Plain Geometry & Relativity
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October 26, 2013. If we are constrained to a bounded region Q of euclidean space (of dimension n 2 2) the parallel
postulate is no longer true : a point P not in a codimension-one flat L is plainly in infinitely many flats L; which do not
meet L inside Q. So, non-euclidean geometries are dime-a-dozen, for instance — see Figure 1 — that sheet of paper on
which we ask schoolchildren to do all those constructions from Euclid has such a geometry; likewise, any open n-ball B"
of finite radius c, and it is this ball geometry that will concern us from here on.

Figure 1

In the euclidean case c = oo, of all the affine reflections in a flat, we pick the one in the direction orthogonal to the
flat, and call two subsets of n-space congruent iff they are related by a finite sequence of such reflections. The only
affine reflections of n-space which preserve a ball B" of radius c < e are the ones in, and orthogonal to, the flats through
its center b. However a general and canonical definition emerges if we recall that, to linearize the affine transformations
of n-space, we should consider it as a flat in a vector space of one dimension more—see Figure 2—whose 0 is outside
this flat, and identify each point with the ray from 0 through that point.
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Figure 2

In each flat L of the ball B there is a unique linear reflection which preserves the cone of rays through B. Using
the extra dimension, we have now a one-parameter family of lines orthogonal to L, and passing through its centre 8.
One of these orthogonal lines has £ as the mid-point of its intersection PP’ with the cone (note that it is the line such



that {0,P,28, P’} is a parallelogram, which gives an easy construction). The linear map which is the identity on L and
which takes P to P’ reflects each point of the vector space in span{0,L} in the direction parallel to the segment PP’.
Furthermore it restricts, on the flat containing L and PP’, to an orthogonal reflection preserving its ellipsoidal
intersection—see Figure 2—with the cone of rays through B. So it preserves this cone, and no other linear reflection in L
does the same because, the composition of two distinct linear reflections in L restricts to a nonzero translation in any
flat parallel to span{0,L}, but our cone does not contain a complete line, g.e.d. So, there is a unique linear reflection of
the cone which switches the ray through the centre b with any other ray, the corresponding flat L of the ball having its
centre € suitably between these two rays on the 2-plane determined by them. Also, this homogenous but non-
euclidean geometry ‘explains’ euclidean geometry : for these reflections approach orthogonal reflections of n-space
when c tends to infinity. To wit, the geometry in which subsets of a ball of finite radius are congruent iff the sets of rays
passing through them are related by a finite sequence of linear reflections preserving the cone.

In physics, the rays identify with galilean observers, to the observer S who considers the ray through the point b
of the flat as representing his state of rest, and uses as time t the linear function which is 1 on this flat, each ray S’
represents all particles moving in a fixed direction at the same speed v. Relativity is the dictum that, any other observer
S’ observes the mirror image of what S observes, under the linear reflection switching these rays : so the time t’ and the
euclidean space t' =1 of S’ # S must be the transforms of t and t = 1 under this reflection. Pragmatic considerations of
speed measurement tell us that we should only admit a ball’s worth of observers, which implies that neither the time
nor the space of S’ # S are the same as that of S, for example, from Figure 2 it is clear that the mirror image b’ of b,
which must beint’ =1, isnotint=1: the “notions of absolute space and absolute time have no empirical definitions”,
they are only left-overs from the limiting and unrealistic case ¢ = oo,

The observer S identifies the points of span{S,S’} with their cartesian coordinates (t,x) with respect to 0b and the
unit vector be int = 1 towards S’ : so b = (1,0), e = (1,1), € = (1,u) for some u, and S’ is the ray through (1,v). The
reflection keeps € and all vectors parallel to L fixed. Lemma: if the sides of a parallelogram have slopes *c then the
product of the slopes of its diagonals is c>. So PP’ has slope c¢’/u and b’ is on the line through b with this slope such that
the mid-point of bb’ satisfies x = ut, which gives b’ = ((c* + u?)/(c® = u?), 2uc?/(c* — u?)). The ray S’ passes through b’, so v
= 2uc?/c?+u?, and this quadratic in u can be solved, using u < ¢, to write u in terms of v. Lety = (¢ + u?)/(c* — u?), then b’
= (y, yv) and 1/y* = 1 —v?/c®. So yt — (yv/c’)x = 1 on £ and b’, also this linear function is zero on vectors parallel to L, so it
is the transform of t : the observer S’ has time t' = yt — (yv/c?)x. His space t’ = 1 is the flat spanned by L and b’ with the

same metric on L, but W is a normal unit vector : to S’, the “ellipsoidal” (see Figure 2, but this is a different section of
the cone) image B’ of B is the ball in t' = 1 with centre b’ and radius c. The observer S’ identifies the points of span{S’,S}
b’—)

by their coordinates (t’,x’) with respect to Ob’ and the unit vector b’e’ in t’ = 1 towards S. One has x’ = yvt — yx because

be and its image be = u™(& — b’) have (t,x) coordinates (0,1) and (- yv/c?, —y) respectively. Since the unit vector 0b’ of
S’ runs from the t = 0 to the t =y line, while his unit vector b’—e’) runs fromthe x =0tothex=—y line,andy > 1, S deems
the clocks of S’ to be slower, and his rulers in the x-direction to be contracted—the rulers in directions parallel to L are

unaffected—by the factor y, and S’ observes the same about the unit vectors 0b and be of S in his (t’,x’) coordinates
because, this being a reflection, we also have t = yt’ — (yv/c’)x’ and x = yvt’ — yx'.

However, the proper time t and space 1 = 1 that we should use are absolute! In analogy with c = o this space
should consist of all the mirror images b’ of b, with T linear on all rays. So, for c < e, proper time is not linear, but now it
dictates a distance on the ball which is preserved by all the linear reflections of its cone! The (t,x) coordinates of the
mirror images b’(v) in any plane through ray S are (y(v), y(v)v), but y(v)*(1 = v?/c?) = 1, so these points form the hyperbola
t? = x*/c* =1, t > 0. Therefore, if we decompose each vector parallel to the time t and the euclidean space t =1 of S, T
extends to the quadratic form (t; x) > t*> — x.x/c>. Since PP’ has slope c*/u, our linear reflection is orthogonal to its mirror
with respect to the associated bilinear form (ty; X1) x (ty; Xa) = tit, — ¢ 2X1.%,. So, it preserves this form. Also, it replaces t



by the time t’ of S’ and t = 1 by the euclidean space t' = 1 of S’. So this form is the same as the bilinear form (t'y; X’1) x
(t'y; x5) =t'1t', — XX, of S’. To S’ too, T =1 is obtained by revolving t'2 = x’%/c® = 1 around his time axis. On vectors
parallel to lines which cut the cone’s boundary twice the invariant quadratic form t° is negative. The positive square root

of - ¢*t(b’b") gives us an invariant distance between points S’ and S” of the ball. The coefficient ¢ ensures that, when
the radius tends to infinity this non-euclidean distance approaches the euclidean distance : to see this it suffices to

check that - cztz(b—b’)) approaches v2. So this distance gives us the proper speed -- i.e. the proper length for the

difference b’b" of their ‘absolute velocities’ Ob" and Ob’ -- separating the observers S” and S’.
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Figure 3

A particle’s a priori or cartesian absolute motion may be any smooth directed arc C with T strictly increasing, i.e.,
a smooth vector function r(t), with each dr/dt nonzero along a ray S’(t). Its absolute velocity dr/ds at proper time T, i.e.,

the ‘absolute velocity’ O_b’) of (1), is longer — Figure 3 — than dr/dt if 0 is not on tangent, so ds < dt. Hence the clock
paradox: the elapsed time [ds on a clock carried by a non-galilean observer is less than his proper life-time! Further, the
newtonian “the rate of change of momentum is equal to the force” suggests d/ds(m dr/ds) = F(s), where the constant m
is called the proper mass of the particle, and the right hand side, the absolute force on the particle.

An observer S will write r = (t; x) to split the last equation into temporal and spatial components : d/dt(m dt/ds) =
T ds/dt and d/dt(m dt/ds v(t)) = ds/dt X, using dx/dt = v(t) and F = (T; X). Taking the spatial equation as Newton’s law,
the observer S deems ds/dt X as the force on the particle, and m dt/ds as its varying mass m(t)! Since dr/dt = (1; v(t))
is the vector from 0 to (1, v(t)) in the plane of S and S’(t), and y(v(t)) times this vector is ob’ = dr/ds, we have dt/ds =
v(v(t)) on the arc C. Also differentiating dr/ds x dr/ds = 1 we see that, the absolute acceleration is always orthogonal
to the absolute velocity, i.e., d’r/ds*> x dr/ds = 0, i.e., d*t/ds® dt/ds — (d’x/ds’.dx/ds)/c* = O in the components of S.
Multiplying by mc® we obtain ¢’T = X.v, therefore T ds/dt c® = ds/dt X.v = the rate of working of the force on the
particle = the rate of change of its energy. So the temporal equation of motion shows S that, the energy of the particle
is E = m dt/ds ¢ = m(t)c? = m(1 = v(t)¥/c?) 2 = mc? + % mv(t)? + ... |

But, m(t)v(t) plus a nonzero vector a also satisfies the spatial equation, why not this rest-momentum? Because it
violates mirror-relativity, the opposite direction is just as good. And, m(t)c? plus a nonzero scalar k satisfies the temporal
equation, but energy is additive in mass, this would add k/c? to m(t), which we have accepted. Excepting some other
similar points, that one can debate endlessly, we have now covered all the basics, and our treatment was plain indeed :
all our key arguments used only plane geometry, though the results are quite general!
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Notes

1. The non-euclidean geometry of a polytopal and possibly non-convex region Q of euclidean n-space is also worth
pursuing, especially because of its uncanny galois symmetries, cf. Sullivan, M.I.T. Notes (1970).

2. The word group makes us forget that the basic symmetry is that of Euclid’s pons asinorum, viz., a reflection, for
example for Galois it was a transposition of roots, and we know now that practically all non-abelian finite simple groups
can be realized by using the linear reflections of the cone of a 2-ball, cf. How I learnt some well-known folklore (2010).
Besides, though a reflection takes us abruptly into the oppositely oriented mirror world, it is magic that an even number
of such hops will do the same job as any continuous motion which preserves our geometry!

3. Linearization by adding extra dimension(s) is like adding 0 to the positive numbers ... we all use it ... | used it
(1992, 1997, 2000) to look at some problems of convex geometry with only partial success ... maybe because I'd turned
away from number fields which had given me the initial idea? This thought comes because number fields give many
examples of discrete subgroups I of linear transformations of the cone with B"/T a closed n-manifold, and the much
finer use—which I've still not quite understood—of galois symmetry in Deligne and Sullivan, Fibrés vectoriel complexes a
groupes structurel discret, C. R. Acad. Sci. Paris 281 (1975) 1081-1083, shows further that there are hordes of these
groups for which this closed manifold is almost parallelizable.

4. Appollonius knew from the sun-dial in his garden in Perga (Turkey) that the shadow of a sphere is an ellipse,
the point F common to the sphere and the table being a focus; the other focus F’ is the point of PP’ — see Figure 2 — on
the other circle in the cone which touches the sides of OPP’; but in his treatise he used a 2-dimensional but less natural
definition of an ellipse which unfortunately is the only one that is taught in schools today.

5. My scientific journey started with Henry Thomas and Dana Lee Thomas, Living biographies of great scientists
(1959), my First Prize in Aggregate during my first year, 1960-61, in Government College, Chandigarh. Its last biography
led me to mail order a popular text-book on relativity from Bombay, from which | was sharp enough to deduce that the
prize-winning “mathematics” | knew was not mathematics at all, which led me in turn to mail order, from Varanasi this
time, that classic of Goursat’s which | used again in Straight to Mecca. | should mention also that my mirror-formulation
of relativity is slightly stronger, there is no preferred orientation on spacetime.

6. Again, my use of the phrase proper time is not standard, often it means elapsed time along C. That t defines a
proper speed between galilean observers is nice, but this distance only satisfies the triangle inequality infinitesimally:
at each point b’ of the smooth submanifold t = 1 it gives us the euclidean metric of its tangent hyperplane t’ = 1. So by
integrating this infinitesimal we can assign a length to any smooth curve of this riemannian manifold between two given
points, and the infimum of these lengths gives us another invariant distance satisfying this inequality.

7. The haloed, but nevertheless arbitrary, newtonian tradition of considering only motions given by second order
differential equations seems even more arbitrary now : for c < == we have a nice and complete classification of generic
cartesian absolute motions parametrized by elapsed time! This is suggested by the final paragraphs, where we stuck to
this tradition, but what gave E = mc® was the cartesian orthogonality d’r/ds®> x dr/ds = 0 with respect to our non-
degenerate bilinear form. There seems no reason to stop at two, we can keep on normalizing and differentiating a la
Frenet and Serret till we have a full complement of n+1 orthonormal vectors all along our generic C, and then using this
frame define the n curvatures which will characterize C up to a composition of orthogonal reflections in flats of
spacetime. A quick recap of the classical classification of space curves is in my old class notes on Differential geometry
(19827?), and in the book by Klingenberg, A course in differential geometry (1978), it is shown that everything works just
as well for any positive definite quadratic form over the reals.

(contd.)



