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          October 26, 2013.  If we are constrained to a bounded region Ω of euclidean space (of dimension n ≥ 2) the parallel 

postulate  is no  longer true  : a point P not  in a codimension‐one flat L  is plainly  in  infinitely many flats Li which do not 

meet L inside Ω.  So, non‐euclidean geometries are dime‐a‐dozen, for instance – see Figure 1 – that sheet of paper on 

which we ask schoolchildren to do all those constructions from Euclid has such a geometry; likewise, any open n‐ball Bn 

of finite radius c, and it is this ball geometry that will concern us from here on. 

 

Figure 1 

           In the euclidean case c = ∞, of all the affine reflections in a flat, we pick the one in the direction orthogonal to the 

flat, and call  two subsets of n‐space congruent  iff  they are  related by a  finite sequence of such  reflections.   The only 

affine reflections of n‐space which preserve a ball Bn of radius c < ∞ are the ones in, and orthogonal to, the flats through 

its center b. However a general and canonical definition emerges if we recall that, to linearize the affine transformations 

of n‐space, we should consider  it as a flat  in a vector space of one dimension more—see Figure 2—whose 0  is outside 

this flat, and identify each point with the ray from 0 through that point.   

 

Figure 2 

          In each flat L of the ball B there is a unique linear reflection which preserves the cone of rays through B.  Using 

the extra dimension, we have now a one‐parameter  family of  lines orthogonal  to L, and passing  through  its centre ℓ.  

One of these orthogonal  lines has ℓ as the mid‐point of  its  intersection PP’ with the cone (note that  it  is the  line such 



that  {0,P,2ℓ, P’}  is a parallelogram, which gives an easy construction).   The  linear map which  is  the  identity on L and 

which  takes P  to P’  reflects each point of  the  vector  space  in  span{0,L}  in  the direction parallel  to  the  segment PP’.  

Furthermore  it  restricts,  on  the  flat  containing  L  and  PP’,  to  an  orthogonal  reflection  preserving  its  ellipsoidal 

intersection—see Figure 2—with the cone of rays through B.  So it preserves this cone, and no other linear reflection in L 

does the same because, the composition of two distinct  linear reflections  in L restricts to a nonzero translation  in any 

flat parallel to span{0,L}, but our cone does not contain a complete line, q.e.d.  So, there is a unique linear reflection of 

the cone which switches the ray through the centre b with any other ray, the corresponding flat L of the ball having its 

centre  ℓ  suitably  between  these  two  rays  on  the  2‐plane  determined  by  them.    Also,  this  homogenous  but  non‐

euclidean geometry  ‘explains’ euclidean geometry  :  for  these  reflections approach orthogonal  reflections of n‐space 

when c tends to infinity.  To wit, the geometry in which subsets of a ball of finite radius are congruent iff the sets of rays 

passing through them are related by a finite sequence of linear reflections preserving the cone. 

           In physics, the rays identify with galilean observers, to the observer S who considers the ray through the point b 

of  the  flat as  representing his  state of  rest, and uses as  time  t  the  linear  function which  is 1 on  this  flat, each  ray S’ 

represents all particles moving in a fixed direction at the same speed v.  Relativity is the dictum that, any other observer 

S’ observes the mirror image of what S observes, under the linear reflection switching these rays : so the time t’ and the 

euclidean space t’ = 1 of S’ ≠ S must be the transforms of t and t = 1 under this reflection.  Pragmatic considerations of 

speed measurement tell us that we should only admit a ball’s worth of observers, which implies that neither the time 

nor the space of S’ ≠ S   are the same as that of S, for example, from Figure 2  it  is clear that the mirror  image b’ of b, 

which must be in t’ = 1, is not in t = 1 : the “notions of absolute space and absolute time have no empirical definitions”, 

they are only left‐overs from the limiting and unrealistic case c = ∞.  

          The observer S  identifies the points of span{S,S’} with their cartesian coordinates (t,x) with respect to 0bሬሬሬሬԦ and the 

unit vector beሬሬሬሬԦ  in  t = 1  towards S’  :  so b =  (1,0), e =  (1,1),  ℓ =  (1,u)  for  some u, and S’  is  the  ray  through  (1,v).   The 

reflection keeps  ℓ and all vectors parallel  to L  fixed.   Lemma:  if  the  sides of a parallelogram have  slopes ±c  then  the 

product of the slopes of its diagonals is c2.  So PP’ has slope c2/u and b’ is on the line through b with this slope such that 

the mid‐point of bb’ satisfies x = ut, which gives b’ =  ((c2 + u2)/(c2 – u2), 2uc2/(c2 – u2)).   The ray S’ passes through b’, so v 

= 2uc2/c2+u2, and this quadratic in u can be solved, using u < c, to write u in terms of v.  Let γ = (c2 + u2)/(c2 – u2), then b’ 

= (γ, γv) and 1/γ2 = 1 – v2/c2.  So γt – (γv/c2)x = 1 on ℓ and b’, also this linear function is zero on vectors parallel to L, so it 

is the transform of t : the observer S’ has time t’ = γt – (γv/c2)x.   His space t’ = 1 is the flat spanned by L and b’ with the 

same metric on L, but bԢeԢሬሬሬሬሬሬሬԦ is a normal unit vector : to S’, the “ellipsoidal” (see Figure 2, but this is a different section of 

the cone) image B’ of B is the ball in t’ = 1 with centre b’ and radius c.  The observer S’ identifies the points of span{S’,S} 

by their coordinates (t’,x’) with respect to 0bԢሬሬሬሬሬሬԦ and the unit vector bԢeԢሬሬሬሬሬሬሬԦ in t’ = 1 towards S.  One has x’ = γvt – γx because 

beሬሬሬሬԦ and its image bԢeԢሬሬሬሬሬሬሬԦ  = u‐1(ℓ – b’) have (t,x) coordinates (0,1) and (– γv/c2, – γ) respectively.  Since the unit vector 0bሬሬሬሬԦԢ of 

S’ runs from the t = 0 to the t = γ line, while his unit vector bԢeԢሬሬሬሬሬሬሬԦ runs from the x = 0 to the x = – γ line, and γ > 1, S deems 

the clocks of S’ to be slower, and his rulers in the x‐direction to be contracted—the rulers in directions parallel to L are 

unaffected—by the factor γ, and S’ observes the same about the unit vectors 0bሬሬሬሬԦ and beሬሬሬሬԦ of S  in his  (t’,x’) coordinates 
because, this being a reflection, we also have t = γt’ – (γv/c2)x’ and x = γvt’ – γx’.    

           However, the proper time τ and space τ  = 1 that we should use are absolute!  In analogy with c = ∞ this space 

should consist of all the mirror images b’ of b, with τ linear on all rays.  So, for c < ∞, proper time is not linear, but now it 

dictates a distance on the ball which is preserved by all the linear reflections of its cone!  The (t,x) coordinates of the 

mirror images b’(v) in any plane through ray S are (γ(v), γ(v)v), but γ(v)2(1 – v2/c2) = 1, so these points form the hyperbola 

t2 – x2/c2 = 1, t > 0.  Therefore, if we decompose each vector parallel to the time t and the euclidean space t = 1 of S, τ2 

extends to the quadratic form (t; x) → t2 – x.x/c2.  Since PP’ has slope c2/u, our linear reflection is orthogonal to its mirror 

with respect to the associated bilinear form  (t1; x1)  x  (t2; x2) = t1t2 – c
−2x1.x2.  So, it preserves this form.  Also, it replaces t 



by the time t’ of S’ and t = 1 by the euclidean space t’ = 1 of S’.  So this form is the same as the bilinear form (t’1; x’1)  x  

(t’2; x’2) = t’1t’2 – c
−2x’1.x’2 of S’.  To S’ too, τ = 1 is obtained by revolving t’

2 – x’2/c2 = 1 around his time axis.  On vectors 

parallel to lines which cut the cone’s boundary twice the invariant quadratic form τ2 is negative.  The positive square root 

of − c2τ2(bԢb"ሬሬሬሬሬሬሬሬԦ) gives us an invariant distance between points S’ and S” of the ball.  The coefficient c2 ensures that, when 
the  radius  tends  to  infinity  this non‐euclidean distance approaches  the euclidean distance  :  to see  this  it suffices  to 

check  that  −  c2τ2(bbԢሬሬሬሬሬሬԦ)  approaches  v2.    So  this  distance  gives  us  the  proper  speed  ‐‐  i.e.  the  proper  length  for  the 

difference  bԢb"ሬሬሬሬሬሬሬሬԦ of their ‘absolute velocities’  0b"ሬሬሬሬሬሬԦ and 0bԢሬሬሬሬሬሬԦ ‐‐ separating the observers S” and S’. 

 

Figure 3 

           A particle’s à priori or cartesian absolute motion may be any smooth directed arc C with τ strictly increasing, i.e.,  

a smooth vector function r(τ), with each dr/dτ nonzero along a ray S’(τ).  Its absolute velocity dr/ds at proper time τ, i.e., 

the ‘absolute velocity’  0bԢሬሬሬሬሬሬԦ of S’(τ), is  longer – Figure 3 – than dr/dτ  if 0 is not on tangent, so ds < dτ.   Hence the clock 
paradox: the elapsed time ∫ds on a clock carried by a non‐galilean observer is less than his proper life‐time!  Further, the 

newtonian “the rate of change of momentum is equal to the force” suggests d/ds(m dr/ds) = F(s), where the constant m 

is called the proper mass of the particle, and the right hand side, the absolute force on the particle.    

          An observer S will write r = (t; x) to split the last equation into temporal and spatial components :  d/dt(m dt/ds) = 

T ds/dt and d/dt(m dt/ds v(t)) = ds/dt X, using dx/dt = v(t) and F = (T; X).  Taking the spatial equation as Newton’s law, 

the observer S deems ds/dt X  as the force on the particle, and m dt/ds as its varying mass m(t)!  Since dr/dt = (1; v(t)) 

is the vector from 0 to (1, v(t))  in the plane of S and S’(τ), and γ(v(t)) times this vector  is 0bԢሬሬሬሬሬሬԦ = dr/ds, we have dt/ds = 
γ(v(t)) on the arc C.  Also differentiating dr/ds  x  dr/ds 1 ؠ we see that, the absolute acceleration is always orthogonal 
to  the absolute velocity,  i.e., d2r/ds2   x   dr/ds = 0,  i.e., d2t/ds2 dt/ds –  (d2x/ds2.dx/ds)/c2 = 0  in  the components of S.  

Multiplying by mc2 we obtain c2T   =   X.v,  therefore   T ds/dt c2 =   ds/dt X.v =  the  rate of working of  the  force on  the 

particle = the rate of change of its energy.  So the temporal equation of motion shows S that, the energy of the particle 

is E = m dt/ds c2 = m(t)c2 = m(1 – v(t)2/c2)−1/2c2 = mc2 + ½ mv(t)2 + ... !    

          But, m(t)v(t) plus a nonzero vector a also satisfies the spatial equation, why not this rest‐momentum?  Because it 

violates mirror‐relativity, the opposite direction is just as good.  And, m(t)c2 plus a nonzero scalar k satisfies the temporal 

equation, but energy  is additive  in mass, this would add k/c2 to m(t), which we have accepted.   Excepting some other 

similar points, that one can debate endlessly, we have now covered all the basics, and our treatment was plain indeed : 

all our key arguments used only plane geometry, though the results are quite general! 

          www.kssarkaria.org  



Notes  

          1.  The non‐euclidean geometry of a polytopal and possibly non‐convex region Ω of euclidean n‐space is also worth 

pursuing, especially because of its uncanny galois symmetries, cf. Sullivan, M.I.T. Notes (1970).  

          2.  The word group makes us forget that the basic symmetry is that of Euclid’s pons asinorum, viz., a reflection, for  

example for Galois it was a transposition of roots, and we know now that practically all non‐abelian finite simple groups 

can be realized by using the linear reflections of the cone of a 2‐ball, cf. How I learnt some well‐known folklore (2010).  

Besides, though a reflection takes us abruptly into the oppositely oriented mirror world, it is magic that an even number 

of such hops will do the same job as any continuous motion which preserves our geometry! 

          3.   Linearization by adding extra dimension(s)  is  like adding 0 to the positive numbers  ... we all use  it  ...  I used  it 

(1992, 1997, 2000) to look at some problems of convex geometry with only partial success ... maybe because I’d turned 

away  from number  fields which had given me  the  initial  idea?   This  thought comes because number  fields give many  

examples of discrete subgroups Γ of  linear transformations of the cone with Bn/Γ a closed n‐manifold, and the much 

finer use—which I’ve still not quite understood—of galois symmetry in Deligne and Sullivan, Fibrés vectoriel complexes à 

groupes  structurel discret, C. R. Acad.  Sci. Paris 281  (1975) 1081‐1083,  shows  further  that  there are hordes of  these 

groups for which this closed manifold is almost parallelizable. 

          4.   Appollonius knew from the sun‐dial  in his garden  in Perga (Turkey) that the shadow of a sphere  is an ellipse, 

the point F common to the sphere and the table being a focus; the other focus F’ is the point of PP’ – see Figure 2 – on 

the other circle in the cone which touches the sides of 0PP’; but in his treatise he used a 2‐dimensional but less natural  

definition of an ellipse which unfortunately is the only one that is taught in schools today. 

          5.   My scientific  journey started with Henry Thomas and Dana Lee Thomas, Living biographies of great scientists 

(1959), my First Prize in Aggregate during my first year, 1960‐61, in Government College, Chandigarh.  Its last biography 

led me to mail order a popular text‐book on relativity from Bombay, from which I was sharp enough to deduce that the 

prize‐winning  “mathematics” I knew was not mathematics at all, which led me in turn to mail order, from Varanasi this 

time, that classic of Goursat’s which I used again in Straight to Mecca.  I should mention also that my mirror‐formulation 

of relativity is slightly stronger, there is no preferred orientation on spacetime. 

          6.  Again, my use of the phrase proper time is not standard, often it means elapsed time along C. That τ defines a 

proper speed between galilean observers is nice, but this distance only satisfies the triangle inequality infinitesimally: 

at each point b’ of the smooth submanifold τ = 1 it gives us the euclidean metric of its tangent hyperplane t’ = 1.  So by    

integrating this infinitesimal we can assign a length to any smooth curve of this riemannian manifold between two given  

points, and the infimum of these lengths gives us another invariant distance satisfying this inequality.  

          7.  The haloed, but nevertheless arbitrary, newtonian tradition of considering only motions given by second order 

differential equations seems even more arbitrary now :  for c < ∞  we have a nice and complete classification of generic 

cartesian absolute motions parametrized by elapsed time!  This is suggested by the final paragraphs, where we stuck to 

this  tradition, but what gave E = mc2 was  the  cartesian orthogonality d2r/ds2    x   dr/ds = 0 with  respect  to our non‐

degenerate bilinear form.   There seems no reason to stop at two, we can keep on normalizing and differentiating à  la 

Frenet and Serret till we have a full complement of n+1 orthonormal vectors all along our generic C, and then using this 

frame  define  the  n  curvatures  which  will  characterize  C  up  to  a  composition  of  orthogonal  reflections  in  flats  of 

spacetime.  A quick recap of the classical classification of space curves is in my old class notes on Differential geometry 

(1982?), and in the book by Klingenberg, A course in differential geometry (1978), it is shown that everything works just 

as well for any positive definite quadratic form over the reals. 

(contd.) 



Plain Geometry & Relativity, Notes 8 - 20

8. The three things that we left to the reader in the text are also easy to check.
The Lemma holds because the product of the slopes of the diagonals of the
parallelogram {(0, 0), (t,−ct), (t′, ct′), (t+ t′,−ct+ ct′)} is ct′+ct

t′−t ×
−ct+ct′
t+t′ = c2.

Again, −c2τ2(
−→
bb′) = −c2τ2(γ−1, γv) = −c2((γ−1)2−γ2v2/c2) = −c2((γ−1)2+

γ2(1/γ2−1)) = −c2(2−2γ) = −2c2(1− (1−v2/c2)−1/2) = −2c2(−v2/2c2 + · · ·)
approaches v2 as c → ∞. And, for the Exercise in Figure 3 note that d−→r /dτ
along C at the point of tangency (t′, a), a 6= 0 – using coordinates (t′, x′) in the
plane containing the tangent line and the parallel S′ – equals the same quantity

along the tangent line at −→r = (t′, a). So it is equal to the vector (1, 0) =
−→
0b′

times dt′/dτ along the tangent line at this point, and from τ2 = t′2 − a2/c2
we see that this derivative is equal to τ/t′ = (1 − a2/(c2t′))1/2 < 1. Also, our
clock paradox implies the one usually stated, because, if the cartesian motion C
begins and ends on any ray S, then τ2 − τ1 = t2 − t1.

9. Velocity addition formula. Given a cartesian motion C, the time t of any
observer S increases strictly on it, so it has equation r(t) = (t;x(t)) and dx/dt is
its varying velocity as observed by S. For example S can use an orthogonal basis
of his euclidean space t = 1 with respect to which x(t) has cartesian coordinates
(x1(t), x2(t), . . . , xn(t)) and measure the n components (dx1/dt, . . . dxn/dt) of
dx/dt. Likewise, the observed velocity dx′/dt′ of C as measured by another

framed observer S′, that is one equipped, besides his unit time vector
−→
0b′, with

an orthogonal basis for his euclidean space t′ = 1, gives us another n-tuple
(dx′1/dt

′, . . . dx′n/dt
′). The two bases of the (n + 1)-dimensional vector space

used by S and S′ are related by a matrix A = [aij ], 0 ≤ i, j,≤ n, i.e.,

t = a00t
′ + a01x

′
1 + · · ·+ a0nx

′
n,

x1 = a10t
′ + a11x

′
1 + · · ·+ a1nx

′
n,

. . . . . . . . .
xn = an0t

′ + an1x
′
1 + · · ·+ annx

′
n;

from which we get, for all 1 ≤ i ≤ n,

dxi
dt

=
ai0 + ai1dx

′
1/dt

′ + · · ·+ aindx
′
n/dt

′

a00 + a01dx′1/dt
′ + · · ·+ a0ndx′n/dt

′ ,

a formula relating the velocity components of the same motion C as measured
by two framed observers. Often framed observers are called observers, but for
us an observer—that is a ray per the fourth paragraph of the text—has an O(n)
worth of frames. Components of an observed velocity depend on the frame, for
example, if we reverse a basis vector, that component changes its sign. Given
any other observer S′, the central observer S has an O(n− 1) worth of frames
in which the observed velocity of S′ is (v, 0, . . . , 0) with v positive. If S uses one
of these, and S′ the reflected frame as in the fifth paragraph of the text, then
t = γ(v)(t′ − v/c2x′1), x1 = γ(v)(vt′ − x′1), x2 = x′2, . . . , xn = x′n. But S′ can, if
he wants, ‘correct’ his reversed orientation by reversing his x′1-axis, when A is
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given instead by t = γ(v)(t′+v/c2x′1), x1 = γ(v)(vt′+x′1), x2 = x′2, . . . , xn = x′n
(and it is usually this case only of the above formula, with C galilean, which is
called the velocity addition formula), and more generally, S′ can transform the
reflected frame by any orthogonal transformation he likes of t′ = 1.

10. Though in the proof in the third paragraph of the text we temporarily
assumed the central ray orthogonal to the euclidean n-flat, we emphasize that
the (n+ 1)-dimensional vector space is itself not euclidean. This proof gave us
all the linear reflections preserving the cone, there is one and only one in each
flat of Bn. Therefore, the linear reflections preserving the cone form a smooth
manifold diffeomorphic to the canonical line bundle of RPn−1 : the flats through
b constitute the RPn−1; and for the flats L constituting any small open subset U
of this manifold we can choose a continuous normal direction; so, identifying the
other flats of the ball parallel to these L’s with their centres ` on these directed
diameters, we obtain local trivializations U × (−c,+c). We note also that this
diffeomorphism type stays put even for c =∞, i.e., when we are talking of the
space of all orthogonal reflections of the euclidean n-flat. The next result of
this paragraph can also be sharpened: there is a unique linear reflection of the
cone which switches any given pair of distinct rays S′ and S′′. For, if neither
ray is the central ray S, conjugation with g, the reflection of the cone switching
S′ and S, gives us a bijective correspondence between reflections switching S′

and S′′ and those switching S and gS′′, but the latter set is a singleton. And,
regarding our definition of congruence for n-ball geometry which concluded this
paragraph, we note that, up to a homothety, any linear isomorphism of the
cone is a composition of at most n + 1 linear reflections of the cone. For, if
the isomorphism maps the central ray S to S′, then by composing it, if need
be, with the reflection switching S 6= S′ and a homothety we obtain a linear
isomorphism of the cone which is the identity on S. It maps any diameter PQ of
the n-ball to a line segment P ′Q′ having b as its mid-point and with P ′ and Q′

on the boundary of the cone, which is possible only if P ′Q′ is also a diameter of
the n-ball. So our map restricts to an isometry of the euclidean n-flat mapping b
to itself, hence it is a composition of at most n orthogonal reflections. Also, the
linear reflections of the cone are conjugate to each other in the group G(n) of all
their compositions: for, if ` 6= b, then conjugation with the linear reflection of
the cone which switches the rays through these two points gives us a reflection
whose flat passes through b, etc.

11. Using notes 9 and 10, G(n) is isomorphic to the group of matrices A re-
lating ordered pairs of framed observers. The ‘dictum’ of the fourth paragraph
says that if observers S′ 6= S are equipped with mirror image frames under
the linear reflection of the cone switching them, then their measurements must
be related by the corresponding matrix A. Since this is obviously true also if
the same observer replaces the frame he is using by any orthogonal reflection,
the measurements made by any ordered pair of framed observers are related by
the corresponding matrix A. Usually the orientations of the framed observers
are compatible with each other, so only those matrices A come into play whose
determinants are positive, equivalently, only the subgroup G+(n) of all composi-
tions of any even number of reflections is admitted. Therefore, as we mentioned
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before in note 5, mirror relativity is slightly stronger. Notably, an invariant
vector a = 0 even for n = 1, which is false if an orientation is preferred: the
concluding step in the argument that we used to obtain the mass-energy formula
is then valid only for n ≥ 2. The subgroup G+(1) of translations is abelian, but
the group G(1) of all motions of a 1-ball (the real line has isomorphic groups) is
not commutative. This homogenous geometry of a 1-ball, i.e., a bounded open
interval, is however not non-euclidean per our usage of this adjective, because
the parallel postulate is trivially true. Sometimes this adjective is used only for
homogenous geometries, then of course it is not at all true that non-euclidean
geometries are ‘dime-a-dozen’ for n ≥ 2. As for the ‘pragmatic considerations’
of the fourth paragraph, these objections were (imho) raised to his geometry by
practical fellow Egyptians even in Euclid’s lifetime! A down-to-earth person is
none too impressed by lines that don’t end, or a parallelism of line segments that
is not experimentally decidable: a bounded subset of Euclid’s plane, above all a
disk of a possibly large but finite radius around him, is eminently more reason-
able to him. The quotation in this paragraph is from a paper by Arnol’d which
is available on my website. It alerts us that, it is the individual times t′ and the
euclidean spaces t′ = 1 of our ‘ball’s worth’ of observers S′ that are basic, what
frame an experimenter uses to make his measurements, or a theoretician to do
his calculations, is only of secondary importance.

12. A modicum of calculations, in the remainder of our 3-page essay, then
gave us time dilation and length contraction by γ(v) = (1−v2/c2)−1/2, the clock
paradox, and the mass-energy formula E = mc2. Also we saw that, relativity
is a hidden variables theory : all the mirror images of any point of the cone
form an absolute but curved space, and the homogenous function which is one
on it an absolute nonlinear time τ ; but to each observer S′ this curved hidden
space appears flat, a ball B′ of radius c around him, on which his linear time
t′ = 1. The cone is the same for all the observers, but only its hidden foliation
τ = constant is preserved by the full group G(n) generated by all the linear
reflections of the cone, its observed foliation into parallel balls t′ = constant is
preserved only by the subgroup O(n) generated by the reflections preserving the
observer S′. That a space consists of all the mirror images of any of its points
is nice, but, infinite divisibilty is not pragmatic : one may object to Euclid’s
plane also on the grounds that it can be tiled by an arbitrarily small square!
Magically, this new objection is also taken care of if we confine ourselves to an
n-ball, n ≥ 2, of radius c < ∞ : if a polytope of rays tiles absolute space, its
riemannian volume is bigger than a positive constant depending inversely on c.
So the volumes of the closed manifolds Bn/Γ of note 3 are all more than this
constant. An observer hears the hidden shapes of these ‘particles’ as proper
values of Γ-periodic ‘waves’ on the covering space τ = 1 whose differential
equation can be written in his coordinates. Historically, the theories of the sub-
atomic world also arose from c <∞, but no one seems to understand this other
side of the relativistic coin really well. Anyway, some of what little I myself have
been able to understand about these quotients is in Hyperbolic Manifolds (2012),
which will be available from my website as soon as I can write a prefatory note
explaining what I was up to in this unfinished paper.
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13. The cone is all the spacetime one really needs. Like positive numbers on
the real line (cf. note 3) it is closed under P+Q, but all its differences P−Q form
the full (n+ 1)-dimensional vector space. The partial order defined by, P > Q
iff P −Q is in cone, is quite basic : cartesian absolute motions are precisely all
the directed and strictly increasing smooth arcs in the cone. For P > Q implies
τ(P ) > τ(Q) – the converse is not true for c < ∞ – and that extra condition
‘dr/dτ nonzero along a ray S′(τ)’ on the smooth arc is equivalent to saying that
if P comes after Q, then QP is parallel to a ray of the cone, i.e., P > Q. Also,
it is true that P > Q ⇐⇒ τ(P +R) > τ(Q+R) ∀ R, but in our set-up parallel
motions are deemed to be the same, therefore, if we admit only the irreversibility
of time, then these are all the possible smooth motions.

14. Considering what all had gone into that definition – see note 6 – of the
riemannian metric on τ = 1, it is a miracle that the associated pseudometric on
the cone makes sense for any bounded open convex subset Ωn of affine n-space!
The distance ÂB between the rays through A and B is equal to c

2 log(XBXA
Y A
Y B ) if

AB extended meets the boundary in X and Y . In this two-line Ph. D. thesis—as
Littlewood dubbed this discovery—of Cayley’s, c > 0 is arbitrary, but if Ωn is
an open ball of a norm ‖ · ‖ on n-space, e.g. Ωn = Bn, the best choice is its
radius. For then this definition also gives us a distance between rays through Bn

which is preserved by all the reflections of the cone, and which approaches the
euclidean distance for c → ∞, so it coincides with the riemannian metric. To
check this we’ll again, as in Figure 2 and the subsequent paragraph, temporarily
think of the (n+ 1)-dimensional vector space as euclidean.

Though the ratios XB
XA and Y A

Y B depend on the line cutting four given coplanar
and coincident lines in X,A,B and Y (unless they are parallel, i.e., coincide at
infinity) their product XB

XA
Y A
Y B is an invariant. Indeed, using the sine law for

triangles one can check – Figure 4, Exercise – that in this biratio one can replace
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each length by the sine of the subtended angle. Using this invariance we’ll now
prove the triangle inequality ÂC + ĈB ≥ ÂB whenever extending each side
gives us two points on the boundary. When ABC is in a plane through the
origin 0, one side is in fact equal to the sum of the other two, for example, for
the triangle drawn in Figure 4, ÂB+ B̂C = ÂM +M̂C = ÂC. If 0 is not in the
plane of ABC, a similar argument gives us ÃC+ C̃B = ÃB for the convex open
planar subset Ω, shown shaded in Figure 4, of the cone between the (possibly
parallel) lines X1X2 and Y2Y1. Which implies the desired inequality, for the

left side is the same as ÂC + ĈB, and we have ÃB ≥ ÂB because X′A
X′B ≥

XA
XB

and Y ′A
Y ′B ≥

Y A
Y B . Any linear reflection preserving the cone preserves its Cayley

distance because it does so on the ellipsoidal section – see Figure 2 – on which
it coincides with an orthogonal reflection. Finally, we note that a point of the
n-ball at euclidean distance r from its centre is at Cayley distance c

2 log( c+rc−r ),
and this quantity approaches r as c→∞.

15. By a piecewise linear absolute motion P0P1 . . . Pk we mean a directed
and strictly increasing—in the sense of note 13—broken line in the cone. The
elapsed time for this motion is τ(

−−−→
P0P1) + τ(

−−−→
P1P2) + · · · + τ(

−−−−−→
Pk−1Pk). This

because, each
−−−−→
PiPi+1 is parallel to some ray S′, on which ray τ coincides with

the linear time t′ of this galilean observer, so τ(
−−−−→
PiPi+1) := τ(Pi+1 − Pi) =

t′(Pi+1 − Pi) = t′(Pi+1)− t′(Pi) is the time recorded by the moving clock over
this segment. However, since the absolute time τ is non-linear for c < ∞,
we can’t write τ(Pi+1 − Pi) = τ(Pi+1) − τ(Pi), and then cancel etc., to get

τ(Pk)−τ(P0). Instead, we have the startling clock paradox : τ(
−−−→
P0P1)+τ(

−−−→
P1P2)+

· · ·+τ(
−−−−−→
Pk−1Pk) ≤ τ(Pk)−τ(P0), with equality iff the Pi’s are all on the same ray.

Equivalently, the reversed triangle inequality τ(
−→
AC) + τ(

−−→
CB) ≤ τ(

−−→
AB) holds,

for any three points 0 ≤ A < C < B, with equality iff they are collinear. To see
this recall that in the sixth paragraph of the text we showed that τ2(t′;x′) =
t′.t′− 1

c2x
′.x′ if one uses components parallel to the time and the euclidean space

of any galilean observer S′. If we take S′ parallel to
−−→
AB, then x′(A) = x′(B), so

the right side is t′(B)−t′(A). LetM be the point on
−−→
AB such that t′(M) = t′(C).

Then τ2(
−→
AC) = (t′(M)−t′(A))2− 1

c2
−−→
MC.

−−→
MC ≤ (t′(M)−t′(A))2, with equality

iff M = C. Likewise τ(
−−→
CB) ≤ t′(B) − t′(M), which completes the proof. We

note that, if the above absolute motion is given by the vector function r(s) of

elapsed time, then on the interior of each
−−−−→
PiPi+1 we have ds = dt′ and dr

ds =
−→
0b′,

the ‘absolute velocity’ of the parallel S′. So the above definition of elapsed
time is the same as in the seventh paragraph of the text, only then we looked at
directed and strictly increasing arcs that are smooth, i.e., which are, so to speak,
broken lines with infinitely many infinitesimally small links dr. Instead of the

above finite sum, it is the analogous riemann integral
∫ P
P0
τ(dr) taken along the

motion that gives us the elapsed time s(P ) till any point, so τ(dr) = ds, i.e.,
τ(drds ) = 1. That is, the length of drds is identically 1 with respect to the quadratic
form τ2; so, as in euclidean differential geometry, we’ll also call this derivative
the unit tangent vector u(s) at any point of the smooth motion.

16. For c <∞ extra hypotheses like smooth or p.l. are not needed! A strictly
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increasing function from an interval into the cone is trapped near each point
in the parallel cone, so it is continuous and, as seen by any observer S in his
euclidean space this à priori motion is lipschitz in his time t with constant c, i.e.
‖x(t1)− x(t0)‖ < c|t1 − t0|, so it is differentiable almost everywhere. The same
integral gives the elapsed time s(P ), and this motion has a unit tangent vector
dr
ds a.e., but d2r

ds2 is only a generalized function or distribution. For example,
for a p.l. motion it is supported on the finitely many bends. Nevertheless, the
equations around the mass-energy formula in the eighth paragraph of the text
are still valid weakly. Likewise, the yang-mills formulary, which depends on the
special feature of 4-dimensional space that SO(4) is not simple, is valid weakly if
we allow all these motions, which suffices to deduce that, there exist topological
4-manifolds which do not admit any lipschitz structure! On the other hand in
Sullivan, Hyperbolic geometry and homeomorphisms (1979), it was shown that,
any topological n-manifold, n 6= 4, has a unique lipschitz structure! At one point
in this almost surreal paper – it is available on my website – Sullivan invokes
his paper with Deligne that was cited in note 3.

17. Arbitrarily close to any à priori motion is a piecewise linear absolute
motion with the same end points and with elapsed time arbitrarily small! A rie-
mann sum involves an approximating broken line with almost the same elapsed
time; to make this time arbitrarily small use the fact that, any two points on
a ray can be joined by a planar zig-zag of a small amplitude whose links are
alternately almost parallel to the two boundary rays. Smooth absolute motions,
even those with a small elapsed time, are likewise dense in à priori motions. The
clock paradox is less startling when stated thus: a journey takes the maximum
elapsed time if no force is expended. The time-stopping oscillations above have
impractically big accelerations, perhaps these should be banned too by a new

decree? We showed in the eighth paragraph of the text d2r
ds2 ×

dr
ds = 0, i.e., the

rate of change of the absolute velocity dr
ds =

−→
0b′ is constantly orthogonal to it

with respect to the quadratic form τ2. That is, if we draw an arrow parallel

and equal in length to d2r
ds2 from b′, then it is contained in the euclidean space

t′ = 1. It seems reasonable to us that this arrow should be confined to a ball
of a prescribed radius around b′. Which radius, by changing units, we can take

once again to be c itself. So, we can decree that the absolute acceleration d2r
ds2

should always remain in the balls B′. Under this decree, there is a positive lower
limit on the elapsed times of journeys between two events.

18. In the sixth paragraph of the text we measured vectors parallel to lines
cutting the boundary twice by applying τ∗ :=

√
−c2τ2: it too does not obey the

triangle inequality. If P and Q are two points on any such line, and we draw
through them, in the plane containing 0, lines parallel to the two boundary rays,
then a path PRQ in this parallelogram and close to its boundary has in fact an
arbitrarily small τ∗(PR) + τ∗(RQ) < τ∗(PQ). However, τ∗ on vectors lying in
any ball B′ gives their euclidean length, for −c2τ2(t′;x′) = −c2t′.t′+x′.x′ if one
uses components parallel to the time and the euclidean space of S′. This is the
relative speed—always less than 2c—between observers as observed by S′, and
this distance between rays is invariant under reflections of the cone preserving
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S′. It is τ∗ on point-pairs of that hidden space τ = 1 enveloped by all these
balls, that is τ∗(b′b′′), that gave us an observer-independent and fully invariant

proper speed between observers; and inf
∫ b′′
b′
τ∗(dr) over all curves on τ = 1 from

b′ to b′′ gives – note 6 – an invariant distance between rays obeying the triangle
inequality. In note 14 we showed that this must be Cayley’s distance: if S′′ has

speed v as observed by S′, then inf
∫ b′′
b′
τ∗(dr) = c

2 log( c+vc−v ), with inf attained
on and only on the curve from b′ to b′′ on τ = 1 and span{S′, S′′}. To double-
check this let c

2 log( c+vc−v ) = cθ, then v = c tanh θ, but span{S′, S′′} ∩ {τ = 1}
has in the coordinates (t′, x′) of S′ the cartesian equation −c2t′2 +x′2 = −c2 or

parametric equations t′ = cosh θ, x′ = c sinh θ, so over this curve
∫ b′′
b′
τ∗(dr) =∫ θ

0

√
−c2(dt′)2 + (dx′)2 = cθ. Also, the retraction P = (t′;x′) 7→ (t′, ‖x′‖) = P

of the vector space on the half-plane x′ ≥ 0 of span{S′, S′′} preserves τ = 1
and, for any point-pair on it, since ‖x′(PQ)‖ ≥ |‖x′(P ) − ‖x′(Q)‖|, we have
τ∗(PQ) ≥ τ∗(PQ), with equality iff x′(P ) or x′(Q) is a non-negative multiple

of the other. Hence
∫ b′′
b′
τ∗(dr) ≥

∫ b′′
b′
τ∗(dr) for any r(u) on τ = 1 from b′ to

b′′ and its retraction r(u), with equality iff r(u) = r(u)∀u. q.e.d. Here of course,

following Riemann,
∫ b′′
b′
τ∗(dr) := lim[τ∗(P0P1) + τ∗(P1P2) + · · ·+ τ∗(Pk−1Pk)],

as one takes more and more closely spaced points b′ = P0, P1, . . . , Pk = b′′ in
order on r(u). For the minimizing curve r(θ), which is on the plane through 0,
τ∗(PiPi+1) = c

√
2 cosh(θi+1 − θi)− 2 > c(θi+1 − θi), so now its riemann sums

are bigger than the integral, but steadily decrease to it under refinement.
19. To elaborate on note 7 we’ll switch to (t1;x1)?(t1;x2) = −c2t1t2+x1.x2,

the bilinear form associated to −c2τ2. So, if r(s) is any smooth à priori motion
parametrized by elapsed time and u(s) = dr

ds is its unit tangent vector field –
note 15 – then u(s) ? u(s) = −c2. The ?-orthogonal complement of u(s) is the
euclidean space of the parallel galilean observer and on it our bilinear form co-
incides with its dot product. So one has moving frames {u(s); e1(s), . . . , en(s)}
of smooth vector fields along the motion such that ei(s) ? ej(s) = δij and
u(s) ? ei(s) = 0. An à priori motion is a parallel pencil of directed and strictly
increasing arcs – note 13 – in the cone. By perturbing such an arc, in the
interior of the smooth manifold a ≤ τ ≤ b on whose boundary its end points
lie, we can replace it by another which is lipschitz close to it, and which is not
only smooth but also generic, i.e., its first n+ 1 derivatives are always linearly
independent. A smooth generic motions has a frenet frame : each unit vector

ei(s), 1 ≤ i ≤ n, is obtained by multiplying the component of di+1r
dsi+1 orthogo-

nal to span{u(s), e1(s), . . . , ei−1(s)} with the reciprocal of its nonzero length
κi(s). Since adding a vector does not change derivatives these curvatures κi(s)
are well-defined, a parallel arc is also generic with the same elapsed times and
curvatures at its corresponding points. Moreover, two smooth generic motions
are related by a finite sequence of linear reflections of the cone if and only if
they have the same curvature functions κi(s), 1 ≤ i ≤ n. Any linear transfor-
mation L of the cone preserves τ and ? and maps a smooth generic motion onto
another whose derivatives are the images under L of its derivatives; this shows
‘only if’. For ‘if’ represent the two motions by arcs whose initial points are on
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rays parallel to their initial unit tangent vectors, and then slide one of these
arcs along this ray so that τ has the same value on both initial points. Now
apply the linear reflection of the cone interchanging these two rays to one of the
arcs to get two arcs with the same initial point and the same u(0) along the
ray through this point. Finally, by applying to one of the arcs the orthogonal
transformation of this observer which throws the initial unit vectors ei(0) of this
arc onto those of the other we are reduced to showing that, there exists a unique
smooth generic arc parametrized by elapsed time with a given initial frenet frame
{u(0); e1(0), . . . , en(0)} and given curvature functions κi(s). For this we’ll need
the frenet equations : du

ds = k1(s)e1(s), dei

ds = ki+1(s)ei+1(s) − ki(s)ei−1(s) for

1 ≤ i < n and den

ds = −kn(s)en−1(s), where k1(s) = κ1(s), e0(s) = u(s) and

ki+1(s) = κi+1(s)
κi(s)

. The first equation is ‘what gave E = mc2’, viz., d
2r
ds2 ?

dr
ds = 0,

i.e., derivative of u(s) ? u(s) is zero, i.e., u(s) ? u(s) is constant. Likewise

ei(s) = 1
κi(s)

di+1r
dsi+1 + lower order terms, has derivative 1

κi(s)
di+2r
dsi+2 + lower order

terms, which for 1 ≤ i < n is equal to κi+1(s)
κi(s)

ei+1(s) + a linear combination of

ej(s) with j ≤ i only, while for i = n even the leading term is missing. Now

use dei

ds ? u(s) + du
ds ? ei(s) = 0 and dei

ds ? ej(s) +
dej

ds ? ei(s) = 0 – these express
the constancy of ei(s) ?u(s) and ei(s) ? ej(s) – to obtain the other n equations.
These n + 1 equations can be written more compactly as the matrix equation,
dU
ds = K(s)U(s), where U(s) is the square matrix of size n+ 1 with row vectors
u(s), e1(s), . . . , en(s), and K(s) is the skewsymmetric matrix of this size whose
only nonzero entries are k1(s), . . . , kn(s) immediately above the main diagonal,
and their negatives below it. Using the existence and uniqueness theorem for
linear ODE’s, this equation has one and only one solution U(s) with initial value
U(0), and its first row u(s) determines the motion r(s) = r(0)+

∫ s
0
u(s)ds. This

solution U(s) is not in general given by U(s)U(0)−1 = exp
∫ s
0
K(s)ds but this

formula is true if the curvatures are constant. However, any n smooth positive
functions can be realized as the curvatures of a smooth generic motion, unless
some new decree – note 17 – on acceleration and higher derivatives is in force. À
priori motions also contain another open dense set, of piecewise linear motions
with vertices in general position, and, there is a similar classification of generic
p.l. motions. This frenet theory is akin to Kalai’s algebraic shifting, a simple
but surprisingly useful idea, over which I had mulled for long in the 1990’s, but
never quite managed to grasp it to my satisfaction ...

20. From the geographical distribution of some traits in the mitochondrial
DNA sequence it has been deduced that, all women are the iterated daughters of
just one, who lived in Africa 150,000 years ago! So once upon a time, whatever
mathematics there was, was in Africa only. The recorded history of our subject is
shorter, but Africa looms large in it too, in particular, the school of mathematics
that flourished in Alexandria—for more than six hundred years!—from Euclid
to Pappus. Practically everything above is rooted in those books of the former,
and the invariance of the biratio – see note 14 – is only one of the many things
about projective geometry that can be found in the prolific writings of the latter.
The log put by Cayley before it merely converted this multiplicative distance
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into an additive one, and may even turn out to be a retrograde step, when we
switch to other fields to understand the galois symmetries alluded to in notes
1 and 3. The sine law for triangles, and much else from plane and spherical
trigonometry, was known to Ptolemy if not Heron, both of Alexandria. Also,
the latter knew that light travels so that minimum time is taken, and had used
this to prove the isoperimetric inequality : in fact you’ll recall that he once gave
a colloquium talk (!) on this very topic even in imperial Rome, see Extracts
from my Notebooks (2008). Mathematics teaches us humility : much repetition
and reworking, sometimes stretching over centuries, is often needed before a key,
but in hindsight obvious, idea sinks in. It is then mostly a matter of personal
choice as to which mathematician, or a set of mathematicians, one wants to
credit with this idea. Though the definition of ‘his’ distance is all there in a
rambling 1859 paper of Cayley’s, the crisp 2-line format owes much to Beltrami
and Klein, and one presumes that during these years it became ‘folklore’ that it
assigns a length to the segments of any bounded open Ωn, but this came out only
when a letter from Hilbert to Klein was published in 1895. Hilbert was trying to
make Euclid’s formal presentation of geometry more rigorous, and he tells Klein
excitedly that there is a bounded open convex set—to wit the shaded region in
Figure 4—with more than one geodesic between two points! Cayley’s—or if
you prefer Pappus’s or Lobatchevsky’s or Riemann’s or Beltrami’s or Klein’s or
Hilbert’s ...—distance breathes life into all the ‘dime-a-dozen’ geometries that
we mentioned at the very outset, and then again in note 1. Some more water
has flown north out of Africa past Alexandria since Hilbert included in his
famous list of problems two that were closely related to this letter. So much
more is known now, for example, Benoist has characterized those convex Ωn

whose dime-a-dozen geometry is hyperbolic in the sense of Gromov. But much
still remains to be done, even for convex polytopes ... Moreover, each of these
geometries comes with a concomitant linearization or relativity theory. Indeed,
the definition of an unparametrized cartesian absolute motion is already clear
from note 13, and absolute space can be defined once again to be the envelope of
all the images of Ωn under the—now possibly very few—linear symmetries of its
cone, so absolute time, et cetera. The paucity of symmetries can be converted
from a handicap to a boon, for example, one can focus better on some subgroups
of G by replacing the ball itself by a symmetric polytope, and it seems galois
symmetries will make up for some loss of symmetry too ...

K S Sarkaria

(contd.)
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Plain Geometry & Relativity, Notes 21 - 23

21. If positions P1 and P2 of the same particle occur at times t1 < t2 of an
observer S, and have components x1 and x2 in his euclidean space, then

−−−→
P1P2

parallel to a ray translates into ‖x2 − x1‖ < c(t2 − t1). For c <∞ this lipschitz
property enables us to get by – note 16 – without extra hypotheses like smooth
or p.l. on a motion. The half-space t > 0 of S is the euclidean product of his ray
and n-space t = 1 and is preserved only by the reflections of the cone preserving
this ray. The cone, the intersection of the half-spaces of all the observers, has
however a hidden product structure – Figure 5 – given by all the rays and the
reeb foliation τ = constant, which is preserved by all its reflections. If P1 and P2

occur at absolute times τ1 < τ2, and we use cayley’s distance, then the lipschitz

property can be reformulated thus : P̂1P2 < c log(τ2/τ1).

Figure 5

If P1 and P2 lie on the same ray the distance P̂1P2 between their rays is 0.
Otherwise we’ll use on their plane the coordinates (t, x) of the observer S whose
state of rest is the ray through P1 with the x axis towards the ray through P2.
So if P1 = (l, 0) then P2 = (l + lu,mlu) for some u > 0 and m > 0. The
two rays cut the ball of S in its centre A = (1, 0) and the point B = (1, mu1+u ),
and AB extended meets the boundary in X = (1,−c) and Y = (1, c). We

have XB
XA

Y A
Y B = XB

YB = c+(mu/1+u)
c−(mu/1+u) = 1+u+mu/c

1+u−mu/c . Also (τ1)2 = l2 and (τ2)2 =

(l + lu)2 − (lmu/c)2, therefore ( τ2τ1 )2 = (1 + u + mu/c)(1 + u −mu/c). Using

the definition of P̂1P2 in note 14 the above lipschitz property is equivalent to
XB
XA

Y A
Y B < ( τ2τ1 )2, so it holds iff 1 < (1 + u−mu/c)2, i.e., iff m < c. �
Since P1P2 extended may not intersect the boundary twice, in the above

proof we first replaced it by AB. Indeed if −c ≤ m ≤ c then P1P2 extended
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has an X ′ on the boundary but Y ′ is at infinity, and the distance between the
two rays is, excepting for m = ∓c, not given by the limit c

2 log X′P2

X′P1
. This is

bigger, for example, for m = 0 the two rays coincide, but this expression gives
us c

2 log(τ2/τ1), which is half the right side of our inequality!

The unrestricted use of Cayley’s formula—i.e. ÃB := c
2 log(XBXA

Y A
Y B ) always

with the limit to be used if X or Y is at infinity—is however natural and
gives us more. It gives a metric as against a pseudometric. We have ÃB > 0
because the complete line containing the points A 6= B is not in our cone, and
ÃB+ B̃C ≥ ÃC follows by taking the limit of the triangle inequality – see note
14 – for the cone truncated by a flat on the right. A linear isomorphism preserves
the ratios of segments of a line, so ÂB and ÃB are invariant under all linear
isomorphisms of the cone. Further this metric is well-behaved with respect to
the hidden product structure. On each leaf τ = constant it coincides with the
cayley distance between rays. On each ray it coincides with c

2 log(τ2/τ1), so
by analogy this expression will be called the cayley distance between the leaves
on which P1 and P2 lie. We recall that the factor c

2 was put only to get the
coincidence, of the riemannian metric of the particular leaf τ = 1, with the
cayley distance between rays. With this artificial factor now gone, the lipschitz
property becomes: for any pair of subsequent points on an absolute motion the
cayley distance between rays is less than twice the cayley distance between leaves.
Since 0 and 1 are the only whole numbers less than two, the thought arises that
the other side of the c < ∞ coin – see note 12 – is this discrete micro reality:
at the next instant of absolute time a ‘particle’ is either at the same or at one
of the adjacent spots of absolute space?

22. In mechanics one also considers motions of two, three or more particles,
even of fluids and plasmas with uncountably many, and collisions, fusion and
fission of particles too, but all in a still space. The ‘particles’ at the end of the
last note are different, they are not things in space, but things revealed by the
motions of space. Since space stays put, these motions are via bijections which
induce bijections of open sets, viz., homeomorphisms φτ of the absolute space of
all rays or of τ = 1, parametrized continuously by absolute times τ > 0. Also,
as before, the absolute motion Pτ of each point P of τ = 1 shall be strictly
increasing with respect to the partial order of the cone, i.e., if P1 = Pτ1 and
P2 = Pτ2 are the points of τ = τ1 and τ = τ2 on the rays through φτ1(P ) and

φτ2(P ) for any τ1 < τ2, then
−−−→
P1P2 is parallel to a ray of the cone.

The corresponding motion φτ of the ball Bn of any observer S extends to
homeomorphisms φτ of his euclidean space identity outside Bn. The lipschitz
inequality of note 21 applies to the absolute motion of any point, so φ = φτ is at

a bounded cayley distance A = c| log τ | from the identity, i.e., P̂ φ(P ) < A ∀ P .
So this homeomorphism φ of Bn maps its centre into the concentric open ball
of radius a where c

2 log c+a
c−a = A, i.e., a = c tanh(Ac ). More generally φ maps

any P ∈ Bn into the cayley ball of radius A around P , i.e., all points at cayley
distance less than A from P . The extension φ is a homeomorphism because,
in the euclidean metric of S, these cayley balls become arbitrarily small when P
approaches the boundary of Bn.

2



If S uses orthogonal coordinates (t;x,y) in which P = (1; v,0), v > 0, the
linear reflection of the cone switching the rays through the centre and P – see

fifth para of text – is (t;x,y) 7→ (γt− γv
c2 x; γvt− γx,y) where 1

γ(v) :=
√

1− v2

c2 .

The rays through the boundary of the cayley ball around the centre constitute
x2 +y2 = a2t2. So the boundary of the cayley ball around P is given by putting

t = 1 in (γvt−γx)2+y2 = a2(γt− γv
c2 x)2, i.e. (γ2−γ2 a

2v2

c4 )x2−2(γ2v− γ2a2v
c2 )x+

y2 = γ2a2−γ2v2. Completing a square this can be written as γ2

δ2 (x−w)2+y2 =

β2, where 1
δ(a,v) :=

√
1− a2

c2
v2

c2 . So this is an ellipsoid – Figure 6 – with centre

Q = (1;w,0), with all semi-axes β, except that along the diameter on which P
lies, this semi-axis α = δ

γβ is smaller. Further, segment of the diameter through

P intercepted by the ellipsoid is bounded by the reflections T ′, U ′ of the rays
through (1;±a,0), viz., the rays through (1; v∓a

1∓ av
c2
,0). So 2α = v+a

1+ av
c2
− v−a

1− av
c2

and 2w = v+a
1+ av

c2
+ v−a

1− av
c2

which give α = δ2(a,v)
γ2(v) a and w = δ2(a,v)

γ2(a) v. Since w < v

we see that Q is nearer to the centre of the ball than P ; also that the semi-axes

β = δ
γ a and α = δ2

γ2 a of the ellipsoid approach 0 when v → c. �

Figure 6

We can’t resist remarking once again how plain it all is ! The linear reflection
A ↔ A′ of the plane of S and S′ gives us the smaller axis of the ellipsoid, so
in particular the factor by which a shrinks in this direction, in all orthogonal
directions it only shrinks by the square root of this amount. The infinitesimal
cayley ball at P is even easier to keep in mind : the ellipsoid with centre P with

the radius of the central ball shrunk in these directions by the factors 1 − v2

c2

and
√

1− v2

c2 respectively, where v denotes the euclidean distance of P from the

centre of Bn. This because δ(a, v) and γ(a) approach 1 when a→ 0. That is, the
cayley distance of the ball Bn arises from a riemannian metric which coincides
at its centre with the euclidean metric, and at all other points P stretches the
tangent vectors in these directions by the reciprocals of these factors.
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More generally, even if ‘motion’ is by bijections φτ , but the absolute motion
Pτ of each point is as before, our argument shows that, the extended-by-identity
bijections φτ of euclidean space are bicontinuous on the boundary of the ball.
When dimension n ≥ 2 all sorts of fissures can now develop within the n-ball,
for example, the points may be stationary till some radius r0 > 0, and for any
bigger radius rotating at a small nonzero speed. However continuity in time
implies that, the bijections φτ must be homeomorphisms for n = 1. If the order
of two points P and Q of the interval B1 is reversed under φτ their flow lines
intersect at some 0 < τ ′ < τ , i.e. Pτ ′ = Qτ ′ , contradicting injectivity of φτ ′ .
So these bijections are order preserving, and they have no discontinuity either,
because any such jump contradicts surjectivity. �

23. It seems that, any homeomorphism φ of the n-ball at a bounded cayley
distance from its identity map can be realized as a φτ of some motion. So these
bounded homeomorphisms are isotopic to the identity, however they form a
smaller group. For example, any homeomorphism of Bn which is radial, i.e.,
preserves each radius, is isotopic to the identity, but it may not be bounded.
Also, we’ll see later that, any strictly increasing curve passing through P for
τ = 1 can be realized as the flow line Pτ of some motion of space.

The projections of the flow lines Pτ on the absolute space of rays or τ = 1
are called the orbits φτ (P ) of the motion. Unlike flow lines, orbits can intersect
themselves or each other in all sorts of way but, if c < ∞ and n ≥ 2, an orbit

cannot visit all the points of a nonempty open set. Using P̂1P2 < 2(τ̃1τ2)—note
21—we see that in any time interval of cayley length 1

N the orbit stays in a
cayley ball of diameter 2

N , so over any unit time interval the orbit describes a
set which can be covered by N cayley balls of this diameter, but N( 2

N )s → 0 as
N →∞ for any s > 1, so this set has dimension at most one. �

Here we used hausdorff dimension of a metric space, viz., the infimum of all
positive real numbers s for which there exists a countable cover such that the
sum of the sth powers of the diameters is arbitrarily small. It is easy to see
that for submanifolds this is their usual dimension, and an argument similar to
the one above shows that, it is non-increasing under any lipschitz map, so it is
preserved by (bi)lipschitz homeomorphisms of metric spaces.

It follows that that amazing curve found by Georg and David while playing
dots-and-squares (!) can only be traced by an orbit of a motion with n = 2
and c =∞. For, it covered a 2-cell with 3 holes, so it can not be lipschitz; but
the reader can check that, the euclidean distance between its points at times
t1 < t2 is bounded by a constant multiple of the square root of t2− t1. Likewise,
any compact and connected manifold Mm ⊂ Rn can be traced in finite time as
an orbit of some motion of n-space, which moreover satisfies a ‘weak lipschitz
inequality’ involving the mth root of t2 − t1. �

Here t was the time of an observer S, for c =∞ it is the same as τ . For c <∞
it is not and, we emphasize that it is the absolute time τ which is parametrizing
the homeomorphisms φτ of absolute space, each observer S merely identifies his
ball B of radius c in his t = 1 with this space of all rays. These φτ were well-
defined because a line in the cone parallel to a ray cuts all the transversals τ =
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constant. This is not so, for c <∞, if we use the time t of S : a transversal t =
constant may not cut all the flow lines, for example, if the flow lines are parallel
to the same ray. So some points of B may not be on any flow line having a
point with a given t < 1, and following the flow to a t > 1 may give only an
injection, not a bijection : we would get a well-defined homeomorphism of B
for each t > 0 only when all the flow lines arise from the origin.

The foliation provided by all the flow lines has another interpretation when
we use the product structure of the half space of S – see Figure 5 – instead
of the hidden product structure of the cone : it is what S would observe if his
own euclidean space were undergoing a motion. This because, up to any time
t > 0, he can discern only the motions of those points of his space which are at
distance less than ct from him—that is why he’ll plot only a cone full of flow
lines in his half space—and the observed positions of any point at times t1 < t2
are subject to the condition ‖x(t2)− x(t1)‖ < c(t2 − t1).

The homeomorphisms φτ of the euclidean n-space t = 1 of S, identity outside
his ball Bn, give orientation-preserving homeomorphisms of the n-sphere having
an extra point at infinity. Only that about this hidden motion is heard which
persists under perturbations : so, for n 6= 4, the observer S can assume that
these homeomorphisms are lipschitz! Indeed, for n > 4 we’ll construct later, an
almost radial homeomorphism, identity outside the ball, which conjugates the
motion to one which is lipschitz. Spherically bending the flat mirrors of Bn

maximally inwards ensures that a lipschitz inequality holds if one of the points
is on the boundary. Within the ball we’ll make the homeomorphisms piecewise
linear. We’ll start with a simplicial approximation of the motion. This may
have some singularities, but for n > 4 these singularities can be engulfed away,
essentially because a simple closed curve on the already good part can be coned
away from it, cf. Embedding and unknotting of some polyhedra (1987). For n ≤ 4
this does not work, and the result is in fact false for n = 4, but for n < 4 there
are other constructions which show that the result is again true.

Even for c =∞—now the cone is a half-space and τ = t—the hidden product
structure is different from that of any observer : all the flats t = constant with
all the rays from the origin, instead of all the parallels to a ray S. Once again
it is this observer-independent hidden product structure only that we’ll use to
define the homeomorphisms φt of the absolute space t = 1 from any continuous
flow of the same for all absolute times t > 0. However for c =∞ the continuous
flow lines Pt may not be lipschitz, and these homeomorphisms of euclidean n-
space may not be at a bounded distance from its identity map, nor can S assume
on à priori grounds for n 6= 4 that they are lipschitz. These distinctions show
that, there is no time and order-preserving homeomorphism from the half space
onto the cone of rays through a ball Bn of finite radius.� On the other hand
any homeomorphism of Rn onto Bn determines and is determined by a time
preserving homeomorphism which maps rays to rays.

Given a flow of the space its invariant subsets are those on which the homeo-
morphisms φτ restrict to homeomorphisms, i.e., subsets A such that if P ∈ A
then the entire orbit φτ (P ) is contained in A. The minimal invariant sets of a
flow partition the space into topologically homogeneous parts. That these sets
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are disjoint or equal is clear. At points P and φτ (P ) of any invariant set A the
topology is the same because φτ restricts to a homeomorphism of A. If A is
minimal then its points are related by finite sequences of points each on some
orbit through the preceding.� Topologically homogenous spaces are nice, nicest
being connected manifolds, so we ask: what manifolds are born in flows?

Example. There is a smooth motion of n-space, n ≥ 2, with minimal sets
parallel 2-planes. Let the flow lines be tangent to the vector field on the half-
space whose component along the ray through that point is t, and whose compo-
nents parallel to a fixed frame of the n-space are (t cos log t, t sin log t, 0, . . . , 0).
Then the orbits, i.e., the projections from the origin of these flow lines on t = 1,
are all circles of radius 1 parallel to the first two vectors of the frame.� A similar
construction works also for c <∞, and though the invariant partition of a flow
is seldom a foliation as in this example, it seems that such constructions put
together will suffice to establish that, any smooth connected manifold occurs as
a minimal invariant set of some flow with c <∞.

However not all topological manifolds are relativistic : if a closed Mm occurs
as a minimal invariant set in a motion with c < ∞ then it admits a lipschitz
structure. We can assume m > 3 and so n > 4, but then S can perturb the
motion to a conjugate motion whose φτ ’s are lipschitz homeomorphisms of his
ball Bn; their restrictions to the perturbed copy of Mm give the desired lipschitz
structure.� We recall – see note 16 – that this only excludes some 4-dimensional
manifolds. Nevertheless it seems likely that, outside these wild 4-manifolds, any
closed connected topological manifold can be realized as a minimal invariant set
in a flow with c < ∞, and that, for the limiting non-relativistic case c = ∞,
even these exceptions can be thus realized.

A motion of space is steady in time if the flow lines through any ray are
positive multiples of each other, so τ 7→ φτ is a group homomorphism φτ1τ2 =
φτ1 ◦ φτ2 : see Figure 7.� For a steady motion, the minimal invariant sets have
just one orbit each. Further, if a point returns to its position, it must repeat its
journey, therefore : each orbit is homeomorphic to an open interval, a circle, or
a single point. So the minimal invariant sets of a steady motion are very simple;
only, if n = 3, some of these circles may be knotted in B3. On the other hand,
it may well be that any smooth closed connected submanifold Mm of an n-ball
Bn is a minimal invariant set of some unsteady motion?

Figure 7
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The homeomorphisms of the cone Φτ (P ) := Pτ (the point on the same flow
line with proper time τ times) map leaves to leaves. They map—Figure 7—rays

to rays iff the motion is steady. These motions preserve the metric ÃB of the
rays. However, when c < ∞ and n ≥ 2, no motion other than absolute rest
preserves the metric ÃB of the leaves ! If φ preserves the orientation and cayley
distance of Bn it is a composition of an even number ≤ n+1 of linear reflections
of the cone. If φ is not the identity map, and n ≥ 2, there is a line L whose
image φ(L)—also a line by linearity—is distinct from it. Since the cayley balls
of any finite radius become arbitrarily small – see note 22 – near the boundary
of Bn, the second line is not wholly within a bounded cayley distance of the
first line. So a cayley distance preserving φ can occur as a φτ of some absolute
motion of space only if it is the identity map of Bn. � On the other hand the
geometry of the infinite n-ball or the finite interval is not rigid : any orientaion
and distance preserving φ occurs as a φτ of some motion.

The cayley isometries of the cone are given by the compositions of its linear
reflections and time reversals τ 7→ a2/τ . If the homeomorphisms Φτ commute
with a group G of these isometries the motion is called G-periodic. Especially
alluring are the discrete subgroups G with compact quotients, for example, in
all dimensions there are groups G under which the conical spacetime covers a
closed and parallelizable manifold ! The n-ball, held taut at its boundary in his
euclidean n-space, and vibrating G-periodically, enables the observer to hear to
some extent the topology of this quotient. This discretization of spacetime is
available also for c =∞ and in this non-relativistic schrödinger theory examples
of such discrete subgroups are easier to give.

K S Sarkaria

(contd.)
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24. The closed and parallelizable spacetimes that closed Note 23 deserve our
close attention. For all n ≥ 1 there are discrete subgroups G of cayley isometries
of our conical spacetime such that the quotient space is compact, and by using
instead a suitable subgroup of finite index we can always ensure not only that
this quotient is a closed (n+ 1)-manifold, but also that it admits n+ 1 smooth
linearly independent tangent vector fields v1, . . . , vn, vn+1. Further, some such
groups G are generated by a subgroup Γ of cayley isometries of the ball Bn and
a single homothety, i.e., a product of two distinct time reversals.

The closed spacetime is then a circle S1 times a closed n-manifold Bn/Γ
which may not be parallelizable, but Bn/Γ is parallelizable in the complement
of a point. For, this complement has the homotopy type of an (n−1)-dimensional
polyhedron. So, on it, the unit vector field w tangent to S1 is homotopic, via
never zero sections of the tangent bundle of the spacetime, to vn+1. Lifting this
homotopy we obtain, on this complement, n + 1 linearly independent vector
fields w1, . . . , wn, w. The first n of these give, under projection parallel to w,
the required parallelization of Bn/Γ minus a point. �

A smooth n-manifold without boundary immerses in n-space iff it is open
and parallelizable. Here ‘only if’ is easy and ‘if’ is nowadays an existence theorem
of flexible p.d.e. theory. However, even for the punctured n-torus Rn/Zn \ {pt},
an explicit immersion is not easy, and for its relativistic analogues Bn/Γ \ {pt},
we know in general nothing about the discrete groups G and Γ beyond what
we asserted above without proof about their existence. These existence proofs
are very pretty – especially an étale homotopy argument which shows why the
obstruction to parallelizability vanishes for a finite cover – but first, let us ponder
this painting of that river—Note 20—flowing north out of Africa ...

Sunset on the Nile (Jens, circa 1956)

25. Where do we come from? What are we? Where are we going? This is
the longish name of a painting by Gauguin. A paper by Gromov starts with that
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painting, and then, for its title, has Manifolds asking these existential questions
of themselves. Though surely very few can talk, closed manifolds have always
been, for me too, very natural objects. This belief is, I guess, what led me to
the results of Note 23, and the many related musings in these notes.

It seems that in recent times physics has returned to its cartesian roots, in
particular the dictum that, matter is but extension, and is differentiated only
by its various motions. Be that as it may, any closed topological manifold is
‘cartesian matter’ in the sense of this theorem : it can be created in finite time as
a compact minimal invariant set Mm of some continuous motion of a euclidean
space having sufficiently many degrees n of freedom.

A flow of Rn can probably also have other compact Mm’s—all necessarily
connected, topologically homogenous and homogenously embedded—but it is
manifolds that seem the most natural. Indeed, matter is discrete, so what matter
are maybe the triangulable Mm’s : these are closed manifolds. � This is easy,
but the Bing-Borsuk conjecture, that any locally contractible and topologically
homogeneous compactum is a manifold, is still open for m > 2. And, for m = 3
it would finish another proof of Poincaré’s conjecture, that a closed 3-manifold
with fundamental group Γ = 1 is the 3-sphere. Also, the unfolding classification
of triangulable Mm’s for m ≥ 5 is tied closely to that of homology 3-spheres,
i.e., closed 3-manifolds with Γab = 1. ‘His’ homology 3-sphere with Γ finite—the
Miss Universe of “213, 16A”—was discussed at great length by Poincaré, but
who knows, the infinitely many homology 3-spheres which occur as B3/Γ may
be there too in his pioneering and prolific writings on discrete subgroups Γ
preserving the geometry of a 3-ball of radius c < ∞ ? The unfolding work
on triangulations suggests that the above ‘cartesian matter’ can be analysed in
terms of these ‘elementary particles’ or ‘relativistic crystals’ ...

For c < ∞ it is in fact (Bn/Γ)×S1, and more generally any manifold quotient
Cn+1/G of the cone, that is more like a classical crystallographic manifold, for
it has a finite parallelizable cover. These closed spacetimes Cn+1/G have an
induced reeb foliation and transverse line field, since the cayley isometries of the
cone Cn+1 map leaves and rays to leaves and rays. � In this context we’ll think
of Cn+1 as the infinite cylinder over the ball Bn of any observer S :–

Figure 9
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This cylinderical representation is convenient for doing topology, but the
geometry gets distorted. The new coordinates are the logarithmic time u =
log t of the observer and relative velocity v with respect to him, so parallels
to S represent galilean motions. More generally, any smooth curve (u,v(u))
represents a possible motion iff it obeys the relativistic constraint |dv/du| <
c− |v|. Moreover, the lorentz contraction factor γ(v) is tied intimately with the
new equations u = log γ(v) + constant of the reeb leaves, that in the conical
picture were simply c2t2 − x2 = constant. The new cylinderical picture is
preserved by translations parallel to the axis just like the conical picture was
preserved by homotheties, however the cayley isometries of the ball moving its
centre are restrictions of nonlinear transformations of the cylinder.

Foliations are ‘cartesian’ partitions, for example it is likely that, any smoothly
foliated closed manifold (Mm,F) can be created in finite time as an invariant
set of a smooth relativistic flow of a high dimensional ball Bn of radius c < ∞,
each leaf of F a minimal invariant set of this flow. However a parallel gener-
alization of the theorem stated above to all continuously foliated topological
manifolds vis-à-vis continuous non-relativistic flows seems more iffy.

This was my cue to revisit my foliations days, doing which I noticed that, the
intermediate partitions used in all those constructions of foliations from that era
are most likely ‘cartesian’ too, at least as long as everything is smooth. Given
below are some other things from this trip back in time.

26. Besides the aforementioned real analytic reeb foliations of the closed
spacetimes Cn+1/G – are there some homology spheres here? – there was that
good old smooth reeb foliation of S3 which however I now found myself looking
at through the lens of my later deleted joins days :–

Let S3 be the round 3-sphere of circumference 4 centred on the origin of
R4 = R2 ⊕R2. Then the spherical distance between the first and second circles
in which S3 intersects these summands is 1 and S3 is the join S1 · S1 of these
two circles. That is, any other point of S3 lies on a unique great circular arc of
length 1 from a point x of the first circle to a point y of the second, and can be
denoted (1−α)x+αy, where α is its distance from the first circle. So, points at a
distance α from the first circle are at a distance 1−α from the second, and form
a submanifold Lα of S3 diffeomorphic to S1 × S1 = {(x, y) : x ∈ S1, y ∈ S1} if
0 < α < 1, while L0 and L1 are the first and second circles.

We now use the foliation of B2×S1, obtained by dividing the infinite cylinder
of Figure 9 by a translation, to desingularize this foliation-with-singularities of
S3 : that is we plug in a copy to refoliate the diffeomorphic neighbourhood
of all points within a certain distance less than one of each circle, smoothness
on the bounding toral leaf of this neighbourhood then follows from the fact
that log γ(v) and all its derivatives approach infinity when v → ±c. Also, we
can desingularize symmetrically with respect to the switching Z/2-action on
S3 = S1 · S1, and if we choose the ‘certain distance’ to be 1/2 for both circles
we would be left with just one toral leaf L1/2. �

Likewise, joining q+1 spheres gives a foliation-with-singularities of a sphere,
with generic leaf product of all these spheres, so it has codimension q, but there
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are also some singular leaves that are products of only some of the q+1 spheres,
e.g., the (q + 1)-fold join S2q+1 of S1 has such a ‘foliation’ with generic leaves
(q + 1)-tori. When exactly can the join of q + 1 spheres be desingularized to get
a codimension q foliation? Obviously this sphere should admit a codimension q
tangent plane field, for example, the join of two spheres can be desingularized
only if is odd dimensional, but this condition is not sufficient.

The join of two spheres can be desingularized iff they are odd dimensional
with one a circle. Given the above foliation-with-singularities of Si ·Sj , we want
to refoliate two disjoint open saturated neighbourhoods Si×Bj+1 and Bi+1×Sj ,
of the singular leaves Si and Sj , so that the new leaves approach the boundary
leaves Si×Sj . If i > 1 and j > 1 then Si×Sj is simply connected; therefore by
Poincaré’s original definition of the fundamental group, the global monodromy
of any multiple valued function defined on it is trivial; so that given by nearby
leaves of these refoliations would be trivial; which rules out approaching leaves.
So, because i+ j + 1 is odd, i and j are odd with one 1.

Conversely, Figure 9 modulo a translation refoliates the neighbourhood of a
singular circle, but refoliating Si ×B2 when i is odd but bigger than 1 is much
harder. However this neighbourhood obviously admits a smooth nonzero vector
field normal to its boundary – also we can ensure that it coincides with a given
nonzero vector field on the central Si – and it is known that the existence of
such a vector field implies that of the required refoliation. �

27. This end of the year note is being typed nine months after the one above,
but of course I had once again looked long and wistfully at Thurston’s “Existence
of codimension one foliations” (1976). The number of people who got it was
nonzero then, but now – four decades later! – it is (imho) even less than those
who dig Mochizuki’s “Inter-universal Teichmüller theory” (2012). This classic
characterized manifolds possibly with boundary that admit a smooth foliation
having boundary components as leaves. This is done using an explicit local
construction which spreads the required foliation steadily, and always transverse
to a given vector field normal to the boundary components, till it covers the
entire manifold ... so I imagine we should in fact be able to refoliate our Si×B2

in such a way that this new foliation cuts the central lower dimensional odd
sphere Si in a given codimension one foliation?

Unlike Thurston my ability ‘to see from within’ noneuclidean geometries is
very limited, may be that is why I’ve given primacy to familiar n-space only, with
indeed the—to my mind just pragmatic, but also called relativistic—restriction
that it ought to be of a finite radius c < ∞. In this receptacle are born from
its own cartesian motions all lipschitz manifolds, and if smooth enough, its
cayley distance induces on them a riemannian metric. The usual tools of vector
calculus and forms, tensors, etc., are available chart by chart – with an occasional
sign ambiguity for orientation dependent quantities – so existence of smooth
foliations translates into existence theorems of analysis, for example, the partial
differential equation −→

E ·curl−→E = 0 has an always nonzero solution on any closed
3-manifold, because this is the same as saying that the 2-dimensional plane field
orthogonal to −→

E is tangent to a foliation.
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The story in fact began when this problem of vector calculus was posed for
S3 by Hopf in 1935. It was solved by Ehresmann and Reeb in 1944, but then
there was an extended drought of interesting foliations, till Lawson got infinitely
many odd dimensional spheres in a clever way, but it was Thurston soon after
who reached the bottom of the well, his chart by chart approach akin to how
Edwards et al were trying to triangulate topological manifolds.

Which reminds me of another problem about vector fields that was posed to
me in late 1969 in a very kind letter from Professor Steenrod :-

Working out by myself what in the topology of D prevents this factorization−→
P =

−→
E × −→

H was a wonderful way of learning some obstruction theory, and so
appreciate later on Haefliger’s necessary conditions for the existence of foliations
in all codimensions, which prepared the ground for Thurston to complete the
job from the other end. Also it helped me move to virtually a ring side seat
even as this dénouement was about to be played out.

There was much else equally exciting going on then, e.g., the index formulas
of Atiyah et al. Trying to make their analysis less messy I stumbled on the
smoothing operators in de Rham’s Variétés Différentiables. If there are enough
flows preserving leaves they generalized to foliated manifolds and gave finiteness
theorems. In the cartesian context a smoothing operator comes with the primal
motion that gave birth to our manifold.

The charts lipschitz if c < ∞ come too, so abstract manifolds are natural.
Poincaré’s crossword dissection of smooth manifolds, perfected by Cairns, used
a quadrillage of the ambient space. For topological manifolds we use a grid in
each chart, and puzzle out if two overlapping dissections can be made to fit,
then three, etc. For lipschitz structures Sullivan played the same game using
1/c > 0 tilings, so these crosswords or torus tricks quantize manifolds.

The new year is here and I’ll return to a sequel to auNgLIAW Aqy twielW – its
translation Fingers and tiles will be available soon – which I posted in July 2015.
This gave four proofs of a cute problem tied to the burgeoning Thurston lore,
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viz. the first of the ten (!) stories about him that Sullivan relates in the November
2015 issue of the Notices of the A.M.S. I thought this was an auspicious way to
start (re)learning the constructions needed to understand better some questions
that have arisen in this work. For example the sequel that I am working on
dwells on constructions used to study the embeddability of simplicial complexes
in double dimensional space.

There is also a considerable backlog of older things that need to be typed
up, so I hope to continue this series of notes as well. For example given below
is a cute picture, scanned directly from my notebook of 2014 to save on time,
exemplifying how deleted joins, to wit Flores’ spheres, join the fray as cayley
balls if we replace the ball B of radius c by a regular simplex.

K S Sarkaria (contd.)
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Plain Geometry & Relativity, part V

28. Matter is but extension, and is differentiated only by its various motions.
Let us summarize where we are now in our efforts to answer those three
questions—Note 25—of manifolds starting from this dictum of Descartes.

(28.1) We saw closed manifolds emerge magically—and it seems in all
their diversity—in euclidean n-spaces from their own periodic motions.1 Even
simple physical systems have many more degrees of freedom n than visual space,
but we can here work in just the one cartesian space of all sequences of real
numbers having only finitely many nonzero entries.2

(28.2) That pragmatic restriction—any observer’s space at his time t = 1 is
an n-ball of radius c < ∞ around him—led us to an absolute time τ defined on,
and preserved by the linear reflections of the cone over his n-ball. The flow lines
of a motion of the n-ball project its moving points on the successive absolute
spaces τ = constant. Their chords are parallel to rays of the cone, besides we
require that this motion proceeds via homeomorphisms.

(28.21) For n > 4 this requirement implies that there is a perturbation of the
motion of the n-ball with lipschitz homeomorphisms. We sketched in Note 23
why this seems true and gives one half of : A closed manifold emerges in a
periodic relativistic motion if and only if it admits a lipschitz
structure. For the other half we showed that a 2-ball emerges from a smooth
motion for any n ≥ 2, from which it is clear any closed smooth manifold occurs,
hoping that similar constructions work for closed lipschitz manifolds.

(28.22) Further, using a lipschitz yang-mills theory, Donaldson and
Sullivan have shown that some closed 4-manifolds do not admit any lipschitz
structure. On the other hand, using a bieberbach theorem for relativistic
crystallography, the latter had shown long before that outside dimension 4 all
manifolds admit a unique lipschitz structure. However I have yet to understand
these technologies to my full satisfaction.

(28.3) From that complicated hidden motion we only got static closed
manifolds in our n-ball of radius c < ∞. What sets them moving is more
pragmatism : only a compact interval of absolute time for each snapshot. De-
pending on the scale at which we are discerning the hidden motion, there is say
a number 1 < s < ∞ – very big in macrophysics, almost 1 for microphysics –
and the τ th frame of this moving picture uses [τ/s, τs], i.e., the actual hidden
motion is replaced with the one having this restriction as a period to make this
snapshot. Since there is in fact no periodicity the closed manifolds move and oc-
casionally coalesce or bifurcate in this movie : cobordism or intrinsic homology
arises naturally from motion. Not only that, as our discernment of the
hidden motion becomes finer, what was a minimal manifold can get partitioned,
say into a foliation, and its compact leaves will be now natural candidates for
cartesian matter at this smaller scale s, et cetera.

1As persistent minimal sets of these motions (more details of this and some other things
still to be done) so our manifolds are connected but may not be orientable.

2This space R∞ was used in the last two parallel notes q and Q.
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29. A cartesian motion is a partition of conical spacetime into infinite
arcs, its flow lines, that cut each copy τ = constant of the absolute space once
and only once, inducing homeomorphisms between these level surfaces, and
have chords parallel to rays. If all flow lines tend to the origin as τ → 0 it is a
deformation3 of the basic example, cartesian rest, which has as flow lines all
rays of the cone. We’ll now discuss why this definition is reasonable.

(29.1) The continuity of flow lines does not for n > 1 guarantee that the
bijections induced between the spaces τ = constant are bicontinuous, that was
a separate condition. To obtain manifolds that are smooth, piecewise linear or
lipschitz we’ll also use cartesian motions with flow lines and homeomorphisms
smooth, piecewise linear or lipschitz. The condition, chords parallel to rays,
which kicks in for c < ∞ implies then that the flow lines are lipschitz. This
being an open condition it persists under perturbations and so we’ll be able to
approximate – if c < ∞, n ̸= 4 and the given motion is periodic – by arbitrarily
close cartesian motions with homeomorphisms lipschitz.4

(29.2) The initial condition at τ → 0 ensures the flow lines cut each
t = constant of any observer once and only once :- With the continuity of flow
lines it gives one cut, and there can’t be two because the chords of these n-balls
are not parallel to even the rays of the closed cone over them. �

In other words, the time of any observer is strictly increasing and takes all
possible values on flow lines. Conversely for c < ∞ this implies the initial
condition, and that chords of flow lines are parallel to the rays of the closed
cone5 :- The time t of S takes all values on it, so the flow line must start from
O. It can’t have a chord −−−→

P1P2 which extended on either side exits the cone, for
then we can find a nearby chord of the cone which separates O and P2 from P1

in the plane of these points, so the time t′ of the ray S′ through this chord’s
mid-point would have a lesser value at P2 than at P1. �

(29.3) We call cartesian motions preserved by all homotheties steady, and
those preserved by some homothety other than the identity periodic in time.
If c < ∞ the restriction of a deformation to times [t/s, st] of an observer extends
to a periodic deformation preserved by multiplication by s2 :- For s > 1 we
must use homothetic patterns of flow lines over the intervals . . . , [t/s3, t/s] and
[st, s3t], . . . which is okay since concatenation preserves continuity, the sum of
two vectors parallel to rays is parallel to a ray, and the new flow lines are defined
for all t > 0, so the initial condition also holds. � Likewise, we can replace any
portion of a motion by a homothetically equivalent portion of another, and
concatenation works just as well in the everything lipschitz or piecewise linear

3Talking of deformations, I still don’t know – see x – if a cantorian PG&R ties up with his
IUTT, but, even as Mochizuki finished his 8 talks in Kyoto, I saw it was child’s play to win a
game on p. 787 of the Notices of the A.M.S. of August 2016 by using deformations of addition
(for example, if the ith kid guesses the number which makes the total i mod 10)!

4The deforming homeomorphisms, that change each ray to the flow line through the same
point on τ = 1, are made lipschitz step by step, using as scaffolding a crystallographic tiling
of spacetime, n = 4 excluded because of those – see |, c – switching difficulties.

5So this more general definition permits photon-like instantaneous motion on some intervals
of absolute time, but we’ll use our open and particle-like definition, on each flow line the
elapsed time defined by

∫ P
O τ(dr) – see Note 15 – is also strictly increasing.
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context, but some sandpapering is needed for smoothness.
Similarly, the restriction of any cartesian motion to absolute times [τ/s, sτ ]

extends periodically, but we may lose the initial condition, for example, consider
cartesian rest for (0, τ0] followed by all lines parallel to a ray S. An infinite
repetition will play a key rôle again in the torus tricks needed to get also some
measure of spatial periodicity into a given cartesian motion.

30. Periodicity of a cartesian motion in fact makes sense with respect to any
transformation of spacetime which preserves this notion, say a linear reflection
of the cone, or else the time reversal of all its rays in a curved mirror τ = a, or
any composition of these, see Note 23. Clearly, a homothety is a composition of
two time reversals, but why do these nonlinear factors also preserve the notion
of cartesian motion and the cayley distance of the cone? We’ll see why, also
we’ll see that cayley distance is born from the age-old definitions of adding and
multiplying segments that are given in elementary classes.

(30.1) The above involutions mirror cartesian motions to cartesian motions.
This will follow easily once we have checked the following.

(30.11) A line parallel to the boundary and cutting the mirror in one point
is switched with the other such line on the same plane through the origin :-

This plane—of the given line L and the origin—is shown below, P being the
one point of the mirror on the line. So, if the mirror is flat, it cannot contain
this plane – in this trivial case the line stays put – it cuts it in the ray S through
P . Any point A of the plane reflects to the point A′ such that the mid-point of
AA′ is on S. It follows that the mirror image L′ of our line is the other line M
of this plane through P which is parallel to the boundary of the cone.

If the mirror is curved, τ = a, then any point A reflects to the point A′′

on the same ray such that τ(A)τ(A′′) = a2. We recall that τ2 = t2 − x2

c2 in
the coordinates (t, x) of S. So if A = (a + u, cu) is on the line L with slope c

through P = (a, 0) we have τ2(A) = a2 + 2au. Therefore τ2(A′′) = a4

a2+2au and
τ(A′′)
τ(A) = a

a+2u . Hence A′′ = (a(a+u)
a+2u , acu

a+2u ) = (a− au
a+2u ,

cau
a+2u ), the point on the

ray through A and the line M of slope −c through P . The mirror image L′′ is
again M , but now as A runs over L linearly in the direction τ increasing, its
image A′′ describes M non-linearly in the direction τ decreasing. �
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So these involutions of spacetime not only preserve its product structure,
they map a line parallel to its boundary to another such line. The hypersurface
of all such lines through A is mapped to the hypersurface at A′ or A′′. A segment
joining A to B is parallel to a ray iff B is in a component of the complement of
this hypersurface through which the ray of A passes. Using this we see that the
mirror images of all flow lines obey the chord condition. �

(30.12) In fact, the above switching property fixes the curved mirrors and so τ
up to a constant multiple. Also, τ(B′′) < τ(A′′) iff τ(B) > τ(A) was fine above
because our flow lines are unoriented. And, as is shown below, the segment
B′′A′′ is not the reversal of AB unless B is on the ray of A. Hence, there is no
piecewise linear cartesian motion other than rest which is preserved by a time
reversal! Which suggests that, in this unfolding tale about the cartesian genesis
of closed manifolds, this non-linear doubling of the symmetries of spacetime will
tie up with the cohomological obstruction to piecewise linearity.

(30.13) Any other line R parallel to a ray S reverses to an R′′ which is
coplanar, strictly convex, tangent to S at the origin, and asymptotic to the line
L′′ parallel to the boundary whose reversal L has the same end as R :-

In coordinates (t, x) of the observer S such that R consists of all points
A = (u, b), b

c < u < ∞, its reversal R′′ in the curved mirror τ = a consists of all
points A′′ = a2c2

c2u2−b2 (u, b). As u increases both coordinates of A′′ decrease to
0, the second at a faster rate, so the graph of R′′ is strictly convex downwards
and approaches the origin tangent to S. As u → b

c , R and L approach their
common end E, so R′′ approaches the line L′′. �

(30.14) Eliminating u = bt
x we see that A′′ = (t, x) satisfies bx2 + c2a2x −

c2bt2 = 0, so R′′ lies on a hyperbola. This non-linearity persists in the classical
limit c → ∞ : now A′′ = a2

u2 (u, b), 0 < u < ∞, so R′′ is the t > 0 portion of the
parabola a2x− bt2 = 0 in the coordinates of the observer S.6 So, the cartesian
motion with flow lines straight and parallel to S always reverses to one whose
flow lines, other than this ray, are conics tangent to it at the origin.

6From note 23 : even for c = ∞ the hidden product structure is different from that of any
observer. Things are not always easier now, classical notions often have simpler relativistic
deformations. From page 2 of PG&R text : ball geometry ‘explains’ euclidean geometry, the
classical limit of the naturally defined linear reflections of the cone restrict to the euclidean
reflections on the flat t = 1 of half-space.
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On the other hand, a linear reflection in a mirror containing S preserves
this motion, and, in a flat mirror not containing S, it reflects to a motion with
flow lines straight but, unless c = ∞, not parallel to each other : they diverge
towards infinity because signals are reaching S′ at a finite speed.

(30.15) Indeed, the lines parallel to S form one half of this observer’s product
structure, which therefore reverses to the arcs above together with the reversals
of his balls. The reversal B′′ of any ball B = {(x, t) : t = d} in τ = a is given
by translating τ = a2

2d parallel to S by a2

2d :- A obeys f(t,x) = 0 iff A′′ obeys
f( a2c2

c2t2−x2 t,
a2c2

c2t2−x2 x) = 0, so B′′ is the subset of all (x, t) such that a2c2

c2t2−x2 t = d,
i.e., dc2t2 − a2c2t− dx2 = 0, i.e., (t− a2

2d )
2 − x2

c2 = (a
2

2d )
2. �

(30.16) So let’s extend the principle of mirror relativity to reversals! The
hidden product structure consists of the rays and the level surfaces of absolute
time. The point on ray S and surface τ = a will be denoted Sa. We had called
S an observer, we’ll now think of each Sa as an alien associate who can also
reverse in time. So we have, an n-ball’s worth of observers, each a line’s worth
of aliens. Mimicking the enunciation we used in PG&R text : any other alien Sb

observes the curved mirror image of what Sa observes, under the time reversal
switching these points. This too is dictated by the aesthetics of Note 2. Also,
the composition of two time reversals is a homothety, and our instruments can
simulate a species for which time is apparently speeded up or slowed down. The
postulate implies that our physical laws, scaled by a suitable factor, coincide
with their laws. However, this extension shall really come into play when we
come to the cartesian genesis of elementary particles. If we can hear orientation
dependent characteristic numbers of a closed manifold, it says aliens can
hear the same manifold born with the opposite orientation. Further, I’ve heard
said that we too can hear these anti-particles! Therefore, but more importantly
just for the fun of it, let’s reflect some more on reflections.

(30.17) We first recall why, any observer deems the rulers of another shrunk
up to, and his clock slower by, the same factor :- Any observer S puts himself at
the center of a euclidean ball whose radius is increasing in proportion c to the
time on his clock : the disjoint union of all these balls, a right cone, is spacetime
as he sees it. Mirror relativity identifies this multitude of right cones, one for
each observer, with just one cone : the unique7 linear reflection of the right
cone of S which switches its axis S with another ray S′ transfers the product
structure8 of S to another representing how S′ sees spacetime. For example PQ
below represents the distance between S and S′ as measured by S at his time
OP . It reflects to P ′Q′ which has the same length as measured by S′ at the
same time OP ′ on his clock. However, P ′Q′ is not in a ball of S, and even its
spatial component9 P ′R is more than PQ. Likewise, OP ′ is not parallel to S,
and even its temporal component OR is more than OP . The said factors are
the same, i.e., PQ/P ′R = OP/OR, by similar triangles. �

7Since its flat mirror contains all midpoints of chords of the cone parallel to PP ′.
8Each point has its ball and parallel to S (but a ball and parallel may be disjoint); this

structure is preserved by the many linear reflections of the cone which preserve S.
9In ball of P ′; the parallel to S through P ′ may not cut his ball at time OP .
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Calculation of this factor in terms of v, the speed PQ/OP of S′ as measured
by S, equivalently P ′Q′/OP ′ of S as measured by S′ :- We’ll use coordinates of
S. Let EF be the diameter of the ball of S extending PQ (perpendicular diame-
ters reflect to equal and parallel chords). The parallelogram {O,E′, 2P ′, F ′} has
sides of slope ±c and one diagonal has slope v, so the other diagonal extending
Q′P ′ has slope c2/v, equivalently 1/γ =

√
1− v2/c2 in

. �
In the same vein, S may deem a point invisible to S′ if no parallel to

S through its ball goes through its mirror image. This invisible-to-S′ subset
of a ball of S consists of all points which are not in the ellipsoid with centre
on ray S′, all perpendicular diameters equal to that of the ball, but the one in
this plane is shrunk by 1/γ :- Linearity and P 7→ P ′, P ′ 7→ P imply (t, x,y) 7→
(γt − γv

c2 x, vγt − γx,y) which preserves c2t2 − x2 − y2. So (t, x,y) is in the
hyperplane of the ball of S′ iff γt− γv

c2 x = a, i.e. t = a
γ + v

c2x, and is the mirror
image of the point (a, x := vγ[ aγ + v

c2x]− γx = va− x
γ ,y) in the hyperplane of

the ball of S, which satisfies γ2(x− va)2 + y2 < a2c2 iff x2 + y2 < a2c2. � We
note that P is not in this ellipsoid iff γv ≥ c, i.e., iff

√
2v ≥ c, then each observer

may think that he is invisible to the other! � Finally, here is a construction of
P ′ via the time reversal that keeps P fixed :-

(30.18) Of lines through P parallel to the boundary two are cut by any other
ray, the reversal that keeps P fixed switches these cuts, see (30.11). So any point
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T is mapped to T ′′ on the same ray such that OT ·OT ′′ = OR ·OR′′ where R
and R′′ denote these cuts, and its fixed point on this ray, i.e., the point P ′ on
the curved mirror through P , is given by OP ′ =

√
OR ·OR′′. Thus, a single

reversal, defined directly in this way for c < ∞, gives all the linear reflections
of the cone, and lays bare its hidden product structure. �

Any alien Sa perceives spacetime as a euclidean ball around him whose radius
is growing in proportion c to a two-valued time on his two-way clock, with
both orientations equally natural. (30.16) identifies all these right cones—one
for each observer, two for each alien—with just one cone : Let the right cone of
S be one of the right cones of S1; the unique linear reflections which switch S
with any other ray S′ then identify the right cones of the observers S′ with one
of the right cones of the aliens S′

1; the time reversal in the curved mirror τ = 1
converts these to the other product structure of these aliens; and finally, the
unique time reversals which switch τ = 1 and any other τ = a give us the pairs
of right cones of the remaining aliens. So any oriented alien A perceives the right
conical structure of another, e.g., his alter ego A∗ with the other orientation, as
distorted, and can jump to misconceptions, even for c = ∞ :-

For example, two aliens are related by a time reversal, necessarily unique,
iff they are associated to the same observer S. Any point T at time t and a
distance r from S in the right cone of A, reverses to a T ′′ which is at the same
time and distance from S in the right conical structure of A′′, but A deems
these measurements of A′′ to be his own spatial and temporal components for
T ′′, and for c < ∞ he may also deem an annulus of his ball through T invisible
to A′′ in the same sense of this word as used before.10

To compute this distortion we think of Figure 14 now as the right cone of A.11

So the point A of S to which {A,A∗} correspond has time 1, and A is related to
A′′ at the point A′′ with time a2 by the reversal in the curved mirror through P .
More generally, if P ′ is the point of this mirror on the ray OT , then T reverses to
T ′′ on this ray such that OT

OT ′′ =
OT 2

OT ·OT ′′ =
OT 2

OP ′2 = OT 2

OQ2
OQ2

OP ′2 = t2

a2 (1− r2/t2

c2 )12,
the ratio by which the time and distance-from-S measurements of A′′ are deemed
off by A. For c < ∞, T is deemed invisible to A′′ by A iff his distance from S

to T ′′ is ≥ ct, the radius of the ball of T , i.e., iff r ≥ ct t
2

a2 (1− r2/t2

c2 ). The case
of equality re-arranged with g = ct

r shows that, the ratio g of the outer to inner
radii of any invisible-to-A′′ annulus satisfies g2 − a2

t2 g − 1 = 0, in particular at
time t = a of A, it is precisely the golden ratio! �

(30.19) As a group all compositions of reversals is the nonabelian double cover
of the positive numbers under multiplcation:- A composition κ of two reversals

10“When I use a word,” Humpty-Dumpty said, “it means just what I chose it to mean,” and
Synge has said, in his turn, that relativity has much the same appeal as Alice in Wonderland:
aliens and invisibility enhance this fairy tale charm!

11Previously, it was the right cone of the observer S, in which the time u at A is such that
Su = {A,A∗}. Even if u = 1, this may be the right cone of A∗, in which the right cone of A
is awfully distorted; and its about τ = 1 reversed rays have only a fictitious origin at infinity.
The hidden product structure is preserved by reversals, but the so-called absolute time τ is
invariant only if we limit ourseles to linear reflections of the cone.

12i.e., once again, T = (t,x) 7→ a2c2

c2t2−x2 (t,x) = T ′′, where x2 := r2.
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α ◦β multiplies the right cones of any alien {A,A∗} with the same number and
its inverse, viz., the squared ratio k of his time at the curved mirrors of α and β.
For β ◦ α, these two numbers interchange, our group is nonabelian. Moreover,
(α◦β)◦ (γ ◦δ), etc., multiply the two cones by the product of these numbers for
α ◦ β, γ ◦ δ, etc., thereby giving us two isomorphisms of the index two subgroup
of all even compositions with the group of positive reals under multiplication,
which are related to each other by inversion. �

Though the ratio of times13 at an ordered pair of points of a ray is the same
up to inversion in all the right conical structures, even a homothetical oriented
alien κ(A) can be grossly misunderstood by A :- The time and distance of any
point κ(T ) in the right cone of the oriented alien κ(A) are exactly the same14 as
those of the point T in the right cone of A, but, in the same sense as before, A
deems the time and distance measurements of κ(A) to be off by the above factor
k, and if k > 1 he may also deem points at distance ct/k or more in his ball of
radius ct to be invisible to κ(A)! �

(30.191) Distortion of an alien {B,B∗} on another ray S′ :- To see this A can
use, after15 a reversal α about an apt time a, or the homothety κ multiplying
his right cone by a2, the linear reflection f switching S and S′. Therefore, T =

(t, x,y) 7→ a2c2

c2t2−x2−y2 (t, x,y) 7→ a2c2

c2t2−x2−y2 (γt− γv
c2 x, vγt− γx,y) = (f ◦α)(T ),

or T = (t, x,y) 7→ a2(t, x,y) 7→ a2(γt− γv
c2 x, vγt− γx,y) = (f ◦ κ)(T ).16 So A

deems the time of B = (f ◦α)(A) to be off by the factor t2

a2 (1− r2/t2

c2 )γ, and his
distance-to-ray measurement off by the same factor in the plane of S and S′,
but only by t2

a2 (1− r2/t2

c2 ) in directions perpendicular to this plane. Further, he
may also deem the point T invisible to B if the distance of (f ◦α)(T ) from S is ct
or more, and these invisible-to-B subsets of his balls can be calculated from the
formula above. Likewise, A deems the time and distance-to-ray measurements
of the alter ego B∗ to be off by, and up to the factor a2γ, and he may also deem
the points of his balls, not in 1/a2 times the ellipsoids of (30.17) with centre on
S′, to be invisible to this oriented alien. �

(30.192) Though f ◦ α and f ◦ κ both map the point A on which the alien
{A,A∗} lives, to the point B of {B,B∗}, they are very different transformations.

13The cayley distance between the two aliens is the log of the c/2th power of the bigger
ratio, while the squares of both ratios give {k, k−1}. Modulo reversals, an alien can explain
this rescaling by saying the other is using different units of absolute time, the primary physical
quantity in the sense of On dimensional analysis (1999) for cartesian c < ∞ physics. With
reversals thrown in, this is moot, but we have the discrete and dimensionless topological
invariants of the created manifold-matter.

14And this, in fact, is so for any composition κ of reversals and linear reflections.
15Or before : α ◦ f = f ◦ α is true for any function α of the cone to itself which on each ray

restricts to the same but arbitrary function τ 7→ α(τ) of numbers, because the linear reflection
f maps rays to rays and preserves τ . This gives many interesting deformations, for example,
the beautiful theorem of Sarkovskii joins the fray, but α(τ) = a2/τ are the only decreasing
homeomorphisms of positive numbers that preserve cayley distance.

16We are again in, and Figure 16 shows, the right cone of A with his τ , v is the slope of S′,
γ(v) as in (30.17), and the x of (30.18) has been split into (x,y) along and perpendicular to
the plane of S and S′, so x2 + y2 = r2. The perceived distortion depends, but only up to an
orthogonal transformation of his cone, on how A is seeing {B,B∗}, for example, the size and
shape of the invisible subsets are fixed, but not how they sit in his balls.
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The orientation-preserving non-linear half-turn f ◦α keeps the axis in which
the mirrors of f and α intersect17 fixed, and is its own inverse. The orientation-
reversing linear glide reflection f ◦ κ has for a ̸= 1 no periodic points, but
preserves the mirror of f and multiplies it by a2. A translation f ◦ g, i.e., a
composition of two linear reflections of the cone, is identity on the intersection
of their flat mirrors and preserves the complementary subspace spanned by the
directions in which they reflect.18 This subspace is 2-dimensional if f ̸= g, and
f ◦ g multiplies one of the boundary rays in it by a number bigger than one,
and the other by its inverse, for example, if g(t, x,y) = (t,−x,y), then f ◦ g

multiplies the boundary rays (t, ct,0) and (t,−ct,0) by
√

c+v
c−v and

√
c−v
c+v , while,

for the inverse translation g ◦ f , these proper values are switched.

(30.193) As a group all compositions of linear reflections parallel to a given
plane is the nonabelian double cover of the positive numbers :- f ◦ g multiplies
the two boundary rays of the right cone of any A parallel to this plane with the
same number and its inverse, for (f ◦ g)◦ (h◦k) these proper values multiply, so
giving two19 isomorphisms of the index two subgroup of translations, with the
multiplicative group of positive reals, related by inversion. �

(30.194) So x = 0 is mapped by the translations (f ◦ g)i to x = vit, where
c+vi
c−vi

= ( c+v
c−v )

i, while the homotheties κj take τ = 1 to τ = a2j . These flat and
curved hypersurfaces give a subdivision of the cone of A which restricts to the
deformed rectangular tiling of his 2-cone y = 0 shown above. Dividing by
these symmetries gives a 2-torus; and if we divide it by f or the glide reflection

17This codimension two axis cuts the plane of S and S′ in that black dot with A-coordinates
a
√

2
1+γ

( γ+1
2

, γv
2
) inside the tile with vertices A = (1, 0), A′ = (γ, γv), B = (a2γ, a2γv), B′ =

(a2, 0), it is the point on the ray through the mid-point of AA′ with τ = a.
18Likewise, the subspace spanned by the directions of any number of linear reflections of the

cone is the complement of the intersection of their mirrors with respect to the non-degenerate
symmetric form of τ2, with cone all null vectors, etc. This algebra is useful, but, for us, only
that open connected cone is spacetime, in particular, we don’t use the linear reflections, also
called ‘time reversals’, which interchange it with its missing half.

19 The proper values of f ◦ g are also switched for A∗, but, as in (30.91), the log of the cth
power of the bigger is a cayley distance c

2
log c+v

c−v
; by which the rays parallel to the plane get

translated; for c → ∞, (f ◦ g)(1, x,y) → (1, x+ v,y) and c
2

log c+v
c−v

→ v.
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f ◦
√
κ a möbius strip20 or klein bottle; while further division by the half-turn

f ◦ α wraps it twice with a branch point over another torus, etc.
(30.195) The two discrete subgroups of positive numbers coincide iff c+v

c−v =

a±2, but even for this square tiling of the 2-cone, no composition of linear
reflections and reversals can interchange adjacent sides 21 of its tiles, so, its
symmetry group is no bigger. Again, if v is fixed and c is big, then a is almost 1
for squarehood, so, in the classical limit there is no such tiling; but, if we make
no additional demands, we can always keep both v and a fixed, and straighten
the limiting subdivision, of the half-space t > 0 by flats x = ivt and t = a2j ,
by a suitable (t, x,y) 7→ (logC t, x

t ,
y
t ) to obtain, on the entire euclidean plane

y = 0 of A, an ordinary tiling by squares of size v × v.
(30.196) Staring us in the face also from Figure 16 is a magical stairway

to heaven22 which is a concomitant of c < ∞ ! The curves suggest points
of constant height on the boundary of a cone of one dimension more, which it
is natural to put inside the cone over the ball Bn+1 with the same centre and
radius, for, the linear reflections of the cone over Bn not only extend to it, with
their rotations they give all of them ... till finally we are in the ball B∞ of radius
c < ∞, where this stairway ends, because, we can shift each guest in an infinite
hotel to the next room, and put a new arrival in the first.

20Ditto if we divide S1×S1 by the involution which switches its factors, so, a möbius strip is
the space of quadratic homogenous equations ax2+bxy+cy2 = 0 over R with b2−4ac ≥ 0 :- the
quadratic formula tells us this condition is necessary and sufficient for factorization over R,
and S1 = R∪∞. � Attaching the remaining equations with complex conjugate roots, an open
2-disk, then completes the manifold RP 2 of all real quadratic equations, but a like dissection
of RPn for n ≥ 3 is more involved. Unlike the circle, the symmetric powers of a 2-manifold
are manifolds :- a suspect link is the join of a sphere and a circle divided by its antipodal
action, but this is a circle too. � This implies, the multiplication of n linear equations in x
and y over C, an injective map from the nth symmetric power of S2 = C∪∞ to the manifold
CPn of all degree n equations, is surjective, that is, the fundamental theorem of algebra!
The relativistic analogues of this bijection, for 2-manifolds M2 = B2/Γ – the inverse map is
how ‘Poincaré had solved any polynomial equation by using automorphic functions’ – are once
again ‘well-known’, but not to me! These old memories had resurfaced after a conversation
with Keerti about three months ago; the symmetric powers of 2-manifolds also figure in some
attractive ‘numerologies’ about particles, going back to Majorana, in which, for example, a
beautiful recent paper of Atiyah and Manton also indulges.

21Despite the fact that, there is no cayley isometry of the cone other than these compositions,
and, all four sides of these tilings do have the same cayley length. My plan–see page 3–was to
go over cartesian motions, cayley distance and segments rather quickly in (30.1), (30.2) and
(30.3), but things went truly for a toss after the advent of the aliens in (30.16)! Fearing that
it might be some time before I return to these topics, let me remind you that the factor c

2
in

cayley distance made its classical limit the euclidean distance on t = 1, but, because of it, the
cayley distance between distinct times blows up as c → ∞. Again, the points at a constant
cayley distance can be funny, for example, the inscribed cayley circle of our square tile touches
its boundary in segments; but, distinct cayley circles of a disk intersect in at most two points,
for this distance is equivalent to its conformal metric, which has genuine but eccentric circles.
Anyway, from the square tiling of the 2-cone we can make trivalent bricklaying patterns,
and it is not hard to calculate the cayley diameter of a star of a vertex, so the fourth proof in
auNgLIAW Aqy twielW (2015) still works. There is also a cayley-invariant volume, and one can
probably find for the 2-cone also, all quadrilaterals for which this area is equal to the product
of the average cayley lengths of the opposite sides, etc.

22My name for what is usually Poincaré extension, for example, in Beardon’s book.
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(30.197) So these ball geometries arise plainly, one after the other, from a
mere segment [0, c). Then, in Note 23, had dawned on us the realization that,
associated to any cartesian motion there is a canonical partition F of the ball
Bn into path connected subsets M that are topologically homogenous.23 Any
M inherits its charts from the motion itself, and if compact we had deemed it
to be cartesian matter provided it is persistent, i.e., appears also in any
perturbation of the cartesian motion.

(30.198) Calculus, more precisely lipschitz calculus, is also a child of c < ∞.
If n is big enough, or even not four, any cartesian motion can be perturbed over
a compact time interval by an arbitrarily small amount to one whose homeo-
morphisms are lipschitz. The proof needs a cayley lattice of the (n+1)-cone
with quotient a closed parallelizable manifold. Given this scaffolding, it is like
simplicial approximation, except that it is nearby homeomorphisms, not just
maps that are sought. For c = ∞ any two translations commute, so n of these
with a homothety give one, with quotient an (n+1)-dimensional torus, but now
that all-important chord condition on the flow lines of the cartesian motion is
not available, so the results are different : it is only for c < ∞ that cartesian
matter is necessarily lipschitz-smooth.

(30.199) So, just from a segment, a whole world, see Note 28, has sprung
up, but what about fractional dimensions? It is topological homogeneity that is
the basic feature of manifolds, the other, that they should be locally euclidean,
is our natural desire to not stray too far from home. There seems no reason
why all cartesian matter should be locally euclidean, but about path connected
homogenous fractals, I know very little; however the Bing-Borsuk conjecture,
see Note 25, suggests there may be surprises. Also: what dimension is best? In
the lipschitz context we saw that hausdorff dimension is natural, but there
are certainly other candidates.24

We have stayed at home, yet in these n-balls have popped up naturally it
seems all manifolds and some other path connected and homogenous compacta.
This cartesian matter can be examined, if the birthing motion was smooth
enough, using only the elementary tools of the calculus of several variables.
Besides we have the option n = ∞ to sidestep or delay knotty questions, still
without giving up the creature comforts of home.25

Coming back to that cayley lattice, the natural idea, ‘lets make c an integer
and search over Z’, needs to be finessed, as Fricke pointed out long ago. Due to
their quadratic nature the hyperboloids may not have enough integral points, so

23For, once again, these minimal sets M are the equivalence classes generated by the binary
relation R on the ball Bn defined by xRy iff x and y are on the same orbit, i.e., iff they are
the projections of two points on the same flow line, say, at absolute times τ1 and τ2, but then
the homeomorphism ϕτ1τ2 of Bn given by the motion throws x on y, and besides, it maps
each equivalence class to itself, so it preserves any M and its complement Bn \M . �

24More general and natural might be von Neumann dimension : from the defining relation
R of F , one should make nice C∗-algebras with involution given maybe by reversal. Also,
this reminds me of the smoothing operators for closed foliated manifolds (M,F) that I had
played around a lot with in the 1970s, but it was Connes and Skandalis, a bit later, who had
got a full-blown index formula for foliations by using such a dimension.

25For an example of these comforts, see From calculus to cyclic cohomology (1995).
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we search quadratic extensions, and this suffices to find a lattice with quotient
a closed manifold; but to get parallelizability the search was extended into the
étale or grainy nature of this homotopy type. Maybe this can be avoided, but it
would be even nicer if we could understand this ‘grainy nature’ with the same
cartesian clarity. Which brings me to the last note of this year.

(30.199...) The dots indicate I’m keeping my options open in case I want to
add another tid-bit before (30.2), but you might object: dots mean 9 recurring
from school and that this is (30.2) already, written in a long-winded way. Cantor
opened a wonderful world by simply giving up this school dictat ! Even with 9
recurring, it was now not (30.2) for him, or even something lesser than it by
an infinitesimal, it was just an infinite sequence (with one point) of ten things,
and on all such sequences – a power of the cardinality ten set – we have only
the product topology. What can one do with this mere dust? Almost anything!
is the short answer : not just the real line, all interesting spaces you can think
of, for example, all manifolds, are but quotient spaces of this dust. Besides, it
is not hard to show this, and that is precisely the rub, the bewildering number
of nice ways26 in which we can lift reality to this combinatorial dust. Though
various criteria have guided what seems ‘best’ it would be fair to say that what
followed from Hensel’s discovery of those wonderful fields in such dust is so far
the clear winner. From (30.196) and (30.197) we know how, starting with a
mere segment, we can bring into being naturally manifolds and all, so we ask, is
there an equally natural cantorian P G & R of which this is only a functorial
quotient? Many possibilities come to mind, but when it comes to reading the
mind of God almost, it is best to proceed slowly and in humility ...

K S Sarkaria (contd.)

26See, for example “Amazing curves!” (2010); to all those motifs has recently been added
the above mural “P G & R” on a verandah roof. December 31, 2016.
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