PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 97, Number 4, August 1986

POSITIVELY CURVED BILINEAR FORMS
K. S. SARKARIA AND S. M. ZOLTEK

ABSTRACT. A characterisation of the positivity of sectional curvature is given
in terms of the angular spread of the second fundamental form.

1. Introduction. We will deal only with real and finite-dimensional vector
spaces; occasionally their dimensions will be denoted by superscripts. Our principal
objects of study are vector-valued bilinear forms B: V" x V"* — WP, with special
emphasis on their properties vis-a-vis a given inner product () on W. In this context
Weinstein [3] has considered the associated curvature form Rp: A%V x A2V — R
defined by

(1)  Rp(vi Avz,v3 Avg) = (B(v1,v3), B(ve,v4)) — (B(v1,v4), B(vz,v3)).

(The reason for this terminology comes from differential geometry: If V (resp. W)
is a tangent (resp. normal) space of an n-manifold M™ isometrically immersed in
R™t? and B:V x V — W is the second fundamental form of the immersion, then
the curvature R of M™ is related to B by (1).) We will say that B is positively
curved if Rp(w,w) > 0 for all nonzero decomposable elements w of A2V. The set
Cp = {B(z,z)|z # 0} will be called the cone of B. After giving some preliminary
refinements of Weinstein’s methods we prove in §2 that a symmetric bilinear form
B:Vnx V™ — WP, () is positively curved if and only if the restriction of B to each
2-dimensional subspace has a cone which can be contained in the interior of some
3-dimensional orthant of the inner product space WP, () (see (2.3.4); also (2.2.7)
and (2.3.3) for more quantitative aspects of the result). §2 also contains some
sufficient conditions under which Rp is positive definite, i.e. Rg(w,w) > 0 for all
nonzero w € A2V (It is known (see e.g. [2, pp. 364-368]) that a closed Riemannian
manifold M whose curvature R is positive definite at all points must satisfy some
strong topological conditions; relatively much less is known about positively curved
closed manifolds.) If n < 3 all elements of A%V are decomposable and thus B is
positively curved iff Rp is positive definite; Weinstein [3] (or (2.2.5) below) proved
that this remains true for all n provided p < 2. In §3 we give an example of a
positively curved B:V4 x V4 — W3, () for which Rp 1is not positive definite.

2. Bilinear forms B:V" x V" — WP,

(2.1) A symmetric bilinear form B:V xV — W determines a quadratic function
B:V — W by B(z) = B(z, z).

(2.1.1) A continuous map B:V — W is a quadratic function of some symmetric
bilinear form iff it obeys the parallelogram law B(z+y)+ B(z—y) = 2B(z)+2B(y).
A proof of this result, for the scalar case p = 1, can be found e.g. in [1, pp. 245-246];
the same argument works for all p.
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The subset B(V™ — {0}) = {B(z)|z # 0} of WP shall be called the cone of B
and denoted by Cp; note that if A > 0 and w € Cp then Aw € Cp.

A bilinear form B:V™ x V"® — WP shall be called diagonalisable if V" admits a
basis vy, vg, ..., Vn such that B(v;,v;) = 0 whenever ¢ # j.

(2.1.2) Forn >3 and p = 2 a bilinear form B with 0 & Cp s diagonalisable. To
see this choose any basis wy, wy of W2 and let B(z,y) = Bi(z,y)wi + Ba(z, y)ws.
Diagonalisability of B is equivalent to the simultaneous diagonalisability of the two
R-valued symmetric bilinear forms B; and Bs. It is known (see e.g. [, p. 256])
that this is possible under the given conditions n > 3 and Bi(z)? + Ba(z)? # 0 for
all z #0.

If wy,wa, . .., wk are nonzero elements of WP, then C(wy, w2, ...,wx) C WP will
denote the set of all points Y Ad;ws, A; >0, Y A; > 0. If v; is a diagonalising basis
and \; > 0 then Y A;B(v;) = B(Y_ v/A:v;) which implies Cp = C(w1,ws, ..., wn)
where w; = B(v;). For p > 3 it is easy to give examples of bilinear forms B with
0 ¢ C whose cone is not of the type C(w1, . .., wk); thus (2.1.2) does not generalize
top>3.

(2.1.3) Forn > 3 and p =2, 0 & Cp only if Cp 1s of the type C(wy,wz). For
n=p=2 0¢Cp only if Cg = W2 — {0} or Cp = C(w1, wz) for some wy,ws.
(For n =1, 0 ¢ Cg iff Cg = C(w) for some w; from now on we ignore this trivial
case and take n > 2.) The first part follows from (2.1.2) and the above remark
which show that a C'g not containing the origin is made up of all open half rays from
the origin which pass through a polygonal region conv(ws, ... ,wy) C W2 - {0};
thus with a proper choice of 7 and j we must have Cp = C(w;, w;). To see the
second part we choose a basis v1,v2 of V2 and put w; = B(v1), w2 = B(vz) and
ws = B(vi,vz). The ellipse E C V? consisting of all points cosfv; + sin Ovy is
mapped by B:V2 — W2 onto the set E' C W? consisting of points cos?6w; +
sin®fwy + 2sinfcos fws = (w; + wg)/2 + cos 20((wy — we)/2) + sin 26ws. Clearly
E' is a point, a closed interval or an ellipse; further if 0 ¢ Cp, E’ is contained in
W2 —{0}. Our cone Cp is made up of all open half rays from the origin which pass
through E’. Hence Cg = W2 — {0} or Cg = C(wy,w;) depending on whether or
not 0 lies in the convex hull of E’.

(2.2) We now turn to the properties of B vis-a-vis some inner products. When-
ever WP is equipped with an inner product we will define the curvature form
Rp:A%V x A2V — R as in §1. Occasionally (e.g. in the differential geometric
situation alluded to in §1) V™ also comes equipped with an inner product. Then
we will also consider the Ricci curvature Sp:V X V — R which is defined by con-
tracting Rp, i.e.

(2) Sp(z,y) :ZRB(z/\vi,y/\v,-),

where v; is any orthonormal basis of V™. Note that Rp positive definite implies B
positively curved which in turn implies Sp positive definite.

We define the angle between two nonzero vectors wy, we of an inner product space
W to be the number in [0, 7] whose cosine equals (w1, wz)/(Jwi||wz|); further we
define the angular diameter of a set A contained in some open half space of W to
be the supremum of the angle between any two elements of A.

(2.2.1) If Ricci curvature Sp 1is positive definite, then 0 ¢ Cp. If B is positively
curved, then Cg 1s contained in some open half space of WP and angular diameter
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of Cp 15 less than m/2. The first part follows by noting that (1) and (2) imply
Sp(z,z) = ;(B(z), B(v:))—Y_,;(B(z,v;), B(z,v;)); this expression can be positive
only if B(z) # 0. For the second part take any two points wy, ws of Vg which are not
on the same half ray from the origin, and let B(vy) = w1, B(v2) = ws. Then vy, vy
are linearly independent; so Rp(v1 Avz,v1 Ava) = (w1, wa) — (B(v1,v2), B(v1,v2))
is positive, which can happen only if (wq,w) > 0. Thus Cp lies in an open half
space and has angular diameter less than /2.

(2.2.2) If f:M™ — R™*2, n > 3, is an isometric immersion of an orientable
Riemannian manifold M™ with Ricci curvature positive definite at all points, then
the normal bundle of f must be trivial. (This means that the tangent bundle
of M™ is stably trivial and thus, if M™ is compact, the Pontryagin and Stiefel-
Whitney classes of M™ vanish.) To see this note first that a ‘clockwise’ sense can
be prescribed in a continuous way to the normal spaces W2. But by (2.2.1) and
(2.1.3) Cp is of type C(wi,ws). The unit normal vector w, which bisects this
sector and the unit vector ws obtained by rotating w, clockwise through angle /2
now give us the required continuous trivialization of the normal spaces W2. (The
same argument works also for n > 2 provided one assumes that M™ is positively
curved; this yields a result of Weinstein [3].)

(2.2.3) For a diagonalisable B (a) Rp 1s positive definite iff (b) B is positively
curved iff (c) angular diameter of Cp 1s less than 7/2.

(a) = (b) is trivial while (b) = (c) is in (2.2.1). To prove (c) = (a) let
v1,%2,...,V, be a diagonalising basis of V™ and let B(v;) = w;; we are given
that (w;,w;) is positive for all ¢,5. We note that if 7+ < j and k < I, then
Rp(vi A vj,vx Av) = (B(vi,vi), B(vj,w)) — (B(vi,v), B(vj,vc)) is zero unless
t = k and j = I; therefore, v; A v, ¢ < j, constitute a diagonalising basis for
Rp: A%V x A%V — R. Also each diagonal value Rg(v; A vj,v; A vj) = (w;,w;) is
positive. Therefore, Rg(w,w) > 0 for all nonzero elements w of A2V.

A subset of WP will be called a k-dimensional orthant if for some orthonormal set
of k elements {wy, ..., wr} C WP it equals C(w1,ws,...,wk); a 2-orthant (resp. a
3-orthant) will also be called a quadrant (resp. an octant). The following observation
is due to Weinstein [3].

(2.2.4) If Cp 1s contained in the interior of some p-orthant of WP, then Rp
15 positive definite. Choose an orthonormal {ws,...,wp} C WP such that Cp C
int C(wy,...,wp). For 1 < 1 < p define bilinear forms B;:V" x V* — R by
B(z,y) = >, Bi(z,y)w;; since B;(z,z) = (B(z,),w;) is positive whenever z # 0
we see that each B; is positive definite. Since B; is diagonalisable (c) = (a)
of (2.2.3) shows that Rp, is positive definite. But Rg = Y, Rp, by a simple
calculation. Hence Rp is positive definite.

It is not hard to give an example of a diagonalisable B: V" xV™ — W3, () whose
Cp has an angular diameter less than 7/2 but cannot be contained in the interior
of any octant. Therefore, by using (2.2.3), we see that the converse of (2.2.4) is
false. However, for p = 2 it is clear that a set A C W? with angular diameter less
than 7/2 is contained in the interior of some quadrant. This yields the following
lemma of Weinstein [3].

(2.2.5) For p=2, (a) Rp 1s positive definite iff (b) B s positively curved iff (c)
angular diameter of Cp 1s less than w/2 iff (d) Cp s contained in the interior of
some quadrant.
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(c) = (d) is the remark just made. The implications (a) = (b), (b) = (c) and
(d) = (a) are valid for all p, the first being trivial and the other two being in (2.2.1)
and (2.2.4), respectively.

One can formulate a generalized Cauchy-Schwasz inequality as follows: “(B(z),
B(y)) > 0 for all nonzero z and y iff (B(z),B(y)) > (B(z,y), B(z,y)) for all
linearly independent z and y”. (The classical inequality is the case p = 1 of this
assertion: one is looking at bilinear forms B:V™ x V® — R, () where () is the
ordinary multiplication in R.) (2.2.5) (¢) = (b) says in fact that the generalized
Cauchy-Schwarz inequality is true for p = 2; we will see in (2.3) that it is false for
p=3.

(2.2.6) If angular diameter of Cp is less than cos~'\/(p — 1)/p, then Cp can be
contained in the interior of some p-orthant of WP. In fact we can show that Cjp is
in the interior of any orthant C(wy, ..., wp) for which a = (w; + -+ -+ w,)//pis in
Cp. To see this we check that the maxima of the function (a,u) as u runs over all
unit vectors in the boundary of the orthant (such a w is of the type Y u,w;, u; > 0,
> u? = 1 with at least one u; = 0) is \/(p — 1)/p and is attained at the p values
u' = (w4 -+ + - +wp)/v/p— 1. Thus all open half rays from the origin
which make an angle of less than cos™!y/(p — 1)/p with a—and so a fortiori all of
Cp—are contained in the interior of the orthant.

If one has an isometric immersion f: M™ — R™P whose second fundamental
form has a cone Cp of angular diameter < cos™!4/(p — 1)/p at all points, then the
curvature tensor R of M™ must be positive definite at all points. (This in turn has
the usual interesting topological consequences, e.g. for n even and M™ compact, the
Euler characteristic of M™ must be positive.) This follows by (2.2.4) and (2.2.6).

We say that a cone Cp lying in an open half space of WP has central symmetry
if there exists a half ray (an “axis” of Cp) whose angular distance from any point
of Cp is at most one half the angular diameter of Cg. For a centrally symmetric
Cp the bound of (2.2.6) can be improved to 2cos™1/(p — 1)/p; this follows by
the same argument taking care this time to choose the a along the axis of Cg.
Note that by (2.1.3) one has central symmetry for p = 2; this gives us the bound
2cos™!4/1/2 = /2 which is best possible by (2.2.5). We remark that one has
central symmetry also in the case n = 2, p = 3; this will follow from (2.3.1).

(2.2.7) If angular diameter of Cp 1s less than 2cos™14/2/3, then B is positively
curved. For each 2-dimensional subspace v of V™ let w denote the linear span of the
image of v X v under B: V" x V" — WP; we equip w C WP with the induced inner
product (). It is clear from the definition given in §1 that B:V* x V" — W?, () is
positively curved off its restriction B:v X v — w, () to each 2-dimensional subspace
v 15 positively curved. Since each w is at most 3-dimensional and since we are given
that the diameter of each Cj is less than 2cos=!4/2/3, it follows from (2.2.4) and
the above remark that each § is indeed positively curved.

(2.3) In this section we consider the case n = 2, p = 3 and give a characterisation
of all positively curved B:V2 x V2 — W3, (); (2.2.7) shows that this would suffice
to characterise all positively curved bilinear forms. A B:V2 x V2 — W3 will be
called nondegenerate if its image is not contained in any proper subspace of W3.

(2.3.1) For a nondegenerate B:V2xV?2 — W3, Cp 1s an elliptical cone contained
in an open half space of W3. Since B is nondegenerate we must have 0 ¢ Cg. Now,
as in (2.1.3), let v;, vy be a basis of V2 and note that the ellipse E C V2 consisting
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of all points cos fv; +sin fv; is mapped by B: V2 — W3 to the nondegenerate ellipse
E' C W3 —{0} consisting of all points (w1 +w2)/2+ cos 20((w; — w3)/2) +sin 20ws
where w; = B(v;), we = B(v2) and ws = B(vy,vs); Cp consists of all open half
rays from the origin which pass through E’. Since B is nondegenerate, the plane of
E’ does not contain 0 and Cp lies in an open half space of W3. (Note that V2 — {0}
is a 2-fold cover of Cp under B:V2 — {0} — Cp.)

We now consider the metrical properties of this elliptical cone Cg C W3, (). As
usual the azis of Cp (or of B) will be the open half ray from the origin which passes
through the center of mass of the solid angle determined by Cp and the major and
minor semiangles By, B2 of Cp (or of B) will be the angles subtended at the vertex
by the major and minor axes of any section of Cg normal to its axis.

(2.3.2) If B:V2 x V2 — W3, () is nondegenerate with major and minor semi-
angles B1 and B2, then we can choose a basis vi,ve of V2 and an orthonormal basis
wy, we, w3 of W3 such that

B(v1) = sin Syw; + cos Byws,
(3) B(vg) = —sin f1w; +cos fyw,  and
B(v1,v2) = cos B1tan Bows.

FIGURE 1

Let w2 be the unit vector along the axis of Cp and let w; and w3 be parallel to the
major and minor axes of the normal sections (i.e. the sections normal to the axis)
of Cp. Choose v; and v so that the first two of equations (3) hold; clearly such
a pair vy, vy is linearly independent. We assert that B(vy,v) = tcos §; tan Sows;
this suffices to prove the above result because if need be we can replace ws by
—ws3. Just as in (2.3.1) we note that the ellipse E C V2 consisting of all points
cos fv; + sin fv, is mapped by B:V2 — W3 to the ellipse E' C Cgy consisting of
all points cos B1w2 + cos 20 sin 31wy + sin20B(v1,v2). This ellipse E’ has center
cos B1ws on the axis of Cg. But only the normal sections of Cg have their centers
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on the axis. So E’ must be the normal section shown in Figure 1 and we must have
B(v1,v2) = +cos B; tan Bows.

Given an elliptical cone C lying in an open half space of W2, we can thus find
a nondegenerate form B:V2 x V2 — W3 whose cone is C; (2.3.2) shows that two
nondegenerate bilinear forms B; and B, have congruent cones Cp, and Cp, iff B;

is equivalent to By in the sense that there exists a linear transformation f: V2 Svy?
and an orthogonal transformation g: W3, () — W3, () such that B, = go B; o f.

(2.3.3) A nondegenerate B:VZxV?2 — W3, () with major and minor semiangles
B1 and B3 1s (a) positively curved iff (b) tan?3; +tan?B, < 1 iff (c) Cp 1s contained
wn the interior of some octant.

Choose bases vy, vz of V2 and wy, we, ws of W3 as in (2.3.2). By (1) and (3),

RB('UI Avg,v1 A '1)2) = <B('U1), B('U2)> - <B(’Ul,’l)2), B('U], 1)2))
= —sin?B; + cos?B; — cos? B tan? B,
= cos?f;(1 — tan?g; — tan?3,),

which is positive only if tan?8; + tan?8; < 1. This shows (a) = (b). Since (2.2.4)
gives (c) = (a) the proof will be complete once we have shown (b) = (c).

y A

FIGURE 2a ) FIGURE 2b

Let 7,7,k be any orthonormal basis of W3 and let 6, € (0,7/2). We denote by
ABC the triangle with vertices at 4, and (1/v/2) cot 8,k (see Figure 2a). We join
A to midpoint D of BC and let E be the foot of the perpendicular from O to AD;
since ZOAD = 6, and triangles OAD and EOD are similar, we have /ZEOD = 6;.
In the plane of AABC we draw the ellipse £ with center E and with ED as one
of its semiaxes and which is tangent to the sides AB and AC. Let 6; be the angle
subtended by the other semiaxis at O; we assert that tan26; + tan26, = 1. This
assertion suffices to prove (b) = (c) because by choosing 6; to be bigger than
by only a small amount we can ensure, by virtue of tan?3; + tan?8; < 1, that 6
is also bigger than f,; then Cp would be congruent to an elliptical cone lying in
int C(z 7, Ic) and cutting ABC in an ellipse concentric with and ‘parallel’ to €.
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We choose rectangular axes z and y in the plane of AABC as in Figure 2b. The
semiaxes of £ being (1/v/2)cos 61 tanfy and (1/+/2)sin 6y, its equation is

z? + = (1/v2)sin6y)?

=1.
3 cos?0;tan?0, 1sin?9,

(4)

On the other hand the straight line AC has equation z = 1 /V/2 — sin 6, y; making
this substitution in (4) we get

(1-V2ysin6;)?  (v2y —sin6,)?

=1
cos26;tan26, sin%6,

(5)

which simplifies to
(6) (sin6; + cos26;tan?6,)Y? — (2sin36; + 2sin f1cos0;tan?6,)Y + sin?6; = 0,

where Y = v/2y. Since this quadratic has only one real solution its discriminant is
zero. A short calculation shows that the discriminant of (6) equals

45in%6, cos6, tan?6,(tan?6; + tan26, — 1).

So tan201 + tan202 =1.

By applying (2.3.3) to a B such that Cg = C we see that tan2f; + tan28; < 1
is a n.a.s.c. for an elliptical cone C with major and minor semiangles §; and (, to
lie in the interior of some octant. For circular cones 8; = B, = 3, this condition
reads 2tan?8 < 1 ie., cosfB > V2/3, i.e. angular diameter 283 of Cp is less
than 2cos™!y/2/3; therefore (2.3.3) shows that the bound given in (2.2.7) s the
best possible. Note also that any nondegenerate bilinear form B:V?2 x V2 — W3,
() having a circular cone Cg with an angular diameter > 2cos™14/2/3 but less
than 7 /2 gives a counterexample to the “generalized Cauchy-Schwarz inequality”
formulated in (2.2.5). We remark that (2.3.3) extends to all B:V2 x V2 — W3,
() with 0 & Cp if we define 81 = /2, B2 = 0 (resp. By = B = 7/2) whenever
Cp is a planar sector of angle 0 < a < 7 (resp. a 2-dimensional subspace with
origin deleted); by (2.1.3) we know that these are the only possible degenerate
cases. It seems likely that one has a characterisation analogous to (2.3.3) of all
nondegenerate symmetric bilinear forms B: V" x V* — Wn(n+1)/2 () with Rp
positive definite.

(2.3.4) B:V"™ x V™ — WP, () is positively curved iff the cone Cps of each re-
striction B:v? x V2 — WP, () of B to a 2-dimensional subspace v C V, can be
contarned 1n the interior of some octant (i.e. some 3-orthant) of WP, (). Arguing
as in (2.2.7) we see that B is positively curved iff each restriction 8:v x v — w, ()
is positively curved. If dimw < 2, then it is clear that Cj lies in the interior of an
octant of WP, () iff angular diameter of Cg is less than 7/2. If dimw = 3 then Cp
can lie in the interior of only those octants of WP, (') which are octants of w3, ( ).
The result now follows by using (2.2.5) and (2.3.3).

3. An example. Let v;,vy,v3,v4 (resp. wy, w2, w3) be a basis (resp. or-
thonormal basis) of V4 (resp. W3, ()); further let us equip A2V with the basis
w1 = v1 Avg, W = V1 A V3, w3 = v1 AV4; wi = v3 A Vs, wy = vg4 A v, w3 = v2 A vs.
Let x: A2V x A%V — R denote the bilinear form whose matrix with respect to this
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basis is

7 l03,3 Is,sl :

I3z 033

it is well known that *(w,w) = 0 whenever w is decomposable. For each A € R,
B:V4xV* — W3, () shall denote the symmetric bilinear form for which By (v;) =
B)(vs) = 2wy, By (v2) = 2wz + Aws, Bx(v3) = 2wa +ws, By (v1,v3) = Bx(va,vs) =
wy and By (v;,v;) = 0 for all other pairs {v;,v;}. Using (1) one easily computes
the matrix of Rp, (with respect to the basis of A2V chosen above) to be

@) [ diag(4,3,4)  diag(1,0,-1) ]
diag(1,0,—1) diag(4,3,4+))|°

B, is positively curved iff A > —4; Rp, 15 positive definite iff A > —3.75. The
matrix of Rp, + * (i.e. the sum of (7) and (8)) can be diagonalised by a couple
of elementary row and column operations to get diag(4, 3,4,3,8/3,4 + )); thus for
any nonzero decomposable w, R, (w,w) = (Rp, + *)(w,w) is positive if 4 + X > 0.
Conversely, (By(vz2), Bx(vs)) = 4 + X shows that the angle between B)(v;) and
B (v3) is dess than 7/2 only if 4 + A > 0. The second part follows by noting that
the matrix (8) can be reduced to diag(4, 3,4, 15/4,3,3.75 + \).
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