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§1. Introduction

It is ensv to see that a graph, i.e. d ( finite ) one-dimensional simplicial
complex, embeds in R2 only if the number of its edges is less than 3 times the number
of its ?ierw':ices-'. This elementary fact is the foundation .for many results of planar
graph the‘)::y. For oxample, it shows that a planar graph must have a vertex incident to
5 or less edges, -and therefore that 6 colors can be assigned to its vertices in such a
way that no 2 adjacent vertices have the same color. By means of a somewhat more in-
volved éfgument Heaw o6 [ 7 ] was able to reduce the number of colors to 5. The cele-
brated conjecture tha _:i.r.&'act 4 colors suffice remained open for a long time till it was
finally settled by:Appel and Haken [ 2 1. |

Bg.rring some low ccdimensicn cases, no such results are known for higher dimen-
sional embedded simplicial complexes K'c lRm,. nsms2n. This is not surprising because
even the basic problem | sce e.g. Grunbaum [61}, pp. 152-153 ) regarding the existence
of a linear inequality f_(K) < C,.f . (K) %.C,.f ,(K) + ... forall K'c R, nsm < 2n,
has remained open for a long time. The object of this note is to give an affirmative
solution 6f this exislince problem, and thereby show that it is possible to develop a
higher dimensional analcgue of planar graph theory for all embedded simplicial complexes
K lRm, nsms<2n. The following theorem also establishes som& conjectures of [21].

THEOREM (7.2).({Rereexists a Gonstant \\C\?mkxsge\hj:hg%é simplicial ‘/:l:;xaplex

m-n+ 2
embeds i R', n<m<2n, only if the number of its n-simplices is less than @ times the
; 7

nunber of its (n-1)-simplices.

There are two main ingredients invclved in our proof:
First, we use the method of shifting initiated by Kalai in his thesis [8]. In §2
we will give a self-contaired account of this method and develop it further to consider

the case of shiftings which jreserve a given coloring and group actions preserving this

\



coloring. This work was inspired by the proof of Theorem (3.1) of Bjorner and Kalai [4].

( They mention that a different proof was given first in Kalai [9]. Note that in parti- L
cular, for t =1, §2 gives a simple proof of this theorem: it follows at once from
the isomorphism C(K) = C(BK) of (4.4). ) We have preferred to develop shifting theory
in che dual, and apparently more natural , setting of forms on K. This shows e.g. that
shifting is one more manifestation of the fruitful idea of Sullivan [27] that problems
pertaining to the forms of K can often be profitably studied by replacing K by a suitable
algebraic model obtained'by considering a subset ( e.g. a basis or a set of generators,
etc. ) of forms which is generic with respect to some conditions.

Second, we use the obstructions to embeddability discovered by van Kampen [28]. In
§3 we will recall the Smith theoretic interpretation, due to Wu [30], of these character-
istic classes, and then use shifting to examine their non triviality. We note that our
proof is quite constructive and gives reasonably émall numbers C(n,m) which can obviously
be further lowered without much effort. However the problem of finding their best possible
values is one of many interesting problems ( see no. 8 ) requiring more new ideas, and will,

hopefully, be pursued elsewhere.



§2. shifting - k

1. Generalized cohomologies

Let K be a simplicial complex whose set of vertices, & ={v1, ,VN} , is
a basis of the vector space V over the field F. We recall that an F valued function
on the oriented i-simpli 2s of K, whose values change sign with changes of orientat-
ion, is said to be an i-dimensional cochain &f K with coefficients in the field F.

All such cochains form a vector space Cl(F); we set C(K) = ZL Cl(K). For each w & V*
iz -

one has a generalized simplicial coboundary operator & : C(K) —> C(K) defined by

k-1 A
(1.1) (8;e)lvyy --- 'Vj+1] = 1<%SJ¢1(_1) w (V). clvys oo Vs oo ’Vj+1]'

Here ~ denotes omission. One has 5@’5@ = 0. We will denote the corresponding

cohomology, ker S:»/ Im 5._, , by H_(K) = Hi(K). The ordinary simplicial coboundary
i

ix-

operator & : C(K) — C(K) corresponds to the case w = 1K £ v’f + ee. + VI'(‘I It gives

rise to the ordinary ( reduced ) cohomology of K with coefficients in F, ker 3/ Im 2
SHEK) = Z HY(K).

1z>-4
2. Forms on K

We will denote by Al(V) the ( 1;])-dimensional vector space of all skewsymmetric
multilinear degree i forms V » ... *V (i times) —> F. Note that A1 (V) = V¥, the
dual of v, while a%(V) = F by convention. We recall that if we A*(V) and ©¢ A (),

then their exterior product wna® ¢ a'*J(v) is defined by

r
(2-1) ("‘”\e)(v-‘r .. 'Vi+j) = ;(_1) O(VT(.]), . 'VT(i)).av‘h’(i+1)’ . ’V'k'(i'!'j)}'

Here 7 runs over all (i,j)-shuffle permutations of {1, ... ,i+j} -- i.e.
those which are order preserving on the subsets {1, ,i} and {i+1, ,i+j} -
"

and (-1 = #1 depending on whether 7 is even or odd.

Under the exterior product, the direct sum A(V) = ;Z 2t (V) becomes an associative
120

graded algebra over F with identity 1 & AO(V) = F. Furthermore this algebra is graded

commutative, i.e. for any 2 homogenous elements <« and € one has

(2.2) wAB = (-1)389€. IO ( 5.0).



Using (2.1) we see that the forms vanishing on'simplices of K constitute a

graded ideal IK = Z Ill( of A(V). The elements [€], € ¢ A(V), ‘of the quotient algebra
i;)_

AK = A(V)/IK will be called forms on K. Formula (2.2) shows that the operators 5;:

AK —> Bgy we V*, defined by §,_.[€] = [«wnB] obey &, &, = 0. We will now identify

oo

the corresponding cohomologies H,..,(AK) = 7 HJ,\AK) with the ones defined above.

Jzo
(2.3) Identification of forms and cochains. There is a canonical degree -1 vector

space isomorphism A, — C(K) which commutes with the coboundary operators é_w . From

now on we will use this isomorphism to identify AIJ( with CJ'1 (K) and Hi(AK) with

B (x).

Proof. Each © ¢ AJ(K) determines the cochain @& & Cj—1(K) given by é[v1, ,vj]

K
induced isomorphism [©] —> & of Ai]( = Aj(V)/IK with O~ 1(K). For any we V*, (2.1)

R wv). ey,

=06(vy, ... ,vj). This linear map € +» & is onto with kernel I2. Thus there is an

shows that & : A(V) — A(V) obeys (Swe)(v“ ’Vj+1) = 7.

'Gk’ ’Vj+1)' Thus, by (1.1), it follows that [ ©]i> & commutes with the

operators o, .

let {v* B e«} be the basis of V* dual to the basis « of V. For any < k ,@\
& A(V) will denote the exterior product of the 1-forms v*, v &€ x ; note that «* is
defined only upto sign. ( A similar notation will be used in no. 3 below for any basis
@ of V. ) The following is immediate from the definition of AK

(2.4) Canonical basis of C(K). If x<&« , then [ x*] ¢ AK is nonzero iff « £ K,

and all such elements [«*], o« &¢ K, constitute a basis of Ax = C{KY).,

An ¢« ¢ V* will be called elliptic with respect to K if ,w(v) is nonzero for all
vertices v of K.

(2.5) Diagonal isomorphisms D. For any elliptic <« & V* let D: C(K) —> C(K) be

the algebra isomorphism which multiplies each canonical basis element [« *], < & K,

by the product of the numbers «w(v), vex . Then D& = 5,.D.

Proof. It is easily checked that D is induced by an algebra isomorphism D: A(V)—>A(V)
( -- viz. that which multiplies each «*, < € « , with the product of the numbers

w(v), vex - obeyingﬁ(IK) =IKandﬁ(1K) = w, So DS[e]=D[1KAe]=
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5.D[6] for all © eA(V).

3. Lexicographic bases of C(K)

1}
x

Note. We will work with a fixed partition, or coloring,

<
g
¢

of the vertices of K. Thus we have a direct sum decomposition V
Vi denotes the subspace spanned by Ki'

Let p be any basis of V which is compatible with this direct sum decomposition,
ie. p = g, v ... v Pt where Pi is a basis of Vi' Each o <@ has a unique
partition 0= o U ..." Vs,
and denote by < the resulting partial order on ? . We now extend this partial order

¢, € f;- We equip each Pi with a total order,

to a lexicographic partial order <. on the subsets of P: e $L°' iff ©, =

L 1 L
. : C .
G'i , 1€1i<t, where Gi <L 5'1 1 E Bi < fi or min( eiA G'i) € ei’ We
will say that [ ©@*] ( see no.2 for notation ) precedes [ o*] iff 6<L6' .

(3.1) Lexicographic bases B of C(K). The subset ®B = {[cr*] S B} of 5=

i[ a*] 2o \p,} , Obtained by deleting all forms which are linear combinations of pi'e—

ceding forms, spans the vector space C(K). Furthermore B is a simplicial complex, and

any basis é of C(K) contained in B must contain 631' =§§\\§\{[r*] : 0€eB, o¢ @i} _7\’_5'/&&._’

Proof. That the elements of B are nonzero and span C(K) follows at once from
the fact that z’f spans C(K). If [o*] ¢ { is equal to a linear combination of some
preceding elements then so is any [ »*]1 e f , = Do . This follows by taking the
exterior product of the given linear combination and [(? ~ o )*]. So B is a
simplicial complex.

Next, note that there is a direct sum decomposition, C(K) = AK = 2 Aj1""’jt ’
where Aj1""’jt denotes forms which vanish unless ji of the entries are from Vi’ i<icgt.
Each element of ® 1lies in ( precisely ) one of these direct summands. i*urthermore
@B N Ao""ji=q""0 = {[o‘*]: oc& B, 0 & Pi e el q} must be linearly inde-
pendent because, otherwise, <L being a total order on this subset of ® , one of its

elements will be a linear combination of the preceding. Hence any basis & of C(K)

contained in B must contain all such subsets of (ﬁ 5



A basis B of above kind is thus indéxed by & simplicial set B nested between
the simplicial complexes B and BO’ % 3 é is chosen by means ;f :;%;mgraphic dele-
tions arising from any total order of F’s extending < , then B too is a simplicial
complex. However it is convenient to use other kinds of ® also.

Remark. A partial order analogous to SL has been used by Bjorner, Frankl, and
Stanley [ 3]. Note that when t = N, $L is = and B is isomorphic to K. At the other
extreme, when t = 1, SL is a total order, and once again 8 is a basis of C(K). Such
total orders have found some interesting uses -- see e.gq. Stanley [26] and Kalai [8 ] --
sinée the pioneering work of Macaulay [ 16].

We will refer to B as a "lexicographic basis" of K even though B itself is
usually not a basis of C(K). However it is possible many times to use some condition
on K to infer the linear independence ( of some part ) of ®B 2

(3.2) If K is a join of its t full monochromatic subcomplexes Ki’ vert(Ki) = Ki’
then the cardinality of B can be no bigger than that of K, and so @ is a basis of C(K).
Note that now B too is a join of its monochromatic subcomplexes Bi' vert(Bi) = Pi’
1€ist.

(3.3) Note that if K is a join then all color types (n1, ,nt), n, < (dim Ki)+1,
have to occur in K. In fact @ is linearly independent even under the weaker condition

that, if a color type (n1, ,nt) occurs in K then all 0<1U Udt, X, € Ky

«, & K, l«(.l = n,, should be in K.
i 1 il

(3.4) In §3 we will consider another condition which will ensure that B is

/initially joined. By this we mean that all simplices of type o 6‘1 s - Al et

«; c Bir ©; € B, are in B provided at least one O‘i contains the minimum vertex bi1
of Pi' and that the corresponding subset Bini t of B determined by these simplices
is linearly independent. ‘

In order to interpret the coboundary operators of C(K) in C(B) we need suitable
monomorphisms C(K) —> C(B). Let B = {l¢*] : ceB}C @ be a basis (3.1) of C(K),
, and let {[tr*]B: & B} be the canonical basis (2.4) of C(B). We will now use these

bases to define a linear map L: C(K) —> C(B).



If o0& B has the partition 0= ¢, U ... Ue  then L{o*], will be
the exterior product of the LI‘I]K’ 1€i<t. So it is enough to consider the case
o €p;- let by, =min P, . Then set Lle*]y = [o*]y+ egLfce[e*]B, where €'s
and cg's are so chosen that bi1 ve & B and [(bi1 Ve )*]K = eZ:che[(bi.l v o )*]K.
Note that @'s and cg's are uniquely determined ( upto sign ) by o . Thus -uch a
map L is canonically attached to any lexicographic basis B of K.

(3.5) Lower triangular isomorphisms L. If B is initially joined (3.4) then one

has vector space monomorphisms L: C(K)—>C(B) which obey L&,= S L for any linear

combination w of the elements b%, € V%, b, =min B, 1<ist.

Proof. Choose a basis @ € & such that @ ¢ S ® , and using this

ini
define L: C(K) —> C(B) as above. Let « = b¥,. Both sides of Lo, [e*ly = §Lla*]y,
& B, are zero if b,, £6° . If b.,.$ 6 then the right side equals /\ L[o*]
11 i1 J#Ei [
) & i { * * i
Al uo;)*]p if b, U s, € B, and ;,Q LIeHly A GZ collby, v @ )*ly if b,u o
¢ B. To check that the left side has the same values we use the definition of L and
5 L - ) :
the fact that J (¢ Jg = [y uo)*], ¢ (Binit if b, V6, & B, and, if b,V T,
; o T *
¢ B, then [(bi1uo-) Ik = 9<Z,-cel(bi1 ve vo \s-i) g where (bi1 vl v o~ ri) €
LE
Binit' The linear map L is one-one because its matrix with respect to the 2 bases is
lower triangular with 1's on the diagonal.
Remark. Even for graded ideals I of A(V) other than those of the type IK,
analogous vector space isomorphisms L:A(V)/I —> C(B) can be constructed to simpiicially

interpret some coboundary operators 8, : A(V)/I —»A(V)/I, 8,[0] =[wA8], weV*.

4. Forms with rational functions as coefficients

Note. We will now continue the above discussion for the case when the field F
of coefficients is the field of all rational functions in N algebraically independent

variables over a prime field Fp, p = char (F).

We assign a distinct variable to each of the N vertices of K. If vy 1€ ig €,

jl
1<3 SNi, denotes the jth vertex of Ki ( in some chosen total order of Ki), then the

corresponding variable will be denoted Xij' So F = Fp( { Xij} )

Let (5 = {bij}' lisda<t, 13 SNi, be any partially ordered compatible basis of



V. The product partial order < on the subsets of [3 is the partial order, interme-

diate between inclusion & and S'L , defined as follows: c<T iff one can choose
a strictly increasing function from o into ™ . We will now show that there are

lexicographic bases B of C(K) which are well behaved with respect to this partial order.

(4.1) Shifted model BK of C(K). The lexicographic basis BK of C(K) determined

by the compatible basis { bij = “Z“N (xij')k Vik} of V is closed with respect to the
- 1

product partial order, i.e. T & By and o sT implies o € B,.
e k s :
Proof. For each 1<€i<t, det (Xij) +# 0. So B = {bij} is indeed a basis of
V. Next, note that any permutation 7 of the variables extends uniquely to a field
automorphism 7 of F over FS' the subfield of symmetric rational functions. This
induces Fs—linear automorphisms 7 of the vector space V and the algebra AK by Z. c,Vv

vVE K

—> Zw(cv)v and 2 c“[d*] == Zkﬂ'(c‘)[x*] respectively. Any permutation
= ek =xeK

veK

p—p which preserves each 61, say bij —> bij' , occurs as the restriction of such
an FS-linear automorphism V — V, viz. that which arises from the permutation of
) & : . .
variables xij ey Xij' . et o= & BK Choose a permutation 7~ of ¢ which is
strictly increasing on each oy and ()’i N O'i , and which maps each o5 into T

If [ o*] were equal to some linear combination 7. € el *] of preceding elements,
6< 5
then, by applying the Fs—linear algebra automorphism 7 of AK' we see that [#7(s)*] =
S #(ce)[x(e)*]. But this is not possible because 7(7) & T & By and R< &
04,5
=> x(€) <L7r(o-). So o € By.
Remark. The above argument was inspired by the "permutation lemma" used by

Bjorner and Kalai [4]. We are calling a set of subsets of a‘poset a shifted complex

if it is closed with respect to the product partial order. Note that for a toset

this coincides with the usage of Bjorner and Kalai; at the other extreme for the partial
order = it coincides with the notion of a. simplicial cdnplex. Note also that a change
of the defining partial order of { from < to w(<) only replaces @K by its image
7( @)K) under the induced Fs-linear automorphism @ of the algebra Ag. Thus, upto
simplicial isomorphism, Byg depends only on the vertex-colored simplicial complex K and

the field characteristic p. A similar construction works for any F provided the sym-



metric group on N letters occurs as a group of automorphisms of F.

(4.2) To consider a very simple example let K be the 2-colored hexagon of

Figure 1. We assert that its shifted model BK is as in Figure 2.
Vi1 bi 7 Y3 Dy s 1 By3
gy V22 V23 5 B B3
Fig.1l Fig.2
To see this note that, with P as in (4.1), one has [(b.I .b2k)*]K = )
L B Thrcom e veulied 1sg#me3
(X1j) (X5)) [(V1qV2m)*]K for all 1<3j,k<3. &inge all 6x6 minors of the 9%6
coefficient matrix of these equations ae nonzero,|it follows that any 6 of the forms
i i i g m;e—genefa%m—sm
1jb2k)*]K are linearly independent in AI( = C (K). (

7S

gument shows that if K has f(n,,...,n ) _simplices of color type (0 yieoselip) theng
— 1 t 1’ ’ t ’

subset of {[a’*]K :0Cp, loyl =ny Vi} of cardinality < f(n,,...,n.) Jag Ao be

[(b

linearly independent in C(K). ) Using this it follows easily that the BK of Figure 2

determines a maximal set of 2-forms for which no element is a linear combination of the
preceding 2-forms ( in the lexicographic partial order ). Note that BK is not a basis

of C(K) but that it is initially joined and @B has 5 elements of degree 2.

init
Let B be any simplicial complex with vertices ﬁ = ﬁ1 e e Pl F’t = {bij 2
i i<t, 183 € Ni} . We define a linear map U: C(B) — C(B) by specifying its values
on the elements [o-*]B, o ¢ B, of the canonical basis (2.4) of C(B). If o & B has
the partition o = o U ... ) oy then U[o—*]]3 will be the exterior product of

the Ulo¥lg 1€ist. So it is enough to consider the case o <{,. Then put

Ul o‘*]B = [o'*]B 1f bi1$6‘ and U[ o’*]B = 'SJZ<Ni [((o~ bi1) U bij)*]B if bi1&cr.

(4.3) Upper triangular isomorphisms U. If B is a shifted complex on the poset g -

then the vector space isomorphism U just defined obeys U§, = &U, wp= bX .+ ... +b¥, .
B
Proof. U is indeed an isomorphism because its matrix is upper triangular with

1's on the diagonal. Let w; = b’{.] + ee. + b{N , 1€igt. We will now verify that
i
= Sw‘_U[ r*]B for all o ¢ B. ( Adding these formulae gives U S‘”B=

U Sb* [ o—*]B
i1
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S0 ) LE bi1 &o then both sides work out to be zei'p, while if bi1 &0 and
b.,us &B then both sides work out to be /\ Ulo*], A Z «[(b,, v o, )*] .. It
i1 JFi 3B 1€ N 13 i B
remains to consider the case when bi1$o— and bi1 vo ¢ B. Now the left side is
obviously zero. On the other hand,SUiU[s*]B is a linear combination of terms [ e*]; ,
with 6's all bigger ( in the product partial order ) than bi1 vuo . So, B being
shifted, all these terms are also zero.

Remark. The argument shows infact that USW.B= SU iff B obeys b, e6 ¢t B
= {8 bij) U bi1 & B. When t = 1 such complexes a.Fe called "near cones" by
Bjorner and Kalai [ 4]. At the other extreme if t = N then any B satisfies this
condition. One has dim H""B(B) > dim H(B) always, with equality holding iff the
above condition is satisfied.

We can now complete the description of colored shifting:

(4.4) shifting isomorphisms TK' Iet D be the diagonal isomorphism (2.5) of C(K)

determined by the elliptic 1-form wBK= .Z‘<t(xi1)k v;;: , and let L and U be as in (3.5)
sis
1€ k€ Ny

and (4.3). Then TK = ULD: C(K)—rC(BK) is

a vector space maomprphism obeying TKS =2d Ty

Remark. Using this one can find a colored shifted EK C By having the same
"colored face vector" and "colored Betti vector" ( obvious definitions ) as K. Extremal
problems involving these vectors, as K runs over some class of simplicial complexes, can
thus be reduced to the corresponding class of shifted complexes. For t =1 this fact
has been used by Bjorner and Kalai [ 4 ] to give ( amongst other things ) elegant proofs
of the well known theorem of Kruskal [12] and Katona [10], and, its homological analogue
[21]. We will show elsewhere that similar corollaries can be deduced also for t>1. 1In
this paper however we will give a somewhat different application.

5. Bquivariant shifting

Note. The assumptions of nos. 3 and 4 continue to be in force. Furthermore,
now we will work with a fixed total order in each (<‘i, 1<i<t, and € will refer
only to this partial order on « = €U ... U K¢-

The transformation group G of such a K consists of all permutations g of




11

{1,2, ,t} for which there exists a ( necessarily unique ) simplicial isomorphism

g: K—> K preserving < and such that g( ki) = Kg(i) for all 1<igt. Recall

that our forms have coefficients in F = A {xij} ), 1<ist, 1€3sN;, and that Fg

denotes the subfield of all symmetric rational functions over Fp. The twisted action

of any g € G ou C(K) is provided by the Fs-linear algebra automorphism of C(K) = AK

defined by g(Xij) = and g[«><*]K.=‘=[(go()*]K for all xck .

e
g(i)]
(5.1) Equivariance. The shifted model B}( of C(K) can be equipped with a sim-

plicial G action in such a way that the shifting monomorphism TK (4.4) commutes with

5

the induced twisted actions of G on the cochains of K and B,.
Proof. (BK is the "basis" of C(K) obtained from the spanning set {[ Xl T<p$,
p= ibij = > (X, .)k Vik} , by deleting all elements which are linear combinations

1N, 1J

of lexicographically lesser elements. Here vij £ & is the jth vertex in the given

total order of Ki' So the Fs-linear algebra isomorphism g: C(K) —>C(K), g & G, images

* *
iy to Bg(i)s

by [g(c )*]K = g[o-*]K. This induces an Fs—linear algebra isomorphism g: C(BK)-—> C(BK)

And [o-*]K is deleted iff gl o’*]K is deleted. We define g:BK—> BK

by g(Xij) = and g[cr*]B = [(gr)*]B for all rg@ .

)
g(i)j
The algebra isomorphism D: C(K)—>C(K) is induced ( see (2.5) and (4.4) ) by the

of V. So Dg=gbD. If 8. extends to a

. : . k
linear isomorphism Vig (Xi1) v init

ik
G-invariant basis (B_ < <6K ( for the sake of simplicity we will simply incorporate this
into the definition (3.4) of "initially joined" ), then the equations L g =g L and
Ug =g U follow immediately from the definitions of L and U. So TK g=g TK for all
g & G.

Remark. Upto a simplicial G-isomorphism, the G-complex BK is independent of the

G-invariant £ used in its construction. Note also that the untwisted algebra iso-

morphisms g: C(K)— C(K), gl *]K = [(gut)*]K Vxck , yield g(b;j )= X only

g(i)j

if one imposes conditions Xi. between the indeterminates ( this can be thought

j = %g(1)3
of as a shifting of the quotient K/G only ). However such lexicographic bases B are

usually not shifted and one does not have U S“'B = §U.
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§3. Embeddability

6. Deleted joins

A simplicial complex K is said to embed in the space R" if there exists a
continuous one-one map from K to R'. If m»2n where n = dim K , then any general
position linear map from K to r" is one-one. On the other hand for m<2n there
are some non-trivial obstructions to enbeddability which we now proceed to discuss.

We recall that the join A.B of 2 disjoint simplicial complexes is made up
of all simplices x UY , « ¢ A, Y ¢ B. The deleted join K, of a simplicial complex

K is the subcomplex of 1K.2K, the join of 2 disjoint copies of K, consisting of all

simplices 1c< v 2)( y X €K, Y& K, «NY=¢., We will usually write K.K instead of

"E'% and  (w,% ) Tinstesd of Tk v 2

¥ . There is a free Zz—action on K, given
bY (o(',Y)'—-?(Y,o().

(6.1) A simplicial complex K embeds in R only if there exists a continuous

gz-map from its deleted join K, to the antipodal m-sphere g

Proof. We recall that each point of a join of spaces, X.Y, either lies in one
of the 2 'ends' X, Y, or is an interior point of a unique line segment having one end
in X and the other in Y. Any continuous map{from K to R" determines a continuous Zz—

map £2): kA& = WLER", £ x s v.%y) = w (B + v.2(E(y)). If £ is
one-one then f(z) restricts to a Zz—map f(z) s K* — RT , where Rrkn equals 1Rm.sz
minus the fixed points %.12 + {;.22 , z ¢ R°. So it suffices to check that Rfkn has

the zz-homotopy type of Sm :

To see this symmetrically contract the 2 ends 1Rm, sz, to 2 points to see that

™ has the 2 -homotopy type of the suspension of the subspace of e consisting of
R 2 R

1

points of the type 3. x + J‘;.zy, xe Y, ye RY, x # y. But this subspace is Z,-

homeomorphic to the deleted product RI; of Rm, i.e. the zz—subspace of 1Rm X sz

(= R« g ) consisting of all points of the type (x,y), x# y. And, that RI;
has the Zz- homotopy type of g - , follows by projecting orthogonally on the
m-dimensional orthogonal complement of the diagonal vector subspace and normalising.

The involution » of K, induces an involution »: C(K,) — C(K,). We denote by
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Cs(K*) = Z C;(K*) the subcomplex of symmetric cochains c, »c = c. Note that 1.
A0 ) *
( see no. 1 for notation ) is a zero dimensional symmetric cocycle of K,.

A similar notation will be used for any zz—simplicial complex E ,». Let us
suppose that char (F) = 2. Frequently ( e.g. for E = K, , and more generally for any
free zz—complex ) it so happens that the following sequence is exact in dimensions 2 Un:

(6.2) 0 — C_(E) = C(E) 1d + v c (E) —o.

In all such cases we have the corresponding long exact cohomology sequence,

(6.3) Hg(E) _S‘LH;(E) — ... > H(E) - 1E® > l(e) —Sm-v-Hg+1(E) =

The jth iterate of its connecting homomorphism, Snj = Hg(E) > HJS(E), images

the symmetric cohomology class [1E] £ Hg(E) to a cohomology class Smj[1E] & Hj;(E),

which will be called the jth Smith class of the Zz-complex E.

(6.4) A simplicial complex K embeds in R only if the (m+1)th Smith class of

its deleted join K, is zero.

Proof. The definition of Smith classes makes sense even for the complex of
singular cochains of any free zz-space. Further, the cochain complex of a Zz—sj.mpli-
cial complex is Zz—cochain homotopy equivalent to the bigger complex of all singular
cochains of the space of E. Thus the continuous Zz—map of (6.1) induces a homogenous
degree zero map HS(Sm ) — HS(K*) commuting with the connecting homomorphisms Sm.
Also note that the quotient space K,/ z2 is always connected, and that this map is
an isomorphism in dimension zero. So the vanishing of the the (m+1)th Smith class of
the m-dimensional space g implies that of K, .

See Wu [30] for more details regarding such arguments.

Note. Keeping our application ( no. 7 below ) in mind, we assume from here on
that the Smith classes of E are being considered over the field of ratic;nal functions
( cf. no. 4 ) over the prime field of 2 elements, F = FZ({XWE), w ¢ vert E. Also, that
the v : C(E) —> C(E) used in their definition is the twisted FS-linear action ( cf.
no. 5 ) given by (X)) = Xy(w)’ v [o(*]E = [(va’)*]E V « ¢ vert E.

We now give examples when these obstruction classes are nonzero. These examples--
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here a';:' denotes the j-skeleton of an i—simpiex a'i—-' are due to van Kampen [28].( The
non-embeddability of the following complexes in R" was also px:oved independently by
Flores [ 51.) The Smith theoretic interpretation of van Kampen's obstructions being
used here is due to Wu [30], and the proof given below is inspired by [30], pp. 115-118.

(6.5) Van Kampen-Flores Theorem. The (»m+1)th Smith class of (¢I§+2)*, n<m<2n,

is nonzero.

Proof. Let r = 2n-m-1, g = m-n. Totally order the vertices of 0'm+2 (= 1 c‘m+2)

by giving them the labels “1,2,...,m3. ILet 7 ( resp. © ) denote the simplex formed

2 contains 'rr .

by the first r+1 ( resp. the remaining 2g+3 ) vertices. Then 0':: -

2g9+2 m+2 . r _29+X, ~ o 2q+2 . .
Qq and so (o "), contains (7T eq Yo = AT 51 eq )4 This last sim-
plicial complex has two (m+1)-simplices incident to each m-simplex. Thus it is a sym-
metric mod 2 cycle of (r$+2)*

Now, if one assigns the negative integral labels -1,-2,...,-(m+3), to the

corresponding vertices of the second copy ‘ 0'm+2, then one gets an odd number ( in fact

exactly 2g+3 ) (m+1)-simplices of this cycle of the alternating type {+no,—n1 1y, eees

znm+1} v 0<n0< n,<n, cee<q- But one can verify that the symmetric mod 2 cochain

+1

supported on such alternating simplices and their antipodes is an (m+1)-cocycle repre-

1[‘|E]. ( See [23]: one uses the fact that , in each

dimension, the coboundary of the sum of the alternating simplices, equals the sun of the

senting the (m+1)th Smith class sm

next higher dimensional alternating simplices and their antipodes. ) So this class is
nonzero because it takes a nonzero value on the aforementioned mod 2 cycle.

Remark. Note that ( ?';)* is the octahedral r-sphere. On the other hand a lemma

2g+2
q
sphere. So the mod 2 cycle used in the above proof is infact a Zz-triangulation of

of Flores [ 5] tells us that ( € ), is zz-homeomorphic to the antipodal (2g+1)-

the antipodal (m+1)-sphere. Ky Fan [14] showed that if the vertices of any such tri-
angulation are assigned the labels {11,12, = .}, in such a way that antipodal ( resp.
contiguous ) vertices are assigned antipodal ( resp. non-antipodal ) labels, then there
is always an odd number of alternating (m+1)-simplices. We used a particular instance

of such a coloring in the above proof.
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2

Thus a simplicial complex containing o‘2+ , n<mg2n, is non-embeddable in Rm.

Infact the same conclusion is true with a much weaker notion than containment.

(6.6) Corollary. If there exists a zz—cochain homomorphism T: C(K*)—?C((o"?z)*),

n<mg2n, obeying T(1) = 1, then the (m+1)th Smith class of K, is nonzero.

m+2

g F The coboundary operators C_1(K*) —S—>CO(K*) and

Proof. let A = o

C—T(A*)_S;CO(A*) image the unit element 1 to 1Kx and 1A respectively. Since

*

T5= 3T and T(1) = 1 we thus have T(1K ) =1, . Further, since T commutes with the
* *

B :
-actions, there are induced maps T: H\s/(K*) —-?H; (a,), 120, commuting with the con-

A

Z,

. . m+1 m+1 ; :
necting homomorphisms Sm . So T Sm [1K ] = am [1A ], which is nonzero by (6.5).
* *

1
Thus sSm' [1., ]+ O.
Ky

We will now use this result and shifting to establish some necessary conditions

on the face ( or f- ) vectors of embedded simplicial complexes.

7. Heawood Inequalities

For any t-colored simplicial set A, f(A; dqr =-- ,qt) will denote the number
of simplices of color type (q1, ,qt), i.e. those having 9 vertices of color i,
1<ig t. Note that for t=1, f£(A; q) = fq_1(A), the number of (g-1)-simplices of A.

The complexes K.K and K, will be 2-colored by assigning the color 1 ( resp. 2)

to the vertices of 1K ( resp. 2K )

(7.1) Lemma. ;f_fi_1(K) be C'fi—Z(K) then £(X,; i,3) > (C-3).f(K.K; i-1,3).

Proof. Let K ey r 0, denote the simplicial set consisting of all (,9) ¢

(
K.K with loae|=r. Each simplex ( 5,0 ) of K(r) of color type (i,j) is incident to

r simplices of K(r—1) of color type (i-1,j) viz. those obtained by deleting a vertex of
oN€e from the first component. Conversely, each simplex ( T,@ ) of K (r-1) of color
type (i-1,3) is incident to at most j-r+1 simplices of K(r) of color type (i,j) viz.

those obtained by adding a vertex of ©-r to the first component. So r.f(K(r); i,j) <

(j-r+1).£(K r-1); i-1,3) for all r 3.

(

Hence E(Kyi 1,3) = £; 1K) £5_ (0 = T £(K()5 £,3)

cf _(K) £ _(K) -2 3=r*1 £(x ; i-1,3
A Y
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4

CE LK) £ (K) -3 Z £(Ke)i i-1,3)

(C-j).£(K.K; i-1,3).

We now consider the result mentioned in §1.

(7.2) Theorem. If C = C(n,m) is big enough, then a simplicial complex K satisfying

£ (K) » C.f__,(K)__is non-embeddable in K", n<m<2n.

Proof. Without loss of generality we can assume that K is a C - minimal simplicial
complex satisfying the given inequality. Then each (n-1)-simplex must be incident to

more than C n-simplices, and so (i+1)fi(K) > (n-i+C)fi._1(K) for 1£ign.’ It will

suffice to assume that £,(K) > (n+2m+5)f, ,(K) for 1<ign.

let -- with set of vertices = v -- be the shifted model (4.1) of
By, P= A v g
the 2-colored simplicial complex K,. Note that f( SthK ; 1,J) 4is no bigger than
*
£( : d=1,3) ler £ ; 1,7-1), depending on whether v ¢ or VveE . ( We are
BK*I rJ BK*' rJ v g é‘] F 2
using the standard notation for stars, StVA = {x T VEXE A} .) Hence the number of
(2n+1)-simplices of BK containing at least one vertex from the first m+2 vertices of F’1
*

or ﬁz is no bigger than 2(m+2).f(BK ; n,n+1). On the other hand, the total number of
*

(2n+1)-simplices of BK ;
T

Fone1(Bg,) = £(Bg i n+l,med) ' 2(»
2 £(K,; n+1,n+1) by (3:1), € —1‘; %
> 2(m+2) .£(K.K; n,n+1) by (7.1), Gt
2 2(m+2) .£(B, ; n,n+1) by (3.2).
* v

So BKk contains a (2n+1)-simplex which does not contain any of the first m+2

vertices of ﬁ1 or PZ‘ Since BI( is shifted, it follows that it must contain all the
* o

m+2

simplices of the simplicial complex 6 T’Z. c o determined by the first m+3 vertices of

m+2

ﬁ1 and PZ‘ We will denote by R: C(BK*) —)C((cr'n

),) the 2Z,-cochain epimorphism
obtained by restricting the forms of to the subcomplex ( rm+2) .
* B ™

To check that BK is initially joined (3.4) note that B,
*

init Stb”(B‘B) v

Stb21 (B.B). So the number of simplices of color type (i,j) lying in B, it is no bigger

e



B

than £(B.B; i-1,j) + £(B.B; i,j-1) = £(K.K; i-1,7) + f(K.K; i,j-1), which by (7.1) is

less than f(K,; i,j). Hence by (4.2) @, .. is linearly independent in C(K). The

) are either of the type (©,6 ) or occur in pairs (9,7 ),

simplices of BK ( and Binit
*

(7,0). Choose any simplicial set B 2 Binit' which contains either none or both
members of each pair, and which is such that f£(B; i,j) = £(X,; i,j) Vi,j. By (4.2)
this is a Zz—basis of C(K), and can be us;,ed to define the lower triangular map L (3.5).
We now use (6.6) with T =R TK* where TK* is the Zz-cochain monomorphism of
(4.2) and (5.1), to conclude that the (m+1)th Smith class of K, is nonzero. So K is

non-embeddable in R" by (6.4).
We can now establish some conjectures of [20] and [21] as easy corollaries:

(7.3) Least valences of embedded complexes. Let Sn—‘l (K) denote the least

number of n-simplices incident to an (n-1)-simplex of K. Then 5_1_1 (K) is bounded

as K runs over all simplicial complexes embedded in R" or g , nSsm<2n.

Proof. Follows from (7.2) because En_1.fn_1(K) < (n+1).fn(K).
It would be interesting to determine the numbers 8n—1 ( g ) = sup { Sn-1 (K):
K< Sm} , hsms2n, exactly. Note that 50(82) = 5 and is attained at the icosahedron.

As in [211], cn_1(K) will denote the (n-1)th weak chromatic number of K, i.e the

least number of colors which can be assigned to the (n-1)-simplices of K in such a way
that no n-simplex has all its faces of the same color. The well known theorem of

Ramsey [18] says that 1lim c _1(0'11,\:) is infinite. On the other hand for embedded

N>oo I
complexes we have the following finiteness theorem.

(7.4) Ramsey colorings of embedded complexes. The weak chromatic number Cho1 (K)

is bounded as K runs over all simplicial complexes embedded in R" or st , n<m<2n.

Proof. Infact c 4 (K) < Sn_1(sm) + 1. To see this use induction on £ _,(K) and
the fact that K has an (n-1)-simplex which is incident to at most Sn—1 (Sm ) n-simplices.
Again let c__(sM) = sup{c (K): K ¢ Sm} . The Four Color Theorem c.(S%) = 4
n-1 n-1 0
of Appel and Haken [ 2 ] is equivalent to saying that cO(SZ) is attained at the minimal
triangulation of the 2-sphere. We conjecture that the weak chromatic numbers of higher

dimensional spheres are also attained at their minimal triangulations.
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8. Concluding remarks

(8.1) Though (7.2) resolves in the affirmative the probiem of Grunbaum [ 6 ]
regarding the existence of linear inequalities, fn(K) < C1.fn_1(K) + C ‘fn—Z(K) = orare
VKcC Rm, n<mg2n, it is obviously only a first step towards a characterisation of the
f-vectors of embedded simplicial complexes. For planar graphs f.' (K) < 3.f0(K) - 2,

2n

and this is best possible. More generally for K c R it seems that fn(‘K) < (n+2).

fn-1(K)' If so, then this would be best possible: For any C < n+2, if K is the n-

skeleton of a (2n+1)-dimensional cyclic polytope with a sufficiently large number of

vertices, then fn(K) > C'fn—1 (K). See McMullen and Shephard [17], pp.82-90, 112.

(8.2) We hope to show elsewhere that an n-complex, n# 2, is non-embeddable in Rzn,

iff, after a suitable shifting, it contains one of a finite explicitly given list of
n-complexes. In this context, see also [24] where we have given a complete classification
of all n-complexes, n¥ 2, which are critically non-embeddable in len. Note that such
results are higher dimensional analogues of the well known graph planarity criterion of
Kuratowski [13],and its recent generalisations to other 2-manifolds by Robertson and
Seymour [19] et al. It seems infact that, mod suitable shiftings, such Kuratowski

characterisations are valid not only for the non triviality of the Smith ( or Stiefel-

Whitney ) classes, but for any characteristic class whatsoever.

(8.3) We will show elsewhere that there is an analogue of (7.2), and that thus the
numbers 8n-1 (Xm) and cn__1(Xm) are finite, for any compact polyhedron Xm, n<ms2n. The
proof requires more topological background, and gives bounds in terms of the minimum

number of vertices required to triangulate X". It seems likely“that in the absence of

some local homology, one can also give bounds in terms of the ( global ) homology of X",
This is indicated by [21] where we gave a higher-dimensional generalizatioen of the well

known ( square root ) chromatic inequality of Heawood [ 7 ] for all pseudomanifolds .

(8.4) The sth generalized Kneser graph GS(K) of a simplicial complex K is the one

whose vertices are disjoint pairs of nonempty simplices ( 'rs, 6), © maximal, with (7-? 1 ©))

joined to ( ?’;, el) it S Al G, and % < 81. We have proved [23 a combinatorial analogue

1 2
OEL(6.1): -IE GS(K) has chromatic number < m+1-2s then there exists a continuous zz—map
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K*—»Sm. In particular, since (0'2)* is an'n-sphere, it follows that Gs(crg) ; R >28,
has chromatic number > n-2s : a result conjectured by Kneser 7111 and established by

lLovész [15]. We also note that the converse of (6.1), and thus also of (6.4) provided

one uses integer coefficients, is known to be true under suitable dimensional restric-
tions. Such results ( see [24] for more ) go back to van Kampen [28]. Finally, note \\

that there is an analogue of (7.4) for the “chromatic number of Gn 1(Kn) as K runs over : £ 4
5 A N
[ OS5 2

all simplicial complexes embedded in lRm, n<mg2n.
(8.5) Formula (1:1) defines some useful coboundary operators even for vector
valued forms, provided one now thinks of the w(vk) 's as linear maps satisfying the

integrability conditions w(vk) w(vr) = cu(vr) w(vk) ¥k, r. To do this it suffices to

consider polynomial ( instead of the more usual "smooth" ) forms, i.e those with values
( cf. no. 4 ) in F[X1, ,XN] or some module ( = vector bundle ) over this. This is
so because one can now use differential operators, and define invariants by means of

their solution spaces, indices, etc. For example one has the de Rham operator defined

by cu(vk) = %—Xi , its generalization w(vk) = ’%(X])( + gik used by Witten [29], or,
still more generally, the curvature zero vector bundle extensions of the de Rham oper-
ator considered by Sullivan [27], etc.

Further if char (F) = 0,then integration provides us with a degree 0 cochain
map ( this is = Stokes' Lemma ) from the de Rham complex to F valued cochains of K,
and this map induces an isomorphism in cohomology under which the exterior product is
responsible for the cup ( and some other non trivial ) products in H(K). On the other
hand note that the obvious identification (2.3), which has been seldom used since e.g.
Alexander [ 1 ], only induces trivial products in H(K). If char (F) # 0 then one uses
the natural duality between polynomial forms of K and equivariant coqt}ains of K.K. ...
to relate differential invariants and characteristic classes.

Tt seems useful also to consider another method for finding generic bases of AK 5

in which one starts with all exterior products of a vector space basis for indecomposable

forms, and then performs lexicographic deletions as in no.3. Infact the minimal models

of Sullivan [27], which capture the rational homotopy types of de Rham algebras, are

defined by means of such considerations.
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A fuller account of some of these ideas will be given in [25] and elsewhere.
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