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§1. Introduction. This paper is a sequel to [11] which had dealt only with
roots of translations. It turns out that the geometric method used there – I had
used this method previously in linear algebra, see [9] and [10] – extends in a
very nice way to all functions k, and for any injective k yields a convenient clas-
sification of its qth roots. The continuous results of that paper also generalize,
giving all homeomorphisms of a locally path connected Xthat are qth roots of
a homeomorphism k without periodic points such that X covers X/k. We also
look at increasing roots of increasing integer functions.

§2. Roots using pictures. By a qth root of k : X → X we mean a function
f : X → X such that fq = k. The basic idea that we shall use to get at these
roots is simply to visualize the given function k by means of the directed graph
whose vertices are all the points of X, and whose arrows are all ordered pairs
(x, k(x)). Since ‘graph of a function’ has a different and entrenched meaning,
we’ll call this directed graph the picture of k, and denote it by Pic(k). Note
that it is rather special: there is just one arrow issuing out of each vertex x. The
arrow may loop back to x, this happens iff x is a fixed point of k; more generally,
a finite sequence of arrows may form a closed loop, this happens iff the function
has a periodic point, i.e., an x such that some positive iterate of k maps x to x.
We partition the set X into the subsets C consisting of vertices belonging to the
same component (which will also be denoted C) of the picture. Alternatively,
C is a maximal subset of X such that any two points are mapped by suitable
iterates of k to the same point.

(2.1) A component of a picture is either an endless tree, or else, has one
and only one loop, which must be its sink, that is to say, the components of any
picture are typically as depicted below.

Figure 1

This follows because an arrow not belonging to a loop can conceivably end
at one of its vertices, but it can never issue out of one, for then that vertex
would have at least two arrows issuing from it.

(2.2) A root of k maps arrows of Pic(k) to arrows.
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This is the same as saying that a qth root f of k commutes with k, that is
fk = kf , which is true because both sides equal fq+1.

(2.3) It follows from (2.2) that the root f images a component into a compo-
nent. Starting with any component C0 of Pic(k), let C1 denote the component
into which f maps it, then let C2 be the component into which f maps C1, etc.
From fq = k it follows that after d steps, with d some divisor of q, we must have
Cd = C0. Thus the set of all components partitions off into cyclically ordered
finite subsets, which we call the orbits of f ; each has a cardinality that divides
q, and its cyclic order indicates how its components ‘rotate’ under f .

(2.4) Theorem. If the cardinality of an orbit is a proper divisor d of q, then
each component C of this orbit must contains a loop.

Let x ∈ C. Then fd(x) is also in the component C. So we can find u and v
such that ku(x) = kv(fd(x)), i.e., fuq(x) = fvq+d(x). Here uq and vq + d are
distinct multiples of d, because only the former is divisible by q. So it follows
that some y = fr(x), where r is a multiple of d – so y ∈ C – is a periodic point
of f . It must also be a periodic point of k because f t(y) = y implies f tq(y) = y
and so kt(y) = y.

(2.5) So, if Pic(k) has no loops, i.e., if its first Betti number b1(k) is zero,
then each orbit of a qth root must have cardinality exactly q. If, moreover, the
zeroth Betti number b0(k) of Pic(k)– recall that this counts its components
– is finite, then a qth root of k can exist at all only if q divides b0(k). We note
that this homological statement is a far-reaching generalization of that I.M.0.
1987 problem which had initiated [1].

§3. Roots of injective functions. In this section we give a complete
description—see (3.3) to (3.5)—and enumeration—see (3.7)—of the qth roots
of an injective k, using the fact that such a k has a very simple picture.

(3.1) If k : X → X is injective, then any component of Pic(k) must be a loop,
or a doubly infinite string · · · • −→ • −→ • · · · or else, a singly infinite
string • −→ • −→ • · · ·

This follows because now each vertex has at most one arrow entering it, as
well as a unique arrow leaving it.

Note also that the injective function is bijective on the union of its loops
and doubly infinite strings, and the points of X which are not in Im(k) are the
initial vertices of its singly infinite strings.

(3.2) We begin by noting that since its qth power k is injective, the root
f and all its other powers are also injective. Since these injective maps image
arrows to arrows, it follows using (3.1) that components belonging to the same
orbit of f must be isomorphic to each other.1 So only three cases can occur.

1On the other hand, easy examples show that an orbit of a root of a non-injective k can
contain non-isomorphic components.
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(3.3) CASE 1. The orbit has cardinality d and all its components are loops
with r arrows (recall that d is a divisor of q).

Suppose x ∈ C0 is u arrows behind fd(x) ∈ C0. Since fq(x) = k(x) is
situated one arrow after x in this r-arrow loop, we must have uq/d = vr + 1 for
some integer v, so the following condition is necessary.

(3.3.1) q/d and r must be relatively prime to each other.
Conversely, let d be such a divisor of q. Then we can find integers u and

v such that uq/d = vr + 1. Since all such u’s are obtainable from one of
them by adding multiples of r to it, we can assume our u to be positive. Let
C0, C1, . . . , Cd−1, Cd = C0, be any cyclically ordered cardinality d set of r-arrow
loops of Pic(k). Choose any x0 ∈ C0, x1 ∈ C1, . . . xd−1 ∈ Cd−1, and let f be the
arrow preserving bijection on the union of these loops which images x0 to x1,
... , xd−2 to xd−1, and xd−1 to the vertex of C0 which is u arrows ahead of x0

in the loop C0. Then fq = k on the union of these loops.

(3.4) CASE 2. A cardinality q orbit with components doubly infinite strings.
Take any x0 ∈ C0, then f is determined on orbit once we know f(x0) = x1 ∈

C1, . . . f(xq−2) = xq−1 ∈ Cq−1. Conversely, if C0, C1, . . . , Cq−1, Cq = C0 is any
cyclically ordered cardinality q set of doubly infinite strings of Pic(k), with an
xi ∈ Ci chosen in each string, and f is the arrow preserving bijection on the
union of these strings which takes x0 to x1, x1 to x2, ... , xq−2 to xq−1, and
xq−1 to k(x0) ∈ C0, then fq = k on the union of these strings.

(3.5) CASE 3. A cardinality q orbit with components singly infinite strings.
The one-to-one f cannot be onto on the union of these strings, because then

fq = k would be onto. However, if some point is in Im f , then so are all the
subsequent vertices of that string. Therefore, the initial point of at least one of
these strings is not in Im f . We will use C0 to denote such a string and call its
initial point x0. Since f images fq−1x0 ∈ Cq−1 to the next point k(x0) of C0,
it follows that fq−1x0 must be the initial point xq−1 of Cq−1: otherwise, the
previous point of Cq−1 will have nowhere to go to under the arrow preserving f .
So f images fq−2x0 ∈ Cq−2 to the initial point of Cq−1, which in turn implies
that fq−2x0 must be the initial point xq−2 of Cq−2: otherwise, the previous point
of Cq−2 will have nowhere to go to under the arrow preserving f . Continuing
thus, we see that the first q − 1 applications of f must image x0 to the initial
points x1 ∈ C1, . . . , xq−1 ∈ Cq−1 of the other strings. Hence x0 is, in fact,
within the union of these strings, the unique point which is not in Im f , and
the root f is determined once we know this distinguished point.

Conversely, if C0, C1, . . . , Cq−1 is any totally ordered cardinality q set of
singly infinite string components of Pic(k), with initial points xi ∈ Ci, and f is
the arrow preserving bijection on the union of these strings which takes x0 to
x1, x1 to x2, ... , xq−2 to xq−1, and xq−1 to k(x0) ∈ C0, then fq = k on the
union of these strings.

(3.6) The picture of any one-to-one k is clearly determined, up to an isomor-
phism of directed graphs, by the invariants cr, s∓∞, and s+∞ which count,
respectively, the number of its r-arrow loops, doubly infinite strings, and singly
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infinite strings. From a knowledge of these cardinal numbers, we can work out
exactly how many qth roots k has, and what these roots look like.

(3.7) ENUMERATION. A one-to-one map k has a qth root iff its invari-
ants cr, s∓∞, and s+∞ are divisible by (q, r), q and q respectively. If, moreover,
s∓∞ > 0 or

∑
r cr or s+∞ is infinite, then k has infinitely many qth roots;

otherwise, the number of its qth roots is finite and given by

s+∞!
(s+∞/q)!

∏

r,R,d

Rd!
(Rd/d)!d(Rd/d)

rRd .

Here, for each r ≥ 1, R runs over all partitions of the cardinality cr set of
r-arrow loops into parts Rd indexed and divisible by divisors d of q such that
q/d is relatively prime to r. Such d’s are multiples of the least among them,
viz. (q, r), so such a partition R exists iff cr is divisible by (q, r); the nature and
number of these R’s depends on r, cr and q only.

From Case 2, a qth root partitions the s∓∞ doubly infinite strings into
cyclically ordered cardinality q subsets – so q divides s∓∞ – each contributing
to the root one doubly infinite string interweaving (in the prescribed cyclic
order) through all the vertices of all the q strings of each such subset. Since the
number of such interweaving strings is infinite, there are infinitely many roots
if s∓∞ is a positive multiple of q.

From Case 3, a qth root partitions the s+∞ singly infinite string into totally
ordered cardinality q subsets – so q divides s+∞ – each contributing to the root
the singly infinite string that starts at the initial vertex of the first string and
interweaves (in the induced cyclic order) through all the vertices of all the q
strings. The first factor of the displayed formula arises because a cardinality uv
set partitions into totally ordered cardinality u sets in (uv)!/v! ways.

From Case 1, a qth root partitions, for each r ≥ 1, the cr r-arrow loops into
cyclically ordered cardinality d subsets, where d is a divisor of q such that q/d is
relatively prime to r, with each of these subsets contributing to the root one of
the rd-arrow loop interweaving (in the prescribed cyclic order) through all the
vertices of all its d loops. The last factor of the displayed formula arises because
there are rd such interweaving loops. The remaining factors arise because, if we
forget cyclic orders and combine subsets of the same size d we get a partition
R with parts Rd indexed and divisible by such divisors d, and a cardinality uv
set partitions into cyclically ordered cardinality u sets in (uv)!/v!uv ways.

(3.8) Note that we have also worked out the possible pictures of a root:
s∓∞(f) = s∓∞(k)/q, s+∞(f) = s+∞(k)/q, and ct(f) =

∑
r(r/t)Rt/r, summa-

tion over all divisors r of t, and each R a partition of a cardinality cr(k) set into
parts Rd indexed and divisible by divisors d of q such that (d/q, r) = 1.

4. Homeomorphisms without periodic points. Before we go further,
it will be convenient to reformulate the above results in another language.

We begin by noting that any k : X → X induces the identity map on the
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quotient set X/k of all components of Pic(k), while a qth root f : X → X of k
induces a qth root φ : X/k → X/k of this identity map.

Thus what we did above was that, for injections k, we worked out exactly
which qth roots φ : X/k → X/k of the identity lift to qth roots f : X → X of
k, and how, and to how many.

For example, for a bijection k with no periodic points we saw that φ lifts,
and then in infinitely many ways, if and only if all orbits of φ have cardinality
q, and such φ’s exist if and only if the cardinality of X/k is divisible by q, in
particular if X/k is infinite.

We’ll now work out a ‘continuous’ analogue—that is, now X shall carry a
non-discrete topology, and we’ll be interested only in maps well-behaved with
respect to this topology—of this example.

(4.1) A homeomorphism k : X → X with no periodic points can have a
homeomorphism as a qth root only if the quotient topological space X/k admits
a free Z/q-action.

This is immediate, because the map φ : X/k → X/k induced by such a root
f is also a homeomorphism, and as already remarked above, all its orbits2 must
have cardinality q.

(4.2) Obvious as it is, the above observation (4.1) is quite useful, because
many interesting results about free Z/q-actions are known.

For starters, a product of circles admits the free Z/q-action that rotates a
nonempty subset of factors by 2π/q. Likewise, by rotating all coordinates of
Cn by 2π/q one obtains a free Z/q-action on the (2n − 1)-dimensional sphere
formed by points at distance 1 from the origin.

As against this, for q > 2, an even dimensional sphere does not admit a free
Z/q-action: φ2 preserves the sphere’s orientation, so its Lefschetz number (the
alternating trace sum of the maps induced in homology) is 2, which contradicts
the fact—see, e.g., Spanier [15], p. 195—that φ2 has no fixed point.

Somewhat less elementary is a 1941 result of P. A. Smith [13]: for q a prime
power, a Euclidean space can not admit a free Z/q-action.3

For more on topological group actions see, for example, Bredon [2].

(4.3) Suppose one knows all the free Zq-actions φ on X/k, can one then work
out all the qth roots f of k?

The answer to this natural question is ‘no’ in general. Indeed, a good general
correspondence between φ’s and f ’s is ruled out because the topology of X/k
may not be at all close to that of X. For example, a rotation k : S1 → S1 of
the circle by an irrational multiple of 2π is a homeomorphism without periodic
points whose quotient S1/k inherits the indiscrete topology.

2We note that the usual definition {φm(C) : m ∈ Z} of an ‘orbit of φ’ coincides with that
of an ‘orbit of f’ given in (2.3).

3It was [13] which ushered in equivariant cohomology, a tool that also suffices to establish
the intermediary – as in Smith [14] and Eilenberg [5] – generalized Borsuk-Ulam theorem. The
linear versions of these Borsuk-Ulam type of results are also interesting, and can be proved
directly without the prime power restriction: see [8].
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(4.4) However we’ll see below that there is a very satisfactory answer to the
above question (4.3) for the case when X is a connected manifold, and the
quotient map p : X → X/k is a covering map.4

The assumed connectedness of X now packs a considerable punch, it implies
that the base manifold B := X/k is connected, but not simply connected. So,
for example, now X/k cannot be an n-sphere with n ≥ 2, even though in (4.2)
we saw that, for n odd, these admit free Z/q-actions for any q.

We choose any b0 ∈ B and a point x0 ∈ X above it, p(x0) = b0. The
fundamental groups (of homotopy classes of loops) of the two manifolds at
these chosen base points will be denoted π1(B) and π1(X) respectively. We
recall that the covering map p : X → B induces a group monomorphism p∗ :
π1(X) → π1(B).

Given a free Zq-action φ on B, choose a path λ from b0 to φ(b0). Concate-
nating the q paths λ, φ(λ), . . . , φq−1(λ) one obtains a loop at b0 which threads
through the orbit of this point. The unique path of the covering manifold,
starting at its base point x0, and lying above this loop, must end at some point
kn(x0) of the fiber p−1(b0). We shall denote this integer n by n(φ, λ).

(4.5) Theorem. For a free Zq-action φ : B → B to lift to a homeomorphism
of the connected manifold X which is a qth root of k (with k satisfying the con-
ditions above) it is necessary and sufficient that the induced group isomorphism
φ∗ of π1(B) maps the subgroup p∗(π1(X)) onto itself, and that n(φ, λ) = 1 mod
q; and when these conditions hold, there is only one such qth root.

Since φp = pf implies φ∗p∗ = p∗f∗ the condition φ∗(p∗(π1(X)) = p∗(π1(X))
is necessary. Conversely, if this condition holds, there is a unique homeomor-
phism f : X → X satisfying φp = pf , and with f(x0) a preassigned point of X
above φ(b0). We recall—cf. Greenberg [3], p. 22—the definition of f . Given
any x ∈ X, and a path µ from x0 to x, φ(p(µ)) is a path with initial point
φ(b0). The final point of the lifted path with initial point f(x0) does not de-
pend, thanks to the condition, on the path µ from x0 to x. This final point is
f(x). Note that f commutes with k, fq = kn(f) for some integer n(f), and that
the lifted homeomorphism with value km(f(x0)) at x0 is kmf .

If we use for f(x0) the final point of the path λ̃ from x0 which lifts λ, then the
prolongation f(λ̃) of this path lifts φ(λ). So the final point, of the path from x0

lifting the concatenation of λ and φ(λ), is none other than f2(x0). Continuing
thus we see n(φ, λ) = n(f). One has n(f) = 1 if and only if f is a qth root of
k, then n(φ, λ) = 1. Conversely, if n(φ, λ) = 1 + qm, then k−mf is the required
and unique qth root of k which is a lift of φ.

(4.6) We note that the above proof showed in fact that if φ can be lifted, its
lifts are qth roots of ki, where i runs through the mod q residue class of n(φ, λ).
We’ll call this residue class the k-index of the action φ.

4In other words, the free action of Z on X, via the integral powers of the homeomorphism k,
should be ‘properly discontinuous’. The local condition ‘manifold’ has been adopted to reduce
verbiage: the requisite covering space theory—see, e.g., Greenberg [7], pp. 17-27—works just
as well for all ‘locally path connected and semi-locally simply connected’ spaces.
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For example, if k : S1 × R → S1 × R is the translation of the second factor
by 2π, then p = (id, exp): S1 × R→ S1 × S1 is a covering map, and

(a) the free Z/2-action which switches the two circles does not lift,
(b) the free Z/q-action which rotates the first circle by 2π/q lifts, but since

it has k-index 0 mod q, none of its lifts is a qth root of k, while
(c) the free Z/q-action which rotates the second circle by 2π/q has k-index

1 mod q, so one and only one of its lifts is a qth root of k.

(4.7) A generalization. If the manifold X is not assumed connected in
(4.4) then one gets an interesting mélange of the discrete and the continuous.

If homeomorphism k : X → X has qth root f : X → X, then the induced
bijection k] : π0(X) → π0(X) of the set π0(X) of path components has qth
root f] : π0(X) → π0(X). So, using (3.4) and (3.3), we already know that the
doubly infinite strings of Pic(k]) must partition off into cardinality q subsets,
while for each t ≥ 1, the t-arrow loops of Pic(k]) must partition off into some
cardinality d subsets, with each d some divisor of q such that q/d is relatively
prime to t (and each of these parts is cyclically permuted by f]).

Any E ∈ π0(X) projects under the covering map p : X → X/k to a path
component B := p(E) of X/k. Set t = ∞ if the path components kn(E), n ∈ Z,
of X are all distinct,5 otherwise let t be the least positive integer such that
kt(E) = E. So either p−1(B), the space covering B, has infinitely many path
components, or else its path components are E, k(E), . . . , kt−1(E).

Coming to Pic(φ]), this must be a disjoint union of d-arrow loops {φd(B) =
B,φ(B), . . . , φd−1(B)} of homeomorphic components of X/k having isomorphic
coverings, with d a divisor of q such that (q/d, t) = 1, where t denotes the num-
ber of path components in the total space of each of these isomorphic coverings.
Here we have adopted the convention (n,∞) = 1 iff n = 1, so for t = ∞ only
d = q is allowed, while for t = 1 any divisor d of q is eligible.

The isomorphism (f, φ) from the covering of B to the covering of φ(B) gives
group isomorphisms φ∗ : π1(B) → π1(φ(B)) that map subgroup p∗(π1(p−1(B)))
isomorphically onto p∗(π1(p−1(φ(B)))). Conversely, these group theoretic con-
ditions ensure that each homeomorphism φ : B → φ(B) of path components of
the base extends to an isomorphism of their coverings.

For t finite choose integers r and s such that rq/d + st = 1. Note that s is
uniquely defined mod q/d, its residue class in Z/(q/d) being in fact the inverse of
the residue class of t. The free Z/(q/d)-action φd : B → B lifts, in the connected
covering space E of B = E/kt, to the (q/d)th root k−rfd : E → E of kst. (Let
k−rfd(E) = kv(E), then vq/d—where q/d is prime to t—is divisible by t, so
v must itself be divisible by t.) By (4.5)-(4.6) this implies that the kt-index of
φd should be equal to s mod q/d, and conversely, this condition ensures that φd

lifts to a homeomorphism Φ : E → E which is a (q/d)th root of kst.
The conditions listed above are sufficient that φ lifts, over the union of the

path components {φd(B) = B,φ(B), . . . , φd−1(B)}, to a qth root of k. Indeed,
for t finite, the required qth roots of k can all be obtained from any given lift of
φ over this union, by adjusting it by means of composition with suitable powers

5Now the covering is trivial, p−1(B) ∼= B × Z, and B can be simply connected.
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of k over the d components, in such a way that the dth iterate of the adjusted lift
coincides over B with the lift of φd over B which extends the homeomorphism
krΦ : E → kr(E). For the case t = ∞, d = q, we adjust in the same manner to
make the qth iterate coincide over B with the lift k of φq = id.

(4.8) Homeomorphisms of the line. Specializing now to X = R, we note
that a homeomorphism of R is orientation reversing iff it is strictly decreasing,
so it must have one and only one fixed point. On the other hand, any periodic
point of an orientation preserving homeomorphism of R must be a fixed point of
the same, because it is strictly increasing. So a fixed point free homeomorphism
k of R has no periodic points, furthermore (4.4) holds, indeed we assert that
the quotient map p : R→ R/k is a covering of the circle.

(4.8.1) To see this note that a fixed point free strictly increasing homeomor-
phism is either progressive or regressive, i.e., one has either k(x) > x, or else
k(x) < x, for all x. Accordingly, all its doubly infinite strings {kn(x), n ∈ Z}
are discretely embedded in R as strictly increasing, or else strictly decreasing,
unbounded doubly infinite sequences. If we fix one string, any other string has
one and only one member in each of the disjoint open intervals of R constitut-
ing its complement, and this open set is the union of all these strings. So the
quotient space R/k is a compact 1-dimensional manifold, and the quotient map
p is a covering map of this (topological) circle.

(4.8.2) We shall work out in this subsection all the free Z/q-actions φ on
R/k ∼= S1 and their k-indices.

Let’s say that the usual orientation of R corresponds under p to the clock-
wise orientation of S1. Any free Z/q-action φ has to preserves this orientation,
otherwise it would have a fixed point. However, this does not imply that the
q points {b, φ(b), . . . , φq−1(b)} of an orbit must occur in clockwise order, all it
tells us is that if b is followed by φs(b), then after this should come φ2s(b), and
so on. Since the q points are distinct, s ∈ {0, 1, . . . , q− 1} is relatively prime to
q, and is the same for all b ∈ S1, because it depends continuously on b.

Conversely, if a cardinality q subset {b0, b1, . . . , bq−1} of the circle occurs on
it in clockwise order (b0, bs, b2s, . . .), where (s, q) = 1 and the suffixes are to be
read mod q, then we can find all the φ’s with φi(b0) = bi as follows. On the
clockwise arc [b0, bs], φ can be any increasing homeomorphism to arc [b1, bs+1],
then on this any increasing homeomorphism to arc [b2, bs+2], till finally we arrive
at clockwise arc [bq−1, bq−1+s]; on it φ must be equal to that homeomorphism
to the original arc [b0, bs] which ensures that φq becomes its identity map.

To compute the k-index (4.6) of this φ, we choose for the path λ of (4.4) the
clockwise arc from b0 to b1. The points bis subdivide it into t subintervals, where
t is the smallest positive integer such that ts = 1 mod q. So the concatenation
of paths λφ(λ) · · ·φq(λ) is the clockwise loop starting at b0 and ending at it after
going around the circle t times. It lifts in R to a path starting at an x0 above
b0 and ending at k±t(x0), the sign depending on whether the homeomorphism
k is progressive or regressive. Thus n(φ, λ) = ±t and so the k-index of φ equals
±t mod q depending on whether k is progressive or regressive.
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(4.8.3) Using (4.5) which tells us that φ’s with k-index 1 are in bijective
correspondence qth roots of k we get the following.

For a progressive fixed point free k, the φ’s that lift to roots have t = 1, i.e.,
their orbits must occurs in clockwise order; while, for a regressive k, the φ’s that
lift to roots have t = q − 1, i.e., their orbits occur in counterclockwise order.

For the apparently very special case of a k obtained by adding a nonzero
constant—note that this translation is progressive or regressive depending on
whether the constant is positive or negative—this result reduces to Proposition
6 of [3]. However, it is not hard to see that the fixed point free homeomorphisms
of R belong to just two conjugacy classes – progressive and regressive – of the
group of all orientation preserving homeomorphisms of R. Likewise that, any
free Z/q action φ of S1 is conjugate, in the group of all orientation preserving
homeomorphisms of the circle, to a rotation by t(2π/q), for a unique positive
integer t less than q and relatively prime to it.

(4.8.4) An arbitrary orientation preserving homeomorphism k : R → R re-
stricts to strictly increasing fixed point free homeomorphism k|Ij of each of the
countably many disjoint open intervals Ij whose union is the complement of the
closed set Fix(k) of fixed points. Since an open interval is homeomorphic to R,
we know from above all the qth roots of each k|Ij . Thus the identity map of
Fix(k) extends to homeomorphisms f of R that are qth roots of k: just define
each f |Ij to be some qth root of k|Ij . Alternatively, we have just extended the
identity map of Fix(k) by using roots on the complement supplied by this simple
instance of (4.7) with d = 1 and t = 1: the complement of Fix(k) is a covering
space over countably many circles which are preserved by φ, and the covering
is a single copy of the line over each circle.

(4.8.5) As against this, a strictly decreasing homeomorphism k of R has no
qth root for q even, as is obvious from orientation considerations. Now k has
one and only one fixed point k0, and the remaining periodic points have period
2, because they are also periodic points of k2, which is orientation preserving
on the two disjoint open intervals I1 and I2 whose union is R \ k0. So these
come in pairs (x1, x2), x1 ∈ Fix(k2|I1), x2 ∈ Fix(k2|I2), such that k(x1) = x2

and k(x2) = x1. Note that, for any odd q, k is its own qth root on the closed
set Per(k) of periodic points. Furthermore, for any odd q, the restriction of k to
Per(k) extends to homeomorphisms f of R that are qth roots of k. One defines f
on the complement to be any of the qth roots supplied by applying (4.7): under
p this complement is a covering space over countably many circles which are
preserved by φ, with two copies of the line over each circle – so d = 1, t = 2 –
and (q/d, t) = 1 holds because it is the same as saying that q is odd.

§5. Monotonic roots. We have already dealt with an order theoretic
problem above: the usual topology of R (or, more generally, of any interval
of real numbers) coincides with its order topology, an orientation preserving
homeomorphism k : R → R is the same thing as an order preserving bijection
of R, and we worked out in (4.8) others that are its qth roots.

(5.1) For Z, the analogous problem is trivial: an order preserving k : Z→ Z
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is a bijection iff it is a translation, that is, k(x) = x + k(0) ∀x, so k can have
another such bijection f as a qth root iff k(0) is divisible by q, and then this
root is unique, being the translation f(x) = x + k(0)/q.

Thus, for k(0) 6= 0, though there are by (4.8) infinitely many increasing
homeomorphisms of R whose qth iterate is the translation of R by k(0), at most
one of these roots maps Z to Z. As against this, though there are by [11] or
§3 infinitely many bijections of Z whose qth iterate is the translation k of Z, at
most one of these roots is increasing.

(5.2) This exemplifies two natural ways of attacking the problem of finding
the order preserving roots of a given fixed point free order preserving integer
function k, say of the set Z+ of positive integers.6 In the first, one extends the
given function to a homeomorphism of a real interval, and seeks, amongst the
homeomorphic roots provided by (4.8), those that take integers to integers. For
example, if k is a dilatation, i.e., if k(x) = k(1)x ∀x ∈ Z+ – the constant k(1)
will often be denoted K – we can search amongst the continuous roots of the
dilatation of the positive reals R+ by the same multiple K.7

In the second – which is the one we’ll pursue for the time being – we search in
the set of all qth roots f : Z+ → Z+ of the injection k, which can be described
fully by using §3. We note that Pic(k) is a disjoint union of singly infinite
strings, with initial points 1 and the integers ‘jumped’ by k. So, since an open
interval with integer end points contains one less integer than its length, a qth
root exists if and only if 1 +

∑
n(k(n + 1)− k(n)− 1) is divisible by q.

Moreover, we know that these roots f also have only singly infinite strings,
and are in one-one correspondence with partitions of the strings of k into car-
dinality q totally ordered parts: each string of f ‘interweaving’, in this order,
through all the points of the q strings. We’ll call these qth root strings of k,
and note that such a string is determined by any q consecutive points, because
the next q consecutive points are their k images.

The subset of increasing roots f is determined by the following additional
pictorial condition on the constituent root strings.

(5.3) A fixed point free function f of the positive integers is strictly increasing
iff Pic(f) consists of pairwise alternating increasing strings.

From f(1) > 1 and f strictly increasing we get f(n) > n, so strings are
increasing; also, if n < m < f(n) then f(n) < f(m) < f2(n), so string of m
alternates with that of n. Conversely, if n < m are on the same string, then
f(n) < f(m) because string is increasing; otherwise f i−1(n) < m < f i(n) for
some i ≥ 1, and the alternating condition again gives f(n) < f(m).

(5.4) However, an arbitrary set of pairwise alternating increasing strings of
positive integers cannot occur as a subset of strings of such an f : Z+ → Z+, it

6An arbitrary integer set bounded below can be treated just like Z+; if set is bounded above,
strings become decreasing; finally, a set unbounded above and below can be partitioned into
a progressive (strings increasing) and a regressive (strings decreasing) part.

7Note that exp : R→ R+ converts translations of R into dilatations of R+, but non-identity
translations of Z are quite different from non-identity dilatations of Z+: the former have only
finitely many doubly infinite strings, the latter infinitely many singly infinite strings.
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must be expanding in Z+, i.e., if a → a′ and b → b′ are any two arrows with
a < b, then b − a ≤ b′ − a′. This follows because f has to map the b − a + 1
integers between a and b into distinct integers between a′ and b′.

In other words, the gaps ai+1− ai of a string, · · · < ai < ai+1 < ai+2 < · · ·,
as well as the gaps bi− ai (lag) and ai+1− bi (advance) between it and another
string, · · · < ai < bi < ai+1 < bi+1 < · · ·, should be non-decreasing with i.

Figure 3

These conditions suggest a mechanical procedure for constructing increasing
roots, say, an increasing solution of f2(n) = 4n ∀n ≥ 1. For the procedure to
begin at all we require an increasing root string through 1 with non-decreasing
gaps. For the example being considered this requirement is met by the first
string 1, 2, 4, . . . shown in Figure 3 (the other increasing root string 1, 3, 4, . . .
from 1 does not satisfy the gap condition). The second string is to begin with
the least number not already used, that is 3, and will be determined once we
decide its next number. The alternating condition tells us that f should map 3
to a number between 4 and 8. We have chosen f(3) to be the least such number,
5, noting that then the gaps of the new string, the amounts by which it lags
the previous string, and, the amounts by which it is in advance of the previous
string, are all non-decreasing as desired. Likewise, each subsequent root string
of Figure 3 – note that each is determined by, and so we may only write, its first
two numbers – starts from the least number not used in the previous strings,
and its chosen f -image satisfies these conditions.

It remains to prove that once begun, the procedure shall never encounter an
‘obstruction’ to such a choice. This we do now, in more generality, to analogously
construct increasing qth roots of many increasing and ‘concave up’ k’s.

(5.5) Theorem. A strictly increasing function k : Z+ → Z+ with k(1) > 1
and non-decreasing slope k(n+1)− k(n) has an increasing qth root iff it has an
increasing qth root string with non-decreasing gaps starting from 1.

Since k is fixed point free and injective, an increasing root f is fixed point
free and strictly increasing, and from (5.2)-(5.4) we know that the component
of Pic(f) containing 1 must be a string of the stated kind.

Conversely, starting with the given string from 1, we’ll construct an increas-
ing qth root f , root string by root string, in ascending order of initial points.

For the inductive step, let x1 be the smallest number not in the already
constructed finite and expanding set of pairwise alternating increasing qth root
strings of k (if no such x1 we are done). Put a1 = x1 − 1, and of the numbers
already used and bigger than x1, let b1 be the least, and let a1, a2, . . . , aq, aq+1 =
k(a1), . . . and b1, b2, . . . , bq, bq+1 = k(b1), . . . be the already constructed strings
from a1, b1 onwards (at the first step both are portions of the given string).

Since no number from (a1, b1) has been used so far, no number in (a2, b2)
can be a non-initial point of an already constructed string, but neither can
it be an initial point, because it is bigger than x1. Proceeding thus, we see
that no integer has been used so far from any of the disjoint open intervals of
non-decreasing length, (an, bn), n ≥ 1.
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The new root string x1, x2, . . . , xq, xq+1 = k(x1), . . . shall be in this available
space between the two alternating strings. We have fixed x1 ∈ (a1, b1) – so we
know xtq+1 = kt(x1) ∈ (kt(a1), kt(b1)) = (atq+1, btq+1) – it remains only to
choose x2 ∈ (a2, b2), . . . , xq ∈ (aq, bq).

Any choice gives a root string, for the q numers x1, x2, . . . , xq are indeed
initial points of strings of k. To see this note that a k-preimage of x1 would
be a smaller number not already used which is impossible, for the same reason
a k-preimage of an x2 ∈ (a2, b2) must be bigger than x1 but this is impossible
because the k image xq+1 ∈ (aq+1, bq+1) of x1 is bigger than x2, etc.

The choice xi = ai + 1 for all 2 ≤ i ≤ q will ensure that the segment length
|anxn| – i.e., the amount by which the string ‘x’ is in advance of the string ‘a’
– is non-decreasing, but the segment length |xnbn| – i.e., the amount by which
the string ‘x’ lags the string ‘b’ – may not be non-decreasing, so we shall make
the following amended choice.

The interval (x1 = a1 +1, b1) is no longer than (k(x1), k(b1)) = (xq+1, bq+1),
but it may happen that from some i onwards in [2, q], one has bi − ai − 1 >
|xq+1bq+1|. For all such integers i, and only for these, we replace ai + 1 by the
bigger number xi ∈ (ai, bi) such that |xibi| = |xq+1bq+1|.

With this amendment, one has both |a1x1| ≤ · · · ≤ |aqxq| ≤ |aq+1xq+1|
and |x1b1| ≤ · · · ≤ |xqbq| ≤ |xq+1bq+1|. Since k has non-decreasing slope these
inequalities imply – because k(a1) = aq+1, etc. – the next pair of q inequalities
|aq+1xq+1| ≤ · · · ≤ |a2qx2q| ≤ |a2q+1x2q+1| and |xq+1bq+1| ≤ · · · ≤ |x2qb2q| ≤
|x2q+1b2q+1|, and so on. Thus the new root string ‘x’ is in advance of the string
‘a’ by a non-decreasing amount |anxn|, and at the same time it is lagging the
string ‘b’ by a non-decreasing amount |xnbn|.

Since |xnxn+1| = |xnbn| + |bnan+1| + |an+1bn+1|, and all three quantities
are non-decreasing – the middle is the amount by which ‘b’ lags ‘a’ – it follows
that the gaps of ‘x’ are non-decreasing. Likewise, writing |αnxn| = |αnan|+ ½
|anxn| we verify that ‘x’ is in advance of any extant string ‘α’ by a non-decreasing
amount, and writing |xnβn| = |xnbn| + |bnβn| we see that ‘x’ lags any extant
string ‘β’ by a non-decreasing amount. In other words, the addition of the new
string has given us a bigger expanding set of pairwise alternating increasing qth
root strings of k, and the proof of the theorem is complete.

Note the finite nature of the condition, all we require is the answer to this
query: are there integers 1 < a2 < · · · < aq < k(1) with a2 − 1 ≤ · · · ≤
aq − aq−1 ≤ k(1) − aq ≤ k(a2) − k(1)? If the answer is ‘no’, then k does not
have an increasing qth root. If the answer is ‘yes’, then – because k has a
non-decreasing slope – we do have an increasing qth root string of k with non-
decreasing gaps, 1, a2, . . . , aq, aq+1 = k(1), aq+2 = k(a2), . . ., and the theorem
tells us that k has an increasing qth root having this as one of its strings.

(5.6) Remarks and refinements (about above theorem and its proof).
(5.6.1) For k(n) = C + n, an increasing qth root string 1, a2, . . . has aq+2 −

aq+1 = (C + a2) − (C + 1) = a2 − 1, so has non-decreasing gaps only if all are
equal to this amount t and C = tq is a multiple of q. Further, starting with
1, t + 1, 2t + 1 . . ., the inductive construction of (5.5) stops after t strings, and
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gives, in conformity with (5.1), the unique increasing qth root f(n) = t + n.
Also note that, a function k as in (5.5) is a translation, iff it has constant

slope 1, iff it has finitely many strings. For, if i is so big that points ai, of
one of the m strings of such a k, are bigger than the m initial points, then
(ai, ai+1) has length m, so slope is eventually 1, and therefore, because k has
non-decreasing slope ≥ 1, always 1. It follows that, the inductive construction
of (5.5) requires infinitely many steps for all other k’s, there is always, at each
step, an x1 waiting and available, for starting the new root string from.

(5.6.2) A non-identity dilatation k(n) = Kn of the positive integers has an
increasing qth root f iff K > q. For, there is no strictly increasing sequence of in-
tegers such that 1 < a2 < · · · < aq < q, but if K > q, then 1, 2, . . . , q, K, 2K, . . .
is an increasing qth root string with non-decreasing gaps, and result follows by
Theorem (5.5), with its proof giving us the lexicographically least f which is an
increasing qth root of the dilatation. For q = 2 and K ≥ 4 this f coincides, but
for an initial 0, with the sequence analyzed by Allouche et al. [1].

An important simplification occurs: for dilatations the unamended choice
xi = ai + 1 for all 2 ≤ i ≤ q is valid at any inductive step of (5.5). That is,
with this choice, the lengths |xnbn| are non-decreasing. To see this observe that,
if |xqbq| were bigger than |xq+1bq+1| = K|x1b1| ≥ K, there is a multiple of K
in (aq, bq), which, being the k-image of a number less than a1, must have been
already used in a previously constructed string, a contradiction.

The amendment is necessary in general. Suppose, for example, that we are
constructing the lexicographically least cube root of k(n) = 24 + 5n ∀n ≥
1 having as first string, 1, 5, 9, 29, 49, 69, . . . (which is, as required, increas-
ing with non-decreasing gaps). Then the unamended choice of second string
2, 6, 10, 34, 54, 74, . . . is invalid because 34− 10 > 54− 34, the lexicographically
least valid choice of a second string is 2, 6, 14, 34, 54, 94, . . . (the first string being
‘rigid’ in the sense of (5.6.3) below, this is indeed the only valid choice).

However, this finesse is necessary only for the first some strings: if, in the
proof of (5.5), one has a1 > k(1), then the unamended choice xi = ai + 1, 2 ≤
i ≤ q is valid. Our hypothesis ensures that there is a biggest j such that
k(j) < xq. Since k is strictly increasing, j must be smaller than a1 because
k(a1) = aq+1 is bigger than xq. Also, by the argument given in the paragraph
before last, we know that (aq, bq) and so (xq, bq) has no point of im(k). So it
follows that k(j + 1) ≥ bq. Thus the slope of k at j is at least |xqbq|. On the
other hand, the slope of k at x1 can’t exceed |xq+1bq+1|, because xq+1 = k(x1)
and bq+1 = k(b1). Since k has non-decreasing slope, it follows that we cannot
have |xqbq| > |xq+1bq+1|, i.e., no amendment is necessary.

(5.6.3) The dilatation k(n) = (q + 1)n of the positive integers has a unique
increasing qth root f , e.g., the trebling map has a unique square root, viz.,
Propp’s sequence, or A003605 of Sloane [12]).

An increasing qth root f has the string 1, 2, . . . , q, q +1, 2(q +1), . . . because
this is the only increasing root string from 1. This string ‘a’ is rigid, by which
we mean that each ai+1ai+2 has the same length as aiai+1 or ai+qai+1+q. In
the first case, f maps any n ∈ (ai, ai+1) to the corresponding point of the
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equal interval (ai+1, ai+2), in the second to the unique point of (ai+1, ai+2)
corresponding to the point k(n) of the equal interval (ai+q, ai+1+q).

The same proof shows, for any k : Z+ → Z+, that an increasing qth root
having a rigid string is uniquely determined by it and all its strings are rigid.

Figure 3

For example, for the unique cube root of n ½ 4n, to work out the string
through 36 we observe – Figure 3 – that it is on the arrow 32 → 48 of the string
through 1, and the next arrow 48 → 64 has the same length, but 64 → 128 is 4
times longer. This gives us the portion → 36 → 52 → 80 → and so the entire
root string through 36. It too is rigid.

Sometimes an extra condition ensures uniqueness, for example, there is a
unique increasing f : Z+ → Z+ such that f3(n) = 7n and f(1) = 3, because
the string of f through 1 has to be 1, 3, 5, 7, 21, . . ., and it is rigid.

(5.6.4) Any dilatation k(n) = Kn has an increasing qth root on Zt, the set
of integers greater than or equal to t =] q

K−1 [, and this root is unique if q is
divisible by K − 1, e.g., the doubling map has a unique square root on Z2, viz.,
Mallows’ sequence or A007378 of Sloane [12].

All of the above holds with obvious changes if Z+ = Z1 is replaced by the
order-isomorphic set Zt (or any infinite set of integers bounded below). For the
restriction k : Zt → Zt, the qth root string t, t + 1, . . . , t + q − 1,Kt, . . . from
the least point t is increasing with non-decreasing gaps, so we can inductively
construct an increasing qth root f : Zt → Zt having this as one of its strings.
When Kt = t + q, i.e., when q is divisible by K − 1, this is the only such string,
and it is rigid, so then k has a unique increasing qth root on Zt.

One may lose uniqueness on a smaller domain, but somewhat exceptionally,
on Z2, the trebling map has exactly two increasing square roots: the possible
(increasing with non-decreasing gaps) roots strings from 2 are 2, 3, 6, 9, . . ., and
2, 4, 6, 12, . . ., and both are rigid! On the order-isomorphic set Z+, this translates
back to the statement that there are precisely two increasing function f such
that f2(n) = 3n + 2 for all positive integers n.

(5.6.5) For the inductive step in (5.5) we had only used one particular choice
– it is the lexicographically least choice – of q−1 numbers, x2, . . . , xq, such that
the new qth root string ‘x’ = x, x2, . . . , xq, xq+1 = k(x), . . . is in advance of the
extant string ‘a’ by a non-decreasing amount, and at the same time, lags the
extant string ‘b’ by a non-decreasing amount. If we allow all such choices –
note that there are only finitely many – at each step, this construction clearly
generates all the increasing roots of k. This shows that the increasing qth roots
of k are in one-one correspondence with the maximal paths of a directed loopless
graph, namely, the one whose nodes are the steps of the construction – each node
will also represent the corresponding finite set of root strings – and the finitely
many arrows issuing out of a node represent the aforementioned choices at this
step. We shall denote this graph by Streeq(k) and call it the qth solution tree
of k. Since we avoid an ‘empty node’ with no root strings, this is really a forest
with finitely many trees, rooted on initial nodes in one-one correspondence with
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the qth root strings of k from 1 which are increasing with non-decreasing gaps.
On the other hand, for a non-translation k as in (5.5) no (nonempty) node is
final, there is at least one arrow issuing out of it.

For example, Stree3(7n) is the disjoint union of three trees with initial nodes
the three cubic root strings of n ½ 7n from 1 which are increasing and have non-
decreasing gaps, viz., 1, 2, 3, 7, . . ., 1, 2, 4, 7, . . ., and 1, 3, 5, 7, . . .. Using (5.6.3)
we see that the third tree has no forks at all – i.e., that it is a singly infinite
chain – because the third string is rigid. As against this, we’ll see below that
the first two trees have lots and lots of forks.

(5.6.6) The number of arrows issuing from a node of the solution tree, that is,
the number of choices x2, x3, . . . , xq (5.6.5) at this step, depends on the lengths
|a1b1| ≤ |a2b2| ≤ · · · ≤ |aqbq| ≤ |aq+1bq+1| and the points x1 = x = a1 + 1 and
xq+1 = k(x) in the first and last segments, a1b1 and aq+1bq+1 = k(a1)k(b1). If
we think of the last segment as a ‘stick’ above the first – see Figure 3 – with
xq+1 vertically above x1, then what we want is the number of ways of putting
the remaining sticks in order between these two sticks, in such a way that each
covers the preceding; the intersections of x1xq+1 with these interpolated sticks
give the corresponding choice x2, x3, . . . , xq.

Figure 3

Since its length is intermediate, we can always insert a2b2 so that aq+1bq+1

covers it and it covers a1b1, then a3b3 so that aq+1bq+1 covers it and it covers
a2b2, etc. So at least one such interpolation exists, explaining again why (for a
k with non-decreasing slope) no node of the solution tree is final.

If the sticks are all of the same length as either a1b1 or aq+1bq+1, then
obviously only one interpolation is possible – cf. (5.6.3) – but the converse
is not true. If the end aq+1 of the last stick is vertically above the end a1

of the first stick, then too, irrespective of their lengths, there is only one way
of interpolating the other sticks: with ends ai above a1. Note that this case
happens iff k has slope 1 at a1. If k has slope > 1, then ai+1bi+1 extends
beyond a1b1 on both sides, ai+1 is not above a1, nor bi+1 above b1.

With this extra hypothesis the converse is also true, i.e., for a k with slope
bigger than 1, there is a unique arrow out of the node if and only if the segments
aibi, 1 ≤ i ≤ q + 1, are all of the same length as a1b1 or aq+1bq+1.8 The point
being that there are at least two positions, for an atbt of a strictly intermediate
length, such that it covers the first, and is covered by the last stick. At the
left-most position we must have at under ai+1 or bt above b1; in either case –
because a1 is not under ai+1 and length of atbt is strictly intermediate – we can
move one step to the right to a new position. But surely there are at least as
many arrows as the number of positions of any atbt: just interpolate – as in the
second last paragraph – the aibi’s with i ≤ 2 < t between the first stick and a

8For use in (5.6.7) we note that, for a k with non-decreasing slope, this follows from the
statement, “the segments aibi, 2 ≤ i ≤ q +2, are all of the same length as a2b2 or aq+2bq+2.”
For a k with constant slope, the two statements are equivalent.
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chosen position of atbt, and the remaining aibi’s between this position of atbt

and the last stick.
Note that the right-most positions of all the sticks gives an interpolation of

sticks, it corresponds to the lexicographically least choice used in (5.5), now xi is
the least integer such that 1 = |a1x| ≤ |aixi| and |xibi| ≤ |k(x)k(b1)|. Likewise,
the lexicographically biggest choice/arrow corresponds to the interpolation of
sticks in which all of them are at their left-most positions, now xi is the biggest
integer such that |xb1| ≤ |xibi| and |aixi| ≤ |k(a1)k(x)|.

We know (5.6.3) that there is a unique qth increasing root of k having a
prescribed rigid root string through 1, using the criterio just established we’ll
now show that the situation is quite different if the first string is non-rigid.

(5.6.7) Proposition. If a k as in (5.5) has a non-rigid increasing qth root
string ‘α’ with non-decreasing gaps from 1, then it has uncountably many in-
creasing qth roots f having ‘α’ as one of their root strings.

We know that translations, i.e., k’s with constant slope 1, have only rigid
root strings, so the slope of the given k must be eventually bigger than 1. Also,
the non-rigidity of ‘α’ means that for all j big enough, the q + 1 successive gap
lengths αjαj+1, . . . αj+qαj+q+1 have more than two values. So, at a node of the
solution tree sufficiently many arrows after ‘α’, the point x1 – from which the
new string shall now be constructed – can be assumed to be in such an interval
(αj , αj+1), with the slope of k bigger than 1 on it.

Now consider the subdivision of this interval (αj , αj+1) into subintervals
(βj , γj) by its points – one per string – that are in the already constructed
strings. The slope being bigger than 1, all these subintervals become bigger if q
is added to the indices: βj+qγj+q > βjγq. On the other hand, their sum αjαj+1

takes a strictly intermediate value if a suitable lesser number than q is added to
the indices. It follows that at least one of these subintervals must be such that
the q + 1 lengths βjγj , . . . βj+qγj+q have more than two values.

Using this, we’ll deduce that after finitely many arrows from this node we
must arrive at a node from which there issue two or more arrows. For this we
need to examine how the next some steps of the inductive construction proceed.
The new string starts from x1 = a1 + 1, the smallest point of the subset N of
(ai, ai+1) consisting of all points not already in the constructed strings of the
given node, and the remaining points of this string are bigger than ai+1. It
may well be that only one such string, i.e. a unique arrow out from the node,
is possible. Then we note that, at the next node, the new string shall be built
from the second smallest point x12 of N, with remaining points of this string
again bigger than ai+1. Et cetera. There shall come a stage when the point xit,
from which we are going to build the new string, is the first point of either the
aforementioned (βj , γj) or (βj+1, γj+1). At this node, using (5.6.6), we are sure
that it is possible to build at least two new strings starting from x1t, i.e., that
there are at least two arrows issuing out of this node.

Using this we associate, to each infinite binary sequence, a distinct increasing
qth root of k, i.e., a distinct infinite path of the solution tree starting from ‘α’,
as follows. The digits of the sequence indicate, in order, the direction which
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the path is to take from nodes with more than one out-arrows: it chooses the
lexicographically least arrow if the digit is 0, and the lexicographically biggest
if the digit is 1. Thus there are uncountably many distinct increasing qth roots
with ‘α’ as one of their strings.

(5.6.8) Slope sequences. A qth root f of k is determined by f(1) and
its slopes mf (n) = f(n + 1) − f(n), n ≥ 1. We note that, if the slopes of k
are bounded by K, then the slopes of f are also bounded by K: the root string
through any a0 lags that through b0 = a0 + 1 by a non-decreasing amount, so
m(a0) = |a1b1| ≤ |aqbq| = bq − aq = k(a0 + 1)− k(a0) = mk(a0) ≤ K. The non-
decreasing slopes mk(n) coincide with the least bound K if n is large enough,
but the slopes mf (n) = m(n) of a root are rarely non-decreasing.

Nevertheless, the next result shows that, for an interesting class L(k) of roots
of such a k, the slope sequences mf (n) display a simple universal asymptotic
behaviour, which depends only on this least bound K, and is quite indepen-
dent of both q ≥ 2, and the particular qth root f ∈ L(k) under consideration.
Namely, we’ll show this for the class of all eventually least roots of k, that
is, we define L(k) =

⋃
q≥2 Lq(k), where Lq(k) denotes all qth roots of k that

correspond to maximal paths of Streeq(k) – see (5.6.5) – in which the lexico-
graphically least arrow is chosen from some node onwards. For example, for the
qth root constructed in the proof of Theorem (5.5), this was so from the second
node onwards, so it belongs to Lq(k). However, though L(k) is usually infinite,
it is obviously countable: so, by (5.6.7), most roots of k are outside it.

Theorem. If the slopes of a k as in (5.5) are bounded, with least upper bound
K ≥ 2, and f ∈ Lq(k), then, for all n sufficiently big, the slope mf (n) = m
determines the subsequent K consecutive slopes mf (k(n)), mf (k(n) + 1), . . . ,
mf (k(n) + K − 1) as follows: the first m− 1 of these slopes are all equal to K,
the next K −m are all equal to 1, while the last equals m.

More precisely, using the hypotheses and (5.6.2) we know that, for all n
sufficiently big, one has (i) mk(n) = K, and (ii) all new root strings from initial
points bigger than n+1 are lexicographically least and unamended. We’ll prove
that the above conclusion holds for all n such that (i) and (ii) hold.

Therefore, once such an n is known, the entire slope sequence of f can be
easily written down, if one knows the initial segment mf (1), . . . , mf (k(n)−1),
by iteratively extending this initial segment by means of the following substi-
tutions (the block of K’s has length m− 1, of 1’s length K −m):

m Ã K · · ·K︸ ︷︷ ︸ 1 · · · 1︸ ︷︷ ︸m.

The slope at n gives the next K terms after the initial segment should be,
then the slope at n + 1 gives the next K terms, and so on. The initial segment
depends on the particular root f ∈ Lq of k being considered, its extension
however involves only the least upper bound K of the slopes of k.

For the proof, let ‘a’ and ‘b’ denote the root strings of f through a0 = n
and b0 = n + 1, and consider root strings with initial points between them in
one of the disjoint intervals (a1, b1), (a2, b2), . . . , (aq, bq). The interval (a1, b1)
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has length m, so m− 1 of these root strings have their initial points in it. We’ll
think of the points of these strings as ‘black dots’ – see Figure 5, which depicts
the case q = 3,m = 4,K = 7. By (ii) each of these strings is in advance of a
previous string by 1 till (aq+1, bq+1) in which interval these gaps becomes K.

Figure 5

Since aq = fq(a0) = k(a0) = k(n) and bq = fq(b0) = k(b0) = k(n + 1) =
k(n) + mk(n) = k(n) + K by (i), the interval (aq, bq) has length K and so
precisely K − 1 integer points, viz., k(n) + 1, . . . , k(n) + K − 1. Thus there are
(K − 1) − (m − 1) = K − m more strings of the kind being considered, we’ll
think of the points of these strings as ‘white dots’. The initial points of these
strings are in the intervals (ai, bi), i ≥ 2, so by (ii) these strings are in advance
of a previous string by 1 even in (aq+1, bq+1).

Thus, as we proceed from aq+1 into the length Km interval (aq+1, bq+1),
we first encounter, after equal gaps of length K, the m − 1 black dots; then in
succession – i.e., with gaps of length 1 – the K −m white dots; finally, there is
a residual gap of length m = Km−K(m−1)− (K−m) between the last white
dot and bq+1. These gaps coincide respectively with the K consecutive slopes
mf (k(n)), mf (k(n) + 1), . . . ,mf (k(n) + K − 1), so q.e.d.

EXAMPLES. It is often easy to find an n – or even the least such or nf –
for which (i) and (ii) hold, e.g., the lexicographically least increasing qth root of
the K-fold dilatation, q < K, has nf = 1 with mf (1), . . . ,mf (K − 1) given by
mf (q− 1) = K− q,mf (K− 1) = q +1 and all other mf (i) = 1. Indeed, for this
f even the first root string 1, 2, . . . , q,K, . . . is chosen lexicographically least,
and by (5.6.2) all the subsequent least choices are unamended: so (ii) holds for
n = 1, (i) is obvious. Also, the next K−1−q root strings begin, q+ i,K + i, . . .,
which suffices to check that the first K − 1 slopes are as stated.

A convenient notation. By above, the slope sequence – with its first 19 terms
displayed – of the least increasing square root of the 4-fold dilatation is

2̇1̇3̇(4̇112)(1111)(4413)(4444) · · · ,

where the overdots and parentheses indicate how slopes yielded subsequent pro-
longations, 2 Ã (4112), 1 Ã (1111), 3 Ã (4413), 4 Ã (4444); now, putting an
overdot on the fifth slope 1 and prolonging the display by its substitution (1111),
we can go up to the first 23 terms, and so on, indefinitely. Likewise, the slope
sequence of the least (in fact only) increasing cube root of this dilatation is

1̇1̇4̇(1̇111)(1111)(4444)(1111) · · · ,

while the slope sequences of the lexicographically least increasing square, cube,
and quadruple roots of the 5-fold dilatation are, respectively, the following:

3̇1̇1̇3̇(5̇5113)(11111)(11111)(55113)(55555) · · · ,

1̇2̇1̇4̇(1̇1111)(51112)(11111)(55514)(11111) · · · ,
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1̇1̇1̇5̇(1̇1111)(11111)(11111)(55555)(11111) · · · .
It is equally facile to fully work out (the slope sequences of) many other

eventually least roots, e.g., generalizing the last example, the lexicographically
least increasing qth root f of the K-fold dilatation with a given first string 1 =
a0, a1, . . . , aq−1, aq = K, . . ., where of course 1 < a1 < · · · < aq−1 < K and
a1−1 ≤ a2−a1 ≤ . . . ≤ K−aq−1, for the string is increasing with non-decreasing
gaps. Again nf = 1, and the first K− 1 slopes f(n+1)− f(n), equivalently the
values f(n) of the function for 1 ≤ n ≤ K, can be computed quickly: one has
f(ai) = ai+1, f(ai+1) = ai+1+1, . . . , f(ai+1−1) = 2ai+1−ai−1, f(ai+1) = ai+2,
for 0 ≤ i < q − 1, while the remaining values are f(aq−1+1) = 2K, . . . , f(aq−1+
a1 − 1) = (a1 − 1)K, f(aq−1 + a1) = (a1 − 1)K + 1, . . . f(K − 1) = (a1 − 1)K +
K−1−aq−1−a1, f(K) = a1K. This initial segment of K−1 slopes can then be
prolonged, just as before in spurts of length K, as per the same substitutions,
to get the entire slope sequence.

For instance, the lexicographically least increasing square root f of the 6-
fold dilatation with f(1) = 3 has first six values 3, 4, 6, 12, 13, 18, so its first five
slopes are 1, 2, 6, 1, 5, and its slope sequence is

1̇2̇6̇1̇5(111111)(611112)(666666)(111111) · · · .
Such computations may take long, even for a dilatation with a small K,

because nf can be big and the initial segment long, since on the solution tree
we might come to the first stably least arrow of f ∈ L only after a very large
number of nodes. However one can quickly verify that the 5-fold dilatation does
have increasing square roots such that f(1) = 2 and (3) = 7 because the pair
of square root strings {1, 2, 5, . . . ; 3, 7, 15, . . .} satisfies the gap conditions. And
that, for the lexicographically least of all such roots, one has nf = 2 – so the first
overdot is on the second slope for this example – while the first 10 functional
values are 2, 5, 7, 8, 10, 11, 15, 20, 21, 25, which gives us the 9 term initial segment
of slopes, and therefore as before the entire slope sequence:

32̇1̇2̇14514(51112)(11111)(51112) · · · .

To be continued ... (Got pre-occupied in other matters at this point, so will
finish typing up this paper, and will add the pictures, later on.)
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