theory very nicely, being a homological reformulation of the cohomological 

condition 5(K ~) = 0. 

As a byproduct we also obtain a fairly complete and fascinating description of 

the mod 2 homology of the deleted product of K 

§2. Planarity of graphs 

(2.1) DEFINITION OF o(K). Our graphs will be without loops and multiple 

edges, i.e. will be one-dimensional simplicial complexes K l . 

The deleted product K, of a graph K is the sub cell-complex of K × K defined 

by K.  = [(r x 0 I o n 0 = 4} .  We equip it with the free Z2-action o × 0 ~ 0 × a. 

From now on we only consider symmetric cochains of K, ,  i.e., those which are 

preserved by this action. Furthermore, it will suffice to use cochains with Z2- 

coefficients only. (For n > 1, van Kampen Theory needs integer coefficients./-) The 

ith symmetric cohomology of  K. with mod2 coefficients is denoted 

H~(K,;Z2). 

Van Kampen [11] defined his obstruction class 0(K) E H](K, ;Z2)  as follows: 

Take any (semilinear or simplexwise smooth) general position map f :  K - ,  R 2. 

Such an f has only finitely many double points, all contained in the interiors of 

the edges. For any two disjoint edges c~,/3 of  K let 0f(ol,/3) = If(oe) N f(/3) I 

mod 2. Then 0 (K) is the symmetric cohomology class of this symmetric two-dimen- 

sional cocycle 0: of K, .  

That 0(K) is indeed an invariant of K follows from the fact that the obstruction 

cocycle of depends o n f  only up to an equivariant coboundary: see [11], Hilfsatz 

4. This is also clear from Fig. 1, which shows how a perturbation of a general po- 

sition linear map f ,  which moves a vertex v to the other side of an edge/3, adds to 

Of the coboundary of the elementary cochain [ v, 13 ], viz. that which is 1 on v x 

and/3 × v, and 0 elsewhere. 

From its definition it is clear that for all planar graphs K one has o(K) -- 0. 

Conversely, 

(2.2) I f  o(K) = 0 then any simplexwise smooth general position map f :  K ~ R 2 

can be changed to an embedding as follows: 

tModulo remarks enclosed within such brackets, we restrict ourselves exclusively to the graph the- 

oretical case n = 1. 
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Fig. 1. 

(2.2.1) Step 1. As in [11], Hilfsatz 3, we start by noting that any elementary 

coboundary ~[ v, :3] can be added to the obstruction cocycle by changing :3 to :3', 

as in Fig. 2. The point to note here, and also in many other pictures below, is that 

"modulo" some thin even tubing :3' is the "same" as :3. So any general position edge 

which was cut by/3 an even number of  times, will also be cut by :3' an even num- 

ber of  times. 

Since 0(K) = 0 we can thus, without loss of  generality, assume that 

(A) the f-images o f  any two disjoint edges have an even number o f  intersections. 

Self-intersections, if any, of  edges are removed easily (see Fig. 3). 

Adjacent edges, too, can be made to cut an even number of  times. To do this, 

V 

Fig. 2. 
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v 

Fig. 3. 

the first intersection of two such edges a and B can be replaced by two intersec- 

tions, as shown in Fig. 4. 

Hence we might, if necessary, by replacing K by an appropriate subdivision, sup- 

pose in addition to (A) that 

(B) all double points o f f :  K - - ,  R 2 belong to disjoint pairs of edges. 

(2.2.2) Step 2. We now choose a total order < for the set of edges of K. Let ct 

denote the first edge which, under f ,  cuts any other edge, and out of all such edges 

cut by ~ let B be the first edge. So a and/~ have disjoint vertices and cut each other 

an even number of times. We plan to reduce the number of  these cuts by 2, with- 

out introducing any intersections on edges before the ctth, and without losing the 

properties (A) and (B) o f f .  

If two consecutive cuts of a with/~ are in the same direction, then they can be 

removed as shown in Fig. 5. 

We now come to the main case, i.e., any two consecutive cuts of o~ with ~ form 

a Whitney loop ~ We first ensure that any other edge intersects this loop 
- k . J  " 

13 

D 
v 

Fig. 4. 
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Fig. 5. 
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only on l~ or on the right portion o f  ~. To achieve this we push ~ to the left, as 

shown, in Fig. 6 in the first step, and then eliminate the new self-intersections of  

/3, as shown in the second step. 

For this Whitney loop we can perform the straightforward one-dimensional an- 

alogue of  the standard Whitney trick [for n _> 3], as shown in Fig. 7, i f  and only 

i f  there is no edge 3" which cuts the bottom portion o f  B an odd number o f  times. 

So assume that there is such a 3'. One of the segments of  3' joining the top and 

bottom portions of/~ will cut u an even number of  times. Furthermore, by using 

the construction of Fig. 5 on 3', we can assume here that any two consecutive cuts 

are in different directions. We use the first and last of  these cuts as "inlet" and 

"outlet" of a tube running parallel to, and to the same side of, the entire right por- 

tion of  a,  to alter the/3'  o f  Fig. 7 to/~",  as shown in Fig. 8. 

13' 

Fig. 6. 
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o o L~ 0 k / 

Fig. 7. 

O 

Note that I fl" N 3'[ is even and, once again, since fl" is the "same" as B "modulo" 

even tubing, the number of cuts with any edge other than 3' also remains even. 

Further, any self-intersections which may be present in B" can be removed, as in 

Fig. 3. 

The number of cuts of o~ with ~ has thus been reduced by 2 in the desired man- 

ner. Continuing this process, f eventually becomes an embedding of K in R 2. 

§3. Variations 

(3.1) INTEGER COEFFICIENTS. Let f :  K--, R 2 be a general position map. Fix an 

orientation of R 2, and, for any two disjoint oriented edges a and 0 of K, count an 

intersection where the orientation o f f ( a )  followed by that of f (0  ) agrees with that 
of R 2 as +1, and -1 otherwise. Then 3(K) E Hs2(K.;Z) is the class of the cocy- 

O 

Fig. 8. 
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cle 0f (e, O ) which counts the intersections o f f ( o )  and f (0  ) algebraically in this 

fashion. 

From the mod 2 planarity criterion of §2 it follows afortiori that K isplanar i f f  

3(K) = 0. [For n _> 3 the van Kampen method uses integer coefficients, and thus 

only establishes K n % R 2n ¢=~ ~(K n) = 0; however, I do not know of an explicit 

K n, n _> 2, for which ~(K ~) * 0 and o(K ~) = 0.] 

(3.2) CONTINUOUS ZE-MAPS. Let S ~ denote the unit circle of R 2 equipped with 

the antipodal Z2-action. Since the integer 3f (a, 0 ) can be identified with the degree 

of the map F:O(a  x O) --, S l defined by 

f ( x )  - f ( y )  
F ( x , y )  = 

Ilf(x) - f(Y)ll ' 

it follows that ~(K) = 0, i.e., that K isplanar i f f there exists a continuous Z2-map 

K, -~ S I. (This homotopy-theoretic criterion has a higher dimensional generaliza- 

tion even more extensive than that of the cohomological one. It can be shown that, 

for 2m _> 3(n + I), K ~ ~ R m iff there exists a continuous ZE-map K.  --* Sin-l; see 

Weber [12].) 

An alternative formulation using the deleted join K# is sometimes more useful. 

Recall that K# is obtained from the join K.K  of two disjoint copies of K by delet- 

ing all simplices of the type o.0, a 17 0 *: th. A similar proof shows that K ispla- 

nar i f f  there exists a continuous ZE-ma p K# -~ S 2. 

(3.3) KURATOWSKI'S CRITERIOI~. The mod 2 symmetric cochains a, and sym- 

metric chains c = )7,o coo of K.,  are dual to each other under (a,c> = ~o coa(O), 

where in the summation only one 0 is to be chosen from each antipodal pair of 

cells. One has (~a, c> = (a, Oc>, so there is also an induced duality ( , > between 

symmetric cohomology HE(K.;Z2) and symmetric homology H](K. ;Z2) .  

The G-minimal nonzero cycles z E HE(K.;Z2), or symmetric circuits of K, de- 

termine a matroid on the set of 2-cells of K,.  Obviously they constitute a set of 

generators of the ZE-Vector space H2(K,;Z2).  Thus the class o(K) can be non- 

zero iff there is a symmetric circuit z with (o(K) ,z)  *: 0. Let K z c_ K denote the 

support of z, i.e. the subgraph determined by the edges which occur as one of the 

factors of the 2-cells of z. 

(3.3.1) Such a K z is homeomorphic to one o f  the Kuratowski graphs, a 4 or 

4.4. 
First note that K z is a minimal graph whose deleted product contains z, and that 

the restriction a(Kz) E H2((Kz).;Z2) of a(K) E HE(K.;Z2) satisfies (a(Kz),z> = 

( o ( K ) , z )  * O. 
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6 

5 

Fig. 9. 

We will see later that (Kz), contains no symmetric circuit other than z. So the 

graph K z cannot possibly contain two disjoint 1-circuits c~ and c2, because then 

we would have z = (cl x c2) + (c2 x cl), and so K z = cl U c2, for which o(Kz) = O. 

K z can have no vertex v of valence 1, because the subgraph L obtained by omit- 

ting v and the edge incident to it still has o(L) :g 0 and so z c_ (L) , ,  which is not 

possible because K z is the support of  z. 

The vertices o of  valence 2 can be eliminated one by one as follows. If  v is 

incident only to vw~ and vw2, then the edge wxw2 cannot be in Kz: otherwise 

o(L) ~ 0 and so z c_ (L) ,  for L = Kz\[WlW2}. So Kz is a subdivision of M =  

( K ~ \ l v ,  vw l ,  vw2}) O (wlw21, which has one less vertex of  valence 2, and is the 

support of  the unique symmetric circuit contained in M, .  

So without loss of  generality we can assume that all vertices of  K z have va- 

lence ___ 3. A theorem of  Dirac [3], ? of  which a purely combinatorial and elemen- 

tary proof is given in Lov~z  [6] (see §10, ex. 4, and pp. 377-378), now tells us that 

Kz is either (i) a 4, or (ii) a graph containing 2 06. a6, or else (iii) a wheel as in Fig. 9. 

In case (ii) note that (o 2. 02). is itself a symmetric 2-cycle. So, by using the mini- 

mality of K z , we must have Kz = o 2. 02. The third possibility is ruled out because 

then o(Kz) = O. 

If  (Kz ) ,  were to contain a symmetric circuit w other than z, then we could 

choose a cell a x ~ of w not in z, and obtain a graph L from Kz by ident i fy ing an 

interior point & of o~ with an interior point/~ of/3, and replacing both o~ and/~ by 

two edges each. It is easily verified that L ,  contains a ~ corresponding to z on 

which o(L) is nonzero, and that L is the support of L But L ,  has less symmetric 

circuits than (Kz ) , .  So, by above, we might as well assume that L is homeo- 

morphic to a Kuratowski graph. Since the identification point & = ~ has valence 

4, L must be homeormorphic to a a~ having & =/~ as one of its five nodes. This 

tWhich classifies all graphs having vertices of valence _> 3 and not containing any 2 disjoint circuits. 
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is not possible, because then K is homeomorphic to a a~ with two edges dupli- 

cated, contradicting o (K) :# 0. So no such w exists. 

(3.3.2) The planarity criteria "o(K) = 0" and "3(K) = 0" were known previously 

but only as corollaries of  Kuratowski's criterion. 

Such a p roo f -g iven  in Wu [16], p. 2 1 0 - o f  "o(K) = 0" must have been known 

even to van Kampen, because from his results 0(04) ¢ 0, 0(02.02) ~ O, it follows 

at once that o(K) = 0 only if K does not contain a homeomorph of  a 4 or a 2 .a 2. 

Flores [4], 1933, established the criterion that "there exists a continuous ZE-map 

(K1)0 ~ S 2 " - o r ,  equivalently, "3(K 1) = 0 " - b y  observing that for K = a~ or 

%2. a2, Ko is Z2-homeomorphic to the antipodal 3-sphere. So, for any non-planar 

K, one can have no continuous Z2-map from K# to S 2. [Flores is using the 

Borsuk-Ulam Theorem [1], 1933, which had just become available: "There exists 
no continuous Z2-map S 2n+l --, S 2n''. It is amusing to note that this itself follows 

easily from the result, o(K n) *: 0 for K n = o 2 . . . .  • o 2, contained in van Kampen 

[11], 1932, because the deleted join ( a 2 - . . .  -a2)# is Z2-isomorphic to the (n + 1)- 
fold join S 2n+1 of  the circle (a2)#.] 

We remark that many other useful planarity criteria, including the well-known 

ones of  Whitney [13] and Maclane [7], are known to be easy corollaries of  

Kuratowski's criterion, but are not quite so easy to prove directly. 

(3.4) HOMOLOGY OF g , .  A fairly complete picture of  the 2-circuits of  K. re- 

sults from the above discussion: 

(3.4.1) The minimal nonzero cycles z E H 2 ( K , ; Z 2 )  consist of  

(i) some TORI cl x c2, one for each ordered pair of disjoint circuits 

of K, 

(ii) some SURFACES OF GENUS 4, one for each homeomorph of 
a 2. o 2 contained in K, and 

(iii) some SURFACES OF GENUS 6, one for each homeomorph of  o 4 

contained in K. The free Z2-action of K. preserves the 2-circuits of  

types (ii) and (iii) and pairs each torus Cl x c2 with its opposite 

C 2 X C 1 . 

To determine the topology of 2 2 (a6" ao ). and (o 4), we verify, by counting their 

cells, that they have Euler characteristics - 6  and -10 ,  respectively. That they 

are manifolds follows by checking that each vertex-link is indeed circular. Finally, 

note that they are orientable because they are embedded in Flores' 3-spheres 
2 2 (a6 .a6)~ and (a4)~. 
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[For n > 1 there are infinitely many non-homeomorphic minimal K"'s with just 

one non-zero 2n-cycle z in (Kn)., and this even if we demand that z be a 2n- 

manifold. However, we have shown in [9] that there are only finitely many Kn's 

for which (Kn). is equal to a 2n-pseudomanifold, and that in fact any such 
2Sl 2s2 2Sk 

n-complex must be of the type 0~1_~.o~2_~.... "%k-~" Topologically this corre- 

sponds to the fact that there are only finitely many n-complexes which are 

critically-a notion stronger than minimally-non-embeddable in R 2~. ] 

Note that there is a 1-1 correspondence between the 2-circuits of K, and the 3- 

circuits o f  the deleted join K#; however, the latter are all topologically the same, 

viz. 3-spheres. The ones which are preserved by the free Z2-action of K#, i.e. 

those corresponding to types (ii) and (ii), constitute obstructions to planarity. 

(3.4.2) The dimension of H2(K,*~Z2) is either equal to the maximal number of  

independent toral circuits contained in it, or else one more than this 

number. The first alternative occurs if  and only i f  K is planar. 

This follows because the toral circuits generate the kernel of the linear functional 

(o(K),) :H~(K.;Z2) ~ Z2. 
The above result corrects an error in Copeland [2] where it is asserted that 

the toral circuits always generate Hz(K.;Z2). The zeroth Betti number of K. 

can be computed easily as in [2], e.g., if K is connected and has more than two 

vertices, then K. is connected. Lastly, an Euler characteristic computation yields 

dimH1 (K,;Z2). [For n > 1 very little is known about computing Hi(K,~Z2). 

However, note that the well-known Richardson-Smith Theorem [8]- see also Wu 

[16], chapter IV-gives a computation for all n _> 1, of the related mod2 (co)ho- 

mology of the pair (K x K, diagonal) in terms of the Steenrod squares, or Smith 

operations, of K. ] 
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