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REVIEW OF MATERIALS REQUIRED FOR "VAN KAMPEN OBSTRUCTIONS®

SYLVESTER’S THEOREM

_-A‘ homogenous second degree real polynomial in n variables X =

*Cx1,...,xn3. or equivalently XAX' where A is a real mn symmelric

matrix, can always be changed to one of following Lﬁ)(rﬂ%)./ﬂ canonical
+\

2 2 2 2 2 =
X4 +x2 +......+.v.p xp+1 ceeTX Q £ pE Fr X2 ny

by means of a suitable non-singular linear substitution X=YP, e.g one
obtained via the following

ALGORITHM. In case all diagonal terms of A are zero, bul say the equal

. terms at the (i, j) and (j,i) spots are not, then add jth column and row

to the ith column and row, to make double this amount, a nonzero number,
appear at (i,i).

Using this, make rest of i1th row and column =zero. Repeat with smaller

matrix obtained by omitting ith row and column. Once new A is diagonal,
aome interchanges of rows-column pairs, and multiplications of
"row-column paire with suitable nonzero scalars, finishes the job.

No two of the above canonical forms are congruent to each other.

I1f possible suppoie that the (p,r) canonical form in the x's becomes a
Ep* ) canonical form in the yv's under a nonsingular linear
substitution Y=XP.

Congider first the last n-p' of these substitutional equations ¥ & AP
with the left sides, i.e. the last n-p' y's, replaced by zeros, and, ou
the right sides, the first p x's replaced by zeros. I¥ p < p’s the
number n-p of the remaining x's is more than the number n-p' of these
equationa, and we can find a nontrivial solution for these n-p x's.

Now, calculate the first p' y's, using these values of the x's, from the
first p' of the equations Y=PX. v

Ue have thus obtained two n-tuples of numbers *, and % , related b)
Y0=KOP, with the first p coordinates of ‘J all zero and the remainii,

not all zero, while the last n-p' of the coordinates of Ya are all zero.

Thia is impossible, because the value of the original quadratic form at

Xs is negative, and could not have become non-negative, after this

linear substitution, at the corresponding point YD.
Thus p = p’', likewvise p’' = p, etc. The invariant r coincides with the
rank of A, and p-(r-p)=2p-r is called its =signature.



3

Caomments

(1) Skewsymmetric forms, i.e. skewsymmetric homogenous degree 2
polynomiales in n variables, likewise correspond to skewsymmetric n by n
matricea,.

By a similar algorithm using symmetrical elementary transformations on
rows and columns, we now reach one of the following [(n/2)]+1 canonical
forms,

(x xz—x2x1)+...+( B s 28 % n;

1 x23~1x23-x23x23*1)’

of which no two are congruent. Here 28 coincides with the rank r of A,
which ls thus now necesgsarily even.

(2) Billinear forms in two sets of indeterminates X=[x1.x .xn] and

2"
Y=[y1,y2,...ym], are real linear combinations of the products xiyj with

coefficients alj' Note that any such bilinear form can be written as

XAY' where A is the n by m matrix of coefficients.

In cage n=m and X=Y, then a bilinear form can be written uniquely as the
gaum of a symmetric (=quadratic) form and a skewsymmetric form by putting

&% SRS AN, % CLNEGCR - R
1] 31 ) J 1 1]

ji 3 (x®

j+xjxi) + 1!2(&13—331)(x1xj~xjxi)
This corresponds to writing A = 1/2(A+A')+1/2(A-A").

But note that even for a bilinear form with n=m and ¥X¥=Y, it may not be
possible to simultaneously reduce both its symmetric and skewsymmet: ic
parts to their canonical forms.

In the set of all bilinear forms it is natural to consider the weaker
relation of equivalence, i.e. allow all non-singular pairs of linear
gubstitutliona X=PW and Y=QZ, with no condition between P and Q.

A similar algorithm now leads to one of the following min(n,m)+!
canonical forms

...+ < <"
X ¥y*eo xryr. 0 ] n,

with no two of these equivalent to each other, where r = rank(A).

WITTEN’S MORSE THEORY
The following remarks pertain only to a uéry small part of thig *=*x=x
paper of 1982, which is difficult but potentially understandable, and
also very important :—

For purposes of calculating the Betti numbers of a closed smooth



B manifold M, we can obviously replace the de Rham derivative d by

- _=ht ht
dt = g ° e i

de
where h:M — [E is a smooth function, and t € B, This perturbation is
ugeful because, for t > 0, or at least for t large, the spectrum of the
Hamiltonian (or Laplacian), ‘

y * -
Ht = dtedt + dtadt'

is easier to understand, provided h is "good".

For example, if h has only a finite number of non-degenerate critical
points p, where the quadratic form approximating h has eigenvalues xi,

then in the vicinity of each p, Ht is "well-approximated” by the sum of
dim(M) one-dimensional harmonic oscillators, each with potential tzlf —r—
80 with eigenvalues t|xi| times an odd integer = 1 — plus dim(M) acalar

operators having eigenvalues +t')\i or —tl\i.
Using this (see Henniart for more details) Witten deduces that the
number of zero eigenvalues of Ht' t > 0, in dimension r, is at most
equal to the number of critical points of index r, i.e. he obtains &
revealing analytical proof of the

Morse Inequalities. I1f smooth function h: M — R has only isolated
non-degenerate critical points, then the number of such points of index
r is at least egual to the rth Betti number of the compact manifold 1.

Comments

(1) Witten's paper is a good entrd into physics : gsee also Atiyah i1
IHES § 68.

(2) IHES 4§ 68 also contains a chatty talk by Bott which is useful «tc
further understand Witten.

(3) Witten in fact gets also the sharp Morse inequalities — 1i.e. the
Smale-Thom chain complex of Milnor's book on h-cobordism — by these
analytical means, and much much more: e.g. the degenerate case, when the
critical points of h are submanifolds, is also covered. Then, by a

somewhat different perturbation of d, he obtains Hopf-type formulae
Involving fixed points of vector fields, infinitesimal Isometries etc.
Finally he considers similar problems for some infinite-dimensional
manlfolds.

(4) Laumon in IHES § 65, in a paper which is un-understandable to us,
uges a p-adic version of UWitten's perturbation trick to simplify part of
Deligne's paper on Weil conjectures



BANCHOFF’S MORSE THEORY
This paper of 1967 is easy, clear and important.
Consider any linearly embedded cell complex K < IRN and a linear map hﬂ?N

—+ R which assigns distinct values to adjacent vertices. It is easy to
see that such maps form an open dense subset l& of the dual linear

b f space, which, by using the usual metric < , >, will be identified with
5 Y itself.

We put A(v,o,h) = 0; unless v is the vertex at which the maximum of h|«

occurs, when we set A(v,o,h) = 1. The index of h at a vertex v is now

deflined by

d ime
indov,n) &« f =13 A(v,o,h).
ek

Since multiplying h by a positive scalar does not alter these indices,
we can confine ourselves to linear maps h lying in the dense open subsget
uK = UK M SM_1 of the unit aphere of RN.

Critical Point Theorem If the lnear map h: ERN — R distinguishes

adjacent vertices of the embedded cell complex K € [RN. then the Euler
characteristic of K is given by

"aE

¥ X(K) = £ ind(v,h).
v

P R

. e Y é:;":‘.

The above follows by a simple computation. Next Banchoff defines the
curvature, of the linearly embedded cell complex K at its vertex v, by
averaging the index of v over all h, i.e. he setsa

- N-1
curv(v) = IhEuK ind(v,h) dS .
o wvhere c:L‘.EN-‘1 denotes the usual normalized Lebesgue measure of the unit
b aphere. So last result implies the
('5{ ...'
‘;’s Gauss-Bonnet Formula. The Euler characteristic of an embedded cell
g complex equals its total curvature, ie.

o lw
e

X(K) = L curv(v).
v e

The following integral, which involves the choice of some euclidean

structure on AO, the affine span of a closed cell o, is easily seen to
be independent of the choice of this structure, and is now observed by
Banchoff to be an appropriate definition of the exterior angle of the
cell ¢« at its vertex v.



ang(v,o) = fheuo A(v,o,h) ds”.

As before, the integration is over all those unit vectors h for which

. the linear map <h,..>: ey separates the vertices of «. If v is
not a vertex of ¢ then we'll use ang(v,¢) = 0.

Theorema Egregium The curvature curv(v), of a linearly embedded cell
complex K < IRN at its vertex v, satis fies
curv(v) = ¥ (—1)dlm ang(v,o),

oK ¢

and is thus independent of the embedding.

I.e. the defining integral for ang(v,o) can be replaced by an analogous

one over UK = SN_l.

Comments.

(1) The beauty of the above is that it applies to all cell complexes. In
fact Banchoff also gives, on pp.254-255, a variant of the theory which,
at the expense of slightly more involved definitions, even dispenses
with the requirement that the linear map h separates adjacent vertices.

(2) WUhen K is an n-manifold, then ind(v,h) is (—1? times ind(v,-h),
from which Banchoff gets another proof of the well known fact that ocdd
dimensional closed manifolds have zero euler characteristic.

(3) The inspiration for Banchoff was Kulper who had formulated the much
more subtle smooth critical point theory into the above format.

KALAT’S ENUMERATION OF ACYCLIC COMPLEXES

Theorem. Let € denote the class of all k-dimensional simplicial
complexes on N vertices containing the complete (k-1)-skeleton which
have trivial (reduced) homology over Q. Then
PR oty
| S :
Ce¥

wher-e l-lk_1(C) denotes the, necessarily finite, (k-1)th integral homology

group of C.

For k = 1 we get, because HOCC) = 0 has cardinality 1, the formula of
Cayley for the number T(N) of trees on N vertices, viz.
T(N) = NV,



Kalal mPntions that his more general theorem resulted by analyzing and
generalizing the matrix proof of above given in Biggs and Moon.

Sketch of propf. Let K denote the complete k-dimensional complex on the
given N vertices. We assign some total order to the vertices, using
this we assign incidence numbers, and shall be interested in the

top-most incidence matrix I whose rows are indexed by (k-1)-simplices

and columns by k-simplices.

The columns of I represent the (k-1)-dimensional elementary coboundaries
of K, and it is clear that those stemming from k-simplices containing
the first vertex form an integral basis of the column space of 1.
Moreover, the square submatrix of I determined by these columns, and the
rove stemming from (k-1)-simplices not containing the first vertex, is

evidently a square matrix of size (N;l) and determinant * 1.

More :enarally. any of our @ -acyclic C's is determined by a choice of
. =1 y : ; ’
its K ) k-dimensional simplices, and the square matrix of this wsize,

determined by the same rows as above, and these columns, has determinant
equal to the cardinality of the finite group Hk_I(C).

Let Ir be the submatrix of ] determined by the aforementioned rows, i.e.

those corresponding to (k-1)-simplices not containing the first vertex.
By the Cauchy-Binet theorem, the determinant of the bigger square matrix
Irt(lr)' equals the sum of the squares of the determinants of all thes«

gsmaller square matrices.

%
Using this, and the fact that Iro(Ir)' = N k , @gives Kalai ths=

aforementioned formula.m

N=2.. _ N-2
The binomial duality ( K ) (N—k—z
any complex C on the given set of vertices, the dual simplicial complex
defined by

) prompts Kalai to also consider, fo:

X c
i = 1 8 3.8 W€ 3,
x %
Besides C = C etec., he notes also that Alexander duality shows that

*
is @-acyclic iff C is, and that then the finite groups i—l (CY and

*
HN—k—3(c ) are isomorphic.

He ends by explicitly enumerating the @l—acyclic Z2-complexes on
vertices, and is especially intrigued by the subclass of @ -acyclic
self-dual complexes, i.e. those for which

*
o B
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He gives the numbers of the ERP2 il af:d other @ -acyclic self-dual

6 $
2-complexes which occur on 6 vertices, and poses the problem of finding
an enumerating formula for these in general. He refers to Tutte for
some such formula for the k = 1 case.
Comments.

(1) Kalai also gives a formula for the subclass of ¥ for which one has
prescribed numbers of k-simplices -incident to each of the N vertices.
Also, using above formula, he checks that "most” @-acyclic complexes are
not £2~acyclic.

(2) For other aspects of self-dual complexes see also papers of
Sarkaria, Schild ard Bler, as well as of Brehm and Kuhnel.

THOM’S DIFFERENTIAL FORMS
In his 1975 paper Swan gives this 1957 construction of Thom:

Consider the standard geometrical realization K <« IEN where N = number of
vertices of K. More to the point, consider the associated union X of
the affine planes Ao determined by the simplices o of K.

A differential form on K will then mean a collection of forms ®_ on

these Ao such that we have

= w, whenever 8 € ¢.

&

Here, Thom assumed that each w_ is smooth and was working over K, while

Swan works over @ and only assumes that these forms have polynomials
over @ as coefficients when we 1look at them in the obvious local
coordinates.

Theorem Under exterior product, and the de Rham derivative d, the
aforementioned differential forms on K constitute a graded commutative
dif ferential algebra, whose cohomalogy ring coincides with that of K
over [k or @ as the case may be.

Comments

(1) A different construction of a similar DGA over @ was given in the
interim also by Quillen. Thom was to some extent anticipated by Whitney
whose book inspired Sullivan too to above result, and also to much much
more. &

(2) Swan in fact works more generally and defines forms on «
semi-—simplicial complex,

Ki: Humders —s Fedo ,



L

as all ”"natural transformations” (i.e. functions X(p) — Q@ ) obeying
- obvious commutativity conditions) from this contravariant functor to

(1: Humders —— Q- Meduleos ,

hich associates to a natural number p the totality of rational forms on

the affine plane ottt .. +1:p o

{(3) Swan mentions as well known the fact that the above theorem does not
extend to flelds of nonzero characteristics.

(4) It seems that the ordinary simplicial coboundary — which obeys the
formula w +— (sum of vertices)sw — is8 the symbol of the differential
operator d. It should be interesting to formulate the above theorem in
this form, i.e. one should also go back from the de Rham complex to this
symbolic complex, also taking care of products, and prove that an
lsomorphism of cohomology rings is induced.

A

KATCHALSKI-PERLES INEQUALITY

The inequality. [f the nerve N(X) of a family X of t convex subgsets of
d-dimensional euclidean space has dimension less than d+r, then ite face
numbers are bounded above as follows:

d
ECICOPIE D) [kfi]['lr]
i=0

This inequality is sharp. In fact it is easy to spot an arrangement of
affine subspaces X at which the above upper bound, which was conjectured
by Katchalski and Perles, ls attalned.

The conjecture was established independently, for atl complexes
satisfying the conclusion of the following key result, by Eckheff and
Kalai .

_-" Wegner’'s Theorem (Kalai's reformulation). N(X) retracts to a

simplicial complex of dimension less than d via g sequence of operations
in which one removes open stars of free faces of dimension d-1.

Here by a free face we mean a simplex which is a proper face of a unique
maximal simplex of the complex.

Idea of Kalat's proof. Arranging the convex sets {el, ol ‘°t} in order
ldentify each simplex « = {al. .t ,et} with the corresponding exterior
monomial of the free exterior algebra A over [R generated by these ¢t
variables.

Then the left side of the inequality equals the dimension of the vector
subspace I.k of A spanned by all cardinality k simplices of N(%X).

4



On the other hand the right side interprets, with respect to any basis
of A given by exterior monomials in {fl, s ,ft}. as the number of such

degree k monomials which have at least k-d of their constituent f's in
& Fr S S
1 r

Thua the inequality would follow if we can choose these t'1 's in such a

way that Lk has trivial intersection with the vector subspace Pk of A

conaisting of all degree k elements which are annhilated when we take

Iinterlor product with any degree k-d exterior monomial in {fl. - ’fr}'

This is @0 e.g. when the f's are related to the e's by an orthogonal txt
matrix for which ‘all square submatrices, and thus also the exterior
powera of these submatrices, are non-asingular.

In fact if some non-trivial linear combination w of degree k simplices
of N(X) were in Rk' then we would have, for each cardinality k-d subset

T of (1.2, .. ,0), an ejguaation <ee,f,r|- w> = 0.

Kalai rules. this out by choosing & to be the first degree d free
face, of a "Wegner collapsing” of N& ), which occurs inw , for then
these equations interpret as saying that the columns of the (k-d)th
exterior power of a submatrix are linearly dependent.

Comments.

(1) There is some "duality” between convex polytopes and arrangements of
affine subspaces which we don’'t understand fully.

For instance, the "dual” of UWegner's theorem is the theorem — of
Steiner and Brugesser-Mani — which tells us that the former can be
shelled, and the "dual” of the Katchalski-Perles inequality is the upper
bound conjecture of Motzkin, which was established by McMullen, and
later generalized to all Cohen-Macaulay complexes (e.g. s8implicial
spheres) by Stanley.

(2) Kalai's proof was important because it led to exterior shifting —
see reviews below — which enabled him to in fact establish Eckhoff’s
conjectured characterization of the f-vectora of such d-collapsible
complexes. Still later, he was able to show that this characterization
holds even for d-Leray complexes, a notion "dual” to that of
Cohen-Macaulay complexes.

The "dual” characterization of f-vectors of simplicial polytopes was
conjectured by McMullen and proved by Stanley. The MNMcMullen-Stanley
characterization remaing open for f-vectors of simplicial spheres.

We note also that there is an obvious numerical duality between the
inequalities of Eckhoff-Kalai and those of McMullen-Stanley.

(3) Regarding arrangements of affine subspaces, especially the topology
of their complements, see also the Goresky-MacPherson book, and



Ziegler-Zivjaljevic 's, and other older, papers. Also see literature on

oriented matroids: these in turn figure in characteristic classes for
embeddability obstructions.

CATEGORY OF NATURAL NUMBERS

Assoclating to each ordered pair p, qQ of natural numbers the set of all

" monotone (i.e. non-decreasing) maps from p = (0,1,..,p) into q =
{0,1,..,q) we get the category Humdero. '

A contravariant functor

K 1 Aumdero —— Fealo
is called a (complete) semi-simplicial complex.

Example 1. If K is a simplicial complex, let X{@g ) be the set of all
sequences of vertices of length q+1 supported on simplices of K, and let
X( p — q ) map such a sequence q — vert(K) to the composite p — ¢q
— vert(K). Note that K can be recovered from this semi-simplicial
complex as the set of all supports of these sequences.

Example 2. In case vert(K) is equipped with some total order, one also
has the smaller semi-simplicial complex ﬂto consisting of non-decreasing
sequences of vertices supported on simplices of K.

Structure of a monotone map. Any non-decreasing map p:p — q 1is
determined by its eritical points {cl....c.} S p (i.e. all c¢'s such that
H(c) = p(ec+l)) and the subset {jl""jt} € q of jumps (i.e. j's not in
the image of pu). In fact y has the factorization

o = Jta .J'l..a'l.. .ﬂ' ’

into injective maps ] having a single jump, and sur jective maps ¢ having
a alngle critical point.

It ia of interest also to consider, on the category of numbers, functors
into other categories. For example, each X determines, by taking the
free abelian group C(S) generated by each set S, a simplicial abelian

group, i.e. a contravariant functor
C(X) : HNumders —— HAdelian .
This generalizes the notion of a chaln complex, for, amongst the maps of

A8elian, which occur as integral linear combinations of maps C&K ) ), u
€ Humders, we have in particular the usual boundary

d: C(X)(p) — C(XK)(p-1),

which occurs as an alternating sum of the images 01 of some Ji & i

10



Comments.
(1) Originally Ellenberg-Zilber had defined semi-simplicial complexes as
N-graded sets, equipped with some degree +1 and degree -1 operators,
obeying a given list of axioms. Their definition was recast into the
above neat form by Kan. Now these face and degeneracy operators of
Eilenberg-Zilber <coincide with the operators %(j) and %K(c).

We prefer to say "semi-simplicial complex”™ instead of "simplicial set”,
because the latter will often mean a set of simplices.

(2) A Kan complex is a s.s.c. for which any n n-slnplicei (i.e. members
of X(n)) occur as n of the n+l n-faces of s8some (n+l)-simplex iff &
coincides with some 8k on their sum.

(3) See May 's book for an exposition of the combinatorial homotopy
theory of Kan complexes. In particular, for the singular complex of a
topoioglcal apace, Kan's combinatorial homotopy groups coincide with the
usual ones.

BJORNER-KALAI INEQUALITIES

For any simplicial complex K, let fltx) be the number of its
i-dimensional simplices, and ﬁi(K) the dimension of its ith reduced

homology over some field [F.
This paper is concerned with relations, between these two sequences of
numbers, which hold in general for any K. One such relation is provided

by the well known Euler-Poincare theorem which tells us that the
alternating sum (fD - ﬁo) - (fl - ﬁl) ¥ ... aquals 1.

The authorsg discovered that the smaller alternating sums,
xitk) - (fi+1 - ﬁi+1) = (£1+2 o ﬁ1+2) * g & X O,

are also not arbitrary.

Theorem For any simplicial complex K, one can find another simplicial
complex E which has, for each i =z 0 X ¥ ﬁl simplices in dimension L

Bt

of which precisely fii are maximal simplices.

Thus, by applying the Kruskal-Katona theorem — B8ee below — to the
aimpliclal complex obtained from E by deleting maximal simplices of
dimensions less than 1, one obtains the inequality

9, (x; * By) = Xy_q o

for each i = 1.

11



oof. By Kalal’s theorem there is a chifted simplictal complex A (K)
having the same face and Betti numbers as K. Let X be the link of its
first vertex.

t"-l‘ho required E is obtained from A(K) by deleting the open star of its
~ first vertex, and is thus the disjoint union of X and ﬁ.l maximal
gimplices in each dimension i.

-' Since the cone C(X) of X over the first vertex has fr- ﬂr simplices in

3 dimension r, it follows that

1(X) + £ (X) = £ - Gr

Taking the alternating sum of these equations over all r 2 i+l we see
- that II(X) = Xy So f.i.(E) . X ﬂ.i.' q.e.d.

Comments.

(1) The Kruskal-Theorem implies also that there are in general no
) Jurther relations between the sequences fi and ﬁl.

r .
,i;p see thle use the available di(zi + ﬁl) £ x; 4t ﬂl-l and ol(xl) = Xi-q
to find a compressed complex E with face numbers x; + ﬁi , having a
bpnprocaed subcomplex X with face numbers x;- Adding the cone of X over

@& new vertex, we obtain a shifted simplicial complex A having face
numbers t'1 and Betti numbers ﬁi.

" (2) For a given f-vector the Betti numbers are maximum at the compressed
complex having that f-vector. This result of Sarkaria was obtained
independently by Bjérner and Kalai as follows:

As in the above proof it suffices to maximize over shifted complexes A
* having the given f-vector. For A shifted we obvicusly have

c
By = £.((8t,1)7) — £, . (8¢t,1)
-f'But an argument implicit in a paper of Frankl shows that the f(-vector of
the star of the first vertex is minimum when the shifted complex A is

compressed. (In fact this is equivalent to the Kruskal-Katona theorem).
_ This implies the required result.

Sarkaria proved above result without recourse to shifting. His
" Inductive argument uses homology exact sequences. B rner and Kalai
later gave another proof of their inequalities using such an argument.
&  Ita advantage is that it applies to a much larger class than the class
.  of simplicial complexes.

= (3) For a compressed complex one has ai(xi + ﬂi) =Xx;4 for all i = 0

This follows by an easy calculation and shows that the BJ§ rner-Kalai

12



‘lnequalities are sharp. -

Any finite sequence of non-negative integers is the (3-sequence of some

‘complex, e.g. a bouquet of spheres. But, if we want to find a smallest
such complex, then we can solve the above equations downwards to obtain
all the xl‘s. and thus all the fi"' It is easy to check that any

complex having the given Betti numbers has at least as many simplices as
the compressed complex with this f-yector.

(4) A clutter (or "anti-chain” or "Sperner system”) on N vertices is a
family of subsets without any proper inclusion relations. (E.g. the set
of circults of a matroid.)

A gilven segquence of non-negative integers s the [-sequence of some

simplicial complex having = N+1 vertices iff it is the face vector of a
clutter on N vertices.

The necessity follows because (with notation of above proof) E \ X is a
clutter on N vertices. Conversely given a clutter on N vertices we can
close it to a simplicial complex E, and then cone the new part X over a

new vertex, to get a complex having [i-vector equal to the face vector of
the clutter.

(5) The above observation is useful, because commencing with a classic
result of Sperner, a complete classification of the f-vectors of
clutters has been obtained by Clements and Daykin-Godfrey-Hilton. Thus
all this appllies to Bettl sequences,

For example, for N even, the aforementioned theorem of Sperner says that

any clutter on N points has at most members, with maximum attained

N
N/2
only at the clutter of all cardinality N/2 subsets.

Using this it follows that for simplictal complexes on Zn+3 vertices the
sum of the Betti numbers is maximum at the irreducible Kuratowski

complex ain+2

A very similar result holds also when the number of vertices is odd.
There is also given a more complicated result for the minimum of the sum
of the Betti numbers of complexes having a given f-vector.

KRUSKAL-KATONA THEOREM

This wubiquitous and multi-faceted result is all-important and has
eapawvned many analogues and generalizations. It is not quite clear what
la (are) the most conceptual way(s) of looking at it. So we'll review it
from many angles.

Numerical function ak(t.). This is the number of (t-1)-dimensional simplice

contained in the simplicial complex tk generated by the t

lexicographically first k-dimensional simplices with vertices in IN.
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heorem A. Any simplicial complex having t simplices of dimension k has
at least 0k(t) simplices of dimension k-1.

An inductive approach to this result, innaugarated by Katona, and
polished by Eckhoff and Wegner, reduces it to the following result

. regarding the above numerical function, which is given explicitly by the
: -blnnmlal formula , -

a a a
ak(t)=[k*1]+ Sl B~ S 25 s
K k-1 i-1

~ where the aj'a are the natural numbers, decreasing with j, such that

a a a
£ = k+1 + k ¥ s i

k+1 k i
Theorem B. The above numerical function obeys

dk(s-l-t) = max(dk(lj,tj + Ok_i(t).

- Another (order-theoretic) approach focusses on compressed complexes,
~ i.e. simplicial complexes T, on some totally ordered set (say IN), such
- _that if ¢« € T and & is lexicographically less than ¢, then & too should
e in T. It is clear that there is at most one compressed complex with
a given face vector. Now the Kruskal-Katona theorem reduces to the
following guise.

Theorem B. 4dn integer seguence is the face vector of some simplicial
- complex iff it is the face vector of some compressed simplical complex.

- Combinatorial shifting. Given any simplicial complex K on N and numbers
1 € j, denote by Aij(K) the simplicial complex of the same size obtained

by .replacing J by i whenever possible. This construction found many
uses with Erdes and Rado .

If the transpositions (i j) @generate the symmetric group of all
permutations of the set of vertices of K, then, by doing the above
operations Aj.j in any order one gets a shifted complex, i.e. one which

ls closed with respect to the product partial orders on equicardinal
subsets of IN.

The class of shifted complexes is bigger and more interesting than of
compressed complex. But, as far as proving Kruskal-Katona is concerned,
Frankl showed that one is s8till left with the job of establishing the
following.

Theorem C. Amongst shifted complexes on N having a given face vector,
the compressed complex has the least number of simplices in S5t(1).

14



t.Uhy not soup-up the above shifting process to.a compressing process?
. Bollobas-lLeader do this via some operations AIJ , involving replacement

35io£ subset J by the lexicographically smaller 1I. These operations
¢ preserve closure under inclusion, and, when suitably iterated, lead to
the compressed complex, thus yielding Theorem B directly.

Comments.

SLl) Even the paternity of, K=K is many faceted: apparently
- Schutzenberger, Harper, and probably some others, also independently
obtained it.

(2) The inductive numerical approach extends the domain of validity of
the K-K inequalitles way beyond simplicial complexes. For more on these
abgstract complexes — of Lefschetz and others — 8ee below. In fact
cubical complexes were considered even by Kruskal himself.

Also, the homological analogue of K-K was proved in this vein by
Sarkaria, and likewise Bjorner and Kalal extended their inequalities way
beyond gimplicial complexes using this approach.

(3) Combinatorial shifting can be replaced by Kalai's more elegant
exterior shifting, but still, the aforementioned Frankl resldue remains.

ﬁ; An analogy : inductive approach +— exact sequence approach in Morse
' theory while shifting approach «— Witten approach. However, in our

- setting, we don’'t know how to obtain explicit "models” for complexes
other than simplicial ones.

(4) Besides the analogues and generalizations of K-K alluded to above,
one also has

5 the older Macaulay theorem which characterizes face vectors of
. i commutative semi-simplicial complexes ,

‘h; the characterization of f-vectors of antichains tor "eclutters™ or
he "Sperner systems”) obtained by Daykin et al.,

the Clements-Lindstrom theorem which subsumed both K-K (i.e. face

characterization of the "fermionic"”, or "anti-commutative
i semi-simplicial”, complexes) and its "bosonic” analogue, i.e. Macaulay's
g theorem,

the Heawood-Sarkaria inequality for least valences, and so chromatic
*® = numbers, of simplicial pseudomanifolds,

R - . the McMullen-Stanley inequalities for convex simplicial polytopes, which
S in "VKO” will be extended to all simplicial spheres,

the Eckhoff-Kalal inequalities for nerves of arrangements of affine
subspaces,

and much, much maore //

In fact Chapter V of VKO could alsoc be called "Kruskal-Katona Theory',

but the title chosen, "Heawood Inequalities', is more appropriate from
the point of view of embeddability , the point of view taken by both
Kempe and Heawood, who, much before K-K-etc., were already looking at

. some such inequalities.



Furthermore the title ig justified because this embeddability viewpoint
wlll be shown in "VKO” to yvield a strengthened form of the deepest of
theae "K-K theorems”, viz. the McMullen-Stanley inequalities.

HEAWOOD’S "MAP-COLOUR THEOREM"

Thig **** paper of 1889 will be the.starting point of our Chapter V. Ue
wlll review its contents, but' instead of (geographical) "maps”,
"divisions"”, and number of their "contacts"”, wve will speak of graphs
(1. e. one-dimensional simplicial complexes), vertices, and their
valence.

- Theorem A. If a g.r-aph with N vertices embeds in S2 then the average
. valence of its vertices is at most 6 - 12/N.

Heawood checks only that eguality holds provided one can come down to
the complete graph on 4 vertices by a sequence of steps in which the
- star of a vertex is replaced by joining one of its neighbours, already
joined to two other neighbours, to all other neighbours.

. He recognizes also that this equality is equivalent to Euler’s formula

. for a simplicial 2-sphere.

;' For the remaining "cases of degeneracy” he simply asserts that valence
" can be no higher than this number.

E

u., Theorem B. More gensrally, if a graph with N vertices embeds in !‘lz then
IS the average valence of its vertices 1is at most 6(1 + k/N) where k
&5 depends only on the closed 2-manifold under consideration,

Li#".

Again the argument is as above and the troublesome ”"degenerate cases”
¢ . _@et only a pasesing mention.

. Theorem C. Let x denote the smallest integer bigger than 6(1 + k/N) for
L all N, or, for surfaces with positive Kk, sven such that 6(1 + k/x+1) <
" X. Then the abiove graph has chromatic number at most equal to x

.
%%i' For k positive average valence is a decreasing function of x, 8o the
' weaker condition ensures that x is bigger than it provided N is bigger
ﬁ%:; than x. This suffices to do the (by now) atandardwinductive argument.
Theorem D. If a complete graph on y vertices embeds in t‘lz then we must
have (y-1) = 6(1 + k/y). For the torus this is best possible.

The first part follows at once from Th. B. For the second:-he exhibits a
toral "map"” with 7 "divisions” each in "contact” with any other.

E. Heawood asserts that In fact the inequality of Theorem B ig best
possible for all surfaces with k = 1 pointing out that argument given is
complete

¥ apart from the verification figure, which we have indeed given only
for the case of an anchor ring, but for more highly connected surfaces
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it will be observed that there are generally contacts enough and (o
spare for the above number of divisions each to touch each'

F. Map colour theorem Forr k 2z 1, the numbers, x and y coincide, ai
this or the next lowest integer is the chromatic number of the surface.

This follows by putting together Theorems C and E. He also writes out
the (now) famous square root formula for this number.

. He treats now the problem in which some prescribed ”"counties”, i.e.
"unions of s8ome "divisions”, are required to have the same color.
Obviously this falls into the programme of finding chromatic numbers of
2-dimensional pseudomanifolds and we’ll state the results in this
language.

Theorem G. If a graph embeds in a pseudomanifold obtained from 52 by
identifying some disjoint pairs of vertices, then its chromatic number
i at most 12, and moreocver this bound is best possible.

The first part follows because the valence of each vertex (which, up in
- . -
S is a pair) is at most 12. The hard part is the second which he

proves by giving the following example "obtained with much difficulty”.

- e T " x
X n p R e -
3 A
ks N . .

it =
s

H. Example. There is a 24-vertex planar graph whose vertices can be
split into 12 pairs in such a way that any two pairs have neighbourly
representatives.

He suggests that the "curious problem” of finding all such graphs might
be of interest.

I. Then, "assuming the verification figure', he proves that if one
allows each "county” to have at most r "divisions”, then the chromatic
number is 6r. And also, with a similar proviso, a square root formula
is proved for the analogous problem for surfaces with k = 1.

J. Five colour theorem If a graph embeds in S2 then its chromatic

number is at most 5.

The "map”argument given amounts to the (now) standard book proof:
delete a H5-valent star, then join and contract 2 of its neighbours which
wvere not already neighbours, apply induction, etc.

K. Critique of Kempe’s proof. He accepts as valid the following points
of Kempe's 1879 proof of the Four Color Theorem.

(K1) In a (welld four coloured graph consider a connected component of
the subgraph determined by any two colors a and b. The transposition of
a and b in such an a-b reglon yields another four colouring.

(K2) If neighbours 1,2,3,4,5 have colours vr,b,r,gy respectively, with
2,5 in a b~y region, and 2,1 in a b-g region, then 1,4 cannot be in the
Same r-g region, and neither can 3,5 be in the same r-y region.

So far so good. But now Kempe assumed that a transposition in 1’'s r-g

) &




reglon and in 3's r-y region will remoﬁa both the reds. Heawood shows
by an example that either transposition can prevent the other from being
of any avail and so Kempe's assumption was wrong.

Theorem L. If a graph having all valences even embeds in 52 then its
' chromatic number is at most three.

-l_Hoswood ends his paper — which is only 7 pages long | — by stating the
_above result, saying that its proof is “not difficult, but it appears [o
shed no light'” on the 4 colour theorem.

Comments.

(1) The best way of doing the proofs of (A) and (B) is via e=xaci
homology sequences . This overcomes the bothersome "cases of degenerao.”
neatly. S

Using this method, Sarkaria generalized these square root chromatic
bounds to complexes embedding in higher dimensional pseudomanifolds, bLut
only upto codimension 2 valences.

(2) However generalization of (A) exists even upto the
middle-dimensional valences. This key result will be proved in our book
uging Van Kampen Theory, and will in turn extend the McMullen-Stanl:,
Inequalities to all simplicial apheres.

In fact, Van Kampen Theory will allow us to establish, for all compact
polyhedra, such chromatic upper bounds, in terms of the minimal numb.:
of vertices required to triangulate a polyhedron.

(3) The "verification figures” left out by Heawood are now all there —
see the book of Ringel — 8o proof of (E), and thus of the Map Col:ou:
Theorem, is complete.

The above took quite a while, but Brehm opines that discovering thesc
explicit minimal simplicial 2-manifolds (like discovering explicit
transcendental numbers 7) took so long only because there were too man.
of them !!

So there might be hope still of giving a short account of the proof oi
(E) ?

(4) That would of course s8still leave onerous tasks like (I)! But i
would be interesting anyway to at least look at- the Heawood Graph (H)
more closely: maybe it relates to some known graph, or to the

icosahedron, or RPz ?

(5) Regarding (K), there is now the Appel-Haken computer-assisted
completion of Kempe's proof. Also note that Kempe theory , i.e. the
study of (good) 4-colorings of graphs, has been pursued most by Fisk who

has some interesting new resulte here.
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KALAI’'S "DIAMETERS .."

7 h1a *%**¥* paper introduces commutative shifting, defined analogously to
anticommutative shifting, which Kalai- had used previously to establish
of s inequalities for face vectors of nerves of affine
gements. He shows how commutative shifting yields the "dual”
n’s lnequalities for face vectors of simplicial polytopes.

_insightful reformulation of Stanley’'s proof then leads him on to
ablish (more general) higher codimensional Heawocod inequalities for
pliclal complexes embedded convexly in euclidean spaces.

€A> deneric monomial bases . The commutative algebra A generated by
vertices over € is the linear span of the set M of all commutative
- monomials in the vertices. Using a generic (same definition as before)
© graded algebra automorphism X of A, we replace its vector space basis M
by a new basis X(M).

¢ If K is a simplicial complex on these vertices, M(K) will denote
‘monomials supported on K. Projecting onto the linear span A(K) of M(K),
;gx(HJ becomes a spanning set of this subspace. Ue use any total order ,
. of the vertices v, and thus of the letters x = X(v), to select, from
thia spanning set, the lexicographically smallest basis A(M(K)) of A(K).
should be only for monomials of

orrection. Kalai's definition of <

P
. . same degree, i.e. this is the product partial order, so as before we get
fiﬁtho following. .

(B> A(M(K)) is a shifted order ideal of monomials.

i Let us say that a monomial of degree r is a pushout if it contains no

u- letter less than the rth. These arise from degree r simplices , i.e.

. monomials without repeated letters, by pushing out their letters nfr-J,
steps to the right, thus e.g.

L -

x1x3x4x7 —_ x4x5x5x7 ' qu JC., —_— x6x7x7

i It follows from (B) that the subset of all simplices of A (M(K)) is a
" s8hifted simplicial complex. However its size is usually bigger than
~ _that of K, so Kalai concentrates on a shifted subcomplex of this which
he defines as follows.

(CY» Structure theorem The simplices whose pushouts are in A(M(K))
constitute a shifted simplicial complex A(K) =« AM(K)) which has the
same size as K Furthermore, a monomial is in A(M(K)) if and aonly if it
. is the product of some degree r pushout of A(M(K)) and some monomial in
. the first r letters.

f Note that the subset P(K) « A(M(K)) of pushouts is a (non-shifted) order
"~ ideal of monomials.

" Regarding its proof, we know only how to deduce (C) starting from the
following weaker statement.
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If deg(K) = d, then A(M(K)) does not contain any pushout of degree

Mj of (C) assuming (c). Let degree K = d and let L be the
subcomplex of K obtained by removing its degree d simplices.

" Clearly M(L) ia a subset of M(K) which-coincides with it in degrees less
than d. Since A(M(L)) is also a subset of A(M(K)), it follows that it
too coincides with it in degrees less than d.

Assuming (C) inductively for L, its second part shows that the fd—l (K)

degree d monomials of A(M(K)) which are not in A{M(L)) must be pushouts.

,j;‘""'l‘hua, uging (c), all new monomials of A(M(K)) must be some monomial in

" 'the first d letters times one of these fd-l degree d pushouts.

’_,_Uo note now that the number of degree k monomials in M(K) \ M(L) equals
m fd_I(K) times [kc_ll]. the number of degree k monomialgs in which all d

given variables (= the vertices of any degree d simplex) occur.

Omitting an occurence of each of the d variables we see that this factor
also coincides with the number of degree k-d monomials in which some or
all of d given variables (= the first d letters) occur.

. Thus monomials obtained by multiplying monomials in the first d letters

_7__'j-,w:lth the fd_l(l() pushouts of A(M(K)) are all in A(M(K)). g.e.d.

;_Gorrectton. Lemma (6.3) (= Theorem (C) without "only if") is not proved

.. completely in paper because Kalai's (more complicated) argument also
| assumes (c). As far as (c)'s proof goes, we see from the binomial

e GG+ GIG) - o -l at) = 79 - veied)

_ that the number of degree d+1 monomials in M(K), is at most egual to the
»  number of degree d+l monomials on the N letters which are not pushouts .
" " Also, these generic non-pushouts are obviously 1lexicographically

k. Initial. WVhat is not clear to us is why the projections of these
.. monomials constitute a spanning set of the degree d+1 summand of L(M(K))
g, 7?7 If this could be argued out — it would suffice to deal with the

";'-;_aaxiusl case when K consists of all simplices of degrees d or less —
" then it would follow at once that the degree d+1 monomials of A (M(K))
©  are all non-pushouts.

Before looking at how Kalai uses his A (K), we will first go over his
reformulation of Stanley's proof of McMullen's g-conjecture.

Shifted order 1ideals HC{K)>, GKD. For any K with deg(K) = d we will

denote by H(K), resp. G(K), the subset of A (M(K)) consisting of all
monomials whose letters are all bigger than the dth, resp. (d+1)th.

20



i
i
:
s
A
4

A

;irom above 1t follows that these shifted order ideals are finite.

Recall that a degree d simplicial complex K is calledCohen-Macaulay iff
link Lkro of each simplex ¢ « K has trivial reduced homology in degrees

les® than d-deg(o).

(D> Reisner’s theorem (Kalai's formulation). If K is Cohen-Macaulay,
then one can choose A(M(K)) so that a monomial lies in it iff it is «
monomial of H(K) times some monomial in the first d letters.

[We recall that this required some local cohomology arguments: the first
d letters of such a generic basis form a so-called homogenous system of
parameters for the ring L(M(K)).]

So, for a C-M K, one can calculate the face vector of H(K) in terms of
the face vector of K. This turns out to be the h—-vectar of K. Thus,
for a C-M K, its h-vector, being the face vector of an order ideal, must
obey Macaulay's inequalities.

(EY Stanley’s theorem (Kalai's formulation). If K bounds a dpolytope,
then one can also ensure that multiplications by powers of the (d+1)th
letter vield bijections Hl (K) = Hd- i (K) for all i = d/2.

[We recall that this required the deep hard Lefschetz theorem for toric
varieties which tells us that, for any toric variety stemming from a
polytope, its cohomology, which has the same dimensions as |H(K)|, obeys
a 8trong Poincare duality, analogous to that of smooth Kaehler
manlifolde: the (d+1)th letter corresponds to the Kaehler form, and the
primitive classes correspond to G(K).]

So, for a polytopal boundary K, the face vector of G(K) can be
calculated in terms of the face vector of K. This turns out to be the
g-vector of K. Thus, G being an order ideal, it follows that the
g-vector of a polytopal boundary obeys Macaulay’'s inequalities.

Now Kalai makes very good use of (D) and (E) to obtain the following
satrlking result.

(F> Convex embeddabllity theorem If K occurs within the boundary of «
simplicial d-polytope with N vertices, then A(K) is a subcomplex ojf
A(C(d,N)), where C(d,N) denctes the cyclic polytope on N vertices,
Furthermore, one has eguality A(K) = A(C(d,N)) iff K is the boundarv ojf
a neighbourly d-polvtope on N vertices. re

Proof. Since shifting preserves inclusions it suffices to consider the
case K = polytopal boundary .
Using (D), we associate to each of the hk(K) degree k monomials of H(K)

a disjoint set of simplices of A(K) of degree i, k = i = d, as follows:
first take the degree k simplex having such a monomial as pushout, and
then add to it any i-k of the first d-k letters.
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-;Thﬂ total number of i-simplices made this way being fi(K), it follows

' that the above is in fact a new description of all of A (K). In
* particular we see that A(K) is dimensionally pure, its top-dimensional
.. #8implices being given explicitly as above with i=d.

- But we also have (E), which tells ue that each monomial of H(K) ls some
power of the (d+1)th letter times a monomial of G(K) of degree = d/2.
Combining this fact with the above explicit description of the top

~ _simplices, it follows that these are all admizsible . By thie is meant

G?“that if the (k-1)th letter is outside the degree d simplex, then all

letters k through (d-k+3)rd are inside the simplex. Thus it remains

only to check the following.

A(C(d,N) — and more generally the commutative shift A(K) of any

netghbourly d-polytopal boundary on N vertices — coincides with the

shi fted simplicial complex generated by all admissible degree d

simplices on N vertices.

Since the first complex is, by above, a subset of the latten this
followe by checking that the two compleXxes have the same size. ge.d.

{f> A higher codimensional Heawood inequality. Iy K" occurs within the
boundary of a simplicial (2n+l)-polytope, then we must have

£_(K) < (n+2).f__ (K).

Proof. Otherwise A(K) being shifted it would contain the n-skeleton of
a (2n+2)-simplex. The same would be true for A(L) where L is the
ambient polytopal boundary. But from this it ia easy to check that some
top simplex of A(L) is non-admissible, a contradiction. g.ed.

:j'P-‘
fe
i
A

Comments

(1) Theorem (E) for simplicial spheres requires other ideas because now
one can't attach a toric variety and use its Hodge theory. Likewise (F)
and (f) are true even when K embeds topologically in requisite
dimensional sphere or euclidean space but require new methods.

(2) The purely combinatorial results given in the paper from page 18
onwvarde apply to any shifting operation A(K) with the above behaviour,
80 conjecturally to anticommutative shifting alsq.

(3) This information is then used to study the diameter problem for the
dual simple polytopes. Recall that their graph determines their lattice
atructure. The optimistic conjecture of Hirech is that a simple
d-polytope with N facets has diameter = N - d, Kalai gets good bounds
for the diameter of dual-to-neighbourly polytopes by using (F).

(4) This last deduction proceeds via showing that such a graph is a
magnifier of appropriate order, i.e. that any vertex set of cardinality
= N/2 always has an appropriate percentage of its neighbours outside it.

(5) He gives references for the curious connections which exist between
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¥ the spectrum of the Laplacian matrix of a graph, i.e. incidence matrix
" times its conjugate, and the magnification of the graph.

VAN KAMPEN’S "KOMPLEXE .."

VKO will include a translation of _this **** paper of 1932.
€AY Theorem The space of linear embeddings K% —R™® 5 = 2042 s
path connected.

e - Proof. Any direction not parallel to the, at most (2n+l)-dimensional,
‘and finitely many, affine subspaces determined by pairs of simplices of
 an embedded K, will be called mon-forbidden.

Given two linear embeddings of K, and a vertex v of K, we join its two
images Pl'PZ to a third point Q such that PIQ and PZQ are non-forbidden
with respect to the two embeddings.

-

.“'- can find a family of linear embeddings containing the first — and
~ likewise another family containing the second — embedding, which keeps
‘the antistar of v fixed, and under which v travels from its initial
position to Q. To do this extend ?10 to Pl'Ploo’ and, move the star as

per Pl'Pll—-b Pl'Q, PIQ’ — 0Q'. q.ed.

B Whitney trick. If n = 3, and a general position pl. map of k" in

lR-zn has a pair of double points, having intersection numbers +1 and -1,

~ and belonging to the same pair of n-faces of K then they can be removed
- without introducing any new singularities.

To start with, Van Kampen stated this without any intersection number
condition. He joins the two double points by an arc, in just one of the
faces, and tries to cone away its tubular boundary out of harm’'s way.
Brown pointed out to him that this does not work: see "Berichtigung”,
where Van Kampen also states that the intersection number condition is

needed, but can't give a proof of the above. Ten years later, UWUhitney
gave a method of removing such a double point pair which used a smooth
gtructure. However it is true that a more elaborate coning argument

also works. 3

<(C> More coning. Algo, in above situation, we can remove any double
point belonging to the same or adjacent n-faces.

In "Berichtigung” Van Kampen gives a correct proof. In fact in this
cage, as Zeeman and others were to later notice, only a small
elaboration of the above erroneous coning argument also works.

(D> Piping. In above situation, and even for n =z 2, we can, by
attaching a long thin pipe to any n-face, add extra intersections, all
with numbers +1 or else -1, of this n face with all n faces incident to
some other (n-1)-face.

23



(E)> Van Kampen Obstruction. Let B be the vector which associates, to
my unordered pair of disjoint faces of an n-dimensional K, their
ersection number under a gilven general position 'map into 2Zn-space.
this map is changed, then the new vector can be obtained from the old
‘a seguence of steps, in each of which one adds +1, or else always -1,
enever one member of the pair is incident to a chosen (n-1)-face.

#ing later terminology, this theorem says that the characteristic
ohomology class ()] depends only on K, and that its vanishing is a
"necessary condition for the p.l. (and, as Van Kampen proves, even for
-'i:hl'topoloaical) embeddability of K in 2n-space. Also, using (D), and
" then (B) and (C), he removes all singularities, of any general position
~ map of such a K in 2n-space, i.e., modulo (B), he obtains the following.

(I'-‘) Van Kampen-Wu-Shapiro Theorem A4n n-complex, n = 3, pl embeds in
twice dimensional euclidean space if and only if its characteristic
class [B] vanishes.

The latter two authors used Whitney's smooth method to establish (B).

‘Actually above result holds, by virtue of the contemporaneous Kuratowski
planarity criterion, even for n = 1. For n = 2 it is possible that this
condition may suffice only to ensure topological embeddability 7?7

@ Embeddability of manifolds. An n-pseudomantifold embeds plecewise —
- linearly in Zn-space.

This is proved in main paper by checking B ] = 0 for such a K, in
"Berichtigung” directly by using (C). UWhile doing this direct proof, he

“r

a‘:{__alzct checks that identifications in codimensions = 2 do not effect
. . embeddability in twice-dimensional space.

ﬂl) Van Kampen-Flores Theorem The n-skeleton of a (2n+2)-simplex, and
the (n+l)-join of 3 points, are n-complexes not embeddable in In-space.

To see this he checks that for a special g.p. map ¥ has only one nonzero
coordinate, and that one needs to change two coordinates at a time as
one proceeds to any cohomologous cocycle.

PERLES’ CON JECTURE

Ue will give Kalal's simple proof of the following result, which was
conjectured by Perles, and proved first by Blind - Mani.

I. ‘Theorem. 4 simple polytope K is determined by its graph G(K).
Proof. (A) and (B) below will show how K can be recovered from G(K).
By an acyclic orientation of a cell complex K we mean a partial ordering

of lts vertices which has exactly one local maximum on each cell. Its
h-vector is defined by setting hi(l() equal to the number of vertices

which have exactly i smaller neighbours.
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- (A Acyclic orientations of K can be recognized, amongst acyclic

. orientations of G(K), as those which minimize the sum L, 2'.n (K).

For an acyclic orientation of K the above sum in fact equals the total
number of nonempty cells of K. This follows because each cell has a
unique maximum vertex, and, K being simple, any t smaller neighbours of
a vertex determine an incident t-dimensional cell, in which the vertex
is a local, and thus the global maximum.

On the other hand, were we to calculate the sum using an acyclic
orientation of G(K) which ies not an acyclic orientation of K, some cell
wvould be counted more than once, and we would get a bigger number.

(B) Graphs G(¢) of cells ¢ &« K can be recognized as those connected,
full and regular subgraphs of G(K), whose vertices are initial with
respect to some acyclic orientation of K

That all G(o)’'s are indeed of this type follows because we can separate
the vertices of ¢ from the other vertices of K by a hyperplane and
totally order the vertices by using a general positlon transverse
direction.

Conversely, if t-regular subgraph H €« G has these properties, consider
the t-dimensional face o of our simple K which is determined by the
biggest vertex of H and its t neighbours in H. The biggest vertex of H
is a local maximum in ¢, so must be the biggest vertex of ¢, 8o all
vertices of « must be in the initial set formed by the vertices of H.
Thus, H being full, G(r) must be a subgraph of H. But, since it too,
like H, is t-regular and connected, it follows that G(o) = H. ged.

Comments.

t3) The terminology acyclic orientation stems from the fact that for
graphs It amounts to an orientation of its edges not giving rise to any
l-cycle.

There is no loss of generality in working with acyelic orientations
which are total orderings of the vertices. To see this note that any
acyclic orientation necessarily total orders the vertices of any cell,
thus any total order, which extends this partial ordering of the
vertices, is itself an acyclic orientation. .

Though all total orderings of the vertices of a cell complex are not
acyclic orientations — consider e.g. the ordering 1324 of a square —
this is clearly so for simplicial complexes.

(2) Does every cell complex have an acyclic orientation ? Though we
don't know the general answer, it is so for linear cell complexes, i.e.
those which embed linearly in some euclidean space.

[In this context it is worth radembering the following striking facts:

n+l

A simple manifold n" embeds linearly in R only if it is a sphere, and
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simple CPz does not embed linearly in any ERN /]

""fact any Banchoff function, i.e. a linear functional separating
'fﬁt;vartlces, gives a total ordering of the vertices of such a cell
8x, which obviously has a unique local maximum on each cell.

:_lns likely in fact — only the first part of (B) remains — that
e proof will extend to show that any linear simple complex is
rmined by its graph ?

63) Simplicity — more exactly the fact that for t = d any t edges
incident to a vertex belong to a t-cell was important in above proof.

For any K equipped with an acyclic orientation it is useful to consider
the in-links Lk v and out-links Lk v determined by smaller and bigger

nelghbours of each vertex v.

. With this notation note that h, is the number of vertices v such that
ﬁ_fD(Lk_v) = i, It is known that for a simple K the hvector 1is

-tm_:h-pendent of the chosen acyclic orientation, but in general the
“f-vector of Lk_v is not determined by its fp » and 8o one should look

_ also at the numbers f (Lk _v).

J

. For example, the Euler characteristic of an in-link coincides with the
___definition of the index of a vertex in Banchoff's Morse theory, and thus
- his index formula reads x(K) = }:v x(v), where x (v) = x (Lk v). This

- follows at once from fj(K) = :v £j(v), wvhere fj(v) = fj_l(Lk_v).

ﬂ“ﬁ(l) Simple polytope being determined by their lowermost incidences, the
" dual simplicial polytopes are determined by their uppermost incidences.
" Kalal mentions that in fact any lower-half, resp. upper-half, incidence
- matrix of a simple, resp. simplicial, polytope will do the job. It is
" natural again to ask whether this stronger result also holds for
gimplicial /gsimple manifolds ?

® . A parallel result of Perles says that the lower half skeleton of a
: gimplicial polytope determines it. This was extended to simplicial
manifolds by Dancis.

(5) Some other points: )

the directions mentioned in the proof of the first part of (B) shell the
i polytope,

. graph-theoretic manifold theory — see e.g. Cavicclolli — is close to
~ above,

a8 is characteristic class theory of Gelfand et al.,

and "order-orientable” triangulations might also fit into this scheme ?

SQUEEZED SPHERES
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Ve will work with a totally ordered universe U of N letters. A subset S
'0f U will be called contiguous if any letter of U which is between two
letters of S is itself in S. Also, for any S € U, a maximal contiguous

“lubl.t of S will be called a component. .,

We denote by ¥(d) the set of those cardinality d+1 subsets of U whose
components are of even cardinality or else contain the first letter X

~or the last letter xN o.E WL

As we'll see below, the simplices of €(d) together with all their faces
form a d-dimensional sphere C(d). Though these cyclic spheres wvere
digcovered in 1911 by Caratheodory, the present description was given
much later by Gale.

A 8subset X = ¥€(d) will be called shifted in € (d), respectively
compressed in £(d), if it is closed with respect to the product partial
order, respectively lexicographic total order, of #(d).

€AY Theorem If X is a shifted proper subset of ¥£(d), then the
simplices of K together with all their faces form a d-dimensional
shellable ball K.

The compressed case (as well as (B) below) is due to Billera-Lee. Much
later Kalal observed that their proof applied even under this shifted
hypothesis. Such balls K, respectively their boundaries JdK, were
christened squeezed balls, respectively squeezed spheres, by Kalai.

Proof. Kalai knew already that pure shifted complexes K, i.e. those
" generated by any % which is shifted in the set of all cardinality d+1
subsets of letters, were shellable. He noticed now that the exact same
argument worked even for X 's shifted in €(d).

As per the definition of shellabillity of K, we need to show that ¥ can
be 80 totally ordered, that each ¢ € X shares a face & with a preceding
simplex of X only if & is a face of a preceding adjacent simplex of X,
l.e. one sharing a degree d face with « .

Such a shelling order is in fact given by any total order which extends
the product partial order of .
To see this note that, X being shifted, all combinatorial shifts Aab(cr)

of ¢, which are in €(d), are in %. If a face & of ¢ ig_not in any of
these simplices, then it must contain all components of ¢ not containing
the first vertex of U. The assertion follows because a member of £ (d)
containing all these components is = ¢ in the product partial order.

C(d) is a pseudomant fold.

To see this note that any codimension one simplex can have at most one
odd component containing neither xl nor X'N If it has, the only

incident top faces are those obtained by lengthening it either way. I1f
it has none, then the incident top faces are obtained by adding the
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xﬁattars contiguous to the component of X, or x

N }n either case we have
' exactly 2 possibilities.

®¥'S0 it follows that C(d) is a sphere and all other K's are balls properly
" contained in it. ged.

€B) Theorem The g-vector of a squeezed sphere K is the face vector
of an order ideal of monomials.

""We’'ll sketch the argument only for the more important even case d+1 = 2e
~and that too only when X £ #<2e>, the set of those cardinality d+1 sets
" of letters whose components are all of even cardinality.

[Note that this subset ¥<2e> of #£(d) is closed with respect to the
product partial order, thus a X € ¥€<{2e> which is shifted in ¥ <2e> is
- automatically shifted in £(d).]

Proof. The sets €<¢2e>, and (monomials of degree < e in N-2e+1 letters),
are equlnumerous.

An explicit bijection &« is obtained if, out of the letters of any ¢ =
 ¥<2e> not lying in a maximal contiguous set containing the least vertex
. of U, we keep only the first, third, fifth ... letters, and decrease
them by 1, 3, 5, ... steps respectively. So for example

x2x3x5x6x7x8 S xlxzxz and x1x2x5x6x7xa b x4x4

The a(ﬂ'()' Just de fined is an order ideal of monomials whose face vector
cotncides with the g-vector of the squeezed sphere JdK

Very briefly, B-L verify first that a«(K) is an order ideal, and then use
the shelling order given above to check that the h-vector of the
shellable ball K coincides with the face vector of a(K). The proof is
_completed by checking that the h-vector of this ball coincides with the
g-vector of its boundary dK. g.e.d.

1:_To complete their celebrated proof of the sufficiency part of McMullen's
g-conjecture for simplicial polytopes, Billera-Lee were then essentially
left with checking the following.

(CY» Theorem. If ¥ is compressed then the sphere dK is polytopal.

We will look at its proof elsewhere.

Comments.

(1) 0dd degree squeezed balls are not very important because they are
just cones of even degree squeezed balls.

Also Kalai observes that each sqQueezed ball is determined by its
bounding squeezed sphere.
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_BO Kalai observes that each sgqueezed ball is determined by dits g
nding squeezed sphere, X ~

(2) Squeezed balls are order-orientable, thus their lower-half skeleton
up on their boundary dK. (Cf. Prop. 5.3 of Kalai's paper.)

l259t-nday has verified the g-conjecture for all simplicial spheres obeying
" the conclusion of the above result.

(3) The Hirsch conjecture is true for squeezed spheres.

Lee proved this for the compressed case only, but once again his
~ inductive argument extends easily to squeezed spheres. It only uses the
_ fact that for any of our sgueezed balls, both the link and the antistar
s of the smallest vertex are sgueezed balls .

"(4) Uith e fixed, Kalai checks that the log of t%& number of squeezed
(2e-2)-spheres on N vertices is at least of order N for large N.

- On the other hand Goodman-Pollack showed that the log of the number of
polytopal (2e-2)-spheres is at most of order N.logN for large N.

~ [Thies uses some bounds of Milnor on sums of Betti numbers of some
- algebralc varieties. Later Alon generalized the G-P argument to

So most squeezed spheres are non-polytopal.

.:%:In fact, even though they bound a shellable ball, it is quite possible
_ ‘that squeezed spheres are mostly non-shellable 7?7 [Pachner showed that
any simplicial sphere, having some subdivision in common with a minimal
. 8sphere, bounds a shellable ball.]

~ The asymptotic upper bound for the log of the total number of simplicial

(2e-2)-spheres can be computed from Stanley's upper bound theorem, and
ls about N.logN times Kalai's lower bound given above. It would be
Iinteregting to augment the squeezing construction somehow, say by using
some knotting perhaps, so as to bridge this gap.

GOLDSTEIN-TURNER FORMULA

We will deal with a simplicial complex K, whose vertices are equipped
with a partial order, which restricts to a total  order on each simplex.
For example, if K is a derived, then it comes with a natural partial
order of thls type, viz. the inclusion order of the original complex.

Following Steenrod, a face & of a simplex ¢, of any such K, will be
called a regular face of ¢, if any of its components not containing the
lagt vertex of ¢, either is odd and contains the first vertex of ¢, or
else does not contain this vertex and is even.

Theorem If K i a mod 2 Euler space then the mod 7 sum of all the
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lar faces of simplices of K is a cycle which represents the total
efel-Whitney class of K

'ain case K is a derived, and is equipped with the natural partial
ordering of its vertices, then the above cycle is the sum of all the
8simplices of K.

" This case of the above theorem was conjectured by Stiefel, and proved
(unpublished) by Whitney, and later, by Halperin-Toledo and Cheeger.

. In fact Goldstein and Turner deduce- the above result from this case as
.follows. Let K' — K be the simplicial map which images each vertex of
' (= simplex of K) to its smallest vertex. Then the induced mod 2
haln map images the sum of the simplices of K’' to the mod 2 sum of the
regular faces of of the simplices of K.

Comments

(1) The totally ordered set of vertices of each ¢ € K determines a
.~ . oyclic sphere, one in each dimension less than that of o. The biggest
. of these determines the ordinary mod 2 boundary d ., It might be useful
. _to also define the sum of the top faces of all these spheres as the
~ higher boundary of o ?

. (2) 1t sgeems e.g. that regular faces of o determine a sequence of

squeezed balls, one in each dimension upto that of ¢ , and that these
ﬁ;gyhound the aforementioned cyclic spheres, Thus, by virtue of the fact
“f‘,thut the higher boundary of the sum of all the simplices of an Euler
space ls zero, it follows that the mod 2 sum of the regular faces of all
?; simplices is a cycle.

" (3) Steenrod’s work came much before that of Gale on cyclic polytopes.
His regular faces were used to wusher in the Steenrod squares of
cohomology theory, and there is a well-known formula of Thom for
Stiefel-WUhitney classes in terms of these operations.

.ft*(l) It is possible that the higher boundaries Jj&y) of (1) also shed

more light on the Kruskal-Katona theorem and function dj(n) €,

S ) Goldstein-Turner mention that their result also follows from the
~ work of Banchoff and McCrory .,

KALAI’'S "r-VECTORS"

In this ms. Kalai sketches how the local Cohen-Macaulay property, on the
links of a simplicial complex, is equivalent to a vanishing condition on
a global cohomology, defined in terms of anticommutative- cochains as
follows. .

For A, the exterior algebra generated by our N vertices \ ,vz V3 s

over [F, we choose an algebra isomorphism X:A — A yielding letters x; =
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'fl). We note that, for any simpliciai complex K, the maps x ¢ L(K)

L(K), 1 = i = pr, defined by [w]r— [xlﬁm]. image into the kernel of

“}ho map X, .. X _: L(K) — L(K) defined by [w] + [xlﬁ iio Axrmml. The
. rth iterated cohomology of K with respect to X is defined by
. ker(x1 el xr)

Br, 10K Im(x1)+ == +Im(xr)

We denote by Ax(l() the lexicographically smallest basis contained in the

gpanning set of L(K) determined by the set of all exterior monomials in
the letters.

Ve recall that this is a simplicial complex which is shifted whenever X
is generic., We will denote this exterionr shift simply by A(K) because.
upto a simplicial isomorphism, it is independent of the generic X
chosen.

CAD Theorem denerdically H[r ,X](K) does not depend on X Moreover

this generic rth iterated cohomology H[r](K) of K coincides with that of
its exterdior shift A(K).

Proof. The argument resembles that of the familiar case r = 1:

Ue check that, in AX(K), the rth iterated cocycles, i.e. things lying in

kernel of the map x x_ , appear as words whose augmentation by xl..x

10 Xp r
ia not in Ax(K), and that, out of these, the rth iterated coboundaries,

i.e. those lying in the sum of the images of the maps X+ -. 2%, are
those which contain at least one of the firgst r letters. Thus
dim H[r,X]1(K) = i(créax(l(): oﬁ{xl...,xr)=9 4 cru(x.l...,xr} = AX(K)}|.

From the fact that bx(K) it shifted it follows that Ax(ax(K)) = AX(K).

Using this, the above formula shows that dim H[r,X](K) = dim
H[r.x](éx(K)), i.e. that H[r,X](K) and H[r.X}(Ax(K)) are isomorphic

vector spaces.

Finally, since AK(K) is independent of the géneric X, the above also
easily implies that H[r,X]J(K) too is independent of X. g.e.d.
Besides generic X's, it is useful also to consider those whose letters

are only in general position with respect to the vertices, i.e. are such
that the linear expansion of each lexlcographically first word Xy XyXg

X containsg all degree r gimplices.

For example, when the first letter of such an X is the sum of all the N
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rtices, H[1,X](K) coincides with the reduced ordinary cohomology H(K)
FK. However it follows easily that this is isomorphic to the generic
11(K). Thus (A) generalizes Kalai's previous result that exterior
lfting preserves cohomomology.

: B Theorem 4 degree d simplicltal complex K ig Cohen-Macaulay if and

R mly if the generic iterated cohomolagy groups H [d-k](K) vanish for all

The following is the argument of "only if"™ sketched in the paper. Kalai
also gives a more detailed separate proof of this implication for the
gspecial case when K is shellable. He gives no proof for "if".

' In the very special case when K is shifted, shellability is equivalent

to the Cohen-Macaulay property, or even to the purity of K. Now both
implications follow trivially from the above explicit description of the
lterated cohomology of shifted complexes.

Proof of "“only 1f". The iterated cohomologies were not defined as
homologies of chain complex, so0o it is more convenient to look at the

asgsoclated iterated cohomologilies !{_k[t](!() , i1.e. the homologies of the
following chain complexes:

LiK} t L(K)

ker(xl..xt_l) kar(xl..x

t-1)

(Bl1) Bk[d—k](l() vanishes iff ﬂk[t](K) vanishes for all t = d-k

This follows very easily from the above definition. Using now the
standard machinery of exact homology sequences Kalai checks the
following.

(B2) If all proper links of a degree d simpliclal complex K are
Cohen-Macavlay, then the cohomology H'[t1(K), t £ d-k, is unaffected by
stellar subdivisions.

(B3) In fact this subdivision-invariant cohomology _l[k[t](l(), T = 4-K;
identifies with the ordinary cohomology Hk(l() aof K

This last step of proof is accomplished by imitating a well-known
argument which identifies de Rham cohomology with ordinary cohomology:

For each vertex v of K, let KV denote its closed star in the derived K'.
Then {Kv} is an acyclle cover, because the dual cells ﬁv(Kv) have

trivial iterated cohomology by the given condition on proper links. So,
by imitating the aforementioned, the lterated cohomology of K' coincides
wlth the ordinary cohomology of the nerve of this cover, which |is
isomorphic to K. g.e.d.

CCY» Theorem If K is Cohen-Macaulay, then its exterior shift A(K) is
pur-é.
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1le is an immediate corollary of Theorems(A) and (B). Note that this
8 the anti-commutative analogue of Relsner’s theorem which is
'equivalent to saying that the commutative shift of a Cohen-Macaulay K is
pure. However the current proof of this analogue is quite different and
employes some algebraic geometry machinery of Grothendleck.

;';'Iho next result too has a known, but only partial, commutative analogue,
viz. for polytopal spheres only, whose proof too is quite different, and
employs the hard-Lefchetz theorem of toric varieties.

«D> Theorem The exterior shift A(K), of any K with N vertices
contained in a degree d sphere, is contained in the exterior shift of
he cyclic sphere of ‘degree d with N vertices.

. Kalai's attempted Proof. Recall that the kth letter is outside a degree
d admissible s=simplex iff the next d-2k+2 letters are all inside it.
Such simplices determine a shifted simplicial complex A(d,N) of the same
size as the cyclic degree d sphere on N vertices.

So the result will follow from A(CK) € A(d,N), and moreover we would have
shown that A(d,N) is none other than the exterior shift of the cyclic
degree d sphere on N vertices.

D1> If a shifted complex is not contained in A(d,N) thea it must
contain some Kuratowski complex T of the following kind:

T = ap'oza

r'¥Yg-q Where r+2s = d.

This follows easily from the explicit description of A(d,N). Now, since
T, is an antipodal d-dimensional sphere, it follows that its d th van

Kampen obstruction is nonzero. Thus the theorem would follow if we
could, a la Sarkaria, show the following.
D2> If A(K) contains the aforementioned T, then there is a Zz—cochat‘.n

map
L{K,) == LCT)

which maps 1 to 1.

However the ms. gives no proof of the above .

Remark. Note here that we cannot expect such a cochain map from L(K )

into L((A(KJ*). because there are planar graphs K whose A(K) is not

planar-. (D2) asserts in particular that all such A (K)’s must always
contain the (3,3)-Kuratowsi graph, never the complete graph T on 5
vertices. Incidentally there are also non-planar graphs K with A(K)

planar-, which shows that we cannot have a cochain map of above kind from
L(CAa(K),) to L(K,) either.

Even A(K,) =2 T, was left open. But Kalai was able to establish a
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gestive analogue for the exterior square K of K, i.e. the simplicial
-~

Toﬁplex of all simplices which are unlons of some 2:simplices of K.

- <D3> A(Kﬁ) = (.&(K))ﬁ and more generally A(KAL) =2 A(K)~A(L).

'f§o:p:pve this Kalai used the interesting dual description of A(K), viz.
that it consists of the first words in linear expansions of elements of
the subspace L(K) of A.

3_13111 give Iin Chapter V of "VKO™ a proof of Theorem (D), which uses a
new equivariant shifting. This process is noncommutative, since it is
based neither on the anticommutative, nor on the commutative, algebra
~generated by the vertices, but on another non-graded-commutative graded

Comments

(1) The dual problems regarding f-vectors of nerves of affine euclidean
arrangements had earlier led Kalai to the study cof d-Leray complexes ,
and he had already proved an analogue of Theorem (B) for these. In his
first paper however this dual result wae only proved under the stronger
agsumption of a Wegner shellability which all nerves of above type obey.

'Zagytz) Using commutative cochains, Biler has defined very simple
. cohomologles, in terms of .which, both the Cohen-Macaulay and Leray
. properties are equivalent to some vanishing criteria. It would be very

nice if we could show, analogously to the above, that commutative
shifting preserves these, and then maybe even obtain a simpler proof of
Reisner’'s theorem, and more ?

(3) McMullen’s conjecture. For- any simplicial degree d sphere,
(ho.hl—ho. . 'h[dIZ]_h{dKZ]-l) is the face vector of an order itdeal of
monomials.

Arguments already given by Kalai in "Diameters .."” show that the above

la a corollary of (C) and (D).

Here the hi'a are coefficients of the h-polynomial, which is obtained,

from the face or f-polynomial of the simplicial complex wunder
" consideration, by changing x to x-1, i.e. one has

d-k d-k
E hyx = Eo g (Em1d

For a (d-1)-sphere one has the Dehn-Sommerville equations l-k = hd—k'
This is very easy. In fact the equation for k = 0 is qumvn equation
of the sphere, and the others follow very easily from (and indeed are
equlvalent to) the fact that similar Euler's equations hold alsc for all

proper links.
[Kalal notes that the D-S equations also follow, by an induction on d
and k, from } ¥ hk(Lka) = (d—k).hk(K) + (k+1).hk+1(K). which is not
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pd to check directly.]

_'na, by (C) and (D), McMullen's conjecture would follow if we could
verify the same assertion for any pure and shifted subcomplex of A(d,N)
~which obeys the Dehn-Sommerville equations.

This had been already done by Kalai in his "Diameters ..". He gives a
more elegant version of this argument in this ms., explicitly
constructing the required order ideal of such a shifted complex.

X Besides the duality (both of results and methods) between polytopes
. and arrangements (e.g. the dual .of McMullen’s conjecture is that of
_ Eckhoff's) we have the uncanny parallelism (of results, not of methods)
between commutative and anticommutative shifting. It is possible that
perhaps any irreducible representation of the symmetric group likewise

determines a useful shifting process? Also, there should be a uniform
" method, maybe invol¥Ving de Rham theory or cohomology theory of algebras,
- which can be applied in every case 7

2
CPQ

CAD If a simplicial 2-sphere's wvertices are all of the same degree,

then it must be isomorphic to the Al-vertex tetrahedron S2 ar-  the

. \ 4'
i B-vertex octahedron Sg, or else the 12-vertex icosahedron sz.
. . This was known even to Flato, and follows easily from Euler's formula.

. The tetrahedron and the octahedron have obvious higher-dimensional
~ _analogues, but not so the icosahedron. However its existence is a very
_fortunate fact, because without the icosahedron, mathematics would have

been much poorer. In Chapter IV of "VKO” we'll give many examples based
- on the icosahedron.

(B> Kuhnel's 9-vertex complex pr-o_jectivé plane CPg i an example of

"ecogahedral ubiguity'”’ because 1t 1g a “"complexification"” of RP% =
8:2/22, the 6-vertex real projective plane, in the following sense:

g ~ There is a 12-vertex complex projective plane, obtained by derivng 3
. edges of Kuhnel's 9-vertex complex projective plane, which has a
~  sgimplicial involution, whose fixed-point-set is a subcomplex isomorphic

to the é-vertex real projective plane. 3

The above, which we don’'t understand completely, is one of many nice
things contained in the paper of Kuhnel-Banchoff .

Not so elegant, or even directly connected with the icosahedron, is
Kuhnel’s original path to his discovery:

The icosahedron can be constructed from a pentagonal prism, by first
deriving its top and bottom faces, and then perturbing it slightly so
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%ﬁé triangles replace each of the rectangular vertical faces. A gimilar
perturbation of the triangular prism &ives the octahedron.

ﬁStart now with a solid triangular prism with base much bigger than the
-;top,_and derive the top. Then cone the surface, excluding the bottom,
‘to a new vertex, and perturb to make the rectangular prism faces into
~ tetrahedra. Finally add a tetrahedron. This gives Bruckner’s

neighbourly 8-vertex 3-sphere Sg.

2 2
Kuhnel constructed his CP9 by coning S: over a 9th vertex, and then used

some permutations of the 9 vertices, forming a group of order 9, to add
more simplices.

2
<« CPD has an order 54 group of symmetries which acts transitively on

the 9 vertices, thus every vertex-link is a Bruckner Isphere.

The isotropy group of each vertex, i.e. group of symmetries of the

Bruckner sphere, is of order 6, being In fact szza. and the quotlent by

this normal subgroup is 23x23.
That the above procedure yields a manifold with the homotopy type of the
complex projective plane is not too hard, and at this point Freedman 's
clasgsification theorem can be used,

But the above paper also has a geometric argument which exhibits an

explicit homeomorphism.

3- ey hf-u."{vﬂ,
<b> GPg i the only{/simplicial 9—vertex 4-manifold.

This was checked even before it was verified that this manifold is the
complex projective plane. To do this Kuhnel Llassmann verified that
none of the other 3-spheres led to a 9-vertex 4-manifold in the above
way . -“S\"h‘“'ﬂ]’ §-ovelin

(EY The deleted join of the Z-neigbaurly RPzd i a d-sphere, while that

of the 3-neighbourly CPg ie a T-sphere.

The neighbourliness is obvious, while the sphericity follows from the
fact that these are =self-dual, or, in Schild__"a terminology, "nice”
complexes. '

Note that (E) implies in particular that RPZ and CPZ embed respectively

6 9
in R‘ and E7, and that these dimensions 4 and 7 are the @gst possible.

(F> The general position linear embedding of R.Pi in IRS. resp. of CP% in

Ra. is tight, in the sense that all half-spaces contain a connécted,
resp. simply connected, part of the complex.

Furthermore the space of secants, ie. lines meesting the complex in at
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t two pointe, is of dinension less than 5, resp. 8

‘bQ second part is essentially equivalent to saying that the deleted
8 are of dimensions less than 4 and 8 resgspectively. Likewise, the
8t part corresponds to the 2- and 3-neighbourliness of the complexes.

@) Smooth versions of above embeddings are also known.

-;’?ﬁr example, consider the map from Rs to Rd given by

(x,¥,2) —— (x%X,yy.22,Y2.xy,Y2.y2,¥Y2.2x).

" This maps the unit sphere S2 of I:R3 into [the sphere S4 obtained by
sectioning the unit sphere of Ré by] the affine subspace Rs = Ré on

@f‘uhlch the sum of the first three coordinates is 1. Furthermore 2 points
i of 8% ‘Bhave the same image iff they are antipodal points.
E‘:.‘;_Thll smooth Veronese embedding of I:’rEPz in 025 has to be tight because

. compact conics are connected. It is known also that its secants form a
- hypersurface.

. in B-gspace is analogous. These were of course known since long, and

Kulper had posed the problem of finding non-smooth embeddings with the
. 8ame properties vis-a-vis tightness and secants. Possibly it was this
‘question which led Kuhnel to his CP5 ?

e . CHD There is an elliptic curve in CPZ. te, a torus determined by a
. third degree equation, such that the 9 Veronese images of its 9

. inflexion points determine a linear embedding of cpg as in (F)

' This is harder, but K-B give these 9 inflexion points explicitly.
Recall here that an elliptic curve is isomorphic to a torus as a group,
the group action of the curve being given by collinearity of 3 points.
The Inflexion points are precisely the order 3 points in this group, and

conatitute a 23x23.

Comments

(1) We lack a really conceptual definition of CP2 . The group & (or
Q. 3

lts aquare) seems important, and of course it is within the 3-fold join
of a 2-aimplex, It would be nice if it could have a quick definition as
a particular kind of deleted join ... ?

(2) 1I1f K is t-neighbourly then any linear map of K in a Eu€lidean space
is t-tight, i.e. any half-space intersect®s it in a t-connected thing.

An interesting problem here is whether a simplicial manifold K which is
t-connected, t £ n/2, can be retriangulated in a t-neighbourly way ?
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(3) If dimension of deleted Join of K is = s, Lthen lhe secanl space of
g any linear embedding of K has dimension £ s. Note this space is made up
. . of van Kampen's "forbidden directions”, and by projection along a

"' different direction, K embeds into s-apace.

- The analogous problem here would” roughly be whether a simplicial
. manifold linearly embeddable in s-space can be retriangulated to make

v

its deleted join of dimension = s 7?7

- SHIFTING AND MATROIDS
" Let T be a finite subset of a vector space. Then

i> M, the family of all linearly independent subsets of T, is closed
- with respect to =, and any such independent set can alwavs be augmented
. to a bigger one by adding a suitable element of another given bigger
.~ dndependent subset of T

i1 M, the family of all circults, ie minimal laearly dependent
| subsgets, of T, has no proper < relations, and if two distinct circuits
tain a common eelement, then theilr unton contains a circuit not
containing this element.

“Following Whitney, 1935, any family M, resp. M, of finite subsets of a
set T, which obeys (i), resp. (ii), is called a matroid. Note that the
simplicial complex M, and the clutter M determine each other.

- Kalai’s matrold-theoretical generallzation of exterior shifting:

€AY Iterated determinants., Given Nz variables :f!j.-.I with indices i,) =

O e O (R | ) we associate, to  any two equicardinal sets o @
. {(1,2,...,N}), the determinant

in

Xga = det {xij : e, je8).

Likewise, we associate, to any two (lexicographically ordered)
equicardinal families L,K of equicardinal sets, thg.determinant

XLK = det {)‘I‘r_w__.l| : oel, 8eK).

Note that these successive determinants are elements of & [X .], the
ring "of all integral polynomials in the Nz variables.
(B> Generic matrold. To any family K, of t-subsets of (1,2,...,N}) we

. associtate the matroid MN(K), on the set T of all t-subsets of
{1,2,...,N}), whase maoximal independent sets are all L's  with XLK

- nonsero.

nonzero mod p.)

_;_'3.;  [More generally given any prime p we can postulate xLK
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Let A denote the exterior algebra over F = Gitgi_J &enerated by
J v

" vi,vz.”.,vN » and C(K) = A, its vector subspace spanned by exterior
i..monomlalg in the vi‘a whilcel are supported on K.

s the letters x, = T ] xij vi determine & spanning set of C(K) which we
. will identify with T in the obvious wvay.

. Clearly the generic matroid M(K) of K coincides with the matroid of all
_ﬁ;llnearly independent subsets of the generic spanning set T < C(K).

: - C> The generic matroid M(K) is symmetric, in the sense each
. permutation of (1,2,...,N) induces a simplicial automorphism of the
- 2tmplicial complex M(K).

This is clear from the definition of M(K).

. . (DY Lexicographically minimal basis A(M), of any symmmetric matroid M,
. on the set T of all cardinality t-sets of (1,2,...,N), i shifted, ie.
is closed with respect to the product partial order of t-sets.

" Here of course "basis” means a maximal independent set and the
lexicographically minimal” basis is obtained by seiving out t-sets

~The above result follows because the shuffle permutation proof
. generalizes at once to the above abstract situation.

-~ CE» Growth of shifted families. Any shifted family A of cardinality

. t-zets of N . has only finitely many generators, L& minimal cets S whose
. augmentations by any t-|S| bigger numbers are all in 4 Thus shifted
- families have polyvnomial growth.

=l

R
ral

.l..

- The first part though surprising is very easy and at once gives the

r

4
' ., formula

= N- max(S5)
oyl =L g [ t-|S| ] e
where AN is the shifted subfamily of A with all vertices in (1,2,...,N},

and the summatiom is over this fixed finite set of generators S of 4 .
This establishes the second part. =

{(F> Growth of synmmetric matroids. Let M be a svmmetric matrold on the
set T of all t-sets of N, and let l"IN be its restriction to the set TN’ af
. all t-gsets of (1,2,...,N). Then rank (]"LN) is a polyvnomial function of N

. Here "rank” of course means cardinality of any basis of the matroid.
" ,.The result follows from (E) and (D), But note that in (D) one should

use the reverse lexicographic order in which TN is an initial set: so
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3

_ﬂN)'a will now arise by restricting a shifted family A of t-sets
7y 8 S SRS

Shifting is a projection. If K is already =hifted, then A(K) =
MC(K)) = K. So A(A(K)) = A(CK). fig

.Thias follows at once from the next resdlt.

__) Some determinantal identities. If K and L are eguicardinal =hifted
___fdmﬂies- of t-sets of (1,2,..,N), with determinant X nonzero, then we

LK
st have L = K and

= wY (|St.K|-|8t. .K|)
Bk = Mi=g 4y b i T

Ir&~we use the notation of (A) and 1={(1,2,..,i). When K consists of
t-sets of (1,2,...,N), then above formula is due to Sylvester .

his result is proved by the interesting device of connecting the
meric matrix to the lidentity matrix by elementary vowsaolumn
rations . The result is true of course for the identity matrix.
fted hypothesis comes in to show that xLK does'nt change when a

/column is added to another.
Shifted rfamiligs are well-quasi-ordered by inclusion, ie in any

nite seguence of finite shifted families of t-sets, some family must
contained in some succeeding family.

Comments

'(1:) Kalai's paper has lots of additional results and information. For
~ example he gives a complete characterization of the growth polvnomials
of symmetric matroids.

i (2) The blocker (or Alexander dual 4 la Bier) of the basis of a matroid
4 is the basis of the dual matroid. Above shifting process is well
* behaved vis-a-vis this duality.
Another new word for a known thing is threshold graph: which coincides
ith shifted graph, Still another: the compression process inBollobas '
ook la combinatorial shifting . ]

";f.3-J The w.q.o property of shifted complexes might be useful for the
L Kuratowski problem ? )

" (4) Consider the 3-step heirarchy: vertices, (semi)simplices = ordered

" sets (sequences) of vertices, hyper(semidsimplices = ordered sets

ia (sequences) of (semi)simplices, Visualizing these hypersemisimplices ag

4 Joins of their constituent (semi)simplices we thus see that the objects
S K, L, in the 4th step of this heirarchy, i.e. sets of sets of sets of
d vertices, are also natural geometric objects .,
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‘er none of the total orders (lexicographic, reverse lexicographic,
on simplices is quite "natural” with respect to the given total
on the vertices. On the other hand the product partial order is:
aybe one should think of "hypersimplices”™ as sets of simplices
ally ordered by this, and then, to visualize them, join any two
h are comparable 7) i
ing theory at 4th step gets much wmore exciting: e.g. besides
netness of the constituent simplices of a hypersimplex [which
eats using exterior algebra over A, iI.e. the next level of
erminants Xu(] we can also consider their dis jointness [now some

er quotient of the tensor algebra over A, e.g. the star algebra, is
uired] which leads to deleted joins, etc.

- 5) The connections between shifting and the theory of polynomial
entities should also be worth looking into ?
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