POSITIVELY CURVED BILINEAR FORMS

K. S. SARKARIA AND S. M. ZOLTEK

ABSTRACT. A characterisation of the positivity of sectional curvature is given in terms of the angular spread of the second fundamental form.

1. Introduction. We will deal only with real and finite-dimensional vector spaces; occasionally their dimensions will be denoted by superscripts. Our principal objects of study are vector-valued bilinear forms $B: V^n \times V^n \to W^p$, with special emphasis on their properties vis-à-vis a given inner product $\langle \rangle$ on W. In this context Weinstein [3] has considered the associated curvature form $R_B: \Lambda^2 V \times \Lambda^2 V \to \mathbf{R}$ defined by

(1)
$$R_B(v_1 \wedge v_2, v_3 \wedge v_4) = \langle B(v_1, v_3), B(v_2, v_4) \rangle - \langle B(v_1, v_4), B(v_2, v_3) \rangle.$$

(The reason for this terminology comes from differential geometry: If V (resp. W) is a tangent (resp. normal) space of an n-manifold M^n isometrically immersed in \mathbf{R}^{n+p} and $B: V \times V \to W$ is the second fundamental form of the immersion, then the curvature R of M^n is related to B by (1).) We will say that B is positively curved if $R_B(\omega,\omega) > 0$ for all nonzero decomposable elements ω of $\Lambda^2 V$. The set $C_B = \{B(x,x)|x \neq 0\}$ will be called the *cone* of B. After giving some preliminary refinements of Weinstein's methods we prove in §2 that a symmetric bilinear form $B: V^n \times V^n \to W^p$, () is positively curved if and only if the restriction of B to each 2-dimensional subspace has a cone which can be contained in the interior of some 3-dimensional orthant of the inner product space W^p , $\langle \rangle$ (see (2.3.4); also (2.2.7) and (2.3.3) for more quantitative aspects of the result). §2 also contains some sufficient conditions under which R_B is positive definite, i.e. $R_B(\omega,\omega) > 0$ for all nonzero $\omega \in \Lambda^2 V$. (It is known (see e.g. [2, pp. 364–368]) that a closed Riemannian manifold M whose curvature R is positive definite at all points must satisfy some strong topological conditions; relatively much less is known about positively curved closed manifolds.) If $n \leq 3$ all elements of $\Lambda^2 V$ are decomposable and thus B is positively curved iff R_B is positive definite; Weinstein [3] (or (2.2.5) below) proved that this remains true for all n provided $p \leq 2$. In §3 we give an example of a positively curved $B: V^4 \times V^4 \to \hat{W}^3$, $\langle \rangle$ for which R_B is not positive definite.

- **2.** Bilinear forms $B: V^n \times V^n \to W^p$.
- (2.1) A symmetric bilinear form $B: V \times V \to W$ determines a quadratic function $B: V \to W$ by B(x) = B(x, x).
- (2.1.1) A continuous map $B: V \to W$ is a quadratic function of some symmetric bilinear form iff it obeys the parallelogram law B(x+y)+B(x-y)=2B(x)+2B(y). A proof of this result, for the scalar case p=1, can be found e.g. in [1, pp. 245-246]; the same argument works for all p.

Received by the editors March 6, 1985. 1980 Mathematics Subject Classification. Primary 15A63, 53B25; Secondary 53C40. The subset $B(V^n - \{0\}) = \{B(x)|x \neq 0\}$ of W^p shall be called the *cone* of B and denoted by C_B ; note that if $\lambda > 0$ and $w \in C_B$ then $\lambda w \in C_B$.

A bilinear form $B: V^n \times V^n \to W^p$ shall be called *diagonalisable* if V^n admits a basis v_1, v_2, \ldots, v_n such that $B(v_i, v_j) = 0$ whenever $i \neq j$.

(2.1.2) For $n \geq 3$ and p = 2 a bilinear form B with $0 \notin C_B$ is diagonalisable. To see this choose any basis w_1, w_2 of W^2 and let $B(x, y) = B_1(x, y)w_1 + B_2(x, y)w_2$. Diagonalisability of B is equivalent to the simultaneous diagonalisability of the two **R**-valued symmetric bilinear forms B_1 and B_2 . It is known (see e.g. [1, p. 256]) that this is possible under the given conditions $n \geq 3$ and $B_1(x)^2 + B_2(x)^2 \neq 0$ for all $x \neq 0$.

If w_1, w_2, \ldots, w_k are nonzero elements of W^p , then $C(w_1, w_2, \ldots, w_k) \subseteq W^p$ will denote the set of all points $\sum \lambda_i w_i$, $\lambda_i \geq 0$, $\sum \lambda_i > 0$. If v_i is a diagonalising basis and $\lambda_i \geq 0$ then $\sum \lambda_i B(v_i) = B(\sum \sqrt{\lambda_i} v_i)$ which implies $C_B = C(w_1, w_2, \ldots, w_n)$ where $w_i = B(v_i)$. For $p \geq 3$ it is easy to give examples of bilinear forms B with $0 \notin C_B$ whose cone is not of the type $C(w_1, \ldots, w_k)$; thus (2.1.2) does not generalize to $p \geq 3$.

(2.1.3) For $n \geq 3$ and p = 2, $0 \notin C_B$ only if C_B is of the type $C(w_1, w_2)$. For n = p = 2, $0 \notin C_B$ only if $C_B = W^2 - \{0\}$ or $C_B = C(w_1, w_2)$ for some w_1, w_2 . (For $n = 1, 0 \notin C_B$ iff $C_B = C(w)$ for some w; from now on we ignore this trivial case and take $n \geq 2$.) The first part follows from (2.1.2) and the above remark which show that a C_B not containing the origin is made up of all open half rays from the origin which pass through a polygonal region $conv(w_1, \ldots, w_n) \subseteq W^2 - \{0\}$; thus with a proper choice of i and j we must have $C_B = C(w_i, w_j)$. To see the second part we choose a basis v_1, v_2 of V^2 and put $w_1 = B(v_1)$, $w_2 = B(v_2)$ and $w_3 = B(v_1, v_2)$. The ellipse $E \subseteq V^2$ consisting of all points $cos\theta v_1 + sin\theta v_2$ is mapped by $B: V^2 \to W^2$ onto the set $E' \subseteq W^2$ consisting of points $cos\theta w_1 + sin\theta w_2 + 2 sin\theta cos\theta w_3 = (w_1 + w_2)/2 + cos\theta ((w_1 - w_2)/2) + sin\theta w_3$. Clearly E' is a point, a closed interval or an ellipse; further if $0 \notin C_B$, E' is contained in $W^2 - \{0\}$. Our cone C_B is made up of all open half rays from the origin which pass through E'. Hence $C_B = W^2 - \{0\}$ or $C_B = C(w_1, w_2)$ depending on whether or not 0 lies in the convex hull of E'.

(2.2) We now turn to the properties of B vis-à-vis some inner products. Whenever W^p is equipped with an inner product we will define the curvature form $R_B: \Lambda^2 V \times \Lambda^2 V \to \mathbf{R}$ as in §1. Occasionally (e.g. in the differential geometric situation alluded to in §1) V^n also comes equipped with an inner product. Then we will also consider the $Ricci\ curvature\ S_B: V \times V \to \mathbf{R}$ which is defined by contracting R_B , i.e.

$$(2) \qquad \qquad S_B(x,y) = \sum_i R_B(x \wedge v_i, y \wedge v_i),$$

where v_i is any orthonormal basis of V^n . Note that R_B positive definite implies B positively curved which in turn implies S_B positive definite.

We define the angle between two nonzero vectors w_1, w_2 of an inner product space W to be the number in $[0, \pi]$ whose cosine equals $\langle w_1, w_2 \rangle / (|w_1| |w_2|)$; further we define the angular diameter of a set A contained in some open half space of W to be the supremum of the angle between any two elements of A.

(2.2.1) If Ricci curvature S_B is positive definite, then $0 \notin C_B$. If B is positively curved, then C_B is contained in some open half space of W^p and angular diameter

- of C_B is less than $\pi/2$. The first part follows by noting that (1) and (2) imply $S_B(x,x) = \sum_i \langle B(x), B(v_i) \rangle \sum_i \langle B(x,v_i), B(x,v_i) \rangle$; this expression can be positive only if $B(x) \neq 0$. For the second part take any two points w_1, w_2 of V_B which are not on the same half ray from the origin, and let $B(v_1) = w_1$, $B(v_2) = w_2$. Then v_1, v_2 are linearly independent; so $R_B(v_1 \wedge v_2, v_1 \wedge v_2) = \langle w_1, w_2 \rangle \langle B(v_1, v_2), B(v_1, v_2) \rangle$ is positive, which can happen only if $\langle w_1, w_2 \rangle > 0$. Thus C_B lies in an open half space and has angular diameter less than $\pi/2$.
- (2.2.2) If $f: M^n \to \mathbb{R}^{n+2}$, $n \geq 3$, is an isometric immersion of an orientable Riemannian manifold M^n with Ricci curvature positive definite at all points, then the normal bundle of f must be trivial. (This means that the tangent bundle of M^n is stably trivial and thus, if M^n is compact, the Pontryagin and Stiefel-Whitney classes of M^n vanish.) To see this note first that a 'clockwise' sense can be prescribed in a continuous way to the normal spaces W^2 . But by (2.2.1) and (2.1.3) C_B is of type $C(w_1, w_2)$. The unit normal vector w_a which bisects this sector and the unit vector w_b obtained by rotating w_a clockwise through angle $\pi/2$ now give us the required continuous trivialization of the normal spaces W^2 . (The same argument works also for $n \geq 2$ provided one assumes that M^n is positively curved; this yields a result of Weinstein [3].)
- (2.2.3) For a diagonalisable B (a) R_B is positive definite iff (b) B is positively curved iff (c) angular diameter of C_B is less than $\pi/2$.
- (a) \Rightarrow (b) is trivial while (b) \Rightarrow (c) is in (2.2.1). To prove (c) \Rightarrow (a) let v_1, v_2, \ldots, v_n be a diagonalising basis of V^n and let $B(v_i) = w_i$; we are given that $\langle w_i, w_j \rangle$ is positive for all i, j. We note that if i < j and k < l, then $R_B(v_i \wedge v_j, v_k \wedge v_l) = \langle B(v_i, v_k), B(v_j, v_l) \rangle \langle B(v_i, v_l), B(v_j, v_k) \rangle$ is zero unless i = k and j = l; therefore, $v_i \wedge v_j$, i < j, constitute a diagonalising basis for $R_B: \Lambda^2 V \times \Lambda^2 V \to \mathbf{R}$. Also each diagonal value $R_B(v_i \wedge v_j, v_i \wedge v_j) = \langle w_i, w_j \rangle$ is positive. Therefore, $R_B(\omega, \omega) > 0$ for all nonzero elements ω of $\Lambda^2 V$.

A subset of W^p will be called a k-dimensional orthant if for some orthonormal set of k elements $\{w_1, \ldots, w_k\} \subseteq W^p$ it equals $C(w_1, w_2, \ldots, w_k)$; a 2-orthant (resp. a 3-orthant) will also be called a quadrant (resp. an octant). The following observation is due to Weinstein [3].

(2.2.4) If C_B is contained in the interior of some p-orthant of W^p , then R_B is positive definite. Choose an orthonormal $\{w_1,\ldots,w_p\}\subseteq W^p$ such that $C_B\subseteq \operatorname{int} C(w_1,\ldots,w_p)$. For $1\leq i\leq p$ define bilinear forms $B_i\colon V^n\times V^n\to \mathbf{R}$ by $B(x,y)=\sum_i B_i(x,y)w_i;$ since $B_i(x,x)=\langle B(x,x),w_i\rangle$ is positive whenever $x\neq 0$ we see that each B_i is positive definite. Since B_i is diagonalisable (c) \Rightarrow (a) of (2.2.3) shows that R_{B_i} is positive definite. But $R_B=\sum_i R_{B_i}$ by a simple calculation. Hence R_B is positive definite.

It is not hard to give an example of a diagonalisable $B: V^n \times V^n \to W^3$, $\langle \ \rangle$ whose C_B has an angular diameter less than $\pi/2$ but cannot be contained in the interior of any octant. Therefore, by using (2.2.3), we see that the *converse of* (2.2.4) is false. However, for p=2 it is clear that a set $A\subseteq W^2$ with angular diameter less than $\pi/2$ is contained in the interior of some quadrant. This yields the following lemma of Weinstein [3].

(2.2.5) For p=2, (a) R_B is positive definite iff (b) B is positively curved iff (c) angular diameter of C_B is less than $\pi/2$ iff (d) C_B is contained in the interior of some quadrant.

(c) \Rightarrow (d) is the remark just made. The implications (a) \Rightarrow (b), (b) \Rightarrow (c) and (d) \Rightarrow (a) are valid for all p, the first being trivial and the other two being in (2.2.1) and (2.2.4), respectively.

One can formulate a generalized Cauchy-Schwarz inequality as follows: " $\langle B(x), B(y) \rangle > 0$ for all nonzero x and y iff $\langle B(x), B(y) \rangle > \langle B(x,y), B(x,y) \rangle$ for all linearly independent x and y". (The classical inequality is the case p=1 of this assertion: one is looking at bilinear forms $B: V^n \times V^n \to \mathbf{R}$, $\langle \ \rangle$ where $\langle \ \rangle$ is the ordinary multiplication in \mathbf{R} .) (2.2.5) (c) \Rightarrow (b) says in fact that the generalized Cauchy-Schwarz inequality is true for p=2; we will see in (2.3) that it is false for p=3.

(2.2.6) If angular diameter of C_B is less than $\cos^{-1}\sqrt{(p-1)/p}$, then C_B can be contained in the interior of some p-orthant of W^p . In fact we can show that C_B is in the interior of any orthant $C(w_1,\ldots,w_p)$ for which $a=(w_1+\cdots+w_p)/\sqrt{p}$ is in C_B . To see this we check that the maxima of the function $\langle a,u\rangle$ as u runs over all unit vectors in the boundary of the orthant (such a u is of the type $\sum u_i w_i, u_i \geq 0$, $\sum u_i^2 = 1$ with at least one $u_i = 0$) is $\sqrt{(p-1)/p}$ and is attained at the p values $u^i = (w_1 + \cdots + \hat{w}_i + \cdots + w_p)/\sqrt{p-1}$. Thus all open half rays from the origin which make an angle of less than $\cos^{-1}\sqrt{(p-1)/p}$ with a—and so a fortiori all of C_B —are contained in the interior of the orthant.

If one has an isometric immersion $f: M^n \to \mathbb{R}^{n+p}$ whose second fundamental form has a cone C_B of angular diameter $< \cos^{-1} \sqrt{(p-1)/p}$ at all points, then the curvature tensor R of M^n must be positive definite at all points. (This in turn has the usual interesting topological consequences, e.g. for n even and M^n compact, the Euler characteristic of M^n must be positive.) This follows by (2.2.4) and (2.2.6).

We say that a cone C_B lying in an open half space of W^p has central symmetry if there exists a half ray (an "axis" of C_B) whose angular distance from any point of C_B is at most one half the angular diameter of C_B . For a centrally symmetric C_B the bound of (2.2.6) can be improved to $2\cos^{-1}\sqrt{(p-1)/p}$; this follows by the same argument taking care this time to choose the a along the axis of C_B . Note that by (2.1.3) one has central symmetry for p=2; this gives us the bound $2\cos^{-1}\sqrt{1/2}=\pi/2$ which is best possible by (2.2.5). We remark that one has central symmetry also in the case n=2, p=3; this will follow from (2.3.1).

- (2.2.7) If angular diameter of C_B is less than $2\cos^{-1}\sqrt{2/3}$, then B is positively curved. For each 2-dimensional subspace ν of V^n let ω denote the linear span of the image of $\nu \times \nu$ under $B: V^n \times V^n \to W^p$; we equip $\omega \subseteq W^p$ with the induced inner product $\langle \ \rangle$. It is clear from the definition given in §1 that $B: V^n \times V^n \to W^p$, $\langle \ \rangle$ is positively curved iff its restriction $\beta: \nu \times \nu \to \omega$, $\langle \ \rangle$ to each 2-dimensional subspace ν is positively curved. Since each ω is at most 3-dimensional and since we are given that the diameter of each C_β is less than $2\cos^{-1}\sqrt{2/3}$, it follows from (2.2.4) and the above remark that each β is indeed positively curved.
- (2.3) In this section we consider the case n=2, p=3 and give a characterisation of all positively curved $B: V^2 \times V^2 \to W^3$, $\langle \rangle$; (2.2.7) shows that this would suffice to characterise all positively curved bilinear forms. A $B: V^2 \times V^2 \to W^3$ will be called *nondegenerate* if its image is not contained in any proper subspace of W^3 .
- (2.3.1) For a nondegenerate $B: V^2 \times V^2 \to W^3$, C_B is an elliptical cone contained in an open half space of W^3 . Since B is nondegenerate we must have $0 \notin C_B$. Now, as in (2.1.3), let v_1, v_2 be a basis of V^2 and note that the ellipse $E \subseteq V^2$ consisting

of all points $\cos\theta v_1 + \sin\theta v_2$ is mapped by $B: V^2 \to W^3$ to the nondegenerate ellipse $E' \subseteq W^3 - \{0\}$ consisting of all points $(w_1 + w_2)/2 + \cos 2\theta ((w_1 - w_2)/2) + \sin 2\theta w_3$ where $w_1 = B(v_1), \ w_2 = B(v_2)$ and $w_3 = B(v_1, v_2); \ C_B$ consists of all open half rays from the origin which pass through E'. Since B is nondegenerate, the plane of E' does not contain 0 and C_B lies in an open half space of W^3 . (Note that $V^2 - \{0\}$ is a 2-fold cover of C_B under $B: V^2 - \{0\} \to C_B$.)

We now consider the metrical properties of this elliptical cone $C_B \subseteq W^3$, $\langle \rangle$. As usual the *axis* of C_B (or of B) will be the open half ray from the origin which passes through the center of mass of the solid angle determined by C_B and the *major and minor semiangles* β_1 , β_2 of C_B (or of B) will be the angles subtended at the vertex by the major and minor axes of any section of C_B normal to its axis.

(2.3.2) If $B: V^2 \times V^2 \to W^3$, $\langle \rangle$ is nondegenerate with major and minor semi-angles β_1 and β_2 , then we can choose a basis v_1, v_2 of V^2 and an orthonormal basis w_1, w_2, w_3 of W^3 such that

(3)
$$B(v_1) = \sin \beta_1 w_1 + \cos \beta_1 w_2, \\ B(v_2) = -\sin \beta_1 w_1 + \cos \beta_1 w_2 \quad \text{and} \\ B(v_1, v_2) = \cos \beta_1 \tan \beta_2 w_2.$$

FIGURE 1

Let w_2 be the unit vector along the axis of C_B and let w_1 and w_3 be parallel to the major and minor axes of the normal sections (i.e. the sections normal to the axis) of C_B . Choose v_1 and v_2 so that the first two of equations (3) hold; clearly such a pair v_1, v_2 is linearly independent. We assert that $B(v_1, v_2) = \pm \cos \beta_1 \tan \beta_2 w_3$; this suffices to prove the above result because if need be we can replace w_3 by $-w_3$. Just as in (2.3.1) we note that the ellipse $E \subseteq V^2$ consisting of all points $\cos \theta v_1 + \sin \theta v_2$ is mapped by $B: V^2 \to W^3$ to the ellipse $E' \subseteq C_B$ consisting of all points $\cos \beta_1 w_2 + \cos 2\theta \sin \beta_1 w_1 + \sin 2\theta B(v_1, v_2)$. This ellipse E' has center $\cos \beta_1 w_2$ on the axis of C_B . But only the normal sections of C_B have their centers

on the axis. So E' must be the normal section shown in Figure 1 and we must have $B(v_1, v_2) = \pm \cos \beta_1 \tan \beta_2 w_3$.

Given an elliptical cone C lying in an open half space of W^3 , we can thus find a nondegenerate form $B: V^2 \times V^2 \to W^3$ whose cone is C; (2.3.2) shows that two nondegenerate bilinear forms B_1 and B_2 have congruent cones C_{B_1} and C_{B_2} iff B_1 is equivalent to B_2 in the sense that there exists a linear transformation $f: V^2 \stackrel{\cong}{\to} V^2$ and an orthogonal transformation $g: W^3$, $\langle \ \rangle \to W^3$, $\langle \ \rangle$ such that $B_2 = g \circ B_1 \circ f$.

(2.3.3) A nondegenerate $B: V^2 \times V^2 \to W^3$, $\langle \ \rangle$ with major and minor semiangles β_1 and β_2 is (a) positively curved iff (b) $\tan^2\beta_1 + \tan^2\beta_2 < 1$ iff (c) C_B is contained in the interior of some octant.

Choose bases v_1, v_2 of V^2 and w_1, w_2, w_3 of W^3 as in (2.3.2). By (1) and (3),

$$R_B(v_1 \wedge v_2, v_1 \wedge v_2) = \langle B(v_1), B(v_2) \rangle - \langle B(v_1, v_2), B(v_1, v_2) \rangle$$

$$= -\sin^2 \beta_1 + \cos^2 \beta_1 - \cos^2 \beta_1 \tan^2 \beta_2$$

$$= \cos^2 \beta_1 (1 - \tan^2 \beta_1 - \tan^2 \beta_2),$$

which is positive only if $\tan^2 \beta_1 + \tan^2 \beta_2 < 1$. This shows (a) \Rightarrow (b). Since (2.2.4) gives (c) \Rightarrow (a) the proof will be complete once we have shown (b) \Rightarrow (c).

Let $\vec{i}, \vec{j}, \vec{k}$ be any orthonormal basis of W^3 and let $\theta_1 \in (0, \pi/2)$. We denote by ABC the triangle with vertices at \vec{i}, \vec{j} and $(1/\sqrt{2}) \cot \theta_1 \vec{k}$ (see Figure 2a). We join A to midpoint D of BC and let E be the foot of the perpendicular from O to AD; since $\angle OAD = \theta_1$ and triangles OAD and EOD are similar, we have $\angle EOD = \theta_1$. In the plane of $\triangle ABC$ we draw the ellipse \mathcal{E} with center E and with ED as one of its semiaxes and which is tangent to the sides AB and AC. Let θ_2 be the angle

subtended by the other semiaxis at O; we assert that $\tan^2\theta_1 + \tan^2\theta_2 = 1$. This assertion suffices to prove (b) \Rightarrow (c) because by choosing θ_1 to be bigger than β_1 by only a small amount we can ensure, by virtue of $\tan^2\beta_1 + \tan^2\beta_2 < 1$, that θ_2 is also bigger than β_2 ; then C_B would be congruent to an elliptical cone lying in int $C(\vec{i}, \vec{j}, \vec{k})$ and cutting ABC in an ellipse concentric with and 'parallel' to \mathcal{E} .

We choose rectangular axes x and y in the plane of $\triangle ABC$ as in Figure 2b. The semiaxes of \mathcal{E} being $(1/\sqrt{2})\cos\theta_1\tan\theta_2$ and $(1/\sqrt{2})\sin\theta_1$, its equation is

$$\frac{x^2}{\frac{1}{2}\cos^2\theta_1\tan^2\theta_2} + \frac{(y - (1/\sqrt{2})\sin\theta_1)^2}{\frac{1}{2}\sin^2\theta_1} = 1.$$

On the other hand the straight line AC has equation $x = 1/\sqrt{2} - \sin \theta_1 y$; making this substitution in (4) we get

(5)
$$\frac{(1 - \sqrt{2}y\sin\theta_1)^2}{\cos^2\theta_1\tan^2\theta_2} + \frac{(\sqrt{2}y - \sin\theta_1)^2}{\sin^2\theta_1} = 1$$

which simplifies to

(6)
$$(\sin^4\theta_1 + \cos^2\theta_1 \tan^2\theta_2)Y^2 - (2\sin^3\theta_1 + 2\sin\theta_1 \cos^2\theta_1 \tan^2\theta_2)Y + \sin^2\theta_1 = 0$$

where $Y = \sqrt{2}y$. Since this quadratic has only one real solution its discriminant is zero. A short calculation shows that the discriminant of (6) equals

$$4\sin^2\theta_1\cos^4\theta_1\tan^2\theta_2(\tan^2\theta_1+\tan^2\theta_2-1).$$

So $\tan^2\theta_1 + \tan^2\theta_2 = 1$.

By applying (2.3.3) to a B such that $C_B = C$ we see that $\tan^2\beta_1 + \tan^2\beta_2 < 1$ is a n.a.s.c. for an elliptical cone C with major and minor semiangles β_1 and β_2 to lie in the interior of some octant. For circular cones $\beta_1 = \beta_2 = \beta$, this condition reads $2\tan^2\beta < 1$ i.e., $\cos\beta > \sqrt{2/3}$, i.e. angular diameter 2β of C_B is less than $2\cos^{-1}\sqrt{2/3}$; therefore (2.3.3) shows that the bound given in (2.2.7) is the best possible. Note also that any nondegenerate bilinear form $B:V^2 \times V^2 \to W^3$, $\langle \ \rangle$ having a circular cone C_B with an angular diameter $\geq 2\cos^{-1}\sqrt{2/3}$ but less than $\pi/2$ gives a counterexample to the "generalized Cauchy-Schwarz inequality" formulated in (2.2.5). We remark that (2.3.3) extends to all $B:V^2 \times V^2 \to W^3$, $\langle \ \rangle$ with $0 \notin C_B$ if we define $\beta_1 = \alpha/2$, $\beta_2 = 0$ (resp. $\beta_1 = \beta_2 = \pi/2$) whenever C_B is a planar sector of angle $0 \leq \alpha < \pi$ (resp. a 2-dimensional subspace with origin deleted); by (2.1.3) we know that these are the only possible degenerate cases. It seems likely that one has a characterisation analogous to (2.3.3) of all nondegenerate symmetric bilinear forms $B:V^n \times V^n \to W^{n(n+1)/2}$, $\langle \ \rangle$ with R_B positive definite.

- (2.3.4) $B: V^n \times V^n \to W^p$, $\langle \ \rangle$ is positively curved iff the cone C_β of each restriction $\beta: \nu^2 \times \nu^2 \to W^p$, $\langle \ \rangle$ of B to a 2-dimensional subspace $\nu \subseteq V$, can be contained in the interior of some octant (i.e. some 3-orthant) of W^p , $\langle \ \rangle$. Arguing as in (2.2.7) we see that B is positively curved iff each restriction $\beta: \nu \times \nu \to \omega$, $\langle \ \rangle$ is positively curved. If $\dim \omega \leq 2$, then it is clear that C_β lies in the interior of an octant of W^p , $\langle \ \rangle$ iff angular diameter of C_β is less than $\pi/2$. If $\dim \omega = 3$ then C_β can lie in the interior of only those octants of W^p , $\langle \ \rangle$ which are octants of ω^3 , $\langle \ \rangle$. The result now follows by using (2.2.5) and (2.3.3).
- **3.** An example. Let v_1, v_2, v_3, v_4 (resp. w_1, w_2, w_3) be a basis (resp. orthonormal basis) of V^4 (resp. W^3 , $\langle \ \rangle$); further let us equip $\Lambda^2 V$ with the basis $\omega_1 = v_1 \wedge v_2, \, \omega_2 = v_1 \wedge v_3, \, \omega_3 = v_1 \wedge v_4; \, \omega_1^* = v_3 \wedge v_4, \, \omega_2^* = v_4 \wedge v_2, \, \omega_3^* = v_2 \wedge v_3.$ Let $*: \Lambda^2 V \times \Lambda^2 V \to \mathbf{R}$ denote the bilinear form whose matrix with respect to this

basis is

(7)
$$\begin{bmatrix} 0_{3,3} & I_{3,3} \\ I_{3,3} & 0_{3,3} \end{bmatrix};$$

it is well known that $*(\omega, \omega) = 0$ whenever ω is decomposable. For each $\lambda \in \mathbf{R}$, $B_{\lambda}: V^4 \times V^4 \to W^3$, $\langle \rangle$ shall denote the symmetric bilinear form for which $B_{\lambda}(v_1) = B_{\lambda}(v_4) = 2w_2$, $B_{\lambda}(v_2) = 2w_2 + \lambda w_3$, $B_{\lambda}(v_3) = 2w_2 + w_3$, $B_{\lambda}(v_1, v_3) = B_{\lambda}(v_2, v_4) = w_1$ and $B_{\lambda}(v_i, v_j) = 0$ for all other pairs $\{v_i, v_j\}$. Using (1) one easily computes the matrix of $R_{B_{\lambda}}$ (with respect to the basis of $\Lambda^2 V$ chosen above) to be

(8)
$$\begin{bmatrix} \operatorname{diag}(4,3,4) & \operatorname{diag}(1,0,-1) \\ \operatorname{diag}(1,0,-1) & \operatorname{diag}(4,3,4+\lambda) \end{bmatrix}.$$

 B_{λ} is positively curved iff $\lambda > -4$; $R_{B_{\lambda}}$ is positive definite iff $\lambda > -3.75$. The matrix of $R_{B_{\lambda}} + *$ (i.e. the sum of (7) and (8)) can be diagonalised by a couple of elementary row and column operations to get diag $(4,3,4,3,8/3,4+\lambda)$; thus for any nonzero decomposable ω , $R_{B_{\lambda}}(\omega,\omega) = (R_{B_{\lambda}} + *)(\omega,\omega)$ is positive if $4 + \lambda > 0$. Conversely, $\langle B_{\lambda}(v_2), B_{\lambda}(v_3) \rangle = 4 + \lambda$ shows that the angle between $B_{\lambda}(v_2)$ and $B_{\lambda}(v_3)$ is less than $\pi/2$ only if $4 + \lambda > 0$. The second part follows by noting that the matrix (8) can be reduced to diag $(4,3,4,15/4,3,3.75 + \lambda)$.

REFERENCES

- 1. W. H. Greub, Linear algebra, 3rd ed., Springer-Verlag, New York, 1967.
- S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol. 2, Wiley, New York, 1969.
- 3. A. Weinstein, Positivity curved n-manifolds in \mathbb{R}^{n+2} , J. Differential Geom. 4 (1970), 1-4.

Department of Mathematics, George Mason University, Fairfax, Virginia 22030