Dear Professor P. K. Jain,

During your talk of February 11 here you mentioned that there exists a Banach frame for ℓ^{∞} . At my asking if, could you not then give this Banach frame explicitly for this simple space, you had answered no, and gone on to remind everyone how, in various different ways, ℓ^{∞} was not simple at all.

However, when I read the definitions again from your paper a few days later, I was rather surprised that it was dead easy to write such a Banach frame; also one has the following general, but quite trivial, result.

THEOREM 1. A Banach space E admits a Banach frame (see definition below) if and only if it is linearly isometric to a Banach space of sequences (with coordinates continuous).

A Banach frame of E consists of a sequence $\langle f_n \rangle$ of the dual space E^* , an associated Banach space of sequences F such that $\langle f_n(x) \rangle$ belongs to Ffor all x in E, a continuous linear map $u: F \to E$ which maps $\langle f_n(x) \rangle$ back to x; besides, we should have positive constants A and B, such that $A||x|| \leq$ $|| \langle f_n(x) \rangle || \leq B||x||$ for all x in E.

Proof. The first inequality shows that $\langle f_n(x) \rangle$ is a zero sequence iff x = 0, i.e., the map $x \mapsto \langle f_n(x) \rangle$ from E to the vector space of sequences is injective. Assigning to $\langle f_n(x) \rangle$ the norm of x we see that the image of this injection is an isometric Banach space of sequences.

Conversely, if E is any Banach space of sequences (e.g. ℓ^{∞}), take $f_n \in E^*$ to be its nth coordinate functional, take F = E and u = identity map, to get a Banach frame with A = B = 1. q.e.d.

The result above is parallel to the one below, that was highlighted repeatedly in your talk; you had even mentioned that a referee had called it a "breakthrough". The proof below is essentially the same as in your paper, except there was no need to refer to Isaac Singer's book for a rather trivial fact.

THEOREM 2. A dual Banach space E^* admits a retro Banach frame (see definition below) if and only if E is separable.

A retro Banach frame of E^* consists of a sequence x_n of E, an associated Banach space of sequences R such that $\langle f(x_n) \rangle$ belongs to R for all f in E^* , a continuous linear map $v: R \to E^*$ which maps $\langle f(x_n) \rangle$ back to f; besides, we should have positive constants A and B, such that $A ||f|| \leq || \langle f(x_n) \rangle || \leq B ||f||$ for all f in E.

Proof. The first inequality shows that $\langle f(x_n) \rangle$ is the zero sequence iff f = 0. So the rational linear span of $\langle x_n \rangle$ must be dense in E, otherwise one has a nonzero continuous functional f vanishing on its closure.

Conversely, if $\langle x_n \rangle$ is dense in E, then $f \mapsto \langle f(x_n) \rangle$ is an injective function from E^* to the vector space of all sequences. Assigning to $\langle f(x_n) \rangle$ the same norm as f the image R gives the requisite Banach sequence space, v is the inverse of the injection, and one can take A = B = 1. *q.e.d.*

Please be kind enough to check the above. With best wishes, K. S. Sarkaria. Chandigarh, March 8, 2005.