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E {1) Consider any subset # of the power set #(X) of a set X which is

F . cloged under interections, unions, and complements. Equip £ with the
addition A + B = (A \ B)uU (B \ A) andmidtiplicotion A.B = An B.

Since A + A = A and A.A = A we seé¢ that & is a Boolean walgebivra, i.e. an

algebra over the field IIF2 of 2 elements in which all elements are

idempotents. A theorem of Stone [see p.168 of Kelley] agsures us that
all Boolean algebras are isomorphic to such algebras Z = P(X).

c

e —

. A closure algebra iss a Boolean algebra equipped with an idempotent
[. obeying Kuratowski's conditions with respeclt to the order defined by A =

B iff A = A.B. A theorem of MakKinsey-Tarski [Annals (45), 1944] assures
l-‘ ug that any closure algebra is isomorphic to a Boolean algebra & = #(X)
- preserved by the closure operator of a topology on X.

(2) “The fres closwre plashra generatecd by one olvonend hos 16
| elements" | This "theorem” occurs on page 180 of Birkhoff 's "Lattice
_ Theory”, and is attributed as being in Kuratowski's thesis [Fund. Math.
S 3 (1922), 182-231].

1t implies that, in any topological space X, and for any A= X, the

algebra XE(A) = *P(X) over IIF2 obtained by applying the processes of

closure, complementation, and intersection, has at most 16 elements [the
. additional sets being obviously none other than @ and X] and so is at
'ir"-' most 4 - dimensional !

Now XE(A) contains in particular A’s boundiuy bd(A) = cl(A) n cl(A'),
which does not in general lie in S(A). Regarding bd: &2 (X) — & (X),
which is not in general Gz—linear. an interesting fact is that one has

bdebdsbd = bdsbd always [see (13), p.56, of Kuratowski's "Topology”].
Thus the semigroup generated by bd has only two elements and one has
(bd)¥(A) = 0 iff this equation holde with t < 2.

' However 8.8 = 0® [the registersd trademark of zolth contuwr-y mathematics
!] certainly does not have the analogue bd bd = 0 and bd bd ia quite
distinct from #-8 even for a geometrical simplex: it yields its boundary
rather than 0. For ©@ = [E one has bdabd(®) = 0 while bd(@d) = [R.
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¥ B abd { SLILEIL ) = U,.‘f‘i = U
. (3) Unfortunately the above "theorem" f‘{rom Birkhoff's book i= false !
In fact in his thesis [op. cit. p.197] Kuratowski gave an example of a
. subset A of a space of ordinals: for whidch E(A) is infiaite | [Later on
' MeKinsey-Tarski also made use of this same example !] It is surprising
that Birkhoff, who gives these as his source&, made above mislake |
[Even if one adds to the set of [K above given, which yielded 14 sets,
the interval [4,5], one geeg already that E(A) has at least 17 elements.]
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Kuratowski's result was understood better by Hammer [see Kuratowski's
- book p.43 for ref.] who showed [in manner indicated above] that if i 1=
L an order reversing tnvolution of a possl P and p & an order presorving
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and expanding idoempolent of #, then the sewigroup Sp gencrated by i and

p has at most 14 elements:. [There are also two refs. to a Chapsnsaa who
apparently studied the semigroup S(X) further.]

(4) There might be some homology, defined in terms of [the closure
operator of] the topology 7 of X, such that %}(X) is the free abelian

group generated by the compoiwenl=s [as against the path componciis ] of X,
and which need not obey the "homotopy axiom”, but which coincides on
polyhedra with the usual homology ?

S —

Since bd(A) = 0 iff A is open and closed, it seems that bd still might
be involved in the definition of such a homology ? Also the homology of
bd: ker(bdebd) — kerfbdebd) : i.e. the homo{ogy obtained by cutting
down #(X) to the mod 2 subspace :er(bdobd), %ight be pertinent ?
o 77 hal e ot [E -fie e |

Another problem: can Hammer's result be augmenlted by an interesling
characterization of all [or say all order-preserving] idempotents p:
F(X) -» #(X), pep = p, for which the semigroup Sp is finite? Also, do

| such gquestions tie up with some (?) known finiteness theorem re Boolean
- | algebras of gome (?) Cokwars, to which Bourgain once alluded ?

' Another Interesting problem might be Lo explore the Kuratowskl sewmigeouy
I of a space [i.e. the definition X = S(X)] from the categorical
i viewpoint, e.g. it seems that this simple topological invarlant provides
1 obstruvctions Lo embeddakllity of an X in Y7

(5) It is convenient to employ the iniei wval notation for any falally
ordaia! st X, s0 e.g (.,x] will dencote (y € X : y = x}). [Some care is
neceggary however to distingulish an interval (a,b) from the ordered pair
(a,b), and also to distinguish intervals in different sets: e.g. the
interval (0,1) of ordinals is empty, but that of real numbers is
something else again.] The ordoer Lopuligy of X is the one generaled by
all intervalg of the type (.,x) or (y,.).

Theorem For any tolally ordoicd sotbt X the interunale [x,y] are compact.

Proo f Let £# be a family of open sets of [x,y] which covers it, and let

*« ¢ be the supremum of all 2z such thal some finite subfamily of ¥ covers
Ix,2z1. Now choose a member U of & containing ¢, and a z in I slightly
to the left of ¢ such that [z,c] is in U. Add U ¢to a finite subfamily
covering [x,z] to get another finite subfamily covering [x,c¢]. Unless c
= y this finite subfamily will contradict the maximality of ¢. ged.

Note that for [, which is an example of a totally ordered space, the
above result implies the classical Heine-Borel Theorem, i.e that a
subset of real numbers ie compact iff it is c¢losed and bounded.

Recall also that the standard covers argument shows that any compaci and
Hausdor ff X is normal, so, for any ordered set, all intervals of type
[x,y] are normal.

(6) Examples involving ordinals. In the following all intervals are of

ordinals, and equipped with the order topology, with w, resp. fI. being
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the first infinite, resp. uncountable, ordinal. [For the definitions of
other highlighted terms see Kelley.]

C [o, 2]
(i) No sequence in [U.Q)Iconvergea to its boundary point (.

(ii) Both [0,£2] and [0,{) are normal but their product is not.

tiiil) Though the rectangle [0,(i] x [0,»] is normal, the subspace
obtalined from it by deleting its corner (£1,0) lg not.

(iv) The Stone-Cech compaétlfication of [0,02) coincides with its
one-point compactification which of course is [0,(].

(v) The space [O,Q)' is uniformizable, and there is a unique uniformity
compatible with its topology, and with respect to this it is not
completeo

For: mére aee pp. 49-30; 59=60, 78,  1331-2, 163-5, 167, 172, <204 and
Appendix of Kelley.

(7) Frechet’s convergence axioms. For a topological space X the set &
of all pairs (S,x), where 5: D -3 X is a net, x = X, and qu’S(d) = X,

has 1he following properties:

1> 1£f (S5.%) ia such that S(d) = x for all d, then (S5,%x) 8.

€iid> If (5,x) = & and T is a subnet of S then (T,x) = &.

iii> (S,x) &« € implies (T,x) &# € for all subnets T of some subnet of S.
€lvd> If S: D x E — X and T: D— E are such that (S(d,.),T(d)) « ¥ for
all d, and (T,x) « € for some x € €, then there is a function f: D — E
guch that (R,x) € £ where R: D-3 X is given by R(d) = S(d,f(d)).

Kelley shows that conversely a set & of pairs (S5,x), with S5 a net in X
and x £ X, which satisfies (i)-(iv), determines a unique topology on X
such that lim S = x iff (5,x) = §.

[As a matter of fact Kelley’'s (iv) is more complicated : his iterated
limit theorem involves a function S(d,e) with d « D and e = Ed' a
directed set depending on d. Replacing each Ed by E = UdEd. and

extending § to D x E by imaging new points,  (d,e) to the limits
limeS(d,e), it seema that our version, i.e. axiom (iv), is equally

good. ]
To see this he defines p(A) to consist of all x « X such_that (S5,x) « €
for some net S in A. This self-map p of #(X) is shown to satisfy

Kuratowski's condition [with pep = p following from (iv)]. So there is
a unique topology such that p(A) = c¢l(A), etc., ete.

(8) Urysochn's theorem characterizes second countable metric spaces. To
see this note that Hausdorfness is obvious and that it is also true that

a metric space is normal:

This follows by noting that, for any A = ¥, the function x +— d(x,A) =
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d(y,l)[ * d(x,y) by the triangle inequality. .,So closure of any A
congiats of points at zero distance from it, and two disjoint closed
* sete can be contained in the two disjoint open sets consisting of all
: points of the space nearer to one of them in comparison with the other.

}\nnf{d(x,y) vy € A), distance from x to A, ijs continuous, because |d(x,h)

S

l

-P‘

t‘J"h,eﬂ- Hilthard ot (o thus a universol second cosmibohlea metric space, in
‘2\ the sense¢ that any second countable metric space ambeds In It.

‘Ab&ttuc! characterizations of non .second countable metric spaces were
(diacovered later by Smirnov , Nagals, et al. -

Sy

t3¢9) Uith the product topology, the space P(N) = 2 of all subsels of N

ialz

[and more ganara]ly'xm where ¥ is any topological space] has the
1propetly that any c¢ountable power of this space is homeomorphic to

~§. itself.

L}

" We can think of the elements f of PN ) as all sequences fiN — (0,1).
Associating to each f the corresponding binary decimal wve get a

Tk vErew

3 continuons sur-jection of this space onto the unit interval. Using above
4 homeomorphiam, and a countable product of this surjection, we get a
continuous sur jection of F(IN) onto any countable power of [0,1].

e TA.

On the other hand if we think of the elements f of éN as all sequences
f: N -—- (0,2), and associate to each f the corresponding ilernuary
decimal, we get an embedding of F(N) in [0,1], the image being the well
known Casalos sel, which is obtained from [0,1] by successively excluding
the open middle third intervals.

ol (e S

The aforementioned continuous surjection of F(IN) onto any countable
power of [0,1] can now be extended, by using the arc connectedness of
the cube, to these excluded intervals, thus obtaining a Peano curve ,
(// l.e. a contlnuoudg sur jectlon of [0,1] onto any countable power of [0,1].
]

In fact [see pp.164-65 of Kelley] any compact and arc connectsad metric
space ie a conptinuous image of [0,1].

WVHITEHEAD GROUPS

Talk of 16.4.93 by F.' Farrell [based on joint work “With 1L.F Farnee ]:

12 In his famous work on combinatorial homotopy, JhlLl vieic e o
defined, for each group I', an abelian group Wh(I") by

Wh(l') = 1lim f'\GLn(?T‘)f[GLn{ET"),GLn(EI')].

It measures the stable obstruction to reducing a matrix over &I° to a
diagonal one having *(gp.elts) only.

2> The algebraical task of computing these groups was well-begun by

Whitehead's student Higman, and essentially by continuously developing
Higman's ideas, much is known. For example, Bass showed that Wh(Z& /pff) =

134



|- - - I e —— —— = —_—

|
|I
If|l

|free abelian group of rank (p-3)/2, while Basglellei-Swan showed that
Ifor any free abelian group it is zero, and later Stallings showed it is

mzero for free groups. The conjecture whether Wh({(I') = 0 for all torsion
free groups I' still remains. Again, Bass showed that for I" finite,
"Wh(l') is finitely generated, but on the other hand Mustliyy has shown
that, for many ordinary infinite groups, e.g. for I’ = FaZad /[#F, it is
not finitely generated.

€3> The following is the culmtnal:un of work of Swalc, Stallings,
!-B&n-den, Mav.ue, Kirby-Siebemnmann etc..

h-CORORDISM THEORFM. For any clogsed manifold N of dimension 5 or mei o,
thers is a bijection W ¢« > «W bolwecn the St of all h cobordiswns: with
base 1M, and the Whiteheag grovs Uh (hlﬂ) of the fucdancalal group of 1

. Here by " h-cobordism with base M " is meant a manifold-with boundary W
F with #W a disjoint union of M and N [the "top of the cobordisw™] which
iz a homotopy cylinder [i.e. deformalion retracts to both top and

|1 bottom]. The above W &« Whin INJ s called the torsica 0of the h-cobordism,
is zero iff the h-cobordism le the genuine cylinder M x I.
4> Whieocit-cae [Farrell and Jonesl IF 1" s a discrete subgrong, ofF

0(n,1), then Wh(') = 0.

This they prove geometrically by showing that h-cobordisms having as
base the following kind of manifold must be all trivial.

A riemannian manifold M" is called hyperbolic if its sectional curvature
is identically -1. It is known that these are quotients of hyperbulic

n—space H by a discrele subgroup I' of 0(n,1). One can use the Poincai o
moela? of N : unit disk in euclidean n-space with geodasgice
diameters or circular arcs cutting boundary perpendicularly.

Earlier Heizang and Farrcall had proved sam ) TE with M fiat .

5> One ingredient in the proof is a refinement of the next result
which applies to the induced h-cobordism having as base an appropriate
bundle SM over M.

Feia y B Lisndearitie Ian eaalir 1 Al ke e anh e - 0; & a0 4 tlsd iy
h-cobordism having M ag bagse and having all tracks u}' size bounded by £,
is trivial.

Here by "a track” of WU one means the loop in M obtained by projecting
the deformation of a point of W into the end M. ..

Besides this refinement the triviality of h-cobordisms on SM uses the
hyperbolic structure, and the geodesic Lo in these bundles, to
Pshrink” tracks far enough to apply this thaor cwm

A product formula, for the torsion of the h-cobordism over SM in terms
of that over M, now shows that the h-cobordisme over M are also trivial.
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Analogous tools give calculations for Wh() when I' is a discrete
subgroup of any Lie group and some interesting general conjectures.

wuU’s "A THEORY OF IMBEDDING .. "

CA) PREFACE. The space X, of all injective mappings from 22 to a space
X, i.e. the space of all ordered pairs (xl,xz) of distinct points of a
space X, will be equipped with the free involution (“1'xz) — (x2'x1)'

This Zz-spaca is important for embedding theory because X embeds in Y

only if there is a continuous Z -map X, — Y. In fact note that each

2 :
embedding f: X — Y induces an involution preserving embedding f, : X —
Y,, viz. the one defined by f*(xl,xz) = (f(xl).f(xz)). however the

additional fact that the zz—nap X, — Y, is one-one will be ignored.

A:.w continu'oun Zz-nap X, — Y, pulls back the equivariant Smith class
ol(Y,) = H;(Y,) of the free Zz—spaco Y, to the Smith class oi ( )=
H:(X*) of X,. So we have the embeddability criterion: if X embeds in Y,
and the ith Smith class of Y, is zero, then that of X, must also be
Zero. For example, if X embeds, in R™ then o"‘(x*) = 0 This last
follows from the fact that ([R‘)* _has the Zz ~homotopy type of the
antipodal (m-1)-sphere.

For a simplicial complex K we will denote by K the cell complex
consisting of all o x &, where o and & are dis joint simplices of K, and
equip it with the involution ¢ x 8@ «— 8 x o,

The equivariant cohomology class of K, which counts the isolated and

gseparated double points of a general position piecewise linear map f of
an n-complex K in Zn-space, is in fact independent of f. The vanishing
of this obstruction class is obviously necessary for the piecewise
linear embeddability of an n-complex K in 2n-space. Ue will see that
this embeddability criterion of Van Kampen is irncluded in the above
embeddability criterion because thisz obstruction to p.l. embeddability

of an n-complex K in 2n-space coincides with ozn([l(| «): The key point

in this proof will be that K, is a 2 -deformation retract of |K|,.

2

Completing an argument given by Van Kampen, we will show conversely that
if n = 3, and oz"‘(x*) = 0, then the mrpolyhedron X embeds plecewise

linearly in 2n-=space. This result shows in particular that piecewise
linear n-manifolds embed piecewise linearly in 2n-space: a corollary
proved directly by Van Kampen. In fact the key additional idea used by
Wu and Shapiro to complete Van Kampen's argument was the one which was
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used by Whitney to obtain the smooth analogue of this corollary, viz.
that a smooth n-manifold embeds smoothly in 2n-space. [Far reaching
improvements of these constructions were given later by Haefliger.]

It will be shown that the mod 2 cochomology operations of any polyhedron
X can be defined in terme of the mod Z classes o (¥ ), in particular

we'll see that an embeddability criterion of Thom is included in our

criterion by showing that if o-(x*) = 0 mod 2 then the dual mod 2
operations gqlz H“(x) — Hr+1(3) of X vanish for 2i+r > m.

It will be shown likewise that the mod 2Z characteristic classes of any
closed manifold X can be defined in terms of the mod 2 classes o(X,), in

particular we’'ll see that an embeddability criterion of Stiefel and
Whitney is included in the above criterion by showing that if o"(x,) =0

mod 2, and ¥ iz an mmanifold, then the dual mod 2 characteristic
classes ﬂi(XJ of X vanizsh in dimensions i = m — n

Besides considering the space X, of injective functions from 22 to X,

we'll also introduce some analogous spaces of functions from 2 _ or 51 to

X, and indicate how their equivariant characteristic classes should
determine the remaining cohomology operations, resp. characteristic
clagsases, of the polyhedron, resp. manifold X.

Alao we’ll consider analogous results concerning obstructions to
immersiona and laotopies.

(BY CHAPTER ONE. An obvious invariant of an embedding Y <« X is the
homotopy type [or even the topological type)] of the complement X \ Y.

[As Wu mentions in the preface, non-embeddability arguments based on
complements have been given by Hopf , Hantzsche , Thom , and Peterson , with
the latter two conasidering ring structure and cohomology operations. For

example, by using Alexander’s duality theorem, Hopf showed that ®P"

does not embed in [Rnﬂ'.l

An embedding Y « X of polyhedra is called tame if (X,Y) is homeomorphic
to some pair (K,L) of simplicial complexes, and any such (K,L) is then
called a [topological] triangulation of (X,Y). Note that, by additional
subdivisions if need be, we can always assume that L is full in K, i.e.

is such that any simplex of K which has all its proper faces in L is
itself in L. 4

Theorem 1a. If L is full in K. then there is a deformation retraction

of its complement K \ L onto [K \ L) the largest simplicial complex
contained in it.

Procf. The fullness guarantees that any point p of the topological
complement K, which is not in the simplicial complement, is an interior
point of a unigue line segment [x,y] all of whose interior points are of
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this type, and which has x in L, and y in [K\L)]. Compressing each [p,y]
to [y] one gets the required deformation retraction. g.e.d.

Likewige, for L full in K, there is a deformation rétraction of the open
[gimplicial] neighbourhood K \ [K \ L] of L onto [K \ [K \ L]] = L. So
ite homotopy type is also an [albeit not very intereating !] topological
invariant of (K,L).

We will see below that the homotopy type of the deleted neighbourhood K
\ [K \ L] \ L [which of course is not the same as the homotopy type of
[K \ [K A\ L] \L] =9 1] is also a topological invariant of (K,L).

However for the proof it is convenient, and for a later result
necegsary, to work with a somewhat smaller neighbourhood, which Wu
defines by means of a "preliminary subdivision” as follows.

Consider the continuous sur jection r: K — [0,1) which maps L to 0, [K \
L] to 1, and which is linear on each of the segments mentioned in the
proof of Theorem 1. UWe define the closed tubular neighbourhood of L in

K by N (L,K) = £ '[0,t], the tube of L in K by T _(L,K) = r '[t], and the
tubular complement of L in K by Bt(L.K) = l::'l[t.ll, where t (0,1).

Since the combinatorial type of these [geometric] cell complexes isg
unaffected by the choice t « (0,1), we will frequently just write
N(L,K), T(L,K), and E(L,K).

Obviously the homotopy types of N(L,K), T(L,K), and E(L,K) coincide,
reapectively, with those of the neighbourhood, deleted neighbourhood,
and complement of L in K.

Theorem ib. The homotopy tvpe of the deleted neighbourhood, of a full
subcomplex L of a simplicial complex K is a topological invariant of
the pair- (K,L).

The following is an easy generalization of the argument given in
Seifert-Threlfall [pp. 125-128 of english translation] for the special
case L = (v} [when the tube T(v,K) happens to be homeomorphic to the
link of the vertex v].

Proof. Let cK*,L*) and ¢x,.L) be any two full [topologicall]
triangulations of the tame polyhedral pair (X,Y).

Choose in succession numbers t T té, t." in £0,31) such

i 3
that the tubular neighbourhoods N. = N, (L,K) and N,’' = N, ,(L',K’'), of

i ti i ti

Y in X, are nested in each other as follows:

N1 =2 Nl’ = Nz =2 Nz’ = N3 E'Na'.

Consider any point p of the bounding tube ‘1'2 of % : As we linearly

shrink N_' to Nz'. p traces a path pt ending [after time t_, ' - tz’] at a

) | 1
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point q of the bounding tube Tz' of Nz'.

<

Likewise, as we linearly expand NS to Nz, any point q of the bounding

tube Tz' of Nz' traces a path qt ending [after time t

8 of the bounding tube TZ of Nz.

2 t3] at a point

A juxtaposition pt.qt of two such patha is nested within N1 and N3. Ve
now linearly shrink this annulus to the bounding tube 5 of 5 . The
resultant projections of such juxtapositions on T show that the

2
identity map of T, is homotopic to the map pa¢p: T, — Tz, where ¢: T2 —

2 2

Tz' is given by p a--; q, and w: ‘I'z' — T2 is given by q — 8.

Likewise, using the fact that a juxtaposition q P, of such paths is

nested within Nl' and N3'. it follows that ¢eow is homotopic to the

identity map of Tz'. q.e.d.

The homotopy types of the closure and boundary of the open simplicial
netghbourhocod of a full subcomplex L of K [i.e. of the closed star and
link of L in K] are not topological invariants of (K,L):

For example, a 3-vertex circle K is the closure of the simplicial
nelghbourhood of a closed edge L, while the boundary of this
neighbourhood is the vertex not in L; and if we subdivide K by using a
fourth vertex outside L, both homotopy types change.

But, for the smaller or tubular neighbourhoods defined above, one does
have the following pleasant fact.

Theorem 1. I¥ L is full in K then the homotopy type of the closure
algebra generated in K by L and intN(L,K) ([the open tubular
neighbourhood of L in K] is a topological invariant of the pair (K,L).

Thie generalization is proved by Wu by making some straightforward
modifications in the arguments of Theorem 1b.

[A2 Wu mentions in the preface, non-onbaddabilifv arguments based on
homotopy invariance of the pair (tubular neighbourhood, tube) have been
given by Whitney, Pontr jagin, Thom, Massey and Atiyah , with the last two
considering ring structure and K-theory also.]

Also it is easy to generalize all these Setifert-Threlfall type resulis
to any pair of cell complexes (K,L), with L "full”™ in K in the sense
that a cell lying in neither [K \ L] nor L should be the join of two
facea, one Iin [K \ L] and the other in L.

S50 we can use the following to apply these results to the pth diagonal

embedding A: |K| — |K|p of K, which associates to each point of K the
corresponding constant map (1,2,..,p) — |K|.
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Theorem 2. Let Kf denote the sub cell complex of kP, the p-fold product

of a simplictal complex K which consists of all cells of the type T =

a‘l IR ap with Ty L s % o’p = @, Then the disjoint union of A(K)

and Kf. together with all joins A(c)*E, where ¥ & l(f is such that aUcri =
K for all i, is a cell subdivision of kP

We indicate below an argument [see also c.(6)] which shows that it is in
fact the joins version of the above result of Wu which is more natural.

Proof. To be more precise, I(p is the product 1!( - pl( of p disjoint
copies of K; so, using the notation je - jl( for the jth copy of 8 « K,
each member of this cell complex is of the type 161 5. s e pa'p, where
the di's are nonempty.simplices of K.

We will consider also the join ¢ = 11(* v °pK. a stmplicial complex

each of whose members is of the type 10'1 ) cecarekd pa'p [this dis joint

union is also written 10'1‘ 'po'p. or even 0'1* 'o'p if no confusion

is possible] where now each o, is any [possibly empty)] simplex of K.

The space |l(p| is the disjoint union of all closed (p-1l)-dimensional
geometrical sgimplices with vertices {1x1, s ,pxp}. where again jye

|jl(| denotes the jth copy of a point ye |K . We will identify | ®|

with the subspace of |Kp| consisting of the centroids of these
aimplices.

The subcomplex of Kp consisting of all simplices lcrl K s pa_p with o-1
N .. O o‘p = @ will be denoted K:. Note that the intersection of ]li[

with |Kp| equals |Kf|, where Kf is the aforementioned sub cell complex

of Kp consisting of all cells 10'1 " AR pcrp with 0'1 i T a'p = @,

We now note that there is a unique way [take o -y 3 LRSS T ap] of

writing any simplex o*l- 'o'p of I(P as the join of a [poseibly empty]
simplex o+ ... *o having all factors "same”, and a [possibly empty]

i . . = p
simplex & ep. a8 g, \o of K*.

1 i i

We assert that there is a simplicial subdivision U(P) ‘of P which,

reatricted to each simplex Ty* ees oa-p, is the join of the face 61*

'Gp, with a subdivision of the complementary face ¢+ ... *o, and which

is such that the closure of each simplex of the type o+ ... *o geis
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retriangulated as the join A(c)* (E):.

The main point in the verification of the above assertion is that (c—r):

ils a simplicial sphere of the right dimension. This follows at once by
using the multiplicative property,

st AP s wP P
(KeL), = K *LZ ,

of this construction, and the fact that the siuplicial compl ex (v}p

consists of all proper subsets of the cardinality p set ( Wi e pv}

The intersection with |Kp|. of the aforementioned simplicial subdivision
|IJ(KP)| of |Kp[. gives a cell complex U(Kp),- which is the required cell
W(k?) subdivision of kP. ge.d.

So K': i a deformation retract of the of the space of all non constant
functions (1, ... ,p) — |K|.

[Shapiro's direct proof of this corollary was erroneous. Also note that
for p £ 3, the pth product configuration space of K, i.e. the subspace
of |l(|p consisting of all one-one functions (1, ... ,p) — IK[, does not
have the same homotopy type as the sub cell complex of Kp determined by

the condition that the factors a’l of the cells ‘:r1 TN o-p be pairwise

disjoint. For example, if K is a closed l-gsimplex and p = 3, then there
is no such cell, but certainly |K| has 3-tuples of distinct points.]

The symmetric group of all permutations m of (1, ... ,p}, and so in
particular the cyclic subgroup Zp generated by the rotationn = (p, 1,

3, v P=1); aots on |K|p by € JOEEE ,:5) — (x(l). s o) ¥

Likewise there are group actions on Kp, etc. It is important to observe
that the aforementioned de formation retraction commutes with these group
actions.

From now on, for the asake of simplicity, Wu confines himself to the case
when p is prime: so this cyclic action is free in the complement of the
diagonal, and the quotient of the above Wu triangulation of Kp gives an
equally nice triangulation of Kp/Zp.

Having checked that all homotopy invariants of the complement, tube,

etc., of a diagonal embedding K — l(p. are p.l. [even topologicall]
invariants of K, the chapter ends with the following result of Lee
concerning enumerative invariants for the case p = 2.

Theorem 3. Let VZ be the subspace of all sequences c e R having the

ijik
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property that

El.j,k cij,k'l{(a-.e)= o=k, BeK, |o'|=il |e|=j- ‘Iaf'ﬂlﬂk”.

iz invariant under subdivision for all simplicial complexes K. Then V2
iz 3-dimensional and has an integral basis which, applied to any K

yvields the Euler characteristics of Kz. K and Kﬁ.

Proof. Since it seems more natural we'll in fact first establish that
there is a joins version of the above basis.

Under the set theoretic sur jection U(Kz) —s Kz, defined by a*f+y - ((o
= oUF, & = oly)), the pre-image of any (s 6) with |o|=i |6|=3 and
|er@| =k, consists of precisely 2’.[:] simplices: of cardinality i+j-k+s,
for each 0 £ 8 =< k.

Thia follows because this pre-image consists precisely of all simplices

arfBry = (ar(o\a)* (B\a))* (@+*A+u), wvhere a = ord, and A and u are any two
disjoint faces of a, and 80 the required number coincides with the

number of cardinality s simplices A+'u of (Zi)f. a k-fold join of 2
pointe.

S0 the number of cardinality t simplices in U(ﬁz). and its subcomplexes
A(CK) and Kf. is given by

a8
NCICS DI NI ‘Eﬂ‘fij.k(x)'

£,(ACK)) = £, . (K), and £ (K3)

tt,t = Lijsj=t £ij,0%)
reapectively, where fij ~ = | {(=.8): ok 8e K |a’| =i le] =3
|a1"16|=k}| . The second and third formulae follow from the first because

a cardinality t simplex of U(Kz) is of the type a+@+0® iff i=j=k=t, and
e=0, and it is of the type 9+(3+y» iff k=8=0 and i+ j=t

Since the Euler characteristic of Kz coincides with the alternating sum

of the face numbers of its subdivision U(Kz). it follows that the
integral element of Vz given by

- _ani¥i=key o8
cj.j,k_:s(l) .2.[:],

calculates x(Kz). i.e. x(l(z) (K) for any K. Likewise the

% rtiix

integral element given by i1 ° (-1)‘l and = 0 otherwise, calculates
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x(K), and the integral element given by cij 0 o (—1)1+j and = D

otherwise, calculates x(Kf). It is obvious that these three elements of
Vz are linearly independent, so dln(Vz) > 3,

We only sketch Lee's method for checking din(Vz)S 3, because it is
[probably unnecessarily 7] laborious:

He assumes inductively that it is true that the truncations of the above

elements, determined by i,j < n, do span the space Vz nal of truncations

2° Next he applies any yx = Vz to all degree n
complexes of the type K = o8, and also to subdivisions obtained from
them by deriving one edge. The above inductive hypothesis, plus the
invariance under subdivision of ¥, is then uysed to grind out the

inductive step.

e a of elements y = V

To pass to tt‘u products version of this basis simply note that cells of
l(z correspond to simplices of l(z having both factors nonempty, and
having dimension one more than the cells, so -x(Kz) = x(Kz) — 2.x%(K) and
2 (K2) = 2(3) - 2.2(K). qed.

[For p = 1, Mayer had previously considered the analogous space of
linear combinatorial invariants, and shown that it is one-dimensional
and gpanned by the Euler characteristic: the above method of Lee does
give a very simple proof of Mayer’s theorem, but obviously ought to be
gimplified further to consider the cases p = 3.]

Another nice integral element of Vz is that which calculates the Euler

characteristic of the tube Ki = T(U(Kz).A(K)) [which coincides with its

products version K: = T(U(Kz),A(K))]. This can be easily calculated by
noting that each cell of this tube corresponds to a simplex, of one
dimension more, of IJ(KZ), which is neither in ﬁ nor in A (K). Thus
~2(K2) = 2(K) — 2(K5) — 2(K).

(C» CHAPTER TWO. Given an action of a group G on a simplicial complex
E, there is the induced action of its group ring'Z G on its cochain

*
complex (C (E),5), and so each p € £G gives rise to the canonical short
exact sequence of cochain complexes,

o
B s ROT(T) — © (B —— INCA) ——+ O,

and thus an associated long exact cohomology sequence.

Theorem 4. If E is any Gcomplex, and t € G is any group element aof
finite order p which acts freely on E, then
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P

INCE = A) = Ketql * & % .c. + 22 2y cind

Ml + £t + ... + 7 = kerel — ©),
in each C (E) i = 0.

Proof. The inclusions & are obvious. For the reverse inclusions = we
will use the fact that the orbit of each nonempity simplex under t has p

digstinct members. Thus, if we choose an ordering (o, to, ... 'tp—ld) of
each such orbit, then there exists one and only one cochain having any
specified length p seguences of values on these orbits.

A cochain ¢ lies in ker(l + t + ...~*'€-1) iff the sequences of its
values (co. Cyn wen 'cp-l) have sum zero. For each such zero sum

sequence it is possible to choose [starting with any initial term cﬁ] a

[unique] sequence (cé.ci, " o3 .c;_i) such that each ci is c1 more than
the cyclically preceding c. Clearly the corresponding cochain c’

satisfies (1 — t)(c') = c. o

On the other hand ¢ lies in ker(l — t) iff the sequences of its values
(co, Cyv s ’cp—l) are constant. For each such constant sequence
choose any sequence (cgrcys «-- .c;_l} which sums to this constant
value. Clearly the corresponding cochain ¢’ satisfies (1 + t + ... +
71y (¢') = ¢. qea.

Thua, if t acts freely on E, the cohomology sequences associated to the

paly (@ = 1= %, # = 1 4 % + ;. * t‘p_l)e £2G are inter-related, viz.
these Richardson-Smith sequences run

- ni(a) — BB — Hi(E) i H;+1(E) i L B

.= HL(E) — H'(B) — Hy(B) — E.ThE) — ...,

where i = 0, and ES(E), szz). and n:(s) denote the kth cohomologies of

C*(E), C;(B) = ker(d) and C:(E) = ker(s), respectively.

Equivariant Kronecker duality. The t's of cochains and chains are dual
to each other, so the same is true for the s8's and d's. We define, for
any cochain-chain pair x,y which is killed by the d's, resp. 8's,

<x,y>, = <a(a),c> = £a,s(c)>,

d
reap.

(x.y)s = {d(a),c> = <a,d(c)>,

where a,c is any cochain-chain pair such that s(a) = x and s(c) = vy,
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follow at once from the ordinary Stokes formula <&x,y> = <x,3y>.

Using these, Wu establishes that, over field coefficients, there iz a
perfect duality, between the above cohomological RS sequences, and the
analogous homological RS sequences.

Smith classes of t . These are the classes 02k(E) e Hgk(!:':), 02k+1(E) =
:k+1(E), where the zeroth class is represented by the cocycle which is

1 on each vertex, and the other classes are obtained successively from
it, by alternately applying the connecting homomorphisms I-Il (E) —
"H'(E). [8c] +— [6c), and H;(E) — (E) [de]l > [&c] of the above

RS sequences.

Topological invariance. Wu states without proof that the RS sequences
depend only on the equivariant homotopy type of (X,t), X = |K|, and that
in fact they identify with their singular versions which can be defined
analogously whenever t is a free self-homeomorphism of order p of a
topological space X.

Examples. These are powers of [Rm minus the diagonal with cyclic action,
so with quotients projective or lens spaces; and finite groups acting on
spheresg; and the antipodal involution in a tangent sphere bundle of a
manifold.

(D> CHAPTER THREE. (To be continued.)
Comments

(1) Amongst the many interesting embedding tlechnigues of general
topology are those given by Cantor [using n-ary expansions, and lecading
to Peano curves), by Urysohn [using Stone~-Cech families of functions,
and leading to metrization], by Menger-Noebeling [using finite
dimensionality and Baire category theorem for metric spaces], etc.

(2) Pontr jagin’s original definition of characteristic classes for
manifolds was just like Van Kampen’s definition of “characteristic

* classes" for polyhedra: thess were cohomology classes dual to some
cycles residing on any general position self-intersection of the
manifold in a suitable euclidean space. Thus, just like Van Kampen'’s
embeddability criterion for polyhedra, the Pontr jagin or Stiefel-Whitney
embeddability criteria for manifolds followed immediately from this
original extrinsic definition of characteristic classes. .

The progression of ideas "tubular neighbourhoods, normal bundles,
tangent bundles, bundles ... " then led to an intrinsic definition of
characteristic classes of manifolds. Analogously, for polyhedra, Van
Kampen's definition was made intrinsic by Wu by using X, etc.

135



(3) Wu’s tubular neighbourhood of a full subcomplex of a simplicial
complex [though itself not a simplicial complex] is small and thus
apparently more convenient for enumerative purposes than the original
[simplicial] one of Whitehead, in which the ”"preliminary subdivision”
congists in going without any ado to the second derived.

However it does seem to be more natural to adhere to the standard
practice in p.l. topology of confining attention to only [full and]
plecewise linear triangulations (K,L) of (X,Y), i.e. those which are
p.-l. homeomorphic to the polyhedral pair (X,Y):

The "Whitehead variant”™ of Seifert-Threlfall's [original] result is that
the p.L. type of the link of a vertex v iz a p.L invariant of (K,v),
and, more generally, the variant of Theorem 1 is that the p.l. type of
the closure algebra generated by L and its open .tubular neighbourhood in
K is a p.1. invariant of the full pair (K,L). However note, as against
the p.l. type of the tubular complement E(L,K), it is 8till only the
homotopy type of [L \ K] which is a p.1l. invariant.

For more on p.l. topology see Whitehead , Zeeman , Stallings , Hudson ,
Rourke-Sander=son, etc. For instance, for the case when X is a [p.l.]
manifold, it is known that the tubular neighbourhood and tubular
complement of any subpolyhedron are always manifolds-with-boundary which
have the tube as their common bounding manifold.

(4) The above review shows that Van Kampen Theory needs only [mostly
finite] simplicial complexes, and some concomitant special kinda of
geometric cell complexes [which are s8till "simplicial”, but in +{he
categorical sense].

However, as in Lefschetz's "Algebraic Topology”, 1942 (AMS Colloq. Pub.,
v.27), the "complexes” used in Wu's book are the following very general
ones which had been introduced by Tucker:

A poset P, equipped with a dimension function P — IN, and an incidence
function P x P — {(1,0,-1} supported on its covering relation C <« P x P,
such that dim(s) = dim(8&) + 1 ¥ (&,8) « C and E¢ [e:¢)[¢:€] = O V¥ (o,8)

< P x P, is called an abstract cell complex.

For more on such early generalizations of simplicial complex sce
Steenrod’'s "Reviews”. These [somewhat ad hoc] definitions have now lost
their original purpose because, by interpreting it categorically,

Eilenherg, Kan et al. have shown that the domain of validity of the
[more natural and elegant] simplicial method is very large.

(5) Finer Wu subdivisions. The homotopy type of the ph join

configuration space of X = |K| coincides with the subcomplex of KF

congisting of all simplices 61' o *Gp with Jl’a pairwise disjoint.

This can be seen by using a further aubdivialon*U(Kp) of the subdivision
W(kP) of KP which was suggested to us by Bier [p.46 of 13.2.92-24.5.92].
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Recall that U(l(p) congisted [of joins] of all sequences ea' a

,Bp). with Ga U 91 = K, and ﬁIEISp 91 = @

10 e

On the other hand V(Kp) consistes [of joins] of all "sequences” {Ga: o =
=

o {1, sse 3PY, with Um_-_Cea & K whenever C is totally ordered by

and Ba dis joint from eﬁ whenever &« and [ are incomparable under = . [A

proof that V(Kp) is indeed a subdivision of Kp is sketched in (6)
below. This proof will show also that Wu’'’s and Bier’'s subdivisions are
but two of a whole class of nice subdivisions.]

Note that any permutation m of {1, ... ,p}) maps each nonempty set a to a
nonempty set m(a), so there is a corresponding simplicial isomorphism m

of V(Kp), and the fixed points of any m'w(x") — V(Kp) formn &
subcomplex, viz. the subcomplex determined by the condition that Ga =0

whenever a is not fixed under m.

Thus the guotient of W(KP). by any subgroup G of such permutations, will
be a simplicial triangulation of Kp/G.

(6) The multiplicative property seemzs to be basic in Van Kampen Theory
because, firstly, the joins vers=sions of all its basic constructions, K
— F(K), seem to obey this property:

F(K+L) = F(K)+*F(L).
Secondly, recognition of multiplicativity simplifies proofs drastically:

For example, to verify that Bier’'s simplicial complex V(Kp) is indeed a

subdivision of Kp, the main thing to note is that F(K) = # or U(IP) are
both multiplicative. Note further that K € £, the iterated join of the
vertices of K, and that F(K) = F(Z). This reduces the verification to

the case K = {(v), in which case it is easily checked that V(IP) is 1he

derived complex of Kp, the closed simplex on the vertices {lv. T - ,pv}.

[The above proof shows that any subdivision of {vf’ will lead to a Wu
type subdivision, e.g. just deriving the top simplex of this corresponds
to the original Wu triangulation of Theorem 2.]

Thirdly, and most importantly, we will see that this multiplicativity
gives product formulae for Van Kampen classes, which imply [for the case
of manifolds, via Thom complexes of their lLangeni bundles] the Whitney
addition formulae, multiplicative segquences, and other such things, of
the theory of characteristic classes of manifolds.

£7.) The mnmultiplicative property also seems to drastically simplify
Lee's proof that dim(vz) = 3. For this the key point is to observe that

any characteristic y Vz satiafies
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x(K*L) = x(K).x(L),

and thus is determined by its value on a vertex «{v}. But this can be
subdivided no further, and {1,2) has 3 nonempty sets, so0o the value of Vz

on (v) is a 3-dimensional vector space.

Regarding the free ZE-module consisting of the integral elements of Vz #
it seema that it is generated [not by the integral bases of Vz given in

Theorem 3 but] by the basis which computes the Euler characteristics of

ACK), Kﬁ, and Kz

*

Characteristic =space Vp for p = 3. Bier’'s subdivisgion V(Kp) suggests
that a resonable dakinition would be to to consider all "sequences” 3‘
of real numbers, indexed by integral functions A on the set of all
nonempty subsets a of (1, ... ,p)}, such that

:a ch'l{(ﬁl’ L ,Jp) P o, € K, lﬁiea ail = Aa) ¥V a)|,

is invariant under subdivision, for all simplicial complexes K.

Once again the multiplicativity of the elements of g) should quickly
egstablish the obvious guess dlm(Vp) = Zp — 1, and probably one can avaon
display some integral basis of Vp coming from the Euler characteristics

of some minimal invariant subsets of V(k‘p). and there might be
interesting connections with results of Brown and Quillen concerning the
Euler characteristics of groups and the poset of subgroups of the
aymmetric group on p lettera ?

(8) Remarks re Smith theory of free complexes [= Wu’'s Chapter 2].

(i) The easiest and best way of presenting this theory would be to
first work out the case of the universal complex E = zp-zp- e - O o T

group Zp = {t?», and then restrict to any free Zp—subcomplax Ec E.

.8 H:(E), the group cohomology of Zp, is eapily seen to be £ in
dimension zero, Zp in all odd dimensions, and zero otherwise [see e.g.
Brown, p.35]. Using the contractibility of E this computes H:(E) also.

[The RS sequences are thus closely related to the Z-Step'bariodicity of
the cohomology of finite cyclic groups. For a general G there may be no
such apparatus for computing the G-characteristic classes.]

Cit) Maybe 1 — t «— 1 + t + ... *-‘P-l is only an instance of an

involution p «—» o [?] defined throughout [the subring, of elements
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atarting with 1, of] the group ring of the [finite] group G, and having
the property that im(p) = ker(p) and im(p) = ker(p) in C(E), i = 0, for
[E = GeG* ... and thus for] all free G-complexes E.

At least the morm s is defined for all finite G’s, so Tate's cohomology
theory, which uses s, might be generalising some Smith theory to all G ?

(iii) 1If t is replaced by its annjugnt- t* in Z [i.e. aa is relatively
* *
prime to the order p of t] then g is unchanged. So Hs (E) and P&(E).

which are the cohomologies of ker(s) and im(s), and also the entire
second RS sequence, remain the same. However d = 1 — t gets multiplied

by 1 + t # ... * ta_l‘to become 1 — t%, so the morphism of the {irst RS

sequence induced by d, as well as its connecting morphism, alter
accordingly.

(iv) Smith classes of a Zp—complax are of order p.

Also, it seems that the reductions mod p, in the 8 or d cohomology,
followed by the Bockstein of the d or s cohomology, coincides with the
connecting homomorphisms of the RS sequences ?

The connecting homomorphisms of RS sequences also coincide with cup
product with the class ol(E).

These miscellaneous facts from Wu’s Ch.Z should become clear if viewad
from the point of view of (i) as facets of the group cochomology of Zp.

(i;ﬁ) Some remarks are in order re the quotient E/t, especially since
Wu spends a whole lot of time in bringing Smith theory down to ift.

(a) Even if E is a free simplicial complex, this quotient is an
abstract complex only. However the quotient E”/t of the second derived
of such an E is a simplicial complex.

*
(b) PFor any p, there is a cochain complex C (E/t;p(£)), where p(&) is
the subgroup of the p-fold sum Z & ... &@ & defined by 2#(.) = 0, whose &
*
and whose isomorphism with Cp(E:Z) both depend on a choice of orbital

representatives. e

(c) However, for the case p = d =1 — t, the projection map n: E — E/t
*

induces a natural isomorphism C (E/t'Z) - C (E) Even for the case p =

8, Wu gives a natural homomorphism H (E Z2) — H (E/t; 2 ¥s

(d) There are Smith morphisms defined in H (E) [involving reduction mod
p if their length is o0dd] which are tied to the Smith morphisms
[alternating compositions of connecting morphisms of RS sequences] of E
by above maps.
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ROTA

From "0On the combinatorics of the Euler characteristice”™ [= Ch.4 of
"Finite Operator Calculus”]:

1. There iz one and only one measure on the poset of simplicial
complexes taking any given values on the closed simplices.

Here, by measwure, on the poset P of all [nonempty] simplicial complexes
with vertices in a given set, is meant a map # from P into some ring,
which obeys .

K U L) = w(K) + #(L) — afKk L) ¥ K;L. & P,
From the point of view of generalizing to posets other than P, note that
closed simplices S5 are characterized order~theoretically by the property
that S = AU B implies A = S or B = §. 50 e.g. the smallest member 1 of
P, viz. the simplicial complex containing just the empty simplex, is an
example of a closed simplex.

Proof. Thie follows by uaing

2(AUBUCY ... UKUL) = 2#(A) + 2(B) + 2(C) + ... + 2(K) + 2(L)
— (AB) — #(AMC) — ... — n(KnL)
+ REANBARC) #+ ..

* x(ANBACh ... MKNL). g.e.d.

For example the reduced Euler characteristic X is the measure whose
value on 1 is 1, and on all other closed simplices is zero, while the
usual Euler characteristic is the measure which has value 00 on 1, and
the value 1 on all other closed simplices.

2. If S i any closed simplex, and u iz the Moblus function of the
poset of simplicial complexes, then

uet,8) = - 18l

S50 the values of the Mobius function on its closed simplices determines
the reduced Euler characteristic of any simplicial complex by

X(K) = § up(1,8).

S<K
Procof. For this recall that the Mobius function p: P x P — & of the
poset P is zero outside £, 1 on =, and is defined elsewhere so as to
satisfy [ Hix,y) = 0. ged. :
XEZEY

Next one has the following generalization of the above, which shows that

the correct order-theoretical interpretation of (— l)lsl comes from the
reduced Euler characteristic of the poset of proper faces of S:
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For any K Pone has u ,K) =—1((K_), where ¥ (K ) iz the reduced Euler
characterigtic [of the simplicial complex of chains] of the subposet K_
= (L& P: 4 » L c K)

Its proof requires more work, but once obtained paves the way for
generalizations to other posets.

3. Other posets. Being purely order-theoretical now, the above results
have interesting echoes in qulﬁe different P's:

(a) If P is the poset of natural numbers under divisibility, then the
"usual Euler characteristic” of a natural number coincides with the
number of distinct pfime divisors of the natural number.

Likewise,  for the poset P of partitions of a set under refinement, the
Mobius function is known, so one can calculate X here also.

(b) If K is a closed qg-=implex , i.e. the set of all subspaces of an
n-dimensional vector gpace over the field Fq' then the equation X(K) = 0

= ¥ u(,S) coincides with an identity of Euler and Cauchy involving
ScK
Gausslan coefficient=s [:]. the number of k-dimensional subspaces of this

vector @apace.

Note that now the poset P comprises all gecomplexes K, i.e. sets of
vector subspaces closed under €, and the special K's mentioned above
were the "closed simplices” of this P. Regarding this P, Rota says the
following:

" As q — 1 (for an imaginary fleld with ’one’ element ) a qg-complex
becomes an ordinary simplicial complex, and a g-sphere becomes an
ordinary homology &phere.”

Here by g-sphere he means a closed g-simplex minus its top. [Such a
fictional field of one element is dear to Manin also |]

() When P is the poset of faces K of a convex polytope, then E_ is
always sgpherical, which implies that one has p(1,K) = * 1, depending on
the parity of the dimension of the face K. v

Comments

(1) Rota considers the Grothendleck group obtained as the quotient, of
the abelian group of all linear combinations- of elements of P, by the
subgroup generated by elements of the form K + L — KUL — KnlL.

Since the coefficients of our linear combinations are from a ring, they
can be multiplied in the obvious way, and it can be checked that this
subgroup is an ideal, and so this Grothendieck group is in fact a ring,

Measures of P correspond to linear maps from the Grothendieck ring ¢to
the ring of coefficients. Also, in this ring, one has the identity
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KIU...UKn=1—(1—K1)(1-—-K2)" "(I—Kn).

%

for all Ki e P, This explains why any such functional is determinad by

its values on the closed simplices of P.

(2) 1f one wants to look only at measures on P such that p (K) =u (L)
whenever the simplicial complexes K and L are isomorphic, then the right
Grothendieck group is of isomorphism classes of simplicial complexes.

One has the still smaller Grothendieck group of pl classes of
simplicial complexes, and measures descending to it are as follows.

Mayer’s Theorem The only subdivision tnvariant measwres on the poset
of simplicial complexes are those which take & constant value on all
closed simplices other than 1.

(3) There is another natural multiplication, that provided by the join
K+L of simplicial complexes, which tooc descends to the above
Grothendieck groups.

The reduced Euler characteristic X is the only subdivision invariant
measure on P which is such that X(K*L) = X(K).X (L) for all simplicial
complexes K and L.

Finally, it seems that join multiplicativity and subdivision invariance,
are of interest not only for linear, but also, a la Lee, for polvnomial
maps on the vector space spanned by P.

QUILLEN’S COBORDISM FAPER

The [unoriented or complex] cobordism ring is the ring of coefficients
of an extraordinary c¢ohomology theory, and its structure [i.e. the
theorem of Thom or Milnor] was shown by Quillen to follow from the
properties of this geometric theory itself. [However, in the complex
case, he used a homotopy-theoretically proved finiteness result. Also
note for this case that all manifolds, maps, and vector bundles below
will have an almost complex structure and so a preferred orientation.]

- *

(A> Cohomology theory U . Since from the homotopy-theoretic point of
view this entails no loss of generality [cf. Remark 1) we will work only
with smooth manifolds and smooth maps in the following

1 Uq(X) will consist of all cobordism classes (] of praper- maps f: 2
— X of dimension — q:

Here proper means pull-backs of compact sets should be compact,
dimenslon means dim('rzZ) — dim(Tf(z)X) for any z « Z, and two maps fﬂ,
f1: ZU' Zl — X are to be called cobordant jif there is a map F: W— Xx
[0,1], transversal to the two ends, whose restrictions to Lhe inverse

images of the two ends coincides with the given maps fo and fl
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ad  vY(X) is equipped with addition [f] + [f'] = [f u f'] and
multiplication [£1°[£'] = A [f % £'].

Here £ u f'": Z u Z' — X is the dizjoint sum, and f % f': Z x Z2' — X x
*
X the cartesian product of the maps f: Z — X and f’': Z2’' — X, whileA :

uq(x ®x X) — Uq(X) is the map induced by the diagonal A — A = A as
follows.

[The kth cup power [f] — [t’]’-c can be seen to coincide with the map

Uq(X) s qu(X) defined by first mapping the cobordism class [f] of any
f: Z — X to the class .in uk“(xk) given by the k-fold product fk: Zk —
Xk of f, and then using the map induced by the kth diagonal X — Rh ag
follows. ]

iitd Each homotopy class of smooth maps p : X — Y induces the
*
functerial contravariant map y : Uq(Y) s Uq(X). r*[f] = [g*(f)]-

*
Here g (f) [also denoted by f' in (v) below] is the pull-back, under any
member g: X — Y of the homotopy class ) which is transversal to f, of
the given map f: Z — Y, i.e. the projection X x Z — X restricted to X

Xy Z = {ix:2) : @(x) = £(z)}.

* *
The above y will also be written g for any g € », 80 as to have tha
* *
usual g > h =g =nh

Remark 1. Thanks to this homotopy invariance we can define Uq(X) of a
simplicial complex X by embedding it rectilinearly in some euclidean
apace, and then replacing it with the homotopy equivalent smcoth
manifold which occurs as its open tubular neighbourhood. [However note
that the next property (iv) is for manifolds only.]

Remark 2. Though he strongly advocates the above geometric approach,

x*
Quillen's official definition of U (X) is still homotopy theoretical via
<Thom s=spectra = (Thom spaces of the canonical vector bundles of the
Grassmannians). He did this partly to save time._l_ainca for sepectral
cohomologies it was well-known how to define the relative cohomology

*
U (X,A) of paire and verify the first gix Eilenberg-Steenrod axioms, but
also because, in the complex case, he needed 1he fact, which he

could not prove by purely geometric means, that Uq(X) iz a finitely
generated abellan group for any polyhedron X. -
Remark 3. That the geometric and homotopy theorsetical definitiona of

*
U (X) agree is a routine generalization of a celebrated theorem of Thom.
In fact Thom’s theorem is the case X = pt, because the coefficient ring

* *
U (pt) [or just U ] of our cohomology theory obviously coincides with
Thom's ring of cobordism classes of smooth manifolds.
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*
(4: 5] Thom isomorphisms in U . Our cohomology theory [like ordinary
cohomology or K-theory] happens to alsc have the folleoewing extra
structure.
{iv> Each proper map g: Z — ¥ of manijolds of dimension -n induces the

[e f1 which is

functorial covariant map g,: Uq(Z) ] Uq+n (X), g,[f]

such that for sach fibre square

. hh.'
e

xx Z
¥ B X

&
e

Y
£

x *x
one has h «g, = (g'),2(h’) . PBesides we have x* (f, z) f*((f*x)'z). For-

att z € UY(2) and x € U™ 9x).

[For example the ordinary f_: H’n(X) — Ho(pt) = Z of an n-manifold X

evaluates cohomology classes on the fundamental n-cycle of X.]

This structure suffices to ensure that, whenever 3: X — V is the mero
gection of an n-dimensional vector bundle n: V — X, then &, : lI*CX) s
U: L (V), defined again by s, [f] = [s:f]. but now with values in the
compactly supported cobordizsm theory Ilc of V, is an isomorphism. [To
define this theory one puts the appropriate relation of cobordism on all
proper maps f: Z — V whose imagea have compact closure, etc.]

In the late 1960’s motifs, i.e. the [mostly conjectural] universal
cohomology functors of Grothendieck, had begun to create a stir, which
soon died down, but has now returned as a storm | Influenced by

*
Grothendieck's ideas, (Quillen emphasized the important fact that U is
universal amongst cohomology functors possessing the above structure !!|
Proposition 1. Given any cohomology theory sr* satis fying (i)-(iv),
* *
there is a unique morphism U — ¥ which preserves this structure, and

maps 1 = [id] = Un(pt) to a given element a = xﬂ(pt)-

*
Proof. Since f,e(Z — pt) [id] = [£f] for any [f] € U%(X), f: 2 — X, it
follows that such a morphism of functors must map [f] o f,(Z —
*
pt) (a) = ﬁ’q(X). The result follows because one can check that this

element of ﬁ’q(X) is independent of the representative f of the cobordism
class which is used in its definition. g.e.d.

*
(€)Y Characteristic classes In U . These can be defined, for any theory
obeying (i)-(iv), in the standard way [cf. books of Hirzebruch or
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Milnor-Staaheff]:

The Euler class a(V) & Un(X) of an n-dimensional vector bundle V — X

*
with zero section 8 is defined by e(V) = (8 es8,)(1).
The total Chern class of a sum V = l..1 e I‘b of line bundles is
defined by c(V) = (1 + e(Ll))' APt et 2 (1 Al o(lb)). Then the splitting

principle is used to extend this definition to all V's as follows.
. *
The Leray-Hirsch structure theorem for the cohomology U (PV) of the
space of lines of V still holds because it is a consequence of (i)-(iv).
*
We ugse n: PV — X to6 lift V tom (V) which.splits. Then using this
* *
theorem itg c(n (V)) arises as m image of a unique cohomology class in
*
X, which is the required c(V) U (X).
* x*
This gives a functorial map c: K (X) — U (X) which obeys c(Ve W) =
e(V)re(W).
*
[Though we won’t use it, we also have the Chern character ch: K (X) —

*
U (X) @ @, a functorial ring homomorphiem, which can alsoc be defined by
this splitting method, by summing the cohomology classes exp(e(L)) as L

rung over the line bundle summands L of n*(V).]

More generally, there is a functorial map % ¢ K* (X) — "* (}!'.)[1':l . 12 5
...) obeying ct(V @ W) = vt(V)°ct(U). defined in exactly the same way by
associating to each line bundle summand L of m (V) the factor 1 + tle(L)
B LB & e

The following observation of Navikov heralded the explicit use of formal
groups in topology.

Proposition 2. There is a unigue power series F(Tl’TZ) in two

*
variables, and with coefficients in U (pt), such that for any two line
bundles over any X one has

{ T

e(L, ® L,) = F(e(L,),e(L,)).

Moregver F iz a commutative formal group law, ie. it obeys

F(TI'TZ) = F(Tz.Tl). F(O,T) = 0 = F(T,0), and
B(T,,F(T,,T,)) = ECF(T,.T,),T,).

Proof. Since complex projective space with their cancnical line bundles

*
are universal, it suffices to compute the U of a product of such spaces
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using (i)-(iv). This turns out to be the truncated polynomial ring in

the two Euler classes, etc., etc. g.ed.

For ordinary cohomology one has F(Tl'TZ) = Tl + TZ’ while for complex

K-theory it is 'I‘1 + ‘1‘2 = TITZ' Mischenko, in an appendix to Novikov'’s
*

paper, computed the logarithm of the formal group law of U , from which

it follows easily [see Quillen’'s B.A.M.S. note] that the latter is the

universal formal group law which had been studied before by Lazard .
[However these arguments used the homotopy theoretically proved theorem

*
of Milnor re the structure of thal coefficient ring U (pt).]
*
D> Operations in U . The paper is based on a clever exploitation
of a basic relationship between the following two operations:
* *
Novikov character at‘: U () - U (X)[tl. tz,- .+ ] is the functorial
*
ring homomorphism defined by [f] +— f*(ct(vf)). where fgr ¥ f (TX) — T2
= K(Z), denotes the virtual mnormal bundle of the proper map f: Z— X of
manifolds.
[For example if f is the constant map from an n-manifold Z, then the
ordinary st[f] = Z[tl, tz. «se Jy WwWhere dog(tj) = jy is homogenous of
degree n, and its coefficients are the Chern numbers of the manifold Z.]

In the next definition Q is any manifold on which the cyclic group Zk

operates freely, and B = Q/Zk. e.g. we can even take Q = & and B = pt.

k

kth Steenrod power Uq(XJ — qu(B x X) is defined by first mapping any
[f], where f: Z — X, to the element [id x gc]eq of the equivariant

*
cobordism U::(Q = XkJ. and then using the map (id = A) : Ul::(o o Xk) —

u§:(0 x %) = UM x 1.

[Apparently for the case Q = Zk one just gets the kth cup power ?
+
However, when Q = .‘32' 1, with the usual Zk action, then one gets new

stuff: note that for "m = ®" the infinite-dimensional manifold B = Q/Zk
is a classifying space sz of the group Zk.] w

B> The relationship between the above two operations is Proposition
3.17. It says [in very rough analogy with a result of Wa which might be
its ordinary case] that "the Leray-Hirsch components of the-kth Steenrod
power are the Chern numbers of the manifold”. Actually there are other
terms involved, o it looks more like an index formula, and incorporates
a non-trivial integrality theorem, i.e. implies that something & priori

*
in U'(pt) ® @ is in fact in U (pt).

[Though Karoubi’s exposition of the proof of this result is
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understandable, we don't really understand the meaning of this important
index formula ... but we should return to it later, since the cyclic
cohomology version of the aforementioned result of Wu will apparently
shed new light on the topological invariance of rational Pontr jagin
classes.])

The difficult [and apparently of not much interest for wus] part of

*
Quillen’'s paper is the deduction of the structure of U (pt) from this
index formula:

First, by using the integrality result, and some computations regarding
. *
the cobordism of lens spaces, Quillen deducee that U (pt) coincides with

*
the subring generated by the coefficients of U 's formal group law.

Then, by using a theorem of Lazard, he deduces from above Milnor’s

*
result that U (pt) is a polynomial ring having one generator in oach
even dimension.

Comments

(1) Formal groups were defined by Bochmner in the 40's to make some old
calculations of Lie re "infinitesimal groups” more meaningful. The
relationship cohomology +«— formal groups came to the fore implicitly in
Hirzebruch's great bock, and was made explicit shortly after byNovikov .
After this came the above paper of Quillen, and its contemporay
expositions by Adams and Karoubi .

(2) Note that the importance of another contemporary extraordinary

*
cohomology, i.e. the K of Atiyah-Hirzebruch, also stemmed from the fact
that the structure theorem re its coefficient ring, i.e. Bott
periodicity, was also a deep non-trivial fact.

However its universality hewawer seems to make cobordism theory much
more basic, e.g. Bott periodicity may follow from the structure theorem

x
for U (pt) 7 Also this "motivic viewpoint” suggests that the first,
i.e. the cobordism-dependent, proof of the Atiyah-Singer theorem wvas
perhapas the "right” one after all ?

(3) For developements subsequent to (1) — e.g. a characterization
theorem for formal groups arising from cohomologies, atudy of special
cases like elliptic cohomology, and the relationship of formal groups to
things like b&inomial polynomials, jfunctional equations, and umbral
calculus — see the 1991 paper of Bukhstaber-Kholodoav and its
references.
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wu’s "A THEORY OF IMEEDDi_NG o ' Ccontd.)

CHAPTER THREE. Though very simple, this is the heart of the book, since
the basic criteria for embeddability, etc. are formulated here.

A continuous mapping f: X — Y between polyhedron 1is called an
embedding , resp. a local embedding orimmersion , if it is one-one, resp.
locally one-one [i.e. each point has a neighbourhood on which f is
one-one].

Theorem. If |K| embeds, resp. immerses, in R", then, for each prime p,
there is a continuous Zz-ma{) from KE A U(Kp) \ AK, resp. Kf; ~ N(UKp.AI()

\ AK, to a free Zp-.s‘phere Spn-?-l

Proof. Clearly any embedding, resp. immersion, X — Y, induces an
equivariant continuous map from the complement, resp. local complement,

of the diagonal AX of the p-fold product !P of X, into that of the
diagonal AY of the p-fold product Yp of Y.

The result follows because a projection on the subspace orthogonal to
the diagonal subspace AIRm, followed by a normalization, shows that the
complement and local complement, of the diagonal of ([Rm)p. both have the

Spm-m-l

equivariant homotopy of a sphere , and the Ep—action is free

becausgse p is prime. ge.d.

Corollary. If K embeds, resp. immerses, in R™ then the Smith classes
of l(p resp. of l(p [which are images of those of K}: under the map
1nduced in equzvarlant cohomology by Kp A N(UKD.AK) \ AK = U(Kp) N AE. =

1.r]. must vanish in dimensions = pm-n

Alternating cocycles. It is important to note that the above

obgstructions to embeddability or immersibility, i.e. the classes cai =
gt

dfs
been developed further as follows:

(l( or Kg). are defined purely combinatorially. The case p = 2 has

Depending on whether i is even or odd, consider the symmetric or

skewsymmetric i-cochain oi. which takes value 0 on any ¢ x &, unless the
vertices of & and @ alternate with respect to the total erder, with the
value being 1, if further the least vertex of o U & is in the first
factor o, Then it can be verified [it suffices to check the universal

i

example of octahedral spheres] that o is a cocycle which is in either

+0i or -01. and even this s8sign can be worked out in terms of the
congruence class of i mod 8.
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Examples. Non-embeddability and non-immersibility of some complexes is
now checked via above criteria, e.g. Wu reproves theVan Kampen - Flores

Theorem [azn+2 RZn

alternating cocycles.

does not embed in , @etc.] by wusing the above

Izotopy etc. In p.1. topology a whole gamut of such definitions have
now been analysed. E.g. two embeddings are called (resp. ambient)
isotopic if they are related by a l-parameter class of embeddings (resp.
self-homeomorphisms of the ambient space). [Likewise one speaks of two
locally isotopic 1local embeddings .. s il On the other hand two
embeddings are called equivalent, or in isoposition, if they are related
by a single self-homeomorphism, which sometimes is required to be
orientation preserving, etc.
choice of an orientation of R" fixes a generator of Hm_lcﬂﬂm)z \ NRm)
Hm 1(Sm 1). Under an embedding, resp. immersion, of K 1n!Rm. this
m—l(KZ)
o »

which obviously does not change under isotopy [but does change sign

A

generator pulls back to a cohomology class in Hm_l(Kf), resp. H

under an orientation-reversing homeomorphism of Rm]. S0 these classes
can be sometimes used [as Wu shows via some examples] to check that two
embeddinges or two immersions are not isotopic, etc.

CHAPTER FOUR. This, the messiest chapter of this messy book, gave a
"new"” definition of Steemrod squares, so we'll return to it after having
a look at an "old” definition first.

Comments

(1) It seems that the notions of embedding, immersion, etc., can be
generalized so as to view the Smith classes, of any given invariant part
of‘w(Kp), as suitable obstructions.

(2) Likewise it seems, e.g. by using oriented matrolds other than the
alternating one, that it will be able to make the definition of these
claggses combinatorially more explicit even for p = 3.

(3) The most challenging problem of course is to understand the
limiting [or motivic or universal] case "Zp s Sl" combinatorially,
perhaps via cyclic cohomology, using the cyclic model of the group 51.

STEENROD-EPSTEIN
In these [pre-1962)] lectures Steenrod gave a new construction [= Chapter
VII] of cohomology operations which is based on some simple facts [=
Chapter V] regarding equivariant cohomology.

[In this book, the integral chain complex of a cell complex K is also
denoted by K, rather than C,(K); however the authors prefer to use K @
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L, rather than just K x L, to denote C, (K) @ C (L) = C, (K =% L).]

A. Equivariant Cohomology.

Given a [possibly infinite] cell complex E and a module A, both with

*
prescribed actions of a group G, all equivariant cochalns c¢c < C (E;A),
i.e, those satisfying c(g.g) = g.c(g) for all g= G ande = E, form a

* *
sub cochain complex CG(E;A). whose cohomology is denoted hG(E;A).

Proposition 1. If the Gcomplex E is such that the faces of any cell
*

preserved by a group element g are also preserved by g then hG(E;A) i

an tnuvariant of the dquivariant homotopy type ‘of the G-space |E|. i

[C£. first paragraph of the "Errata” of the book.]

*
Proof =ketch.. Under the given hypothesis, hG(E;A) coincides with its
*
singular version hG(|B| ;A). ged,

A much more restrictive notion than the above is that of a free action,
i.e. one in which the conjugates g.o, g G, of any cell o € E, are
pairwise disjoint as g runs over G.

Proposition 2. For any group G, there exist free acyclic Gecomplexes
EG, which are functorially G-homotopy eguivalent to each other.

So we can denote h;(EG;A) by H*(G;A). and call it the cohomology of the
group G with coefficients in the G-module A.

Proof. Recall that an (acyclie?» carrier S from E to F associates to
each cell o« of E an (acyclic) subcomplex S(s) of F in such a way that o
€ 8 implies S(&) = S(&).

On the other hand, an equivariant d(acyclic) carrier, with respect to a
given G- (resp. H-) action on E (resp. F) and a group homomorphism m: G
— H, will be one which also satisfies n(g).5(c) = S(g.o) for all g = G.

For example, each (equivariant) chain map ¢: E — F gives rise to a [not
necessarily acyclic] (equivariant) carrier, viz. its support supp@),
which associates to each & = E the subcomplex of F generated by the
cells occuring [with nonzero coefficients] in the chain @(z).

If a chain map ¢: e — F, from a subcomplex e of E, is supported by some
known acyclic carrier S from E to F [in the sense that supp(f(s)) € S(o)
¥ o €« e] then it can be extended to a chain map ¢: E — F supported by S
as follows:

One arranges the cells o of E — e in order of increasing dimension, and
¢ is defined on each of these in turn so as to satisfy¢d =8¢ , this
being possible each time because of the acyclicity of S(o).
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A sgsimilar argument [arrange the G-orbits, which are pairwise disjoint
cells, in order of increasing dimension, ...] shows likewise that if an
equivariant chain map ¢: e — F, from an equivariant subcomplex e of a
free G-complex E, is supported by some equivariant acyclic carrier S
from E to F, then it can be extended to an equivariant chain map ¢: E —
F supported by S.

It follows easily from this that the required EG must be unique upto
G-homotopy equivalence. S

As far as the existence of EG goes, we can [following Milmor] take EG =
G+G+ ... , where this infinite join of the point set G is to be provided
with the (obviously free) diagonal G-action. This complex ig acyclic
because any cycle, which has to lie in finitely. many factors, is bounded
by ite cone, which is available by using one more factor. g.e.d.

Continuing with general arguments of the above kind the authors

partially check the fact that each G-module A determines a cohomology
* *

theory K —— HG(K;A} = hG(BG x K;A), i.e. an abelian functor satisfying

the first s8six Eilenberg-Steenrod axioms, which will be called
G-equivariant cohomology with coefficients in G-module A.

[As Borel pointed out it is useful to note that the diagonal action on
the product of G-complexes is free as soon as one of the factors is
free: e.g. the homotopy axiom for the above cohomology theory follows
from Proposition 1 because EG x K is free. On the other hand note that
the diagonal action of a join of G-complexes is free iff all of them are
free.]

Furthermore, imitating the usual definition [i.e. cross product followed
by the map induced in cohomology by the diagonal] they equip this
* * *

cohomology with natural cup products HG(K;A) @ HG(K;B) S HG(K:MB). for
any G-modules A and B.

Again, just as in the ordinary case G = 1, each short exact seguence 0
— A — B — C — 0 of G-modules has an associated long exact Bockstein
sequence in equivariant cohomology.

To "do suma" with this cohomology later we need ita walue on a point, so

* *
the authors compute some group cohomologies HG(pt;A) = H (G,A).

Proposition 3. (a) Additively the cohomology of the cyclic Prime order
Lroup Zp with coefficients in the trivial Zp—-modul_e II-'p iz given by

Bl F yxF,Vv iz o0.
P P P

<b>» Furthermore we can choose generators w i = 0, of these groups

l.
which behave as under with respect to cup product:

151



Forp=2,wi=(w

3

- J " j
For p odd prime, w = (wz) and w2j+1 (uz) .ul.

2]

(e Adlso one has w, = ﬁ‘(wi). where [ is the connecting homomorphism of
the Bockstein sequence of 0 — le — tFpa - [Fp — 0.

d> The norma!iaer of the rotation subgroup 2 of the symmetric group Sp
acts on H' (2 -[Fp) via inner auwtomorphisms (resp inner automorphisms

multiplied by the parity of the permutation). This action is trivial
iff i i an even (reap. odd ) multiple of p-1. or one less than such a
multiple.

[They obtain similar answers when p is any odd number, and surely, at
least by now, the answers must be known even for any p =N 7]

FProof zketch. The authors do the above computations combinatorially via
coboundaries of an explicit zp-equivariant subdivision of the unit
sphere of eventually zero infinite sequences of complex numbers. ged.

Finally they consider the transfer or integration [= summation over each
coset] map between the cohomology of a group and that of a subgroup of
finite index . [This map goes in a direction opposite to that of the
obvious functorial map, and a composition of the two maps equals
multiplylng by thla index, etc.] Using Integration they check e.g. that

each cohomology class of a finite group G has a finite order which
divides the order of G.

B. Cohomology Operations. The interpretation of semi-simplicial cohom-
ology groups as homotopy groups arose from the following.
Propo=ition 4. Considering the module A as a chain complex nonzero only

in dimenston =zero, one has a natural bijection from Hq(K;A) to the et
of chain homotopy classes of chain maps K — A of degree -g, .

[In fact we will also need the interpretations of "cochains”,
"cocycles”, and "cohomologies”™ of K given in the proof below.]

Proof. By definition a cochain u = Cq(K;A) identifies with a linear map
u: K [= C,(K)] — A of degree -q. Furthermore u = Zq(K;A). 1.8, 4 is &

cocyecle, iff this map u: K — A vanishes on g-boundaries, i.e. iff it is
a chain map of degree -q. Finally it can be checked that the difference

u — v of two such cocycles is in Bq(l(;.h), i.e. u and v arecohomologous |
iff there is a chain homotopy between these chain maps u, v: K — A of
degree -q. gqed.

Definition of external powers P.
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Let G be a gubgroup of the group of all permutations of p letters, which

will be assumed to act on the p-fold product kP of any complex by
permuting the factors. We choose any EG and shall use the diagonal

action of G on EG x I(p.

Given a g-cochain u: K — A of K, and any p 2 2, we denote by Pu: EG =
Kp — AP the pa-cochain of EG = ¥ obtained by composing its p-fold

tensor product up: Kp -y Ap with' the map EG x IP s IP obtained by
taking the tensor product of the augmentation £: EG — &£ and the

identity map of Kp.

To ensure that up: !(p — Ap is a G-map we need to use, depending on
whether dim(u) = q is even or odd, two different actions of G on the

p-fold tensor product AP: for q even we just permute the factors, while
for q odd we also multiply by the parity of the permutation. These two

G-modules will be denoted respectively by Af and AE.

With this precaution Pu is equivariant, and so we have a [non-linear]
function

P: cY(x;a) — cg“(Es % xp;ag).

Proposition 5. The map P images {(cohomologous) cocycles to (egui-
vartantly cohomologous) eguivariant cocyecles, and thus induces a
[non-linear] magp

P: HY(K;a) — nRY(EG x KP;AD).

Proof. The augmentation being a chain homotopy, it is clear that if the
degree -q map u: K — A is a chain map, then the degree -pg equivariant

map Pu: EG = £ i A: is also a chain map. Likewise [using acyclic

carriers] it is easy to check that if u and v are chain homotopic, then
Pu and Pv are equivariantly chain homotopic. g.e.d.

Next the authors check that these maps P commute with the maps induced
by any K — L and its p-fold cartesian product. y

Also they show that if this external map P is composed with the map
nPcec x k°;aP) — nPIkP;al) — #P9kP;aP), induced by the projection
EG x K° — kP, then we obtain HY(K;A) — HPYU(kP;AP), [u]l » [u] x .. x
[u], i.e. the p-fold cross product.

[And so, composing further with the diagonal induced map, one would just

obtain the pfold cup product Hq(K;A) — Hpq(K;Ap). so we'll turn to
what happens 1f we use the dlagonal first.)]
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Internal powers P. These are the associated [non-linear] maps

€

*
P =a «P: BI(;a) — BRx;aD),

x
where d : hg“(BG % x";agj — hgq(ae x K;Ai’f) = ng(K;Ag) is induced by

the diagonal map d: K — kP

[The authors avoided defining an internal P at the cochain level because
there was no canonical choice -of a cellular map K — IP vhich induces
d*: however it seems it should be possible to repair this state of
affairs by using the Bler-Wu subdivision of Kp,]

To gay more about P it is necessary to compute the equivariant
cohomology ng(K;Af}, which they do for the following case.

Case ( = rotation group £ o p prime, and A [Fp. Now it can be checked
that Ap and Ap both colncida with Fp with the trivial Zp-actlon.

The group actlons of K and ﬂ-‘ being trlvlal the required cohomology
Hz (KI}' ) = hz (EZ x K;lF ) colncidea with H (BZ ® l{-,ﬂ-'p). where Ep =

p!Zp has of course the same cohomology as the group Zp. So, by using
Kiinneth’s theorem, which applies since we have field coefficients,

* * x*
Hzp(!(;ﬂ:'p) = H (Zp;ﬂ-"p) ® H (l(;ﬂ-'p).

So we can define the Kinneth components Pk Hq(K F ) =y RO k(K-EF ) of

the internal eyclic powers P: Hq(K;A) —_— H;q(K F ) by
P

u=F % wk %4 Pku,

where the w, are as in Proposition 3.

For the case p = 2, we now define the Steenrod =quares Sqlz BQ(K;FZ) —

Hq”(x;l}‘z) by

{
Squ = Pq-lu
And, for p an odd prime, the Steenrod reduced powers 2t Bq(Kin) —
Hq+21(p—1)(K;Fp) are defined by
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p.a’ “T(aq-2i)(p-1)"’

where the sgsignificance of the normalizing constant ap g will be clear

from (d) of the following.

Proposition 6. (a) Cyclic powers P: Kq(K;A) — H;q(!(;ﬂ-'p) are linear.

P
{(b)>» Furthermore, their components Pk: Hq(l(;l}'p) — Hpq-k(!{:ﬂ’p) are, for q
aeven (resp. odd), zZzerc unless k is an even (resp. odd) multiple of p-1,
or one less than such a multiple.

(e If p = 2, then we have the cross product rule

Pk(u x v) Piu R o

"L sk j

while for an odd prime p one has
P2k(u % v) = % ri+j=k PZiu *® szv,

where the sign equals the parity of [g].dim(u).dlm(v).

<d> The Pk’.s- vanish also if k exceeds q(p-1), and Pq(p—l):

Hq(l(;ll'-'p) i multiplication by a nonzero constant ap 4 = le‘

n“(x;n-‘p) —

x*
Proof sketch. (a) One checks that d vanishes on the image of the map

Pq P, pa P,
BPY(Ez x KPF ) — nRY(E2 % KPiF )

P
induced by integration. Then it is verified that, if u and v are
q-cocycles, then P(u+v) —- P(u) — P(v), which by definition |is
®
essentially (u-l-va — up — vp, lies in the image of this map. So P = d P

ils linear.

[Q. Find all subgroups of the symmetric group Sp for which this works.]

(b) Consider the functorial maps from the internal powers of the
normalizer of Zp in Sp to the internal cyclic powers. Now use the fact

that actions via inner automorphisms are trivial for the normalizer’'s
powers, while for the cyclic powers they have, by Proposition 3(d),
trivial components only for the stated values of k. 5

(¢c) For any group G of permutations of p letters, if one applies to Pu x

Pv the map induced by the diagonal group homomorphism G — G = G, then
one gets P(u % v) upto the above sign, because this is the change in

orientation resulting from the shuffle KP x Lp — (K x= L)p.

For the case of the rotation subgroup one obtains the required rules for
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the components of the internal cyclic power because, for the case of an
odd prime, we know from Proposition 3(b) that W Wy is zero when a and b

are both odd. ‘

(d) But for the fact that the constant ap & is nonzero, the rest will
follow by repeatedly using the fact that powers are functorial in K:
First note that homomorphisms induced in cohomology by the inclusion of

its q-skeleton are monomorphism in dimensions = a, g0, for a
q-dimensional class u, Pku will be zero in K iff it is zero in its

q-skeleton k9.

Now find a map from fl to éq. which pulls back the dual fundamental
claga of this orieqted q-sphere to u. So, by functoriality again, it

suffices to consider the case when K is an oriented Sq and u is its dual
fundamental class, the required a & can be found by computing the

q..4 4 g . L
o e - e S = E_LIul. This computation which
shows that it is nonzero, is sketched later.

homomorphism P

As far as the vanishing assertion goes, it can be in doubt only for Pqp:

Hq(Sq;Fp) — HO(Sq;Fp), which must be 2zero since it commutes with
homomorphisms induced by the inclusion (pt) = s,
Computation of a = a_ :

e f P.q P
An application of the product rule to K x g gives L X &-1"% the
sign being the parity of [g].[g].

So it only remains to compute al. i.e. the homomorphism ?p_1= H (Sl:Fp)
— H (S ;F ) of an oriented circle. This [which incredibly is the

hardest part of the whole proof |] is done combinatorially via
coboundaries starting from the subdivision of the circle into two arcs.

It turneg out that a1 = Fp equals -1. g.ed.

Propo=ition 7. (a) The Steenrod squares qu': Hq(l(;le) — Hq+i(K;IF2) are

natural trans formations obeving Sqn = id, Sqqu = tiz. Sq"u = 0 for 12> a

and Sa(x.y) = Sa(x).Sa(y), where Sq = E, Sa .

(b> For any odd prime p, the Steenrod reduced powers 2% Hq(l(;[F P) s

Hq+z“p 1)(l( piF ) are natural trans formations obeying .?0 = id, .?q,zu

up. .?l'u =0 for i > q/2 and F(x.y) = P(x).P(y), where » zi .Pi'.

Proof. Follows easily from Proposition 6, and the definitions of Sé
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and ?l. ged.

The "axioms” listed above [the product rule is called Cartan’s formula],
not only imply the remaining "axioms” [Bockstein behaviour/Adew's
relations], but also are enough to uniquely determine these cohomology
operationg: for this see Chapter VIII of the book. The rest of the book
is based solely on these "axioms”.

Comments

1) In his 1947 Annals paper Steenrod had defined squares using cup
i-products | The definition discussed above, which tiegs them up nicely
with the cohomology of the finite rotation groups, seems to be a new
version of that given in his 1953 Commentari paper.

Previously, in their 1936 Annalse paper, Richardson and Smith had
computed the cyclically eguivariant homology of pth powers of complexes .

The definition of the dual [or inverse] Smith operation=s Smi y Sme 5q =
id, appeared implicitly in their calculation, as was pointed out later
in Wua'g 1965 book.

Following Milnor, operations are also interpreted as the action of a
known Hopf algebira [generated by symbols subject to relations suggested
by Adem's formula, and equipped with the co-multiplication suggested by
Cartan’s formula]l] on cohomology. Analogously, following Serre and
Cartan, they can be interpreted also as a homotopy-theoretic action of
the cohomology of an Eilenberg—Maclane space on cohomology.

Amongst the striking applications of operations are the ones of Thom
[embeddings, topological invariance of Stiefel-Whitney classes], and
those of Adams [vector field and Hopf invariant problems] who used other
operations also.

(2) The definition of operations given in Wu's book i very close to
that discussed here. The only difference being that instead of
asgociating to K the equivariant complex EG x Kp [G being say the cyclic
permutation group on p letters] he works with kP [and its subcomplex Kf
and gubdivision U(Kp)] itself. Again the operations are obtained by an
"equivariant localization” of pth powers of cocycles to the diagonal.

(3) One can replace products by Joins in thefe definitions. For

example though K+ .. *+K+G+*G* ..., unlike its sub cell complex l(p % EG,
is not free, its G-action still satisfies the requirement of Proposition
1, and it has the same diagonal as the aforementioned sub cell complex.

This should enable us to wuse Join multiplicativity to shorten some
proofs [say the computation of the ap q‘a ?] and should [using e.g. the

fact that EG = G*G* .. is a deleted join] enable us to put Steenrod’s
and Wu's definitions in a gingle framework.

(4) It would be interesting to generalize this combinatorial theorvy to
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the infinite abelian group of circular rotations. The methods of cyclic
cohomology suggest that this is now possible, and it would be

interesting to do it because it might lead to a <conceptual
combinatorial definition of rational Pontr jagin classes, etc.

(5) Alsey one should generalize this theory to some other finite, but

non-abelian, permutation groups. This should be possible, because
starting with say Cartan-Ellenberg’'s 1956 book [Chapter 12], a mass of
information is available about group cohomology, the essential

ingredient in the above method.

This should also relate to computafiona of cohomologies, and equivariant

localizations of pth powers of cocycles, for invariant parts of U(!P)
other than the diagonal.

(3
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