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basic premise of the mechanics of continuous matter, and one invariably

Jound stated in some form in all books of hydrodynamics—often even before

the equations of motion are derived—is the hypothesis of continuity, that is,

the doctrine, going back to Anaxagoras, that matter and motion are continu-

ous. This is interpreted mathematically as implying at least
that, at each time ¢, there is a “particle” (of course hypo-
thetical; we are ignoring the actual molecular nature of mat-
ter and are talking say of the spermata of antiquity!) at
every point of a region R, of 3-dimensional space R3, and
that, following the motion of these particles, one gets con-
tinuous surjections mg;:R; — R, t <s, varying continu-
ously with ¢ and s, and obeying m, soms; = m,,,. Though
apparently quite reasonable, this implies some funny
things, including the following:

One cannot completely empty a tyre-tube filled with
water into a bucket in any finite length of time.
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For this would mean we could continuously deform any
homotopically nontrivial loop Cj, of the space X C R3 oc-
cupied by the apparatus of Figure 1, within X, to a trivial
loop Cs of X. Here, the existence of a non-trivial C; is en-
sured by the fact that X, which is homeomorphic to the re-
gion Ry initially occupied by the fluid, has the homotopy type
of a circle, so its fundamental group is Z, and the triviality
of Cy follows because the bottom part of X is contractible.

The above notwithstanding, it is customary in all books
of hydrodynamics to assume even more: that there is al-
ways a unique fluid particle at each point of R, thus it is
understood that motion occurs via homeomorphisms mz; ;.
So even the topological type of R, cannot change with time.



Figure 1

This implies, conversely, that a bucketful of water cannot
be transferred completely into a tyre-tube of the same vol-
ume in any finite length of time.

I emphasize that the above is not a refutation of the sci-
ence of hydrodynamics but a vivid reminder that the
boundaries of its domain of applicability are encountered
even in simple everyday situations. The topological con-
tradiction should alert us to the fact that there is something
amiss in the mathematical model used, as indeed there is:
As soon as local forces in excess of the cohesive limits of
the fluid appear near the upper inner portion of Figure 1,
the hypothesis of continuity is inapplicable to the flow in
that region.

The doctrine of Anaxagoras was very much in keeping
with the spirit of his time. After the resolution of the
Pythagorean conundrum by means of irrationalities, phys-
ical space was almost universally regarded as continuous;
then, to resolve the well-known paradox of Zeno regarding
Achilles and the tortoise, it became necessary to give up
the notion of finitely many moments between any two
events, and time, too, came to be regarded as continuous.

However, Democritus, a contemporary of Anaxagoras,
was of the view that matter, unlike space, is discrete. Four
centuries later, it was this atomic hypothesis which was
championed by the Roman poet Lucretius, who claimed—
see [4], p. 14—that motion would become impossible if we
were to believe with Anaxagoras that all of space is full of
matter:

There’s place intangible, a void and room.
For were it not, things could in nowise move;
Since body’s property to block and check
Would work on all and at all times the same.
Thus naught could evermore push forth and go.
Since naught elsewhere would yield a starting place.

Here Lucretius seems to overlook the possibility of ro-
tational motion, i.e., of vortices, which (much later) became
all the rage with René Descartes, and briefly again in the
nineteenth century when Lord Kelvin (William Thompson)
made a beautiful attempt to understand atoms via vortices.
For more on this, the reader can probably do no better than
start with James Clerk Maxwell [5].

Ever since John Dalton and Robert Brown there has
been abundant microscopic evidence which favours the
atomic hypothesis. Nonetheless, it is contended in all books
of fluid mechanics that, for macroscopic purposes, one can
still safely assume the hypothesis of continuity. As shown
above, one has not only microscopic evidence, but a pri-
ort arguments from topology (i.e., the mathematics of con-
tinuity) which show that even a weakened hypothesis of
continuity is untenable, so that matter and motion cannot
both be assumed continuous.

Even a gas, confined to the lower bulbous part of X with
the top evacuated, would change its topology after the stop-
cock is opened, which should suggest, independent of any
other evidence, that its matter is probably discrete. This,
of course, is what the kinetic theory assumes, and the equa-
tions of motion of hydrodynamics are, as is well known,
statistical averages of the Boltzmann transport equation—
see, for example, Desloge [3]. But for the case of liquids
(as against gases) this approach runs into some unresolved
difficulties—see, for example, Batchelor [1]. So, following
Jean-Claude St. Venant and George Stokes, it is convenient
to invoke the hypothesis of continuity. Unless the approx-
imate nature of this assumption is emphasized, however,
this runs the risk of making the equations of hydrodynam-
ics appear more basic than they possibly can be. We recall
that Daniel Bernoulli, Claude Navier, Siméon Poisson, and
Augustin-Louis Cauchy, all, had sought to understand hy-
drodynamics starting from various atomic hypotheses.
These original attempts need to be perfected, because a
natural understanding of turbulence will probably be found
only in such statistical foundations.

Matter and motion cannot
both be assumed continuous.

For very small values of time, the flow of Figure 1 does
obey the hypothesis of continuity, and the fluid region E,
retains the topology of a solid torus; however, its geome-
try, which depends on the nature of the fluid and the bound-
ary conditions, changes rapidly, with R; becoming thinner
and thinner at the top (and for a creeping flow, say of trea-
cle, it seems to tend towards a well-defined limiting posi-
tion). But at the moment when the thin R, breaks, the con-
tinuity hypothesis becomes invalid, and the flow is no
longer governed by hydrodynamics.

Similarly, in a swift stream going past an obstacle, wa-
ter contained in neighbourhoods of homotopically non-triv-
ial loops and surfaces encircling the obstacle, is probably
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being swept entirely past the obstacle, and so must be
breaking up topologically. This failure of the hypothesis of
continuity, which we suspect is usually over an open sub-
set, implies that some flows cannot be modelled by any
smooth velocity vector field, not even a generic one hav-
ing all sorts of strange attractors. In particular, Jean Leray
has suggested the Navier-Stokes equation is probably in-
adequate for modelling turbulence.

Sometimes matter is assumed to be continuous, but its
velocity field is allowed to be discontinuous. An analysis
of some such arguments is given in Birkhoff’s classic Hy-
drodynamics [2]. For example, in aerofoil theory, one gets
around the D’Alembert paradox by guessing a suitable flow
topology: wake, dividing stream line, etc. Despite their suc-
cesses, such ad hoc devices can obviously not be deemed
to be physical explanations of these phenomena.

I observe next that the “opposing doctrines of the
plenum and atom”—as Maxwell [5] calls them—can actu-
ally be reconciled with one another, if one believes that
space is discrete, and more generally, that all physical no-
tions are discrete. From this viewpoint, which is roughly
like that of Gottfried Leibniz’'s Monadology (1714), Zeno'’s
paradox arose only because physical space was confused
with geometrical space, and, to cover this initial “lie,” it be-
came necessary to invent more; for example, that time is
continuous. The discrete monads are not “in” anything—
there being no empty space or vacuum—they are by them-
selves, forming a discrete plenum! If one wants to proscribe
action at a distance, more structure is needed; for exam-
ple, one may postulate that each monad acts only via some
others that are contiguous with it. It is this extra structure,
true, or mistakenly imposed by us on reality, which makes
it appear continuous: contiguity gives us a simplicial com-
plex, thus a continuous space. In this view, physical motion
is only a sequence of monadic permutations, not an arbitrary
flow on this geometrical space, and may be bound by some
quantization rules—say, limitation to those locally irrota-
tional flows whose circulations are integral multiples of
Planck’s constant. In other words, we are but “hearing” some
discrete aspects of the topology—integral homology—of tiny
portions of this monadic simplicial complex, via the quan-
tum-mechanical observables of microsystems!

I conclude by recalling that, even more than continuity,
the essential doctrine of Anaxagoras was komoeomaria,
that is, that a part is like the whole, or, as someone raised
on fractal graphics would now put it, self-similarity. In
analogy with this, Leibniz required that each monad of his
discrete plenum be a replica of the entire universe! This
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property was however dictated more by his teleological
predilections and earlier work on ethics, parodied memo-
rably as the absurd Dr. Pangloss of Voltaire’s Candide.
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