
REVIEWS CV) 

\ill.PS "A THEORY OF IMBEDDING „ " Ccontd. > 

CHAPTER FOUR. tJe sa\J that if some s-ubd1v1.;!,,.-tOH of K embeds linearly in 

This 1.1ill no1.1 be shown to imply the necessary 

conditlons found by Tho1n, in terms of the 
K, for the linear ernbeddability of sorne 

m 

inverseStet"'"'n1··od operations of 
s irnpl i c i al compl ex ltomotuf•\.• 

,;:-qu-ti-·al~nt to K in IR • 

For this purpose tJu shows that "Steenrod' s operations ca.n be def ined 
easily using a generalized llinneth theorem of R:lch&1·dson-Si11ith 1Jhich 

computes the cyclically equivariant cohomology of KP_ . . 
A. F1:x~d s:ubeüTnplex. 
E, on \Jhlch the action 
enough \Jlth respect to 

Ue will alvays assurne that a simpliclal 
of a finite group G is being considered, 
the group action, i.e. that 

complex 
i s f"in~ 

g .. -; = e, e S ·-3"-+ g.A = H. 

This ensures that the C<...:r1>hom.r:.•lu:::;:y of th~ -=-qun,a~ i.ant ,-, „„-fl,z.n~· of E iu 
is an invariant of the underlying equivariant homotopy type of E. 

Also it ensures that the tixed poln~s {x: g.x 
action constitute the space of the subcomplex F 

x 'r/ g • G} of the group 
= { < : g . .., ,.... ,_, V g r G } . 

Hore generally each normal subgroup of G gives rise 
simplices f ixed by lt, but if G is .:'.·unµZ~, then the 
·rüm. F, i.e. each point [simplex) of E \ F has ! G

1 

to the subcomplex of 
action ist~~~· inau 
distinct [disjolnt] 

conjugates. ' 

In fact, resuming the discussion 
fixed point free case F = 0, we'll 

of Chapter 
from no\J on 

finite aheUan simple, i.e. cyclic prime order, 

[fine) E, 

II, vhich dealt \Jith 
confine ourselves to 
groups G = .: = <T>. 

p 

".Adth 

c~ or 
8

(E;IF P) ·:~ C~ or 
8 (E,F;~ P) 4 C*(F;IF".P.1 

the 
the 

F 

htaint=-d by .s·plitti.ng any c::hain 
d s 

c E C k ( E ) ( r es p . ~ C * ( E ) ) i.n. tu tfl~-· µar·t.:.. 
~ 

F, tnduco1:~ • .,.. ,-, d~conu,1~,;;„::d'ü•n 

or s 
(E,F;:F" ) & H*(F;T ). 

p p 

r nu f. Since the action ls free on E \ F 1Je can find a chain a' such 
hat a = s(a') (resp. a = d(a')). 
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Nov note that s (resp. d) vanishes mod p on sirnplices of F. Soda 
ßs(a') ~ s8(a') (resp. Ba: 8d(a') = d8(a')) must be supported on E \ F, 
vhile ßb is of course supported on F. So if ' c is a cycle, i.e. de 0, 
then both aa and bb are zero, i.e. both a and bare cycles. 

[Above argurnent does not dualize because ~b need not be supported on F.] 

One obtains the 
likevise checked 
boundar i es. q.~.d. 

required 
that if 

hornological decornposition 
c is a boundary, tben 

because 
both a 

* 

it 
and 

Th~ abc_,u~ r-~s:uli doe~-~· nut duah.~"e to c. ohcnnc.jlosy: e. g. Hd ( E ;J- ) , 
J p 

identifies vith the cohomology of the space E/~ , need not be the 
p * * . but rather is r-elated to them surn of Hd(E,F;iF ) and H (F,IF ) , 

p p 
exact sequence of the pair of spaces CE/~ ,F). 

p 

can 
b 

be 
are 

vhich 

direct 

by the 

Exac~ sequences. There is the Richardson-Srnith (co)hornology sequence of 
the free relative complex (E,F). Besides there is another one arising 
fr·om the fact that s (resp. d) applied to the (co)chains of E has as 
image all the d (resp. s) (co)chains of E vanishing on F. In addition 
there is the ordinary exact sequence of the pair (E,F), as well as that 
o f i t s q u o t i e n t ( E /lF , F ) . TJ e o rn i t d i s c u s s i o n o f t h e [ m o s t 1 y ob v i o u s J 

p 
maps betve en thes e s equenc es [cf. also Bot,-t, and AeppH-Akiymna J . 

( 1) I s ther e a nie~ [?] general i za t i on o f Ri chardson-Smi th theor·y to 
all finite [simple] groups G? 

[Papers of Sw&n / Bui·gh.ele& suggest that T.at~a- / 
gi ve such a general iza t i on. Also i t might b e 
coeff icients a number field ~ vhose Galois group 

cyclic cohomology might 
of interest to use as 

over ,~). is G ?] 

(2) The- bigg~r- tlt.e actfr;;I; g;--oup. tht? m.or-e- c•n€' ne,:,;.ds.~ t.-:J -~·ubdi.,Ad,,.· hc·fur~· 

th.,=:. -:: ompll!:."X b€',- cmi"~.;:;· fine. 

For example for the permutation groups 1, '-' C.0--p' and S on p 
p 

letters, 

factors, 

p cl. 

the prime, acting on the p-f old join of K by permuting 

simplicial complex i t s Wu subdiv·i.s·iun and i ts Bi.t->· 

•-=;ubdivi-:;"1.Dn \./(KP), are, respectively, fine enough vith respect to the 
group action. ~ 

Thus if ve restrict 

us lng the f in er Bi er 
permutation groups. 

t o the groups 7' p a pr ime, 
~ p' there 

subdivision, vhich vill come into 

is no point in 

play for other .. 

(In thls context cyclic semi-slmpliclal complexes serve to make even the 
action of the infini.t~ group of circular rotations fine!] 
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su.hdivision ? 

Given a degree q cocycle u of K we have a n011-hüHK•.{c<=-"HOLLS' cochaln Pu of 

1J(Kp) defined by (Pu)(A.(o-
1

, ,a-P)) = u(öua-1 ). 

that the right side can be nonzero only if ieua-
1

: 

we have deg(O.(a-
1

, ,cYP)) = q' 
1
Al + 1·:r

1
! + 

lives in degrees q through qp. 

Th.ou;gh Pu i.s ..: .=-quivariant it 
p 

not a 

.u(~~ ) ~ ~ . Note 
p p 

= 
+ .~ 1 

1 p 

= l &llö" p 1 = q ' s 0 

..:' qp. Thus Pu 

For example 

in degree q, 

XP = X V X € 

though it is 

i.e. when ~1 = .. = cY = 0, we 
p . 

~ ], which obviousiy need not 
p 

have (Pu)(&) = u(&) [because 

be a cocycl €l <•f TJ'(~>), even 

of the diagonal, and this restriction to the diagonal gives 

* the identity roap [u] 1-t [u] of H (K). 

Th& ptil cup po1.f1)er seems to be dejnu:ible fr·om. Pu. To do this we work in 
dlmeri:don p(q-1), i.e. in degree t = p(q-1)+1. The point to note is 
that the df:.•E_:rf?e t par-t oj Pu is a <.~CJC\l<.-·lt- .:_ij a s·ubc<.·_,mpli!?X c·o>;taintnt: th,:.. 

viz. the the cell subcoroplex The cohomologlcal 

restriction to the diagonal now gives [u]P_ 

It seems;- that a g·imilar roodi f i ed [?] cohomoloi=;··i,-::al r-e.!:.·tri.cttun lt• tll~· 

dia:='"!Dnal is: püs.'Sible fo~·- all of Pu and t.J.Ji.ll de-fl.ii.~ the entir·e st~f:N1Y-Od 

das•s P[u] = [u] + :P 1 [u] + .1' 2 [u] ... + (u]P. If so this would be really 
nice, because the Uu subdivision itself would have served to spread the 
p fold join of u into lower diroensions rather than Srnith morphisrns or 
Borel trick etc. 

FADELL-NEU\i/IRTH 

Throughout I'l will denote a mani fold of dirnension -> 2, and l'1 \ {k pts} 
will also be denoted M_k. 

<A> ,X ) € I'l X •• X l'1 : X. ?! X. V i ;r! 
n 1 J 

Th&n -t11& :f"iN>:t. co„u•din.at.e map 

1Je omlt the easy ve~lflcation. 

n.(E) = rr.(B) 41 rr.(F) V 
1 1 1 

i ~ 2. 

j} b& tht-

F Cl"!) - -+ 
n 

P;·oof. This f ol lows because the homotopy s equence spl i ts into short 
exact sequences. q.f?.d. 
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(C) Theor·em. If fü·s:t < oo~--dinate ntap F (I'l) ---4 I"I has a seo<:..t~on, thf:•H 
n 

n.(F (f'l)) "'4' 0 k< , •. (l'I \ k pts), i-: 2. 
1 n ~ n 1 

V •. • V S 
m-1 

(k times)), i =- 2 . 

The point to note is that the f irst coordinate map Fn-l (!''1_
1

) 

This follo\o/s because \o/e can choose the second, third, etc. coordinates 
of the section to contract along dlf f erent directions of a neighbourhood 
o f the miss ing point l"f \ I'l_ 1 then they ar e al 1 d ist inct f rom each 

other, and also from the first coordlnate, which is identity. 

Now iterate the construction, and use (B) starting with the last 
fibration F

2
(!1 

2
) -~ :r1 

2
, which has fiber F

1
Cf'l 

1
) ~ M 

1
. 

-n+ -n+ -n+ -n+ 

The second part follows because m-space is contractible, and if we omit 
k points from lt we get the homotopy type of a bouquet of k spheres of 
dimension m-1. q.~.ä. 

This follows easily if :r1 has 

an identically nonzero vector field i.e., ze-1··0 Eule1·· chat„lK::t.er-ist.ic [so 

e.g. they also get a bouquet formula similar to above for n. (F (Sm)), m 
1 n 

odd], and also if there is some [not necessarily deformation] ~etPactior~ 
M: - L, with manifold L having a section of above kind. 

This establishes existence of section for lots of rnanifolds because .u~ 
closed n.ar1.it~old M: wit,h f'"h··st, Bet'ti inunbel"' nonze1··0 r•et..-.act:s t,o a cft-.clc~ 

[they cite w'hybu1··n's book for this], so such f'l's have sections of above 
kind. 

On the other hand they check that for n ~ 

of an even-dimensional sphere has no 
configuration spaces of manifolds having 
sections. 

3, the nth configuration space 
section, and neither do the 
the :t·ixed point. pt"üpe-.-.t,y hd.ve 

•;"' 
[Note tha t, as against iRm, an rn-bal 1 Bm has the f ixed poi nt property. 
But not being a manifold without boundary, above theory does'nt apply to 
it: the topological type of the space obtained by omitting some points 
depends on these points.] 

<E) The nth configuration space is the quotient of the identity 
component of the g1·oup 01· humeonu:n•phisn-1ihi of :r1 by the subgroup keeping 
each of some n chosen points fixed. Using the associated exact homotopy 
sequence the authors indicate some situations in which the homotopy 
groups of this ~ubgroup are same as of the full homeomorphism group. 
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Also they make some 
fundamental group of 

computations of 
F (M)/':" , where ~ n n n 

the b1··aid g1··oup o f M:, i. e. 
is the nth symmetric group. 

the 

(1) Remember that H. (F :-:„ B) ~ 1±1. k . H. (F) 0 Hk(B) [with f ield 
1 J+ =i J 

coefficients] as against n.(F ~ B) ~ n.(F) ~ n.(B). 
1 1 1 

[Likewise homology groups of disjoint or one-point unions are given by 
rules quite different from those fo~ homotopy groups.] 

( 2) So t„he Co1··mula t·cw n „ ( F (lRrn)) dües not suggest. t.hatJ F ([Rm) h.&s the 
1 n n 

hmnot..opy tJype-- of an (m-1)-compl~x, but rather of the [possibly slightly 
twisted] product of n~l complexes, each of whidh is an (m-1)-complex. 

[Most 
F (M. n. ) 

probably available computations will show that the hornology 
can be nonzero in a dlmension going to lnfinity with n ?] 

of 

(3) It would be interesting nevertheless 
associates to each simplicial complex K, 
F *(K) [say of dimension n.dimK] which has 

n 

to find a deflnitlon, which 
another sirnplicial complex 
always the homotopy type of 

the nth configuration space F
0

(X), where X= jKj. 

(4) Note that for the nth join cont~igui-·ation !F (X), X = 1 K1 , ve have 
n 

solved the problem analogous to (3): its homcdopy t~.p~ c..oi.1-i.cid-?-s: u.dh 
th.at u f th.: ,c;.·ul::n:..ü1iq:>l~).: ü f th~ k· fuld join (• :f K d~t-:;.r;;nn..,_.d by p(_n_,·u.d.~,.;:, 

1..·-h . .:;•joint ~·-:?qu-=-nt.. ~s: o f .s;·i.;npl.ic.<?.&' C• f K. 

So, .a:s agains:t. F (X), the hom.ot,opy t.ype o:f ::r (X) g..1.ves in:t 01·1nat,ion about 
n · n 

i,he n.t„mthe-1·· N ot~ v~1-..t,ices 1··equh··~d t~o t.1-iangulat„e- X: i t must be more than 
the dimension till which its homology is nonzero. 

( 5) tJhi 1 e 1 ooking a t braid groups the authors us e a r es ul t o f o;;;n--ut„h t o 
the effect that if, for a finite dimensional complex, n. 's are all zero 

1 

for i ~ 2, then n
1 

has no elements of finite order. 

SEGAUS PAPER ON CONFiüURA'lION SPACES 

A.::.· 'L:-.- usual i_._rith Ins paf-n?rs. this: j:1up6!r o j S~gul 

U.if::ll.-t..>ritt~n. and quit~ in-furi1i.ati'l....1e„ 
i.:s' ~les,·a~1t. 

Throughout the follo\Jing S and ~l vill denote the reduced sa . .1spens1ot'1 and 
loop functors in the category of pointed spaces. 

(A> A pru•t.i&l monoid is a pointed set [or space] (X, 1) equipped with a. 
par-tially defined [continuous] rnultiplication X X „ X for which x.1 
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= x = 1.x V x, and (x.y).z = x.(y.z) whenever the two sides are defined. 
It gives rise to the following "Hochschild" ·0'&m1.-6uiipli<- t.al. , .cnn.plP•. 
which will also be denoted by X. 

The n-.~·im.plfr..:t?s are length n multipliable sequences of points of X, the 
fac~ o.p€-ratürs are obtained by multiplying two consecutive entries or 
omi tting the last one, and the df=-5ener-uL·).> o-pt->rators.• are obtained by 
insertions of 1. 

The :gf'-orn.f-'tr·ical r-eali-zatlon of this semi-simpliclal complex will be 
denoted by BX. 

(8) For any pointed space (X,O~, 

n 
C of finite subsets ~ of ~ , labell~d by points of X, with two labelled 

n 
sets identified iff their nonzero labelling is same. 

Note that union of two such di..s:jaint labelled finite sets oi and f~ i~ 

also a labelled finite set, and that under this multiplication C (X) is 
n 

a partial monoid. The main result of the paper is the following. 

(1) Note that C
0

(X) is the 1~1-·e~ n\onoid :r'IX on X, so above result 

generalizes j&m~s:> Th€<ui··e<-rn: BM:(X) •.::: S(X). 

(ii> Also, if X is path ~oi<.>1.~< ti!:d, then OBCn-l (X) ~ C (X), 
n 

so for such 

an X one obtains M # Tl C (X) ....., CinSn(X). &y s ·•eu1'ein : n 

<:U:D Thls is not true when X is not path connected, but even now one 

has at least, for each k, ~(Cn(X)) ~ ~(O.nef1cx)), provided n is large 

enough. 

<lv) Segal also gives a picturesque discription of a map E: C ~ unefl 
n 

which induces the above hornology isomorphism foi· th~ e:ase X = s0 = { 0, 

tl}: place at each point of !.t :.= W.n the t..1nit.- pos;it.lve cJi.ar•ge +1, then 
'./' 

( =n u 
Li'- (t.) ' oo ) -j> (!R

11 u oo, 0 ) , 

is the elect~ostatic tield of this charge distribution. 

(D) Quille11.~s subdivision. If bn is the closed n--sirnplex on n 
, n} and i j, i !: j, denotes the barycentre of { l, j}, 

simplicial complex consisting of all simplices of the type, 
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constitutes a stbdivision Q(An) of An. 

n 
Note that each order preserving map n. -+ na induces a simplicla.l map ...-. 

--t Am. Th,s enables us to associate functorially to evE.:ry 
semi-simplicia' complex A, a serni-simplicial complex Q(A), sueh that the 
realization of Q(A) is a subdivision of the realization of A. 

Note that the set of "edges" of A coincides 1Jith 

0 
f Q ( A ) , an d 1 i k e w i s e m o r e g e n er a 11 y t h e s et o f 

the s.s.c. Q(1) coincides wlth that of the degree 

that of the "ver-tices" 
degr-ee d simplices of 

2d slrnplices of A~ 

CDmm~nts 

(l) Any spce X defines a semi-simplicial complex 'U1 th#? m·1.E;ioal s~u~,.c· 

of EH~nt;/·s-Zi.lber [i.e.without degeneracies] as follows: the 
n-~implice~are length .n+1 sequences of points of X and _·fru:.;~ mup:s• ar e 
given by 0 ission of a term. 

The int·in e j<.J.u1 X• X• . . is t.he geometi··ic:a.1 i··e.a.Uzation ot~ t.he abuv~ 
send-sunpcial complex. 

( k+ 1 )-fold pruduc t This fol~"'s because the space of n-simplices is the 

Xk+1 anctthe realization is the quotient of the disjoint 
under t~ i~ntifications dictated by the face maps. 

. k+l k 
union X · L. 

Likevis. if we limit ourselves to length p sequences only, then we'll 
obt ain ehe rt'old join. X· ·X. 

And, 1. X i p(l'i.nt~d , 
of thl bas point, 
N'!·duc1d Jois o f X. 

then we also have degeneracies given by inser-tions 
so we can speak like1.1ise of infinite or p-fold 

(Z) it isatural to ask if the (co)homology of the infinite 
'and ke1Jise for p-fold joins etc.] can be calculated 

~~~)~ain roplex of the above semi-siroplicial coroplex ? 

jein X• X+ 
f roro tr.e 

In fact thaforeroentioned (co)chain complex seems to be the [acyclic ?] 
cornple:X: o Alexand~;··-kulm.05oroo (,:D.>,-ha·in.s· i._.lthuut th,:.~ lür:uliL uti.nn. 

üs condi t ion corresponds to r estr i et ing t o the dio;g·l.>ilal o f 
is 1Jell-known gives the (co)homology of X] ? 

Obviously tis train of ideas should also be closi:;_, to the Dold-1 1on1 
TheoN:"-m oinfinite syroroetric products ? 

( 3) Quill :s:ubdiui.s·ions: ar~ analogu'U~· 
both one ;es compatible subdivisions 
subdivide e spaces in question. 

tu iv·u .!..'Uhdivis:ions, b ecaus tl 
of the standard simplicee 

i r. 
to 

Quill.t-n•5· 1tnliul.<'°tvn.:~· Q (A) are mt-s>"·c• f?-'C,ft1.un~ü •ll thart Fuü»)• -nh·<c 

, . 

~ubdiu~si~ B(A) [the former being a stellar subdivision in 1Jhich just 
the edgesre derived) in the sense that new number of sirnplices is 

lesser. l not e tha t ,.„„ n map ...... 
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