REVIEWS DD

CYCLIC COHOMOLOGY

This was introduced in Connes' great paper "Non-comu'tatl-ve geometey™,
but we will look first at his later Comptes Rendus version.

Originally he had used a variant ‘of the Hochschild coboundary applied
directly to algebra cochains which are cycliec. Now he splits up this
construction neatly into 2 parts: an algebraical part which can be
viewed as an abelig.nizatlon.. and the remaining purely combinatorial
part. ;

The key idea which emerged from this analysis is that the usual grading
with degreses should be replaced by & more exotic goading. More
precisely, instead of working with simplicial objects, j.e. functors
from the category A& of numbers, we work with eyelie objects , which are
functors from the following bigger category A. R

¢A> Cyclic category of numbers A. Its objects too are numbera m, only
there will be more morphisms than before.

To define these morphisms, lets regard m not as the totally ordered set
(0,1,..,n), but instead as the following subset of the unit circle of

the complex plane.
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We equip 51 with the counterclockwise orientation. Consider now any
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‘will be homolopy classes [#] of such maps @&. The restriction of ¢ to
2"“_1. which obviously depeéends only on its homotopy class f, will be

denoted by
£ zn+1 — Zm+1.
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Unless it is a constant map, f conversely determines f. This follows

because any @ = f has to be constant on the circular intervals
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corresponding to the cyclic partition

A ESy
Z = U, C£Y (i),
n+l yeEle
And, there are exactly n+l f's corvresponding to a constant f, because
now a ¢ € f is constant on all buf one of the n+l equal circular

intervals determined by 2n+1‘ and the 'ima;ge of this exceptional interval
is all of st.

ol

TE ¢-(an). Fie then, cofisidered as a map from (0,1,..,n} to {(0,1,..,m}, f
is Increasing, and all such increasing maps {0,1,..,n} — (0,1,..,m)

occur as such f 's. This subecategory A of A iIs thug isomorphic to the
category of numbers conasldered before.

Any f can obviously be represented by the compesition of a @ satisfying
dv.{,an) = am. preceded by a rotation 2n+1 — & 41" The subgcategory K of A

will consist of all such rotations [not group automorphisms!] i.e. K
consgists of all isomorphisms of the category A. Since such a
factorization is unique upto homotopy we thusg see that

A = AX.
Conneg also gives a dual splitting of A: see comment (2) below.

B> Cyclic vector spaces. By this we mean any covariant functor
functor from A to the category of vector spaces over field IF . The
natural transformations of such functors yield the category af all
cvelic vector sSpaces over [F .,

The example below, which constitutes the aforementioned abelianization
will show that cyclic cohomology of algebras is only a special case of
the present more general theory.

Each assoclative [F-algebra A yields a cyalic space A# as follows:
{3
The vector space associated to each number n is A:\“= the n—fold tensor

product of A, while the linear map

£i: A': —_— Ai
n m

associated to an f: m — m is given by

f* a..axn} = aﬁ:g (n' i < xi).

(xoax . |
ie(f) ()

1

where [most important!] the algebra product [ is to be taken in the
order dictated by the orientation of the circle. 0f course, if A is

Ll
commutative, this last point is of no Iimportance, and then only ¢
matters. )
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Belng now in an abelian category [of cyclic vect:o;: spaces] we can talk
of cohomology, and the calculation of the ==roth cohomology is very
easy.

Propos=sition 1. HomA(A’,F‘) ig isomorphic to the uvecltor space of all

traces of A.

Here Hom is in this category of cyc’lic vector spaces, and trace of A is
any symmetric multilinear map from A into [F,

In the original construction c¢yclic cohomology arose as a generalization
of traces, so the abave suggests the following generalization.

Theorem 1. The cvelic cohomology of A is naturally isomorpghic to the
scohomologsy af A*.

Here of c¢ourse we are speaking of cohomology of A* In its category
theoretical sense, i.e. as the derived functors Ext:(At,IF*) ok

Hom, (A¥,F ¥y

To prove this theorem Connes will show that these derived functors, of
the category of all cyclic vector gpaces, can be computed
combinatorially in such a way that, for the case of cycliec vector spaces
arising from algebras, one recovers the original definition of cyclic

cohomology of algebras.

€C» The double complex . To any pair of integers (n,m) in the closed

first gquadrant we associate the cycliec vector space & gpanned by all
morphisms of A having domain .

Here the cyclic structure of Cm is the obvious one: to each number kK is
aggociated its subgpace C:: spanned by all arrows ending ink , and to

each f: k — k’* is associated the linear map C(f): CE — C:, defined by

composition. For example each basic rotation w i — m gives a linear

m+l
igomorphism C(wm+1) of C™ which moves only the summand Cﬁ
@

d

"For m even, the horizantal differentials (n,m) +-——1-— (n+tl,m) will be the

cyclic vector space maps [in c™ ] which equal Id - C(mw.kJ for n even,
and Id + c(“’m-l-l) (C(<om+1))2 y MR (C(mm+1)Jm for n odd. For m odd,

we replace each C(mm‘{_l) in this definition by —C(mm_l).

The d-l—hamology is  irdvial, except for the first column, at whose

(0,m)th spot, we get the cokernel of the map 1d F C:(wm+1) o f Cm.

One can think of this as eyclically oriented chains, its dual being the
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cyolie cochains .

(rn,m+1)

For- n even, the vertical differentials ldz

, fn,m)
space maps given by the alternating:' sum, frem 0 fo m+l, of the cyclic

will be the cyclic vector

vector gpace maps C'(Fi 3 Cm+1 = Cm. induced by compeaitieti from the
face maps Fi :m —s wmtl, i.e, the monotone injection which forgets the
tth spot of m¥i. For n add, replace C(Fl) , by -C(Fi), and also do

summation only from 0 to m.

Thus for n even the vertical differential is the ordinary coboundary ,
while for n odd it is slightly different. The point 1s that, with these
de finitions , one has the reqguisite relations,

dldl = dldz # d2d1 = ':lzd2 =0,

of a double complex.

Thug the homology of the double complex coincides with the ordinary
homology of the cyclic chains. But this is easily checked to be chain
complex of a ball, so one has the following.

Proposition 2. The above double complex G is a projective resolution of
the trivial cvelic vector space IF#.

*
The dual double complex ( is thus an injective regolution of the
trivial cyclic vector space.
We can now compute ExtA(E,IF‘). for any cyclic vector space E, by
calculating the cohomology of the double complex H‘.omA(E.C*J.

In particular this can be done for E = A*. but still, to prove Theorem 1
one needs [it seema] to check that ithe first spectral sequence

degenerate at the secaond term in the following way : the dl—cohomology
of HomA(E.C*). E = A#, is trivial outside the first column ? For C:’t
itaself it was so, because the cvclic action was free ¢ this so for
all E (of type A')? ‘

D> Connes’ exact sequence. To wind up Connes also formulates a
generalization of his famous exact sequence but he works with
Ext_A('F‘.E)'s only: is this so because these ExtA (F‘ +E) and ExtA (E.E’J

are dual in some obvious way ?

The connecting homomorphism will be the degree 2 map
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s: Ext':(F*'.E) — 'Extf‘ch*,s)
available because of the obvious periodicity (n,m) & (n,m+2) in the
double complex HomA(C,E) whose cohomology is ExtA(F*.E).

Proposition 3. The dz—cohamology of the double complex Hom A (C,E) is
zero in all odd columns, and the remaining sven columns vield the
ordinary cohomology Ext A ( F% E) of E regarded as a simplicial vector

Spare.

In fact, in odd columns, a cochain c¢ontraction is induced by the
monotone surjection w+l — wm which repeats the last number m+l. Since
the even column's vertical differentlal is ordipary the result follows.

Thus we have a second spectral sequence whose first term is the ordinary
cohomology of E and whose final term is the cyclic cohomology of E.

Then, the knight moves, i.e. second term differentials of this spectral
gsequence, are used to define a map,

B: th’;(s*,m g, axtf{"l(s*,s)

which is of degree -1.

Lagtly, using the natural inclusion A <« A, one has the restriction map

k

1: ExtA(

oy Ext’;(r‘*,a).

Theorem 2. The seguence . a8:B21:8c ... i an exact seguence.

Thue this long exact sequence ig like a @Gysin sequence of above gpectral
sequence relating ordinary and cyclic cohomologies.

Comments
(1) Connes also checks the important point that the classifying space
- of the category A is the infinite complex projective =space

o | 1 i I T
(8 *+8" %8 v, ) 5

S

Ue don't remember the definition of this classifying space — lidea of
Grothendieck, very well treated in a paper of Sagal — but its

) *
cohomology seems to bs ExtA(E‘ .Zt), which Connes shows is the required
polynomial algebra on a degree 2 element. -

Note here that all the definitions of this note work even for rings IF,
e.8. £, and one now speaks of cyclic Z-moduleg etc.

*
G239 There is also a subcategory A of A which is isomorphic to the
opposite category of A — this is not all decreasing maps, which don't
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: : b _ *
irm & category — with respect to which one has the splitting A = KA .
Thus, unlike A, the category A is isomorphic 'to ils oppasite category.
Hence cyclic and cocyclic objects are essentially same.

(3) The dual eyalic homology was discovered independer‘xtly. at about the
aaue time, by Tsygan, who also used an analogous double complex. Also.
Kasparov’'s KK theory, wvhich came perhaps even before Connes' definition
f ‘cyelic cohomology, is closely related: though not explicit in this
note, it séems that these KK(A.B), which were originally defined quite

differently, are, or are closely related to, Ext:(A#,B‘) ?

-
t

l__:'i:l;;) The above double complex C and the Smith Richardson SEequences are
ARV r.lose.— iterating the short SR sequence we get differentials, like
" the d ‘s above, between a sequence of c¢hain complexes, each of which can
be written vart;cally. so d-z comprises of the boundaries of these
complexes. Likewise the long exact sequence of Connes is very close to
the long exact SR sequence.

{5) The above suggests that for deleted joins over 51 one should use
the rotations of the circle to look at cyclic cochains whose cohomology
shodld contain obstructlions to embeddabllity coming from repeated
applications of the connecting homomorphlam S 7

CARTAN-EILENBERG

This book deals with {codhomoloagy [ = %. where d:V ——= V obeys cl2
0], and generalities re this notion, including spectral sequences, are
dealt with in Chapters IV and XV.

The main contribution of this classic however was to introduce a special
class of (codhomologies, called devived funcltors, and to show that all
the extant (codhomology theories wer= in faet derived functors.

Cartan and Eilenberg discovered derived functors in the course of
recasting Kunneth's calculations, of the Betti numbers of a [tensor]
product, into a group theoretic language. Their first definition — see
Chapter 111 on satellite functors — was iterative, as a measure of the
original functor's non exactnesg.

But they soon replaced it by the (now well-kmpown) definition via
resolutions which is based on the following fundamental fact.

Thearem (A). Suppose that the following seguences of linear maps are
exact.

De—Ai—x=Dt—AQ—X:11—~Xé¢—33!—-....

0 — C — ¥ D—bC—bY1—+Y2——oY3——r....
Then the cohomologies obtained, from Hom(X,Y), Hom(X,C). or Hom(A,¥Y) by
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using the obvious coboundaries, are isomorphic to each other, and depend
only on A and C J

- The above cohomology is denoted Ext(A,C), the "derived functor” of
- Hom(A,C), with which it ceoincides in dimension zero:

Ext'o'(A,C)- = Hom(A,C).

An exact sequence X, which "enters™ A as above, is cal 1 ed a projective
resolution of A, while ¥, which "leavea” C, is called an injective
resolution of C. : -

.

The importance of Ext stems from the fact thai any resolutions X and/or
¥ can be used: this makes it eminently computable !

Likewise Tor(A,C) arises from the tensor product, by taking any
projective resolutions X and ¥, of one or both of A and C, and computing
the homology of X&®Y, or XeC, or MY, with respect to the obvious
boundaries.

[Likewige again for other functors .... but the cohomology Ext suffices
to see what goesz on. ]

Vo now turn Lo the explicit re=solutions and complexes by means of which
€-E proved +Lhat some well-known combinatorial definitions were
particular cases of this categorlical notion Ext.

[Throughout this we'll try to restrict to the simple case of vector
spaces over a field F, since this already seems to cover most of what is
interesting. ]

In the following Extﬂ[U.V) will be in the category Cn of all vector

spaces equipped with a l=ft action of an associative algebra ( over [F .
Here F will be regarded as an object of the category under a given
multiplicative epimorphism or augmentation I —s T, Mostly we'll be
interested in just Extn(F.V).

(B> Koszul complex. Assume that (1 is the commutative algebra generated
v N lstiers x ouer [F, Then ExtaCIF,V.) ig the cohomology of

e sy g SRR AR - gL

- Here C(V) denotes the graded vector space of all skewsyvmmetric functions
from N variables y to V, eguipped with the (O action induced from that of
V. and the coboundary is given by

_ =¥ _qy371
(SEICYg s -o W¥iyq) = Bjojuepseq (1) LR CUCERNG T SIS & r O

This follows from the definition of Ext because the augmentation extends
to the exact sequence
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el ey i el g gl a3

where A denotes the exterior algebra generated by N letters y over F ,

and the boundary is given by €

, . ' e
.#—(myle o qu) Els_jgtﬂ( 1) .(uxj)@_ylo - ”’j—ﬁ"'jﬂ“ o WYLy

[Note that (O®A, the tensor product of the svmmetric algebra O over a
vector space, with the skewsvmneiric algebra A over another copy of the
vector space, is also called a Well algebra, and figures in thé theory
of connections.] 5

€C)» A change of categories. Each resolution, 0 « F 0 ¢ > AN

* *
F in Cn. corregspeonds to a resolution 0 «— F «— I +«— X of[F in-c.a* :

¥ . ) - .
where €I denotes the opposite algebra of (i, and so, on applying mﬂ:(._-_),_

* *
; i ] i *
gilves rise to a resolution 0 «— O +— mn.n —_ mﬂ_x in ()‘.Mb]}__ﬁ 1

Conversely, by applying EF'@n_(.J_ to the last resolution, one recovers that
of F in CQ' , and so the eriginal one of F in Cn.

One can think of C“*' as the category of vector spaces equipped with a !

right 0 action, and of ( ag that of vector spaceg equipped

ﬂt
ms.

with left and right O actions.

Thus, for any i, the calculation of Extﬂ-(ﬂ-‘..) is eguivalent to that of

E;l:_tm n*(n..). for wvhich one has the following.

<D> Hochschild complex. For- any O, and any V eguipped with u

twe sided action of O, Ext ¥((:,V) iz the cohomolagy of i

mm.c:

EERE .

R L
Here ¥(V) denotes all nultilinear functions fram O to V., and the
coboundary iz defined by

j

o -1 ;
(6‘5)(’1'..-'??':*1) = zisttc'lj fcy:_l.""yj*l'yj'¥j+1'yj+2""yt-l-lj‘

e

This follows from the definition of Ext
O

* . B
D — 0 &=— m’[Fﬂ of C:._ “* elongates to the exact sequence,
F

n*m-.V), because the sequence

0 «— (O «— (@ +— W0l +— Oe0eie) — ... ,

19
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where the left action is on the firét factors and the right action on
the last factors, and the boundary is defined by

- g s e \
Alyy®. - ®¥y 497 = EiegueelT1)7 98- .8V, 1OV ¥ . 18Y ;,,®- -8V, -

(E> Homogenous complex, In case (O is a group algebra TG the above
Hochschild complex for calculating Extu‘..G:(lF_.V) is dsomorphic to thalt of

all left invariant V valued funcltions on words of O sguipged with ths
ordinaryv cobdoundary. a

This might have been the genesis of the Hochschild complex: Hopf e.g.
had defined group c¢ohomology by above complex, and later Eilenberg and
Maclane had replaced it by its non homogenous version, which is just the
Hochschild complex fo'r this Q. "

F> De Rham complex. In case O = ge. the enveloping algebra of g, a
Lie algebra, then the Hochschild complex for calculating Ext 52 (F.V)
retracts to a subcomplex isomorphic io geaA (g), fittad with the de Rham

derivative as defined by the familiar Lie brackets for-mula.

The "enveloping algebra”, as against g, is associative, and vector
spaces with g-action correspond to those with action of this envelope.

C-E prove the above result by using the Polncare-wWiti theorem , which
gives a convenlent basis for the enveloping algebra.

Based on ploneering work of E.Cartan, the cohomology thecory of Lia
algebras was given a finished form by Chevalley-Eilenberg.

When g arises from a Lie group and F = [ or ©, the above complex
identifies with the usual de Rham complex of left invariant smooth forms
on the group.

Commeants
(1) The point of (F) of course is that in the Lie algebra case the huge
Hochschiild complex retracts to the much smaller de Rham complex of left
invariant forms.
How doeg (F) fit in with eyclic¢ complex ?
: L
(2) Likewise the point of (B) seems to be that commutatiuvity of (0 also
enables one to retract the huge Hochachild complex te the much smaller
Koszul complex ?

In particular this shows that thn(ﬂ-‘,V) vanishes in dime‘ﬁsions > N : a
result subsuming Hilbert’s myzvey theorem.

Ue note that there is also a variant of Koszul complex if N is infinlte.

(3) It might be even simpler to give a similar small complex for the
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A —

- anticommutative algebras 7

. Probably just the algebra itself ? [Cf. a very trivial such example, of
exterior algebra with N = 1, on p.147 of book.]

(4) The relationship of Koszul/Weil complexes to shifting deserves
¢loger Inspectlon.

(5) C-E is confusing reading, and it seems it should be possible to
learn this [important and apparantly not so hard] material faster and
better from somewhere (7) else. Y

The pages of C-E relevant for a'boue:- review are:

p.107 for definitions,of Ext and Tor;

p.182 for above kind of "supplemented algebras™ i,

which are special kind of "augmented rings"™ of p.143, 146-147;
pp.150-153, 157 for Koszul complexes and Hilbert syzygy theorem;
pp.149-150, 164, 185-186, 193-194 all this (and more!)for the somewhat
confusing (and repetitive !)"change of rings”™ which we have (over 7)
elmplified to (C) above;

pp. 174-176 for Hochschlld complexes including a "normalized” variant;
Pp. 189-190 for homogenous complex for groups;

pp. 271-273 for Poincare-Witt,

and pp. 277-282 for de Rham subcomplex for Lie algebra cohomology.

0f course C-E contains many other things too.

ISOTOFY FUNCTORS

Hu's paper’is essentially an exposition of Wua "s "deleted functora”™, with
gome new frills, which are as under.

A space X is said to have the same isotopy type as a space Y if we can
find embeddings f:X — Y and g: Y — X such that both g f: X — X and
f=g: Y — ¥ belong to one-parameter families of embeddings containing
the identity mappings.

Thus this relation is intermediate to the relations of Dbeing
homeomorphic and being of the same homotopy type.

€AY Resldual and enveloping functors. For any m*> 1, and any space X,

R (X) will denote the complement of the diagonal X of the m-fold
product U =%x ,. x X, and Em(X) the space of all pathes of W starting

from, but never returning to the diagonal.

.

Note that R,(X) = X and E,(X) is the tangent space of ¥, i.e. the space
of all paths of X never returning to their initial point.

Each embedding f: £ — Y determines embeddings Rm(f): Rm(x) = Rm(Y) and
Em(f): Em(X) — Em(Y), with isotopic embeddings inducing isotopic

51



embeddings .

The (c¢o)homology, homotopy groups, euler characteristics, etc. of Rm_(_X)
and r-:.m(x.), are thus Invariants of the lsotopy type of ‘X.

_(’B) More generally whenever X € W, we have the residual space R(U,X) =
 W\X, and the enveloping space E(W,X), the latter of all paths of W which
 start from but never return to NE

- For poluhadral pairs ¥ & W, the second notion ties up with the not.i.;an of
a regular nelghbourhood V of X in U as under:

Theorem. V retracis to X and V\X is homotopy eguivalant to E(W,X).

-~ = » - r
[In fact Hu proves it more generally for all "regular embeddings” X &

v.]
Thuz the enveloping functor ls esszentlally the "local” deleted functor.

€C Thanks to the last theorem the triad (W;V,U\Z)'"s exact
Mayer-Vietoria sequence gives us a relationship between the homologles
of X, W, R(U,¥), and E(W,X). For example we have

oo BRGE™) s eer® R (X)) — BMNE (2)) - BV ™) — .

€B>» Hu also gives an exposition of the Wu triangualation of K:..xK, and
using it, how Rm(X), X = |K|, has the same homotopy type as

(alx o Xe ] oMt e PO = 2 3,

and Eﬂ(X) the same homotopy type as the bounding "tube”™ of the above
cell complex.

The last two sections of Hu's paper do some easy computations of these
deleted functors for graphs K.

CYCLIC COHOMOLOGY OF GROUPS

(AY» Cyclic cohomology of a space X We'll copsider its definition
- elsewhere, but we note that an important result, obtained independently
by Goodwillie, Dwyer and others [e.g., see comment (5) below] identifies

it with the eguivariant cohomology [i.e. of left S-l—invarlant cochains]
1
of the loop space Xs -

[Possibly the cyclic cohomolagy of X can be defined simply by using the
Hevelic object” abtained by “rotating” the singular simplices of X 2]

(B> Cyclic cohomology of a group G In light of the above result this,
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“lm; the cyclic cohomology of the clmi_t‘ying space BG [= G*G* ...
divided by the diagonal G-action] of the group, has been identified
jth the equivariant cohomology of the loop space of BG.

[The analogous gquestion now is whether this can be defined by using the
'_w:li‘.c object obtains=d by rotating the lefi invariant cochains of the
group G F] /

‘However in the following we review only the earlier computation of
ghelea : s0 he is computing the eyclic cohomology of the group
: sbra [FG, as defined originally ‘by Connes, i.e. by applying a
eahschild type coboundary fte cycliec algebra cochains

However Connes' later Comptes Rendus note was now available, and
Burghelea uses its “cyciic objects” profusely, thinking of them in the
following useful way.

€€3 Cycalic set. These are sets Xn, indexed by the natural numbers n,

. & il
equipped with face maps dn' Xn e Kn SO degeneracy maps 8 xn-—. xn+1’
. and rotations _tn: xn s X.n. These maps are required to satisfy various
commutation rules, Leaving aside the usual ones invelving only face
and/or degeneracy maps, the other rules are:
n+l _ i o i=f AN - =1
'(tn) = ey 'dn°tn i tn—lﬂdn . R Couy e

For any [F, there is [as in Connes' note] a double complex associated
. canonically with X [even columns being ordinary chain complexes, odd
columns acyclic "cones™ over these, horizantal arrows suitable sums of
rotations, etc.] and its total (co)homology is defined to be the cyclia
cohomology of % over [F.

[As before we'll assume that T is field of characteristic sero, but note
that Connes definition, and Burghelea's computations, are done also over
integers, etc.]

. And [as in Connes' note] one hag, besides the spectral sequences of this
I. double complex, also the Connes sequence [= a "Gysin" reformulation of
«one of the sgpectral sequences] which relates the ordinary and cyclic
cohomologies of X over [F.
o
(DY Cyclic gset of a group G We'll give this definition of Burghelea
enly for the important case of an abelian G.

We'll in fact define below the cyclic set X(G,g) of the palr (G,g) for
each g = G . The required cyclic set X(G) of G is the disjoTnt union of
these X(G,g)'s as g rune over all elements of G.

[For the non-abelian case g runs over representatives of the conjugacy
classes of G, and one takes the disjoint union of the X(Gg,g)‘s, where

Ga denotes the centralizer of g in G.]
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- (G,g) will consist of all words g oee Xy of .C with product equal to g, !
and the face, degeneracy, and rotation maps are defined as follows:

other hand if g is of infinite order then it is isomorphic to H(G/g;F )
The ardinary cohomology of X(G,g) i=, in esither case, ilsommorphic to
H(G;[F).

.
dLn(x0 g xn) = X5 -« ('xl_i-::j.):f.“_1 vr X g < 1= mn. i
( Y = < < A
8.(2.0 xn) xo o R R xi+1 - xn PR £ (B R I TR ‘
" (xo xn) = X xn xn—l |
Here, for i1 = 0, the right .side' of the first equation is to be 1
interpreted as (xn*xc)-xl ce X g i
CE> Theovem There ts a natural identification of the spectral [and =so !
Connes ] seguences of XK(G) over F with those of the group algebira TG j
Thug these sequences are direct sums of sequences indexed by [conjugacy
¢lasses of] elements of G.
Now he turns to the computation of the cohomology of each summand.
CF> Theorem If 0 is abelian and g = G is of finlte oarder then the
- 7 eyelic cohomology of R(G,g) is isomorphic to H(G/g;F .)ﬁH(’S"l F) On the
]
i

Here H(I;F) denotes the cohomology of the group I over F, i.e., the :
cohomology of its classifying space Bl over [F. .
|

Recall also that the classifying space of the circle is I's.the infinite

dimensional complex pro jective space, go the cohomology of é lives only
in even dimengions, being one-dimensional in each of these.

Covunents

5 (1) The relevance of loop spaces to embedding theory: this is obvious

the moment one notices that the loop space of X is the S —fold. cartesian
nroduct of X | There is X sitting in it as its d'lagoml i.e. as

constant maps from the circle to X. So the palr (Xs ,X) is of the same
kind as the pairs intervening in Thom's embadd:.nn ¢criterion,
Richardson-Smith theorem etc. [see Wu's book] except that now the group
is infinite. The complement of the diagonal, i.e. the non-constant maps
from the circle to X, is likewise a deleted product , .and the smaller
space of all one-one maps from the circle to X is a cont‘iguxmt.ion space .

€2 It seems that the double cochain complex, and its concomitant

spectral sequences, are very natural objects, which should not be
avoided, e.g. consider the following proposition.
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If a morphism of ecyclic sats induces ;J_n isomer-pghism in ordinary
cohomoilogsy, then it also induces an isomorphism in cvelic cohomology.

L]
Proof. The hypothesis says that the morphism is an isomorphism for the
second terms of the spectral sequences, so it must be an isomorphism
from here on, gead,

[0f course the result also follows from the Gysin sequence but surely
this spectral argument is more conceptual.]

Recall again that the complex ‘©of cyclic cochains also falls out
naturally as the first column -in the first [and second to lalt!] term of
the other spectral sequence of the double complex.

Howvever, one zan aveid double cochain complexes and spectral sequences,
at the price of using a somewhat contrived [and huge, but single]
cochain complex [see pp. 357-358] which also yields the cyclic
cohomology of the cyclic set, and fits into a ghort exact sequence,
whose long exact sequence Is the Connes seguence.

(3) For a finite group G the characteristic zero group cohomalozy

H(G;F) is =ero in all dimensions = 1. This is clear. But note that the
characteristic zero cyclic cohomolagy of finite groups is non-teivial !
1 W

One gets a copy of H(BS ;F) for each ceonjugacy class !|

Also we see, in this case, that the much smaller cyclic set X(G,1)
already contained all the information got from X(G).

(4) Burghelea defines his X(G) via sroupelds, but it amounts to the
simpler definition given above.

(5) Much more important ia the fact, due to BurgheleaFiedorowiaz , and
used in the proofs of this paper, that there iz a fibration, with fibre

arnd group Sl, over B_Sl, canonlcally assaciated to each cyeclic sat, In

fact there is also, conversely, a natural way of thinking of an Siﬁspace
ag a cyclic object,

Aa we'll see in the review of B-F, these constructions generalize Connes

result that the classifying space of the cyclic category is Bé and
lead easily to the identification of cyclic and equivarlant cohomolog;ea
alluded to in the beginning of this review.

CARTIER’S EXPOSE
This gives very quickly a  wealth of information régapding ayclic
(cadhomolagy |

{A> Traces. For an associative algebra A [= 00] over [F, char@ ) = 0,
this means any llinear form v : A — F pgbeying v (ab) = 7(ba), and more
generally, for an associative gradsd algebra {1 over [F, it is any linear
form {1 —+ [F obeying
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reab) = (-1312HP1 2 epay.

A trace v of a differential graded algebra ((0,d) is galled a cycle if it
obeys

T (dw) = 0.

The terminology is motivated by the fact that, for the

graded-commutative de Rham algebra ((X),d) of a smooth manifold X, the

trace v = J"z , obtained by integrating over a simplicial cycle z = X,
satisfies the above condition by virtue of Stokes’ formula

chm=fac'm .

.
B> Undversal differentlial graded algebra (1(A) of an algebra A, is
[somewhat simplistically] defined by

8Peay = iy ... 0% e 20, 8K Lo times) B AE..0K (041 Timess

the differential d: ﬂn(AJ — n‘f“lm) being the identification of the
second summand of the domain with the flrst summand of the range.

Elements aia..&an of the first summand of ot (A) are written n:l.a1 ..dan,
and the elements anala..wa.n of the second summand of " (_A) are written
aﬂdal"dan'

Theorem The cuclas of (1(A) are in one—one correspondence with cyclic

© cocycles of C(A).

Here a ¢ = Cn(ll). fi.e. a function of n+l variables on A, is being called
ayelic if it skewsymmetric with respect to rotations of the variables,

and cocycles constitute the kernel of the Hochschild coboundary b: o (A)

+
> 1(‘&'), defined as the alternating sum of the n+l "faces” obtained
by multiplying some two consecutive variables.

The required isomorphism is obtained by associating to the cycle v (i.e.
a closed graded trace) of (i(A) the cochain ¢ of C(A) given by

C(au'al o lanJ = T(andai ) 'dan)!'ﬂ

¢€> Hochschild and eycHe cohowologies. The former H(A,M), for the
*
case of bimodule M = A , where (afb)(c) = f(bca), is defined to be the

cohomology of (C(A),b). L
The latter HC(A) ls defined, by virtue of the

"patit wiracle' 1 b(Cc{l)) = Cc(.'h),
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- of this subcomplex (CC(A),b).

¥

where fCC;(hJ_ denotes the subspace of cyclic cochains, as the cchomology
L

(D> Cup product. Given a cycle 7 of Q(A) and a cycle & of ((B), es is

a cycle of 0(A)ei(B). But there ia a natural DGA homomorphism ((ASB) —
G(A)aG(B). Composing with it we get a cycle of ((ASB) called the
cup-product 7.8 of v and €. This pairing of cyclic cocycles — see (B)
— Induces the required cup product

HcP(a) = HCY(B) —= ., #C P*%(aen) -
in cyclic cohomology.
Theorem Under cup product the cvelic cohomalogy HO(F) of F is a
polvnomial algebra generatad by the 2-dimensional class reprasentsd by
the cyclic cocvele o defined by

a(1,1,1) = 1.

Furthermore, the cup product o, of any cyvelic coevele ¢ of an
F-algabra A with this cyelic 2-cocyele o of F, is the cyclic cocucle of
A given by

(cier) (a cla

¥ .
Uaja.

g &y "'ap+2) = E:L':'j.'_i[p'l-l j+1,a1,. "aj—l'a’j**-l' : ”ap+.2)-'

The suspension map S: HCP(A) s HCp 2(}\), defined by [¢] +— [ckr], is
important for the next definition and for the exact sequence of (F).

(E) D& Rham acohomology EDR(&). of A This is defined (p.129) to be the

s
cokernel of the map S-1: HC (A) — E*(_C} [and dually, on p.135, ag the
kernel of the map 1-S: HC,(A) — HC,(A) in cyclic homology].

The general justification for this terminoclogy is that it is essentlally
— see pp.134-135 — lgomorphic te the cohomology of the graded
abelianization of the DGA QCA) of (B).

In case A is comnutative we also have the DGA (A(A),d) of exteriorn

differentlal forms of A, and HDR'(A) is often, e.g..__‘ﬁif it iz the algebra

of smooth polynomial functions on an affine smooth ‘variety X, isomorphlic

‘to the cohomology of (ACA),d): see p.135.

For additional justification see alsoc (G).
(F> Connes' sequence. We have the short exact sequence
0 — C.(A) ——— C(A) — C(A)/C(A) —> O

of cochain complexes. Itas long exact sequence reads

5 I B S

B ereonseo ol gP et B igsRslans S0, L

o i e S
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-by-vlrtue cf the followlng result.

¢
| Theorem. HP(C(A)/CL(R)) is isomorphic to gﬁ'i(ccca)l

This is shown by constructing a cochain epimorphism‘ C(A)/CCCA) —
CC(A}. which lowers degrees by 1, and induces above isomorphism in
cohomology. Thig epimorphism is 1ndu5ed by the epimorphism -

B:cPea) — cRheay L B= (1 4t

9—1 . -
o - - =k -
p-1 tp-plneyeioty)

Here the t's dencte siﬁgned rotations and _ap replaces last variable by 1.

Also the above epimorphism B Induces the map named B in the long
sequence. Thusg, although the short sequence

0 — CL(A) S L LI Ca(AI[-1] — O,

is only semi-exact in the middle, it does nevertheless induce the above
long exact cohomology sequence.

If the Connes' sequence is considered as an exact couple

*
H(AL,A )
Boo g

- 28

HC(A) ., HC(A)

then it gives rise to & speclral saquence whose final term is the de

Rham cohomology H p(A) of A.

Note that the second term of this spectral sequence is the cohomology of
*

H(A,A ) under I=B.

G Currents or distributional forms, of a smqoth manifold X, are

- continuous linear forms 7: (X)) — F, [E.g. 7 = fc where ¢ = X ia any

simplicial chain is a current.] The boundary of currentas 9: C(X) —»
C(X) is defined by

a7 ,0> = L1 ,dw’>

and the homology of the manifold is that of ((C(X),B). [Note that

Stokes' formula shows that, for 7 = !c ohe has dr = Jac, which justifies

the notation & for boundary of currents also.]

Theorem When A is the algebra of smooth functions of a smoaoth manifold
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- then HBR(A) i z.s'omorphu e the cohomology of (R(A, A ),1=B), and

this complex (HCA, A ),1«B) s {somorphic to #the complex ((C(X),d) of
rrrents of X

<

hus in this case the spectral sequence of (F) degenerates at the second
term. Note also that, in the above result, it is understood that
coantinuous cochains of A are being used.

CHD> Gatfegorical definitions. Following Karoubl’s gimplification of
;,-_Co_n-nés' definition, cvclic objects are defined as gimplicial objects
_"aq-'u-lpped with rotations obeying required rules.

Using cyclic cochains one defines cyaile (codhomology HC(E) for any
eycla vector space E. When @ = F [the case being considered] it
identifies with the (cg)homology of the [by now familiar to us] double
- complex of Tsygan. :

There is also another double complex — nonzero only on the upper half
- of the first quadrant and with all vertical differentials b and all
. horizantal differentials B — whose (co)homology is also HC(E).

Topologically, the categorical approach amounts to the following
sharpening of Moore's result [= its first part].

5 Theorem Sitmplicial homologzy H(E) tdentifies with the homaltopy groups

- af the geometrical realization |E| of E while cyclic homology HC(E)

tdentifies with the hometopy groups of a cyelic gquatient |E| e of |E|.

Doubtless this connects to work of Burghelea-Fledorowicz, Jones, et al.

®
Homologically, the categorical approach reduces HC (A) and HC (A) to
PR E Ry S aas e AR PRy e explalned in Conpes’ C.R. nobe.

<1 Gelfand’s theoram The category of locally compact spaces is
*
eguivalent to that of commutative C -algebras:

8 cﬂ_cx,a:').

Here 'C_th,tt,.) denotes all continuous functions ¥ — & which vanish at

infinity, and of course X is recovered from this commutative algebra A
.ag the space of its maximal ideals .

Note that X is compact iff A has identity. Alsgso Swan’s theorem tells us
that the abelian category of complex vector bundles on a compactum ¥ is
equivalent to that of projective modules over A. From this one gets an
equivalence of the topological K-theory K(X) with the algebraical
K-theory K(A). '

These results [as well as (G) and the case of an algebraic variety X ]
illustrate the dictum :if an algebra A is commatative there is a
reasonable space X: however, in the non-commutative case, the spaces are
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" usually "unreasonable”, and one must work with A directly.

-;-(J‘) Boll periedicity. The groups K‘ (A), i = 0, of cany A as defined by

- Quidllen, are the homotopy groups o£ [the + modification (7) of] the
- classlfylng space BGL(A) of the infinite general linear group of A.

Also defined are the groups K o R (e - )

» i . J
For A a commutative C -algebra, these K'l(_?._)_ coincide with ni_(GL(A)_)

which are periodic of period 2. o b

Read topologically, i.e. as Ki(x). where X «— A, this periodicity says
that X and X = Ei‘z have isomorphic K-theories. Or, if ¥ is compact, that
X and its double _auspghsion SZ(X_) have isomorphic K-theories.

So, while considering the extraordinary [= dimension axiom not obeyed]
cohomology theory K"(X.Y), we can restrict ourselves to I = 0 and i =
-1. Thus the long exact sequences of this theory are exact hexagons.

Kebp In mind: " ECX) = KD (X) is the Grothendieck group of the abelian
category of complex vector bundles on compactum X, in £actét is a ring

e T nEoduet Tadidced “hy @. © Bnd B 0 §8 Liie dawe th
sugpensiom S¥X of X. =

ng for the

i
€K3 Chern character. There is a funclorial riag is‘omn*p}iism

aven

ch: K(X)e@t —— H (X;6).

For line bundles L this map goes L +—s exp (_cl (L)) where 01(1._) ig the

two dimensional characteristic class of the line bundle. ;-
The K-theoretic interpretation of Rc'dd(x ;@) now follows at once by using
5% because we have P

miexy = gt lcesx). 2
The next three sections show how Connes and Karoubi define cyvelic
characteristic classes, thereby congtructing an analogous "Chern

character” from the K-theory K(A) of any A into cycfic cohomology HC(A).

'_{L) Morita equivalence. The Hochschild and cvelic homologies of anv
F-algebra A are naturally isomorpghic o those of the algebras H‘_ (A) &#fF ¢

® r matrices ouver A, =

The lsomorphiesm ls induced by the cochain map defined by

nguaa .Fp&ap)- - Tr(i-‘.u'..'!?p).c(au, e’ ,ap).

U' - -

whenever F. e M (F), a. = A.
1 [ u L
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This Morita equivalence will quickly yield =L see (M) below — the

eyclic characteristic classes for K(A). 4

B
However, to construct the Chern character for all K (A), or dually for
all K ,(A), we need to observe also that, since GL(A) = M(A) = algebra of

il square matrices over A, we have a homomorphism of the group alsabis
"F[GL(A)] intoe M(A), and thus, by Morita equivalence, a mnatural
- homomorphism of the cyclic cohomology of F[GL(A)] into that of A.

(M> Cyclic characteristic clazses oi-‘ ‘projective A-modules. Given such
a module M we can find some r = 1 such that M is isomorphic to the image

of some projection P:-Ar —_— Ar. i.e. some ildempotent P = Hr(A).

Now consider the m-dimensional cochain Cn of I‘Ir(AJ. which ig zero unless
all the m+l variables are equal to P. This cochain is cyclic, i.e.
obeys .c.m-(-P. e Lt [ = )m cm(P s e BYe Aff m 18 Eten . Furthermore,

in this case, using P*P = P, it follows that the Hochschild coboundary
qu = 0. The cyclle cohomology classes

7§, » 2k
(¢, 1 = BC (ﬂr(ﬁ)) = BE=TCN),

can be verified to depend only on [the stable igsomorphism class of] the
module E and will be called itg cycllec characterlatic clagsses.

evern

The homomorphism ch: K(A) — HC (A) defined by [E] —s [ceven(E)] is

the requisite Chern character and is compatible with the degree 2
gsuspension maps S, thus there is alse an induced c¢h: K(A) — HDR(A}'

(N> Cyelic cohonnloagy of groups, Let Cm(:G‘) denote all [F -valued

functions of m+1 variables on G, and let & : @(Gj — 11'."“-.l {G) be the
ordinary coboundary.

Theoren. The cohomolagy HC(G) of the oyclie cochaln subcomplex
(C.C(.:G:)_,éj of (C(G),5) is related to the cohomology HG(G') af the

deft-invariant subcompi=sx (CG'(_G.J B) ef (C(G),5) by
Wironn m-2]...
HC ' (G) = ['_j HG (G).

In other words the second spectral sequence, of the Teygan double
complex of the cyclic vector space C(G), degenerates at the second term.

Recall now that HG(G) coincides with the cohomology of the classifying

space BG of G with coefficients F, i.e. the so-called cohomclogy of ithe
group G.

Thus we can use the Hurewicz homomorphism to go from the homotopy of

e i




BGL(A), which for G = GL(A) is essentially the higher K-theory of A, to
the above left-invariant eohomology, which injects by above theorem,
into all BHC(G)'s of degrees higher by even numbers

Theor=m. HC(G) is a direct swmmand of the cvclic cohomology HC(FG) o f
the group alsebra of G

Starting from nm(B(GL(A))) we can thus reach HC(F (GL(A))), from where we
finally go to HC(A) using — see (L) — Morita equivalence. This
completes the description of the Karoubi character for all of K(A)
[improving on Demnis, who had earli#r given a homomorphism of K(A) Iinto
Hocheehild cohomology. ] ' =

This character commutes with the degree 2 suspensions S5, thus inducing a
character in HDR(A)'o

Commeants

There are very many interesting applications of cyclic (co)homology, of
wvhich the following seem most appealing.

(1) Index theory and analysis on foliated manifolds. Our 1974 thesis
was motivated by the problem of finding a leaf-wise index bLheorem for
foliated manifolds. To do this it was necessary to define appropriate
characteristic classes

About 6-8 years later Connes succeeded ... the key idea being to ignore
the ™unreasonable” quotient space, and instead focus on a natural

*
non-commutative C -algebra. Cyclic cohomology was discovered by Connes
to solve this problem.

This material is best studied from other sources, e.g. Connes own papers
and book, and the book by Moarae-Schochet , but we note that on p.130
Cartier does take a very quick peep, without giving all definitions, at
the interesting example of the irvational flow on the Z-torus.

(2) Loop spacez. We know already that their equivariant cohomology is
i

a cyclic cohomology. Also, the pair (Xs ,&) iz Important for embedding

theory, and, following Witten and Atiyah, also for index theory ... as

well as for elliptic cohomology (?7)... which uses formal groups (?) for

each one of which there is the K-theory of Moravh (?)...and also loop

gspaces are basic for the string theory (7) of physics.

(3) Cohomology of Lie algebras. Since this is dual to de Rham the
connectlon with cyclle cohomologies Ils obvious. In. fact Tsygan
discovered HC(A) as the primitive cohomology of the Lie algebra al (A).
By theorem of Hopf the cohomology of Ql(A) is generated freely by these
primitive classes.

Realizations and classifying spaces
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: Given a finite set [or ' simpliEex ] 5 let S denocte
cf .Eilenberg-Steenrod, Ch.I1] the set of all f-u-nctiozls

X: S — Ik, zves xtvy =1, x(tv) = 0,

"equipped with the topology induced by the metric
Nx-y Il 2 = (x(v)-y(v))?
v Lves y S

[Each x is called a point of the simplex S, and its value x(v) on the
vertex v of o« is called its vth barveentric coordinate.]

Furthermore, to each function #: 8§ —— T between finite sets, is
agsociated the continuolis map :

8,: 8, — T,, (B, (X))¥) =L {x(w): we& *(v)).

Thus lower star is a covariant functor from the category Fin of finite
sets inte the category Japn of (metric) topological spaces,”

(B> However we will interest ourselves mainly in the subcategory # of
Firn, whose objects are the sets S = (0,1,..,8) of numbers, and whose
_morphisms &: S — T are order preserving mappings of these sets.

By a simplicial set A is meant any contravariant functor

A: ¥ — Fats,

from # into, the category of sets. [Likewise simplicial spaces ,
swmplictal groups, ete., mean c¢ontravariant functors from 4 into the
categories Jen, ¥asuns, etc.] We will also denote A(S) and AE): A(T)

* * * *
—» ACE) by S and 8 : T — 8§ .

*
We equip the disjoint union of the product topological spaces S, = S , S
&= 0bi(#), with the equivalence relation = defined by

(x,8" (¥)) = (@,00),¥), xe€ 8, , ye T, (8: § — T) = Morph(#).

The quotient space of equivalence classes is called" the realization of
the simplicial set A, and will be denoted by ]H = [This ig Segal 's
réformulation of Milnor's definition.]

Furthermore, each morphism ": A — B of simplicial sets, i.e..mapg T(S):
A(S) — B(S), 5 « 0bj(4), obeying the obvious commutation rules, has the
realization |[F|: |A|l — |B], which Iimages the equivalence class of
(xng)a X = S*s Y € A(S}l to that Of fxnr(SJt?) = S} = B(S)-

 Thus realization is a covariant functor from the category of simplicial
gsets te Jen.
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’ For example, each simplicial complex K, i.e. a finite set of finite
sets c¢losed under subsets, defines a simpllclal aset A(K) as follows:

Asgociate to each 8 = 0bj(4), the sget 5 of all &equences a: S =
0,1,.-,8}) —= wvert(K) with Im(a) K, and toe each (¢: T — 8) =
1. * * * *

Morph(AX), themap @ : § — T , 8 (a)(t) = a(&8(t)).

Theorem [A(K)| is homeomorphic to

Ky = {x: vert(XK) — [, E‘Es x(v) = 1, xlv) = 0, supp(x) = K},

-
.

squipped with the topology induced by the metric
- : 2
Hx-y 1 % = B, _o(x(v)=y(¥))

'__.I'n particular we note that |A._(S)] = 85, , where the S on the left side

denotes the simplicial complex consisting of all subsets of the finite
set S5.]

‘Remark. Any set K of simplices defines a subcategory of #in, viz, that
whos e objects are the [nonempty] simplices of K, with Hom(S,T) empty,
‘unless S = T, when it consists of just this inclusion. For this
category K, the next construction lg akin to taking the derived XK' of K.

P> By a chain in a category ¥ we mean either an object of £ [these are
the 0-chains] or a sequence eléiz..r?p Eits p-chaine, p = 1] of 1tg

morphismeg, with image of each contained in the domain of the ome
following it.

The Hochschild faces of a chain are obtained by composing any two
consecutive morphism or dropping the first and last ones [for p = 1 the
first face of 8: S — T is the object S and the second T]: thus e.g. the

first, second, and third faces of of the 2-chain 3182 are 92' 81-6‘2_, and

Gy respectively.

Also, each p-chain gives rise to p+l (p+l)-chaine by inserting an
idant.tts‘ morphisem at any spot: e.g. 8192., 'wh.er-'e-él = Hom(S,T) and 6!2 =

Ia om(T,U) gives rise to IS 1 ‘g 611,1,62, and dlazlu

Using the well-known equivalent definition of a simplicial set by face
and degeneracy operators we have thus defined a simplicial sef 4 —
| Feits, called the nerve N(€) of the categoary %,

The classifying space B(£) of the category ¥ is the reallzation |N(£)|
of this simplicial set. [This is a reformulation of Sezal's account of
 Grothendieck 's definition. ]

 Remark. Each p-chain of £ determines a commutative diagram in % with
a8 many aprows as edges in a praimplex: to do this simply I;L“"t ,}




1

—-—5" (2) There are many other interesting functors associated to a

other arrows as compositions. Thus the nerve of ¥ can be looked at as

~ the contravariant functor on 4 which assigns, to each s = 0, the set of
‘all such s-dimensional simplicial commutative diagrams of £. Looked at
‘this way the Hochschild faces of a chain corre#pond to the smaller
gimplicial commutative dlagrams obtalned by omltting the incldent
morphisms of any vertex of such a diagram.

€E> For example each group G determines a category £(G) as follows:

_Ites objects are integers s, and the set Morph(s,t) of morphisms. from s
to t is empty, resp. = 1, resp. = G, for & > t, resp. 8 = t, reap. 5 ¢
T gt
Theorem. [he classifying space of the categary E(6) coincides with the
classifving space

hd

BG = G¥G* .. *G* ... /G
af the group G

This classifying space, the quotient space of the deleted joinn over G of
the Infinite simplex, was introduced by Milnor.

1f one uses instead the category with one object * ,and with Morph(*,*)
= G, one obtains CxGx .. =Gx ../G. %

Comments

(1) The definition of realization, |A] given in (B) makes sense for any
contravariant functor A, from any subcategory of Fin, to the category
Fe4s [or to the bigger category Jen]. :

For many purposes, e.g. for defining (co)boundaries, it is the much
smaller subcategory A’U = 4 of monomorphisms which matters, [Note that,
besides this, each category also has the subcaisgory of spimorphisms ]
For example, & total ordering of the get vert(K) of vertices of a
aimplicial complex K, glves the contravariant Ffunctor Jg — Faéa

‘which maps each S to the set of ordered s-simplices of K, and the
realization of this 1ls again K .

Is there a conceptual definition of (celboundaryv th terms of the algebra

af J’Bs’—‘

The bigger subcategory @ad of Fin, obtained by equipping each S =
Obj(Fin) with a total order, and considering only order preserving
morphisme S — T, is also useful. However tlié¢ realization space of each
contravariant functor #ad — F=t5 can be seen to coincide with that of a
corresponding contravariant functor ¥ — Ffein, '

simplicial complex |, e.g.
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s . ' M
(i) Asgsoclate to each S = 0bj C.A'B)_ the set-S of all monomorphisme S5 —

vert(K) with image in K. [No total order on vért(K) is used.] The
realization of +this functor u_if'a — JSato is not K, but it has some

additlonal top-dimenslonal "holee": 8o a different (co)homology-

(ii) Choosing some total order on vert(K) assoclate to each S  0bj(4)

. g . ol

all order preserving maps S — vert(K) with Image in K., Thisd# —
Feinig the simplicial set most often associated to K, and its
realization ias K_. T

(iii) Choose some total order on vert(K), -a_md an r =2 1. Associate to

each 8§ & Obj_(.ﬁf_a.) all order preserving maps S — vert(K) with image in K,

= .
and such that each vertex repeats at most ‘r times. For r = 1 this
functor "'V-G' — Jebs coincides with the example [from Eilenberg-Steentod]

given in (1).

. The realization space of this contravariant fupnctor sesms to depend onily
on the parity of o
Thus for all odd r we expect the realization space to be K,. For even ¢

it would be interesting to work out the realization, for It would give a
gecmetrical bagis for the second part of the following.

Bier’zs Lheorsm For- r odd, resp. r even, the (colhomalagy of dbove
Junctor coincides with the (codhomologyv [of the link of the empty
gimplex] o K, resp. the total Ccoadhomology of K {= the direct sum of
the cohomaoslogiss of all the links of K

g

[Functors (1) and (11l) were conasidered firat by Bler.]

(3) Segal also gives very elegant definitions of gsome spectral
sequences, e.g. one generalizing that defined by Leray for [open etc.]
coverings of a space. And also another one, generalizing that of
Atdiyah-Hirzebruch, which relates a generalized (co)homology of a compl ex
to ite ordinary (co)homology.

(4) Apparently Quillen's "homotopy colimit” (7) is also nothing but the
classifying space of a category. See paper of Ziegler-Zivjaljevia for
this and applications to complements of affine hyPerplane arrangements.

(5) In "Formal theories are acyclic"” we used something very close to
‘the gimplicial-commutative-diagram description of the c¢lassifying space
of a category.

-

E CIRCULAR CLASSES
|

S —— . St i e o= o r_." P e SN

| These occur in the very last section (pp.274-282) of Wu's book.

= CA> Definitiomn Let (i(M) = Emnb(D,M) dencte the space of all smooth




embesddings of the disk D <« £, in a ‘zmoothH n-manifold M, ftopologized as
the sybspace of C(TD,TM) determined by the t.'l_ér'iuat{ue £ — f,, and

,ggglplpnd with the cirels aotion (elg'f)ﬁz) = 'f'('e."ﬂz.‘-l-.‘

The classes In question are the (cup-) powers,

o) = B mamy/stizy,
of the characteristic class o (M) = o° (M) of the associated principal
cirele bundie . Alternatively, these are the wusual characteristic
classas, in egwivariant cohomalogy, of the free Sl—apaca M.

Key obszervation. Each swooth embedding £:M — N induces an eguivariant
map Qf :0(H) — QN), under which

ey XNy = o).

So if, e.g., M and N are such that o™ (N) is zero while of (M) is not,
then M will not embed in N,

Wu turna now to the queatlion of computing these clasgses.

€B)» Egquivariant cohomolosgy of ﬂ'(ﬁ?m). _Consi-der_ the Stiefel manifold

V([f-?m) = {(v,w) = &® « ™ v =1 = fwll , <v,w> = 0},

of orthonormal 2Z-frames of ®", WNote that under the free circle action
eﬂi(v.u) = (cosd,.v + gind.w, —slng.v + cog&.w),

the gquotient V([F’.m)jsl ig the Grassmann manifold of coriented 2-planes of

ﬂ?m. Note also that V(E‘m) comes with the nvolution (v,w) «— (w,v).

Identifying each (v,w) = V._(ll?m'} with the regtriction to D of the linear
embedding © —s K" defined by 0 —> 0, 1 — v, and 1 — w, we will
think of V(®™) as an invariant subspace of Q(R™).

 Proposition 1. There i{s an eguivarlant deformation retraction of a(eR™)

ento its compact invaritant subspace V({Ffm). A

 Proof sketch The first step uses transiation to retract ﬂ(mmﬁ_) onto the
subspace Q_U(IEEJ of smooth embeddings D — ®"™ which map 0 to 0. Next,
for each compactum’'s worth of embedded 2-disks of Foy, we find a

common £ » B, such that after shrinking ~ by factor £, the flat
projections of all these 2-disks, on their tangent spaces at 0, are
still embeddings. The final step is to normalize these flatly embedded
2-disks to linearly embedded 2-dlsks. =

This retraction [which used the fact that the disk embeddings are

67



~smaoth] allows Uu to use the information available about the cohomology

of V(R™) and V(R™/st

*
Proposition 2. For the frees Sl-s-p'acé VIR™) one has, with sither Z ar ©
bosffictants, 6™ % = § and- o™ F = 0.  Alee; for m odd and bigger thon g
the pational eguivariant cchomaology ring of V(ﬂ?m ) is generated by o, and

the tnuolution of V(i?'m) switches the sign of o
The observatlon of (A) then glves tHe. following vanishing criterion.

Proposilion 3. If ths smooth manifold n" efnbeds smoothlvy in B then

™l e 12" amy/stizy (s aero.

{C> Rational Pontrjagin classes. Let E — X [here X is any polyhedron]
be a real vector bundle with flbre dimension n, and, with respect to
some fibre metric, let V(E) be the associated bundle of ordered
octhonormal 2-frames of the fibres, equipped with a fibrewise circle
action and Invelution as in (B). '

R S A RN | o WY = Rap— —

The circular class o (E) of the free Sl—a'pa-ce. V(E) can be used to define
‘the rational Pontrjagin classes of E — X as follows.

Proposition 4. If n is odd and bigger than 2. then there are classes,

p, (B) = H'(x;@),

uniguely determinad by the asguation

n=-3

n—1 » ey S -
a — (plj.o . o) Sl (p(n'-l)/z) = 0,

Z2(n-1)

saticficd by their pull-backs n'cpk)'a in ® (veE)y/stiey.

Proof. Since n is odd and bigger than 2, the cohomology of the fibre |

Y(ﬂ?n)}'s:l of V(E)/Sl is a polynomial algebra truncated above dimension
n-2 by Proposition 2.

So, by the Leray-Hirsch Theorem, any cohomology clasgs ¢ of V-'(lesl can
be written uniquely as w

Bn—2

L * * :
c = _(_cu) + n (.cl).oi»... + 7 (e ).o

=2
For the case ¢ = _on-l under c¢onsideration, the coefficierts of the odd
powers of & must be zero in this equation. Thie followa by applying the
involution of V(E) to above equation: & becomes -~ o, but all
coefficients are unchanged, because the involution commutes with n.=s

If n is even and bigger than 2 then R (E)'s are defined as above by

using E4K instead of E.
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The components, of the inverse of the total-class 1 + Py * Py bt ., are

called the dual Ponirjagin classes of the vector buhdle E — X.

FProposition 5. T§ the (m-1)th powser of the circular class o(E) of a
n-vector bundie E — X is sero, then its dual Ponlrjagin classes vanish
in dimensions bBigger than ZI(m-n)+l

I‘hough we 8till need to learn its details this follows [Uu, p.281] by
"an easy calcuiation

o
.

[Probably gimilar to an ecarlier caiculation. vhieh gave v_.anl'ahina of
some dual Stiefel-Whilney classes, as a consequence of the vanishing of
some mod 2 classes of Van Kampen].

e the converse of the above implication [ané'l likewise of "Van Kampen
zero” = "SU zero"] false 7

<D> Smooth embeddabllity eriterion. We now use (C) when X is a smooth
n-manifold and E is the {angent bundle of M,

Froposition 6. A swooth n—manijold M embeds smootldy in r® only f the
(m=1)th power of the circular clazs 6 (THN) af its tangent bundle is =sro.

Froof. By uasing the sxponential map, In a small neighbourhood of the
zero section, we can find an equivariant map

VITM) — Q).
So the result follows from Proposition 3. =

Now using Proposition 5 one obtains at once Pontrjagin’s embeddability
eriterion involving vanishing of fthe dual tangent classes of M: this
also follows from the Whitney sum formula which shows that the dual
tangent classes are the claases of the normal bundls of an embedding.

[In the mod 2 case one had the analogous Thom ewmbeddability criterion
involving vanishing of the dual Stiefel-Whitney classes of Lthe local
deleted product of X, 1.e. a small deleted neighbourhood of the diagonal

“of XxX. The analogy is perfect because the tangent bundle TM is nothing

X -

but the germ of a neighbourhood of the diagonal of MxM.]
\i"
Comments
(1) A topological version of the above should be very interesting. For
instance, it may be possible [suggestion of Sullivan] to Arrive at the

topological invariance of the rational Pontrjagin classes via these
circular classes and cyclic cohomology !

W.-T.Wu confined himself to the smooth cage only because then there were

no tools available to compute [e.g. the equivariant cohomology of the

gapace of all topological embaddlngs of the 2-disk In a euclidean spacel

but now — with loop spaces everywhere ! — the situation might be very
69
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| different ? . )

A natural thing to do in this context might be to use as GX the space of
all embeddings of the circle in X 7 Or, maybe, the space of all non
constant maps of the circle into £ 7 [The latter generalizes notion of

deleted product of X, which was all non constant functions Ez — X 1]

(2) 7The correlation to Wu's [notation-thick !] treatment is as fouows
(A) = pp.274-6 t111 Theorem 1.

(B) = further +till p.277, Corollary [the important retraction of
Proposltion 1 1a on top of p.'277]. - X

(C) = further till p.279 end "+ "easy calculation"™ remark on p.281 [the
casually given Lemma 3 = Proposition 4 is most important: we ignored its
generalization, Theorem 3, which is trivlial iIn light of the above
retraction]. o

(D) = réemaining [p-280 looks at TM as germ of the dlagonal of MM, and
p.281 gives another equivariant map V(TM) — Q(M) : also given Is the
application of Pontrjagin’'s criterion to embeddability of complex
projective dpacea in eudlidean apaces].

SERRE SPECTRAL SEQUENCE=S
From Fuks' exposition:

€AY BASIC PACOTS needed for most applications are the following.

€i* To any fibration F =iy E L B [it suffices to assume that s has

the homotopy lfiing properiy] one can  associate a sequence of
differential groups [= cochain complexes] _('El.di'), i = U, with H(.E-ij =

Ei-+1 for all i, which converge to the additive cohomology H(E) of the
total space.

€1i> Each of these terms E has a finer grading than by dimensions m,

namely by pairs (p,q) of non-negative integers such that p+q = m, and
the differentials [= coboundaries] di' which are pure with respect to

this finer grading, have bldegree (i,-1+1).

Cliin The second term Ez

coefficiente in the cohomologies of the fibres ¥, so, if B is simpiy
. connected , one has

is the cohomology of the hage space B with

Eg'“ = #P(B) @« BYE).

¢ivd There is a product defined in each Ei. which is graded-commutative
with respect to the dimensional grading, and sueh that each di obeys the
product rule of derivatives.

cv) In Ez this product iz the one detarmined by the cup products of the
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n

. base and the fibre; however the produet of the final term E'm can be very

different from the ¢up product of the total E-pace.
L

~ €wid» The construction is functorial, i.e., a fibre morphism from one

fibration to another induces a pull- back morphism in their spectral
gequences .

1 * g
- &wii> The projection of H(E) on its summand _l;%' . followed by the

inclusion EO'" = Bg'* = H(F), coincides with the map H(E) —» H(F)

induced by f‘ibr-e inclusion in the tbtal space.

{vilid The natural quotient map E Sl — E;'U s failowed by inclusion in
H(E), coincides with the map K(B) —s H(E) induced by the projection n.

From this it follous that if a fibration wlth connected £fibre has a
0

section, then 'E *T is final.

2

xd The last non-trivial differentials on the D0th column, Ii.e. the
ones which connect It to the 0th row, are called the transgreszsions of
the fibration. Theae are defined only on a subspace of H(F), with
values in a quotient space of H(B), i.e. they are "partial many-valued
functions™ from H(F) to H(B). Viewed as such they coincide with the
composition of [a suitable restriction of] the connecting homomo:‘phlam
B(F) — H(E,F) with the correapondence inverse to the map H(B,pt) —
H(E,F) induced by the projection.

We'll gsketch constructions of such gadgets im (C) and (D), but first
we'll play some

B> SPECTRAL TIC-TAC-TOE. Spectral sequence calculations are done best
two-dimmensionally. The simple ones below in fact essentially require
only two marks: cresses "x" to denote the coefficients F (say &), and
the circles "o" (or empty spots) for 0.

{B1>» We start the proceedings with the fibration

& +1
si = SZnhl 1 rp®
whose projection n maps the points (zl, o ,sz.. ]:1'.1|2 £, o+ |A1r.'n|2 =1,

#8*1 of €, to the points [z,,9.. ,z_] of CP". [For

ICLELE S8 the Hopl Tibsatlen Bhe——ey v & [ gl ;

of the unit sphere S

Proposition 1. The multiplication of B (CP") is determined, by the above
Fibration. ]

Proecf. Since H'm(lt?n_) is £ or 0, depending on whether m is even or odd,
we have

& * 6 X B .. O
i n > 1
EZZ =R (EF )0 (8°) = %X 0 %X 0 .,: © X ,
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;.
Egtl._ii_, zzp+2'° , 1< p< 26-2,

o . _ O . ~
because only then can we get E-m = H (8 ¥. [So E‘3 = Em.}

" Now if e is a bagis element of H (CP o 0 E ]. assume inductively that

we have checksd that a" 1, i ,n. ig a bula element of Ezj ZGC!‘“)

[= azi 2oy Lot BR iR Basiv. SLenaEL GE Eg ol 1= glesty] suen that
d‘zl:g_) = e¢. Then g. ej ls a basis element of Ezj 2, 1, and so

d, (g.uj—lj = dzcg).eJ"i W dztaj TR O e 8.0 = o

is a basis element of ﬁzj(CP *) g" 0 . Ged

{B2)» The loop =space GX of a path connected space ¥ having a

dl#tinaulshed point xn. i.e. the space [wlth the compact-open topology]
of all maps S — X auch that 1 — Xg enters in the Serre fibratian

ﬂx-ip EX -L-o X,

where EX is the contractible space of all paths starting at X and
mnaps any such path to Its end point.

The homotopy sroups of X and (X are related by

o (OX) = m_(X),

which follows from the long exact homotopy sequence of the above
fitration.

[In fact the equality ﬁm(X)- g% i .. N¥) = the number of path
components of the mth itervated loop space, is frequently chosen to be

the definition of nm.(ﬂ).]' “

Proposition 2. Hm(ﬂsn) = Z if m is a multiple of n-1 and is zero
otheruwise.

Proof. Since the homotopy [and so (co)homology] of as® is ‘h'xvi.al below
dimension n-1, we knou the two non-trivial and identical columns, of the
second term Ez = H Cé‘)@ﬂ (l'!gij of the Serre fibration of §'. below
height n-1:
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. * i y 1 .
But Ez-='En has to collapse to H (Bsnj = £ under dn: this forces the 7

of the first column to be =, and its next n-Z spots to be o's. The
other column being identical, we goV know both columns below height
2(n-1). : :

Working upwards like this we obtaln the entire first column, i.e.
) 3 11
0 (™). qeud. "

A similar argument shows EF(GX) Hﬂ (X)), m = 2n-2, for eny X whose
cohomology is trivial below dimenalon n.

B3> Cohomology of classical groups. Recall that SU(n) is the compact
(Zn-1)-dimensional manifold whose points are all n<n matrices A over ©
such that },kt = I [i.e. matrices whose rows are mutually perpendlcular
vectors of c® of length 1] and det(A) = 1.

Praposition 3. The graded algebra E* (SU(n)) is isomorgpiie to the
truncated axterior algebra on generators az L éa_. Frall - en in dimsngicns

3:5, ... :Zn-1, respectively.

Froof. We use induction on n, and the spectral sequence of

n an~%

Sita~1) ——= SULR) —as 5 .

where the projection m maps each matrix A to its first row. [SU(lj =
{1}, and, for n = 2, the above n# lgs a homeomorphism, so SU(2) = ..]

4 s .
The second term EZ = H (SU(n-1)»H (Szﬂ 1) consists of two identical

wolumns, and it is clear from the inductive hypotheslis, that as & ring
It is precisely the exterior ring described: the new eh sits at the

'(zn*l,O) gpot, and ei.eJ = —ej.ei by cup commutatlivigy.

Thus the required result is equivalent te saying that the spectral
sequence of above fibration degenerates at the second term.

L

Obviously we do have E, = Eyn-i- What we need to check is that d, . is
zero on the Oth column. In fact, since it is & derivation, it is enough
to check this on ite mult;plicatxve generators ® s - a8 41 but this

follows at once by dimensional considerations. ge.d.

Remark 4. Analogous degenerescence results yield the cohomologwy
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algebras of U(n) [one now has an extra l-dimensional generator e, 1 and

Sp(n) [when the exterior algebra generators are in dimensions 3, 7, ..].
®

Integral cohomology of 50(n) is harder, but over the flellez cf two
‘elements, the same argument, slightly modified, yielda the following.

 Propesition 5. The graded uvector space B! (.S_'O(n);frz) s tgomorphic to

Cthe the underlving vector space of the truncated exierior algebra ouer

'Eé on generators €105 e . in dimensions 1,2, ;.. ,n-1,
respectivelv s W -
For O(n) = union of two copies of S0(n), one also has an additional

zero-dimensional generator eq-
-

[Q. Does one in fact have here, and in the generalization given in (BS)

below, an algebra lsomorphlism 7]

Agaln one proceeds Inductively employing the fibrations

SB(n=1) —— SOCAY ——es ST

whosge spectral gequences do degenerate at E However now the vanishing

. 2’
of dn—l' on the top most generator e 2 of the O0th column, does npnot

follow by a dimengional argument.

Instead one compares with the tangent sphere buandle Vn bz Sn—i: this

is done by mapping each matrix A of SO0(n) to its first twe rows, which
amounts to the total spacde Vn 2 of this tangent sphere bundle, ete.

€843 dOy=sin 7 Wang sequences. For a fibration of which the fibre/base
1 a sphere [e.g. for each of the above fibrationsl!] it is possible to
summarize [almost] all of the information of its spectral sequence in a
long exact Gyain / Wang sequence.

To obtain the Gysin sequence of = g, Ve note that Its
gpectral seguence has only twoe non-trivial rows, viz. the 0th and nth
rows, and each of these is a copy of H(B). So E = E+1 ., and its

*
cohomology under dn i the final term ﬁm= H (E) of the sequence.

+1
The two rowe of Ea give, for each m, a ahort exact sequence;

coker(d . ) — H™(E) — ker(d "

n+1 n+1)i

and concatenating these one gets the required long exaclt sequence

m-n—1

e BB =i MUEBY — BELEY ST M) ™ N S
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in which the connecting homémorphisms are d‘n+1'z.

The construction of the Wang sequence is exactly similar.

CH53 Cobomologzy of Stisfel manifolds V (iR) =V . 'I’ha‘sa consist of

n,q
all sequences of length q of orthonornal vectors ofIR . thus at one
extreme we have V = 0O(n), and at the other V = ‘3:x 1.
n,n o

k
Froposition 6. The graded vector ui»‘?.'?ate H (V(n,q)',i}fzj ie isomorgphic to

the wunderlying wvecior sSpace’ ai the truncated sxterior algebra on

generators en—q' o g in dimensions n-g . .n-1l resgpectivelv.

Thia le& proved by an ' laductlon on q usglng the 'spherlcal fibratlon

Snfq WRTTE, —s V. A
B'.Q_. n.q-l
Lgaln. to establish the requiste degenerescence, extra effort ls needed
on just one generator: this consists of comparing with the case q = 2 of
tangent sphere bundle of (n-1)-sphere. Then [over &£ ] this differential
is multiplication by 0 or 2: more generally, for the tangent sphere
bundle of anv M, this differential is multiplication by the Euler
charactervistic of M.

€Y SIMMPLICIAL FIBRATIONS. In case the projection nn ig a sgsimplicial
epimprphiam, we refine the dimensional grading C(E) = }"_mtfn('ﬁ)'._ of
cochalng of E to a finer grading

SO = (p.q) c+fc,

where Cp"q(E) denotes the subspace of c¢ochains spanned by all
(ptq)-dimensional simplices -~ = E having filtration filt(ev) = dim(fr)
equal to p.

A double complex. The coboundary & of C(E), which obeya &+45 = 0, can be

written ag a sun rfrn - uz. where ‘50 and 61 are homogenous with respect to

this fine grading, and are of bidegrees (0,1) and (1,0), and obey

0(5 = 04

S, = G b, = & ab, * "

0°“p §953 % Syedy 4Dy

A decreasing filtration, Let C LE) = }: Cs'q_(E'), be the subspace of
C(E) spanned by aimplices of Eiltra.t.l.on :. p. ) We note that 6(Cp-(E-_)) -
C_p(-E), and that

I

C(E) CulE) = CI(E) 2 haid tN(E) = 0,

wvhere N > dim(B).
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The reguived spectral sequence is that of this decveasing filLratiom

I.e. one flrat sets -

PG P+ py paPHq
By~ = iEs (E)f0§+1

with dn-. EU — Etl being Induced by the coboundaries &: C'p(E) —t 'Cp_(-E'-) of
the filtered complex. Note that d is homogenous of bidegree (0,1) [and
coincides, wunder “the ldant;fxcatl‘on Eg.'q = Cp'q(Ej given by the

canonlcal basis of E, with the -50 considered above.]

Then, for each r = §, let Zp b I Cp+q (EJ/CP consist of all cosets

containing an x whose coboundary 6(1:) has filtration > pir: thus this
is a sequence decreasing from E to subspace of cosets represented by

cycles. [The definition of d_: Er — E_ uses this x s &x.]

And, for each r = 0, let B'? = "I (E)/C[T consist of all cosets

contalning the coboundary Sy of a y having filtration > p-r: thus this
ls a sequence increasing from 0 to the subspace of la consisting of

cosets represented by coboundaries.
So if ve define

Pyl _ oPs9 jpPed
Et“ = z!‘ "Br

then it is clear that these gpaces "decrease”™ and finally becoms .‘:.'n =
H(E).

0f course to check all the facts of (A) much more work is required [e.g.
one needs to define dt_’a as indicated above to precise the "decreage” of
the E.r a Into H(El,‘) = H(EI-HI.)]'

(b> SMOOTH FIBRATIONS. Uhen F, E, and B, are smooth manifolds withn a
smooth map of maximum rank, and we want to work over F = [E, then the de
Rbam complex (A(E),d) of E can be used. e

Ue say that a differential form © = Af (E) is of filtvation = p Iff it

vanishea at any point whenever more than r-p of the tangent vectors are
tangent to the fiber. "

The formula for d shows that the subspace AP(E}' of all forms of

filtration = p is preserved by d. Thus once again we have found a
decreaning Tiltration

ACE) = A (E) 2 A (B) = ... = A(E) = 0,
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where N > din(B). x|

Its spectral sequence turns out to fulfill the requifementas of (A) [e.g.
the required products in 'Er_ are simply those induced by the exteriov

- product, of differential forms].

Canunents

{1) Analogues of Stisefel mif‘oldﬁ‘ withh q bigger Lhan o G.ége;-a.l

position seguences in ®R® of lengths '= n constitute GL(n), which haa the

compact retract O(n), and, more generally, if lengths are= q = n, we

have the compact retract Ve L It is egually interesting (cf.
»

Tverbersg-Sierksma) fq consider ¢ > n @ are t.he- cohomologles of such

spaces known £

(2) _Spect.ral sequence of a foliated manifold, This is defined just as
in (D) and was introduced by Sarkaria in 1974, Since now no nice B or F
is available there Is much that is different from the case of

{ibrations, However a number of facts, e.g. finiteness, duality, etc.
emerged under suitable conditions. However the complete story got
undersgtood much later by Connes-Skandalis . An exposition of part of

their work is in the book of Maoore-Sachochet .

(3) Simplicial Hodge theory and duality. The tcreasing filtration

0 s C k) & CL0E) oave CPrEY & za{pc"q,

of the double complex of (C) is preserved by the dual boundary @ of
CLRY. [The duality of & and & being fixed by the canonical basis of
C(E) provided by the gimplices of E.]

1f one is not interested in products, this spectral sequence, whose

differentials a* point the "other way", and which converges to the
homalogy of E, iIa just as good., However, if products can be sacrificed,
one c¢an dlspense with both filtrations!

The double complex determines anolher nice spectral sequence whose Larms

are equipped with dual pairs d_, d* of diffeventials:
,";!

Let Z,(E) and Z*-(E_) ‘be the subspaces of C(E) conszisting respectively of

all cycles and cocycles. UWe know that additively {(codhaomology

e

HOE) = 2,(B) N 2 (B):

8
For each v & C(E), let =a () and _a._,.-(w-) denote the smallest and biggest
filtrations of the simplices of w. Consider the subspace Z,(E) of C(E)
consisting of all w such that s W) — & @y) = r, and likewise the
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