


ow note that s (resp. d) vanishes mod p on simplices of F. S0 <

oda
Fs(a') = sd(a’') (resp. da = &d(a') = dd(a')) must be supported on E \ F
"while &b is of course supported on F. ' So if'¢ ig a cycle, i.e. dc = 0
then both #a and #b are zero, i.e. both a and'b are cycles.

‘ X A
[Above argument does not dualize because 5b need not be supported on F.]

- One obtains the required homological decomposition because It can be

likewise checked that if ¢ is a boundary, then both a and b are
boundaries. g.ed. :

The abowve result does not dualize to coh;omalogy e.g. H;(E;[Fp), which
idantlflas with the cohomology of the apace E!IF need not be the direct
sum of H CE,FsiE j and H (P.IF ), but rather la related to them by the
exact sequence of the pair of apaces (E/FP.F).

Exact sequences. There ig the Richardson-Smith (co)homology sequence of

~ the free relative complex (E,F). Besides there is another one arising

from the fact that 8 (resp. d) applied to the (co)chains of E has as
image all the d (resp. s8) (co)chains of E vanishing on F. In addition
there is the ordinary exact sequence of the pair (E,F), as well as that
of its quotient (Eﬂ}-‘p.F). We omit discussion of the [mostly obvicus]

maps between these gsequences [cf. also Bott and Aeppli-Akiyama].,
Commenits

19 Is there a nice [?] generalization of Richardson-Smith theory to
all finite [simple] groups G?

[Papers of Swan / Burgheslea suggest that Tate / c¢yclic cohomology might
#ive such a generalization. Also it might be of Interest to use as
coefficientz a number field T whose Galois group over @ is G 7]

(2) The bigger the acting group, the more one needs to subdivide be fore
the complex becomes fine.

For example for the permutation groups 1, Zp, and Sp on p letters, p a
prime, acting on the p-fold join of K by permuting factors, the
gimplicial complex KP, its Wu subdivision W), and its BHier
“subdivision w_(_!c".). are, respectively, fine enough with respect to the
group action. )

Thus if we restrict to the groups Ep. p a prime, there is no point in
using the finer Bier subdivision, which will come into play for other
permutation groups. =

[In this context cyclic semi-simplicial complexes serve to make even the
action of the infinite group of circular rotations finel]

3 Can the Stesnrod operations bes defined cononically in ths Wu
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lsubdivicion &

Given a degree gq cocycle u of K we have a non-homogenous cochain Pu of
W(KP) defined by (Bu)Y(®. (o), «» ,0.)) = u(BUs ). .. .u(Bus ) F . Note

- that the right side c¢an be nonzero only if |9uo'1| = e E |9u:rp] = g, so

we have deg(é.(a’l. - ,crp)) = q = |a| P [arl[ + .. * [e.rp[ = gp. Thus, Pu
lives in degrees q through qp.

Though Pu is zp eguivariant it ie pnot a cocycle of U(Kp). For example

in degree q, i.e. when dl = .. = ap s @, we have (Pu)(&) = u(8) [because
xp =%V x & I?Fp], which obviously nee'd not be a cocycle of U”(Kp ), even
though it is of the diagonal, and this restriction to the diagonal gives

*
the identity map [u] 3 [u] of H (K).
The pth cup power seems to be definable from Pu To do this we work in
dimension p(g-1), i.e. in degree t = p(g-1)+1. The point to note is
that the degree t part of Pu is a cocvele of a subcomplex containing the

digzonal, viz. the the c¢ell subconmplex kP . The c¢ohomelogical

restriction to the diagonal now gives [u]p.

It seems that a similar modified [?] cohomological restriction to the
diggonal is possible for all of Pu and will define thse entire Stesnrod

class P[u] = [u] + .:ﬁl[u] + .‘Pz[u] s*as [u]p. 1f so this would be really
nice, because the Wu subdivision itself would have served to spread the
p fold join of u into lower dimensions rather than Smith morphisms or
Borel trick etc.

FADELL-NEUWIRTH

Throughout M will denote a manifold of dimenmsion = 2, and M \ (k pts}
will also be denoted H_k.

CA> Let Fn(H)- = {(xl, ,xn)e:- o G TR TR (g xiaﬂ ij i= j) be the

ath configuration space of M Then the first coordinate map Fn.(n) .

M (X, «.. 4X ) b X, is a fibration with fiber F__ (M_).

1 %

..‘Q
We omit the easy verification.
B2 If a fibration F = E — B admits a section, then

m, (E) = ﬂi(B) @ n (F)V , iz 2.

Froof. This follows because the homotopy sequence sgplits into short
exact sequences. qg.e.d.
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i
€C) Theorem If first coordinate map F_(M) — M has a section, then

R (B (M) = @ .. 7. (M \ k pte), i a‘z.

- So, for example,
n, (F (™)) = T = e T

= @ enen Ui (k times)), i = 2.

Froof. The point to note is that the first coordinate map Fn—-l (H_l) -

T —

-H_l. which has Fn-zm-z) as fiber, always has a section.

:.'I'h'is follows because we can choc;'ae the second, third, etc. coordinates
. 0of the section to contract along different directions of a neighbourhood
- of the migsing point M \ H_lz then they are all distinct from each
) L] »

]

other, and also from the first coordinate, which is identity.

Now iterate the construction, and use (B) starting with the last

l-fibratlon Fz(n_n_+2) — H—n+2' which has fiber F1(H ) =N

-n+1 -n+1’
The second part follows because m—-space is contractible, and if we omit
k points from it we get the homotopy type of a bouquet of k spheres of

 dimension m-1. ged

[ €D>» Exiztence of seation of Fn(l'l) — L This follows easily if M has
an identically nonzero vector field i.e., zero Euler characteristic [so
e.g2. they also get a bouguet formula similar to above for ni(Fn(Sm)), m

odd], and also if there is some [not necessarily deformation] melraction
ﬂ:’ﬂ — L, with manifold L having a section of above Kkind.

" This establishes existence of section for lots of manifolds because any
clozed manifold M with first Bettli number nonzero retracts to a civals
[they cite Whyburn's book for this], so such M's have sectiong of above
kind.

tOn the other hand they check that for n = 3, the nth configuration space
" of an even-dimensional sphere has no section, and neither do the
configuration spaces of manifolds having the fixed point property have
3%§ctions.

I

[Note that, as against Il?m. an m-ball B® has the fixed point property.
But not being a manifold without boundary, above theory does'nt apply te
it: the topological type of the space obtained by omitting some points
depends on these points.]

{

CE> The nth configuration space is the quotient of the identity
component of the group of homeomorphisms of M by the subgroup keeping
leach of some n chosen points fixed. Using the associated exact homotopy
sequence the authors indicate some situations in which the homotopy
groupe of this Bubgroup are same as of the full homeomorphism group.
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Also they make some computations of the brald group of M, i.e. the
fundamental group of rn(n) /En, where zn is the nth symmetric group.

*

Comments

(1) Remember that H,(F = B) = &, . H,(F) & H(B) [with field
coefficients] as against n (F x B) = n (F) @ n (B). '

[Likewigse homology groups of disjeint or one-point unions are given by
rules quite different from those for homotopy groups. ] s

(2) So the formula for rzl(Fn(Bi’m)) doez noit suggest that Fn(ikm) has the
homotopy type of an (m-1)-complex, but rather of the [possibly slightly
twisted] product of n-1 complexes, each of which ie an (m=1)-complex.

[Most probably available computations will show that the homology of
Fn(H) c¢an be nonzero in a dimension going to infinity with n 7]

33 It would be interesting nevertheless to find a definition, which
associates to each simplicial complex K, another simplicial complex
Fn-*(K) [say of dimension n.dimK)] which has always the homotopy type of

the nth configuration space Fn(X), where X = |K|.

(4) Note that for the nth join configuration IZF’__l Xy, X = |I(| , we have
solved the problem analogous to (3): its homotopy tupe coincides with
that of the subcomplex of the k-fold join of K detepmined by pairwise
disjoint seguences of simplices of K.

So, as agalnst Fn(x), the homotopy type of !}‘n(x) gives information about
the number N of vertices required to triangulate X: it must be more than
the dimension till which ite homology is nonzero.

(5) While looking at braid groups the authors use a result of Smith to
the effect that if, for a finite dimensional complex, ﬂi's are all zero

for i = 2, then "1 has no elements of finite order.

Kl
3

SEGAL’S PAPER ON CONFIGURATION SPACES

As i usual with his papers, this paper of Segal dis 2 elegant,
well-written and guite informative. -

Throughout the following S and @@ will denote the‘ reduced suspension and
loop functors in the category of pointed spaces.

C(A>» A partial monold is a pointed set [or space] (¥X,1) equipped with a
partially defined [continuous] multiplication X ¥« X -+ X for which x.1
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e A T )

F,i' x = 1.x ¥ x, and (x.y).2 = x.(y.2) whenever the two sides are defined.
It gives rise to the following "Hochschild" semi-simplicial complex
- which will also bhe denoted by X. 5
[
. The n-simplices are length n multipliable sequences of points of X, the
. face operators are obtained by multiplying two consecutive entries or
" omitting the last one, and the degensracy operators are obtained by
ingertions of 1.

. The geometrical realization of this semi-simplicial complex will be
~ denoted by BX. a

€BE> For any pointed space (X,U)_, J_.e:l: 'Cn(XJ be the configuration space
:Cn of finite subsets =« of IRn, labelled by points of X, with two labelled
r.aats identified iff their nonzero labelling is same.

Note that union of two such daisjoint labelled finite sets a and 7 is
also a labelled finite set, and that under this multiplication CnEX) is

a partial monoid. The main result of the paper is the following.

Segal’s Theorem. BC__ (X) = C__, (SX) =~ gl 6 5

I

(€3 Corollaries and Remarks.

€id> Note that CU(K) is the free moncld MX on X, so above result
generalizes James' Theorem: BM(X) =~ S(X).

€ii3> Also, if X is path connected, then i‘lB-Cn_1(X) = Cn(X), so for such

an X one obtains May’s Theovewm: Cn(XJ ™ flnSn(X).

L3111 This is not true when X is not path connected, but even now one
- has at lsast, for each k, Hk(Cn(X)J = ak(n“s“cxn. provided n is large
i'anauah.

€iv) Segal also gives a picturesque discription of a map E: Cn y OE
0

which induces the above homology isomorphism for the case X = § = {0,

t+1): place at each polint of a = I]?n the unit po=zitive ghar'ge +1, then

i

E(a): (ER‘n o, o ) — (Rn L . OO

is the slectrostatic field of this charge distribution.

el

€D>» Quillen’s subdivision. If a“ ig the closed n-simplex onn = (0, 1,
.o« ,n) and ij, i = j, denotes the barycentre of (i, j), then the
gimplicial complex consisting of all simplices of the type,

. o S = = < .
{iljl' lzjzt e T .ika}' 11 el j‘z — e o lk' jl - jz — WAL e jkr
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- o~ s o
constitutes a stbdivision Q(A) of A",

Note that each ardar preserving map n — m induces a simplicial map A8

- A% Th.' enables wus to associate ftmctom.ally to every
gemi- simplicla, complex A, a aemi‘-slmpliclal complex Q(A), such that the
realization of Q(A) is a auhdxvia;on of the realization of A.

Note that theset of "edges” of A coincides with that of the "vertices”

of QCA), and rewise more generally the set of degree d simplices of
the s;s}c. Q( coincides with that of the degree 2d simplices of A.

II L
Comménts 3

(1) Any gppe X defines a semi-simplicial complex in the original sense

of Eilenb{g-Zilber [i.e.without degeneracies] as follows: the <
] n-=implices are length .n+l sequences of points of X and face maps are

given by ol ssion of a term.

) The Mm{e Join XX+ ... is the geometrical realization of the above
gemi—gimpt’ial complex .
This fol"’ﬁ "becqbu,se the space of n-simplices is the (k+1)-fold produr.t

xk*'i andthe realization is the quotient of the disjoint union X & x Ak
under 1:-# i®entifications dictated by the face maps.

Likewis- it we limit ourselves to length p sequences only, then we'll
obtain(ﬁhe rfold join X+ ... *X.

-

And i{' ¥ i pointed, then we also have degeneracies given by insertions ©
of. ’t-. pag point, 8o we can speak likewise of infinite or p-fold
|

LA

| ¥ ; l-
(2) t+ isatural to ask if the (co)homology of the infinite join X«X+ |
and kewise for p-fold joins etc.] can be calculated from the “’i

- - - i

(co)¢hain mplex of the above semi-simplicial complex ? | \

In fact thaforementioned (co)chain complex seems to be the [acyeclic 7] Jf
complex 4 O Alexander—-Kolmogorovw (codchains withowt the localizsation @@
canditw 1i8 condition corresponds to restricting to the diagonal of..:

n a as is well-known gives the (co)homology of X] ?

Obviouslyi1ig@ train of ideas should also be cloaq. to the Dold-Tham
Theorem cdnfinite symmetric products ?

h

(3) Quill subdivisions are analogous to Wu subdivisions, because in

both one jes compatible subdivisions of the atandard simplices to :
gubdivide e spaces in question. =

Quillen's 1bdivisions Q(A) are more economical than bar-yeentric |
subdivisic B(A) [the former being a stellar subdivision in which Juat
the edgesre derived] in the sense that new number of s;mpllces la

. lesser. I note that -mv map » — w af

"mmzs
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