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PHEFACE‘V

These are notes {(not yet finalized) based on lectures given in the
Chandigarh Topology Seminar of 1893-84. The aim of these lectures was
to give a review of the beautiful and far-sighted contributions of Henri
Poincaré to topology, together with a discussion of their subsequent

evolution and developement.

As Leray says, in his preface to the second part of Tome VI of
Poincaré’'s Oeuvres {(1953), Poincaré "créa toute la Topologie algébrique
moderne” in his papers. In fact, Poincaré’s great paper "Analysis
Situs”, and the first two of 1its five Compléments, alone cover
essentially almost all of what is usually contained in modern Algebraic

Topology texts, and much more.

The Troisiéme and Quatriéme Compléments of this paper went on to
deal with the fundamental and homology groups of complex surtaces, and
these results of {Plcard and) Poincaré were later generalized by
Lefschetz to all smooth complex projective varleties. These theorems
have played an important {witness Deligne’s proof of Weil’s "Riemann

Hypothesis")} role in twentieth century mathematics.

The Cinquiéme Compliément gave birth to a celebrated example of a
3-manifold, which has played a ubiquitous réle in the most enchanting
parts (work of Kirby-Siebenmann, Freedman, Donaldson, etc.) of modern
topology, and besides introduced a powerful method, now called "Morse

Theory"”, for the study of the topology of smooth manifolds.

We conclude with Poincaré’s Last Geometric Theorem, which stemmed
from his work on the 3-body problem, and which continues to be a

stimulus for on~going research on symplectic stiructures, etc.

The reader will not find here a translation of Poincaré’s papers.
(Some portions are however translated in full, e.g. the Introduction of
"Analysis Situs”.) Our obJject being to give a clear exposition of
Poincaré’s ideas, we have attempted to give instead a TEXT which Iis
mathematically clearer and conciser than the original, without being

unfaithful to the spirit of the latter. (However we emphasize that, in

Twﬁw{;{ (G as yek (op-£-52)
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order to get a real feel of this great master, the reader should, and is

strongly urged to, read the originals also.)

In this process, we have frequently inter-leaved modern notation,
terminology, and even inserted some modern proofs, into the text, when
we felt that this did not interfere materially with the essence of the

original contribution.

The rest of our commentary is given separately from this text, in
the shape of NOTES, numbered (a), (b), ... , which appear at the end of

each section.

The main title of each chapter is that of the corresponding
original paper. Likewise, the main titles of the sections (§§) of each

chapter are that of the sections of the corresponding original paper.

However we have made changes in the presentation of the material
within each section to ensure quicker readability. Thus, within each
section, the order, the numbering, the arrangement, and the labelling of
the material, as well as almost all the diagrams, are our own. In
particular, we have chosen to highlight some statements as Definitions,
Propositions, Theorems, Corollaries and Remarks, as against Poincaré,
whose writing style was consistently infermal. (There were however two
results in Polncaré’s first Complément, pertaining to matrices and

determinants, which were highlighted as "Theoréms" !}

Besides giving comments on the relationship of Poincaré’s results
to later developements, our notes contain some new results — e.g. a
generalization of Polncaré’s classification theorem re some 3-manifolds
of the type RS/G, and an enumeration of such manifoldé via class numbers
of some algebraic number fields, a combinatorial Hedge decomposition
theorem, a definition of a new homology using characters, etc. — some

new proofs of old results, and many conjectures and questions.

The success of this seminar, as well as the contents of some of
these notes, owe much to the enthusiasm of its other participants,
especially Prof. I. B. S. Passi, Dr. Dharam Singh, Dr. D. B. Rishi, Ms,
Gurmeet Kaur and Mr. Keerti Vardhan. (For example a new proof of

Poincaré's result re "orientable determinants” is joint work with D. B.
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Rishi.} I extend to all of them, as well as to our chalrman, Prof. N.

Sankaran, my heartfelt thanks for their assistance. Thanks are due also

to Profs. S. G. Dani, R. N. Gupta, and R. V. Gurjar

references and/or helpful comments.

for providing




CHAPTER I

SUR L’ANALYSIS SITUS
C. R. de Il’Acad. Sci. 115 {1892), B6B63-666.

One knows what is meant by the connectivity of a surface, and the
important role which this notion plays in complex function theory, even
though it is borrowed from a totally different branch of mathematics,
(a)

i.e. the geometry of situation or Analysis Situs.

It is Dbecause researches 1in this subject might have some
applications outside of Geometry that there is interest in generalizing
them to spaces of more than three dimensions. Riemann was well aware of
this, and desirous of generalizing his beautiful discovery, he had given
some thought to higher-dimensional spaces from the point of view of
Analysis Situs, but has unfortunately left us only some very Iincomplete
fragments on this subject. His results were later rediscovered and
extended by Betti who associated to an n-dimensional hypersurface or
variety in (n+i)-space n-1 numbers which measure its connectivities in

dimensions 1 through n—l.(b)

Those who repudiate Geometry of more than three dimensions would
surely have labelled this result useless and frivolous, except for the
fact that our colleague Monsieur Picard has made use of these Bettl

numbers in his work in Analysis and ordinary Geometry of surfaces.

However the question 1ig not settled. One' may ask whether
conversely these Betti numbers determine the variety from the viewpolint
of Analysis Situs, i.e. whether two varieties having the same Betti
numbers are always related by a continuous deformation ? This is so for
(surfaces in) 3-space, and one would be tempted to believe that the same

holds in all dimensions. It is the opposite which is true.

For this we define the fundamental group G of the hypersurface as

follows. Consider any generic system of multiple-valued locally defined

continuous functions Fl’ - ,Fp on the hypersurface, having the property




that if we follow any branch over any infinitely small {= small enough)
loop we return to the same values., Then G is the (abstract, discrete)
group of all permutations of the branches which ensue 1f we follow
(c)

branches over all finite loops.

Clearly this group is preserved as we deform the variety. The
converge, though less evident, is also true for closed varieties, 1i.e.
what determines a closed hypersurface from the point of view of Analysis
(a)

Situs is its fundamental group.

Therefore, we are led to the question : if two closed varieties

have the same Betti numbers, do they always have isomorphic groups ?

Our examples will be closed hypersurfaces of 4-space parametrized
by functions Xl' X2, XS’ X4 of three variables invariant under the
discontinuous group G of motions of 3-space generated by

(x, ¥, 2) — (x+1, y, z},
{x, ¥y, z) > (%, y+1, z), and
(x, ¥, z) — (ax+By, yx+8y, z+l},

where «, B, ¥, and § are four chosen integers with «d — By = 1.(9)

We have used the same letter G because it is easily verified that
this is indeed the fundamental group of such a hypersurface. Of course
both G and the hypersurface depend on the choice of the 4 integers or

the corresponding linear transformation T e SL(2,Z).

We will show that two such discontinuous groups G1 and G2 are
isomorphic if and only if T, and T, are In the same conjugacy class of

1 2
the group GL(Z,Z}.(f)
There is an infinity of such conjugacy classes.

On the other hand we will check that the first Betti number of
such a hypersurface can be only 3, 2, or 1, and these cases happen
respectively if and only if (i} a =8 =1and B =9 =0, (ii) not this
but « + 8 = 2, and (iil) generically. (I? addition we will show that the
4

second Betti number is 3 in all cases.




The above might throw some light on the theory of complex
surfaces and render less strange a result of Picard which says that the

{(h)

first Betti number of a closed generic algebraic surface is zero.

NOTES

?

{a) All this is due to RIEMANN, who defined the connectivity of a
covreck IRiL

surface S to be the least number of closed curves by cutting which we
can disconnect S. It equals 1 + dim H1{S;Z), i.e. it is one more than

the modern Betti number of S,

Since Poincaré’s Betti numbers were designed as generalizations of
connectivity, they were all one more than the modern ones. We will

however reduce them by one and thus only use the modern Belti numbers.

We will see later {(in the first Complément} that Betti's own numbers
were still different : the ith one of these was one more than the least

number of elements required to generate Hi(M;Z).

(b} As will become clear later (see II1.3.3 and I1.3.d) by a variety
Poincaré meant one which is differentiable and smooth (i.e. a manifold)
and the phrase "in (n+1)-space" was essentially redundant : e.g. it did
not mean embedded, and throughout his focus will only be on the variety,
and almost never on the existence or nature of its self-intersections in
{n+1)-space. So e.g. the phrase "closed hypersurface of 4-space of a

later paragraph ls best understood simply as "closed 3-manifold”,

(c) Our summary of Poincaré's definition shows that he is thinking
of HI(V) as the group of covering transformations of a universal
covering space U of V situated in mep, the multiple-valued function F
being the inverse of the projection U — V.,

(d) This “"converse" is false : the closed 4-manifolds S* and $2xg?
{which can also be both embedded in 5-space) are non-homeomorphic, even

though they both have a trivial fundamental group.

(e} If one allows a8 — By = t 1 then one also gets some




non-orientable manifolds.

Since GL{1,Z)} = {t 1}, there are only two analogous groups G in
dimension two, viz. <{x,y) = (x+1,y), (x,¥y)}) — (x,y+1)> and <(x,y)
— (x+1,y), (x,¥) — (—x,y+1)>. Their fundamental domains are as
shown below, and thus these 2-manifolds are the torus and the Klein

bottle respectively.

However if one allows G ¢ Diff(Rz) to have fixed points, then c¢ne
can realize all 2-manifolds as Rz/G. As creator of the theory of
automorphic functions, Poincaré was well aware of this, and so might

have been hoping for a similar structure theorem for 3-manifolds 7

Poincaré’'s interest in these 3-manifolds was also due to his work on
dynamical systems — these 3-manifolds are the mapping tori of

automorphisms of the torus — and PICARD’s work on complex surfaces.

(£) Though this is the main result of this initigl announcement, it
would not be correct {see e.g. II1.0.b) to call it "Poincaré’s first
topological theorem" (as against "Poincaré’s last geometric theorem” of
his last full-length paper) : we’ll see later that it holds for all T e

GL{2,7) and has a natural connection with Algebraic Number Theory.

{g) This is false : Poincaré’s own Duality Theorem (see II.3.4}

will show that the second Betti number equals the first Betti number.

We remark that Poincaré will also give in the following paper some

more mundane examples of homotopically inequivalent 3-manifolds having




the same Betti numbers, e.g. RP3 and Sg.

(h} From its very inception, Poincaré’'s Analysis Situs was heavlly
influenced by PICARD's work on complex surfaces. In fact, 1in the
Treoisiéme Complément, Poincaré will re-define his 3-manifolds by a
polynomial equation 22 = F(x,y), where the complex variable y Iis
constrained to be on some closed curve, The Quairiéme Complément will

also be devoted to complex surfaces.
REFERENCES
B. RIEMANN, Grundlagen fiir eine allgemeine Theorie der Functionen
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CHAPTER 11

ANALYSIS SITUS
Journal de 1’Ecole Polytechnique, 1 (1895), 1-121.

§ 0. Introduction.

Today, nobody doubts that n-dimensional Geometry has objective
reality., The beings of hyperspace can be defined precisely, Jjust like
those of ordinary space, and even if we can’'t wvisualize them, we can
conceive of them, and study them. Thus, for example, one may criticlize
a Mechanics of more than three dimensions as lacking objective reality,

but the same cannot be said of Hypergeometry.

Geometry in fact does not have as sole raison d’'étre the
description of objects which we can sense : it is above all the
analytical (= logical) study of a group; nothing prevents us thus from

embarking on a study of analogous and more general groups.

But why, one might ask, can’t one stick to an analytlcal
language instead of replacing it by a geometrical one, which surely
logses all its advantages as soon as the senses cannot intervene 7 It is
because this new language is more concise; it is because the analogy
with ordinary geometry creates associations of fertile ideas and may

suggest useful generalizations.

But maybe these reasons are not sufficient ? It is not enough
in fact that a science be legitimate : it is necessary that its utility
be incontestable. So many are the objects which solicit our attention,

that only the most important have the right to obtain it.

Indeed, there are parts of Hypergeometry which are not very
interesting : there are, for example, the researches on the curvature of
{hyper)surfaces in n dimensional space. One is sure from the very

beginning of obtaining the same results as in ordinary Geometry, and




thus one undertakes a long voyage only to see the same scenery which one

encountered at home.

There are some problems where analytical language would be

totally inconvenient.

One knows the wutility of geometrical figures 1in complex
function theory, and in evaluating complex line integrals, and one badly
misses their assistance when one wants to study, for example, the

functions of iwo complex variables.

Let us try to fathom the nature of this assistance; firstly,
the figures bolster the infirmity of our spirit by calling to 1its aid
our senses; but it is not this alone. It has been often repeated that
Geometry is the art of reagoning well with figures not well-made; yet
these figures, if they are not to mislead us, must satisfy certain
conditions; their proportions can be grossly different, but the relative

positions of their various parts must not be in disorder.

The aim of these figures is thus to make us conversant of
certain relations between the objects of our study, and these relations
are those which pertain to a branch of Geometry called Analysis Situs
which describes the relative situation between some points, 1lines, and

surf'aces, without bothering about their sizes.

There are similar relations between the beings of Hyperspace;
there is thus an Analysis Situs in more than three dimensions, as has

been demonstrated by Riemann and Betti,

This science makes us knowledgeable abouk these kinds of
relations, even though now this knowledge is not intuitive, since our
senses are ne longer involved. Thus this science iz going to, to some
extent, render the same service which we demand ordinarily of the

figures of Geometry.
I will restrict myself to three examples.

The classification of algebraic curves by means of their genus

is based, following Riemann, on the classification of closed real

10




surfaces, made from the viewpoint of Analysls Situs. An  immediate
induction now tells us that the classification of algebraic surfaces and
the theory of their birational transformations is intimately tled to the
classification of closed real [(hyper)surfaces in 5-space from the
viewpoint of Analysis Situs. M. Picard, in a work which has been hailed

by the Académie des Sciences, has already stressed this point.(a}

Besides, in a series of memoirs published in the Journal de
Liouville and entitled "Sur les courbes définis par les équations
différentielles”, 1 have used ordinary 3-dimensional Analysis BSitus to
study (second order) differential equations. The same researches have
also been pursued by M. Walther Dyck. One sees easily that a
generalized Analysis Situs would permit us to similarly treat higher

{b)

order equations, and in particular those of Celestial Mechanics.

M. Jordan has analytically determined the groups of finite
order which are contained in the linear group of n variables. M. Klein
had previously, by a geometrical method of rare elegance, solved the
same problem for the linear group of two variables. Could'nt one extend
the method of M. Klein to a group of n variables, or even an arbifrary
continuous group ?7 I have’'nt been able to do this so far, but [ have
thought long on this question, and it appears to me that the solution
should depend on a problem of Analysis Situs and that the generalization

of the celebrated theorem of Euler should play a role in this.(C)

I do not think therefore that I have, in writing this memoir,
laboured on some work having no utility; I regret only that it 1is so
long; but, when I have attempted to constrain myself, I have tended to

become obscure; so I have preferred to be a little garrulous.

r

NOTES

(0.a) Upto birational equivalence a non-singular complex curve Iis

determined by the connectivity of its Riemann surface.
Here, by a complex curve is meant a polynomial equation f(x,y) = O

over €, non-singular means that 8f/8x and 8f/8y are never both zero, and

two complex curves are deemed birationally equivalent Iiff their
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_equations are related to each other by a rational change of variables,

The solutions of each such equation f(x,y) = 0 had been visualized
by RIEMANN (1857) as points of an absiract orientable closed Z2-manifold

V — its Riemann surface — as follows.
For almost all x, the polynomial equation f(x,¥y) = 0 has degyf
distinct solutions y = ¢(x). Let Bi € € be the finitely many

exceptions, 0 any other peint, and consider the 2-cell obtained by

cutting the 2-sphere C along the lines OB.1 :

>
I

Fig.{0}.

Then V is obtained from degyf disjoint copies of this 2-cell by
identifying a lip of a cut of any copy, to the other lip of the same cut

of another copy, as per the analytic continuation of the function ¢(x]).

Hoping for a similar result, PICARD had 1likewise visualized the
solutions of a non-singular complex polynomial equatign fix,y,z} = 0 as
an abstract — the "in 5-~space” of the text 1is redundant — closed
4-manifold V, and had calculated the first Betti number of V.

Further results regarding the fundamental and homology groups of
these complex surfaces V will be given in the Troisiéme and Quatriéme

Compléments of this paper.

(0.b) The index of any tangent vector field on a surface eguals the

Euler characteristic of the surface. This is one of the many remarkable
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resulte which Poincaré had obtained before 1885 in the course of his

extensive dynamical investigations.

Here, we recall that the vector fleld is assumed to have only
isolated singularities, and its index is the sum of the winding numbers
{or degrees : see 8.c) of the maps S1 — S1 obtained by normalizing the

vector field on small circles enclosing each singularity.

We note that the solutions of a second order ordinary differential

2

equation Fly, %%, Q,% } = 0 can be visualized as the trajectories of a
dt

vector field on the 2-manifold defined by F(u,v,w) = 0 (and some

inequalities) : thus the aforementioned index theorem gives information
about the solutions of thig O.D.E. Likewise 1its generalization to
higher dimensional manifolds, duly established later by HOPF, gives some
information about 0.D.E.’s of order =z 3. We remark that similar results

are now known also for partial differéntial equations.

(0.c) Poincaré 1is of course wrong in asserting that the
{next-to-impossible) problem of classifying the finite suizroups of
GL(n,C) had been solved : even the easier task of classifying the finite

subgroups of GL(n,Z) remains to be accomplished,

However JORDAN (1878) had proved many interesting results about
finite groups — e.g. that there is a constant A depending only on n
such that any finite subgroup of GL(n,C) contains an Abelian normal
subgroup of index less than A — and {excepting two groups of orders 168
and 189 which he missed) had classified all the finite subgroups of
GL{3,C). This case n = 3 was much harder than the case n = 2, which had
been done previously by KLEIN. The classification is'now known for n =

7 : for references, and other information on this subject see DIXON.

/1 do not know if there are (as Poincaré hopes) topological proofs of
Jordan’s results, but the generalization of Euler’s formula V-E+F = 2
(between the numbers of vertices, edges and faces of a polyhedron)

alluded to by Poincaré will be found in § 16 of this very paper.
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& 1. Prémiere définition des variétés,

{Smooth differentiable affine varieties.)

(1.1} Definition. A nonempty subset ¥ of n-space which Iis

,xn) = 0 and q inequalities ¢B(x1, Ca
,xn) > 0, where the functions F and ¢ are continuously differentiable,

will be called an {n-p}-dimensional variety (of the first kind)

defined by p equations F (xl,

i the

rank of the matrix [6?oc / axi} is equal to p at all points of V.(a}

When a variety is defined only by inequalities (i.e. when p =
0) then it is called a domain (such a V is an open subset of R).

Furthermore, varieties which

are one~-dimensional, resp. not
one-dimensional bui having codimension one,

are called curves, resp.
{hyper) surfaces.

A variety will be called bounded if the

distance of all
points from the origin is less than some constant.

{We emphasize that, from now on,

the unqualified wo- 1 "variety"
will always stands for a "variety of the first kind".)

(1.2)

We will usually confine ourselves
varieties.

to {(path) connected
This because

any variety can be decomposed into

some
{possibly infinitely many)} connected varieties.(b)

For example, the plane curve shown below is the disjoint union

of the two connected curves obtained by adjoining to 1its defining
equation either the inequality x < O or else % > 0.

RSO

P -

—“J2+3




0
e

Fig. (1). y% + x¥ — ax® + 1

(1.3) Definition. By the complete boundary of the above
variety V we will mean the set of all points of n-space satisfying {Fa =
0, 1 =5 a=np, ¢B = 0; ¢7 >0, 1sy#83sq} for some 1 58 s q.

However sometimes we’ll think of the largest (non-singular)
(n-p~1}-dimensional variety contained in this set as the true boundary
of V. A closed variety will be one which 1is connected, bounded, and

which has an empty {true) boundary.(C)

NOTES

(1.a) Though here Poincaré considers C1 functions, it will be
assumed from now on that all functions (e.g. F and ¢) are infinitely
differentiable : in fact Poincaré himself will {from § 3 on) quite often

demand that some functions be even real analytic.

Poincaré will check in (3.5) that the non-singularity of V, i.e. the
Jacobian criterion, rank[aFa / axi] = p on V, ensures that V is smooth,
t.e. that each of 1its points has a neighbourhood diffeomorphic to
(n-p)-space : in fact r‘ank{BF‘oc / Bxi] g p on V implies V 1is an

(n-p)-manifold, even if the number of equations Fa = 0 is more than p.

However, the fact that the number of equations is exactly p, 1i.e.
that V is the intersection of p hypersurfaces, implies in addition that

this (n-p)-manifold V is of a special kind (see § 8).

Nowadays, a V defined as in (1.1), but by possibly more than p
equations, would be called a  (differentiable and non-singular)
quasi-affine variety, or more precisely a variety of the open affine
subset U defined by the q inequalities ¢B >0 ; and simply an affine

variety in case there are no inegualities,

We note that the Jacoblan criterion c¢an be subsumed within the
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defining inequalities. On the other hand, note also that, for many
purposes, we don’t need to consider inequalities at all, because any
quasi-affine variety of n-space is diffeomorphic (see § 2) to an affine
variety of (n+1)-space, viz. that defined by the old equations Fm(xl’

, X +1) = 0, and the new equation xn+1.fu(x1, cee xn) - 1 = 0,

n

where fU : Rn —> R is a differentiable function which 1is nonzero

precisely on U, the open set defined by the q inequalitles ¢B > 0.

Here we have used the well-~known fact that any given closed set of
R® is equal to £ 1(0) for some differentiable function £: R® — R (e.g.
for an affine variety {Fa = 0} we can take f = Ea(Fa)z)' Thus the class
of possibly singular affine differentiable varieties of n-space Is
simply enormous : it consists of all the closed sets of the (usual)

topology of n-space !

However it contains the very Interesting subclass of possibly
singular affine algebraic varieties, 1.e. those V’s which are defined by
some polynomial equations Fa(xl’ Ce xn) = 0, and (assuming that these
Fa’s generate all such equations)} the points of V at which e Jacobian

has maximal rank are called its non-singular points.

The notion of dimension extends in a natural way to vy such
gingular variety V : one defines dim(V) to be the length of any maximal
chain of irreducible subvarieties {(i.e. those which are not unions of
two proper subsets themselves definable by polynomial equations) of V.
If dim(V) = n-p, and V is defined by Jjust p polynomial equations (cf.

1,1), then V is called a complete intersection,

The complexification V€ 2V, i.e. the subspace of‘l[:n consisting of
all complex solutions of the defining (real} polynomial equations Fa =0
of the algebraical variety V, is often easier to study than V ltself.
However, if the polynomials Fa are over Z, then interest centers most

nect on this bigger space V but on the smaller subsets of integral or

G ]
rational points VZ < VQ < V. To extract the maximum information about
VQ , it is useful to have an Analysis Situs over each completion of the
rationals, e.g. the p-adic numbers ﬂp : however in these notes we’ll

deal only with the real completion R (and its algebraic closure C).

{1.b) This follows because ¥V, and thus each component of V, has a
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trivial normal bundle (c¢f. § 8 below) : so each component 1is the zero

set of some differentiable function R® — RP of rank = p.

(1.¢) Note that Poincaré’s “complete boundary” is  somewhat
incomplete in the sense that it does not contain peoints which satisfy
all the equations F = 0, more than one of the equations ¢ = 0, and the

remaining inequalities,

We note that though "closed varieties" have compact closures, they
need not be compact themselves : e.g. consider the closed 2-dimensional
variety of 3-space defined by x12 + x22 + xa2 —-1=0and 1 — Xq > 0.

As against this, we’'ll always use closed manifold to mean a manifold

(without boundary) which is compact.
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§ 2. Homéomorphisme.
(= Diffeomorphism.)

(2.1) Consider the "group” formed by all differentiable (in
both directions) bijections between pairs of open subsets of a
euclidean space : the science whose object is the study of this and some

(a)

other analogous "groups” is called Analysis Situs.

(2.2) Definition. Two varieties of n-space will be called
diffeomorphic iff there is a bijection between them which extends to a
differentiable bijection between open euclidean sets obtained by
replacing their defining equalities Fa = 0 by some inequalities — e < Fa

< + £, A similar definition can be given for more complicated figures,
(b)

made up of many varieties, of n-space.

NOTES

{2.a) Poincaré considers instead the larger category of all
differentiable maps, between open subsets of n-space, which have
nonsingular Jacobians everywhere. We note that such maps need not have

, : z 2
inverses, e.g. consider z —— e on all of R~ = C.

So we have taken the liberty of modifying his definition slightly
but note that even now, multiplication is not always defined, and that
there are many identity elements : so our “group"” is still only a

groupoid (a special type of category).

Poincaré’'s definition of Analysis Situs is evidently inspired by
KLEIN whose Erlanger Program {1872) had pointed out that each known

geometry could be considered as the study of a concomitant group.

(2.b) Such a modern definition - ¢f. MILNOR — would be simply to
declare any two closed euclidean sets diffeomorphic Iiff they are
isomorphic in the category of affine varieties (differentiable and
possibly singular), 1i.e. one whose morphisms are restrictions of

differentiable maps between affine spaces. (Replacing "differentiable”
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by "pelynomial"” one gefs the subcategory of affine algebraic varieties.)

However note e.g. that there iz no homeomorphism of the positive

X—-axis to the entire x-axis which extends to a continuous map from Rz to

Rz : this shows why, as morphisms for the bigger category of
quasi-affine varieties, one uses restrictions of differentiakble maps

between all affine open sets.

We note also that for compact (non-singular) varieties of n-space,
the apparently stronger definition of Poincaré is implied by the above
categorical one : to see thls use compactness and the fact that

varietieg (of the first kind) have i{rivial normal bundles {see 8.b).

The fact that Poincaré did not demand that his differentiable
bijection be that of the entire ambient n-space indicates clearly that
he was aware of knotting.

REFERENCES (contd. )

F. KLEIN, Vergleichende Beirachtungen 1{ber neure  geometrische
Forschungen, Eintritts-Programm Erlangen {1872).

[Mi} J. W. MILNOR, Topology from the Differentiable Viewpoint, Univ.
of Virginia (1968).
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§ 3. Deuxiéme définition des variétités.

(Manifolds. )

{3.1) In the following we'll consider m-dimensional varieties

v which consist of all points of n-space satisfying a system of n

equations x, = 0,(y,, ... ,y ) withrank [886, / 38y,] = m, and some
i i1 m ) i J
inequalities w{yl, ce ,ym) > 0.
For example, the system of three equations X, = (R + r.cos

]

yl).cos Yo + Xy = (R + r.cos yl).sin Yy and %q r.sin vy, defines a

torus in 3-space :

&

» %

o |
! o R C D

+ R2 - r2)2 -4 Rz (x.” + x.7) = 0.

. . 2 2 2
Fig {3.1). (x1 * X, + Xg

In the following we’ll mostly use connected v's (we can in
fact even assume them to be m-cells) and, unlike in the above example,

our 8's will be one-one.

(3.2) Without loss of generality we can, and will, assume in
the above, and likewise for the definition of {1.,1), that all equations
are real analytic : this follows because we can always replace 6 by an

arbitrarily close real analytic function 9,.(c)

With this understood, two m-dimensional varieties v of type

1




(3.1) will be called analytic continuations of each other iff their

intersection vnv’is also an m-dimensional variety of type (3.1).

Note that two varieties v coincide iff their parameters yl,

, ym and z , zm are related by an analytic diffeomorphism; so,

1!
more generally, they are analytic continuvations of each other, iff there

is a partially defined analytic diffeomorphism between their parameters.

We now use analytic continuation to vastly extend the
applicability of definition (3.1) as follows.

(3.3) Definition. By a connected m-manifold we’'ll understand
any comnected network of varieties v, i.e. a graph whose vertices are
connected varieties of the type (3.1), with two vertices contiguous in

the graph iff they are analytic continuations of each other.{d)

We will now check that all varieties are manifolds, and for

this we will use the following well-known result,

(3.4) Inverse Function Theorem. If the n real analytic
equations y.1 = Fi(xl, . ,xn) are such that their functional
determinant is nonzerc at x, then they have real analytic solutions x, =

i
ei(yl, e ,yn) valid in some neighbourhood of F{x).(e)

(£)

(3.5) Theorem. Varieties are manifolds.

Proof. Let P be any point of an (n-p}~dimensional analytic
variety V, defined as in (1.1) by p equations Fa(xl, cee xn) = 0 and

some inequalities ¢(x1. Cee xn) > 0.

To check that V is a manifold it obviously suffices to find an

of the type (3.1) such that P e v, & V.

{n-p)}-dimensional variety v P

P

For this, we choose any p additional analytic functions Fp+l’

) Fn of n variables, which vanish at P, and are such that the
functional determinant of all the n functions Fi is nonzero at P. Using
{3.4) we now solve the n equations u, = Fi{xi’ Ve .xn) to get real
analytic solutions X, = Bi(ul’ che .un) in some neighbourhood of F(P) =

0 specified by some inequalities A(ul, RN ,un) > 0, By making this
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neighbourhood smaller, if need be, we will assume also that these

inequalities imply the defining inequalities ¢Ex1, e, xn) > 0 of V.
So the n equations X, = 81(0, ., 0, Yys cee yn—p) and the
inequalities A(Q, ..., O, Yyr ooe yn—p) > 0 are satisfied by P and
imply the defining p equations Fm{xi’ Cee xn) = 0 and the defining
inequalities ¢(x1, cee xn) > 0 of V: they thus give us a DP such that

Pev <V, e.d.
P q

However conversely, as we’ll show later in (8.2), all

manifolds are not varieties {of the first kind).

NOTES

{3.a) We note that all such systems of equations and inequalities
do not define varieties : e.g. if 9 is not assumed 1-1, v can be a

figure eight, or, as shown below, a non-orientable manifold (see § 8).

N

. .. vy s . _ g Y
Fig. (3.1i). The MObius strip Xy = (R yysin > yz}cos Ya»

_ _ s 1 . = 1 .
X, = (R y,sin - y2)81n Yor Xg = ¥,C0S - ¥, Iy1! <R -g.

However, if the domain of the parameters yl, e ym is restricted

to a sufficiently small open m~ball, then the new system will have a
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one-one 0, and one can check — cf. proof of (3.8) — that v is an open
m-cell of n-space, i.e. a variety of n-space diffeomorphic to m-space.
Thus all such systems of equations and inequalities do define an

m-manifold in n~space in the sense of (3.3).

We remark that in the paper Poincaré talks about 8 being i-1 only at

the end of this section,

{3.b)} A general method — cf. HIRSCH — for writing a polynomial
equation representing a surface of any given genus p is 1illustrated
below. It is based on the observation that, for £ small, the boundary
of any g-neighbourhood, of a closed space curve having p-1 double

points, is a surface of genus p.

Fig. (3.1i1). Graph of function ¢(x) = x. (x~1)2. (x=2)2. (3-x).

Fig. {(3.iv}. Plane curve y2 - ¢(x} = 0.
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Poincaré’s definition, for it can be obtained at once by identifying, in
the disjoint union of the varieties v, all overlaps vrw’ of those pairs
of varieties which are analytic continuations of each other (the
required ¢’s being now provided by the inverses of the 8's occuring in
the definition of the v's).

On the other hand note that gome other intersections vrv' need not
be m-varieties of type (3.1). More precisely, the union in n-space of
all the varieties v of the network is the image of an immersion of the

aforementioned M in n-space.

We have called Poincaré’'s network of varieties a manifold (and we’ll
use the same letter M for it} simply because for Poincaré this immersion
{= locally 1-1 smooth map) M — R" is only extra baggage, and his focus

will always be only on the absiract manifold M.

We note that, like its modern counterpart, Poincaré’s definition is
exactly similar for the continuously or infinitely differentiable or
real or complex analytic cases ... ; however a special feature of the
analytic case is that the concomitant immersion M -- ®” is determined

unigquely by any of its germs v,

We remark that the idea of an abstract manifold (probably due to
RIEMANN : see 0.a) was "well-known" in Poincaré's time, however it

entered into mathematical books only starting with the book of WEYL,

This notion is very useful, and in fact forced on us, because many
natural constructions (e.g. that of Riemann himself) lead us out from
the class of manifolds in euclidean spaces, to manifolds which are not

.

in any euclidean space,

However we remark that sometimes, even for the intrinsic study of é
manifold, it is useful to give oneself the convenience of an ambient
euclidean space, since then the manifold gets readily equipped with some

geomeirical and analytical tocls frequently useful for its study.
Moreover, there is no loss of generality in doing this, because

WHITNEY has shown that any abstract n-manifold is diffeomorphic to =

differentiable and non-singular affine variety (see 1.a) of Z2n-space.
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{3.e} Proof. Let Fi(xl' e ,xn) be n formal power series in n
variables, having no constant terms, and such that the nxn matrix formed
by the coefficients of their linear terms is nonsingular, Then it is
easy to see that there are unique formal power series solutions X, =
ei{yl’ cen ,yn) having the same properties, the coefficients of the
series G.1 being some universal polynomial functions of the coefficienis
of the original series Fi'

It remains to check that, if the series F are convergent in a
neighbourhood of the origin, then the formal inverse series 68 are also
convergent in some neighbourhood of the origin. This we'll do wusing

Poincaré’s method of dominant functions.

The case when each Fi is a geometric series is easy, because now we

have explicit formulas for their sums. Using these we can — cf.
GOURSAT — explicitly solve x, = F,, thus obtaining formulas giving the
i 1 mg{v\ﬂdﬁ .-
sums of the series 9i in a neighbourhcod of the origin. e Ch2 of " fdnmesve s
erow ¢ | Les mreltodes mouvellas . - . ”;W(-I

For the general case we can f{ind, perhaps in a smaller

neighbourhood, convergent geometric series G, with positive coefficients

vhich dominate the corresponding coefficient; of the series Fi. But
then, by virtue of the universal nature of the polynomials mentioned
above, the convergent power series sclutions of vy G1 dominate the
formal power series solutions X, = ei of yi = Fi 1 so the power series

91 are convergent in a neighbourhood of the origin. g.e.d.

An analogous argument works for complex analytic maps, and one can
establish an inverse function theorem also for continuously or
infinitely differentiable maps. However the case of polynomial maps is

much more difficult.

The point is that, if the polynomial equations Yy = Fi have local

polynomial solutions X, = o then these are also global solutions, and

i’
S0 det(BFi/axj}, being an identically nonzero polynomial, must bhe a

nonzero constant, The converse is a well-known open problem.

Jacobian Conjecture. Let Yy = Fi(xl, e xn) be n pelynomial

equations with det(aFi/axj) a nonzero constant, then they have
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polynomial solutions x, = Gi(yi, Ce ,yn).

For more re this problem, and the combinatorics of the universal

pelynomiale mentioned above, see BASS-CONNELL-WRIGHT.

(3.f) The method of dominant functions can be used also to prove

{for the analytic case) the following generalization of (3.4).

An implicit function theorem. If we are given p equations in ptm
variables such that the functional determinant with respect to some p of
the variables is nonzero, then we c¢an locally solve for these p

variables in terms of the remaining m.

We note that (3.5) follows at once by applying the above to the p
equations Fa{xl’ R xn) = 0, since we can solve for p of the x’s in
terms of the remaining n-p which can serve as our y’s.

In the terminology of (1.a), (3.5} amounts to checking that any
nonsingular point of F—I(O) is smooth. The converse of this is false

smooth polints need not be non-singular,

However, it is true that any smooth point of an irreducible complex

algebraic variety F_l(O) is nonsingular : see MILNOCR.

We remark that Poincaré’'s (3.5) can be easily strengthened in many
diverse ways — cf. (1.a) and § 8 ~-— and these "implicit function
thecrems” are of fundamental importance in differential topology.
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§ 4. Variétes opposées.

{Orientation of varieties.)

(4.1) Definitions. We will equip each variety V with a
transverse orientation determined by the order in which 1its defining
equations Fa = 0 are written. So interchanging any two equations gives,
not V, but the opposite variety -V, and more generally, glven any

nonsingular matrix A _ of functions, we will assume that the ordered set

oB

of equations EaABa'Fa = ( gives V, resp. -V, iff det(Aa ) is positive,

B

resp. negative,

Furthermore, each variety v of type (3.1) with 8 one-one will
be equipped with an orientation determined by the order in which its
parameters Yyr v o Y, @re written. So interchanging two of thenm
gives, not v, but the opposite variety —v, and more generally, if the
parameters undergo a transformation y1, ceea Yo — Z

TR Zm’ we'll

assume that the resulting variety is v or —v, depending on whether the

(a)

transformation's functional determinant is positive or negative.

{4,2) Convention. The above two concepts will be tied to
each other by stipulating that if Vp € V as in (3.5), then Vp has the
correct orientation iff the nxn functional determinant mentioned in

(3.8) is positive.(b)

(4.3) Oriented boundary 8V. We will assume that each of the
{n-p-1)-dimensional non-singular varieties occuring in the boundary (see
1.3) of a transversely oriented variety V, 1is equipped with the
transverse orientation determined by writing the equaiions of V in order

and putting the new equation ¢ = 0 in the very end.

NOTES

(4.a) In modern terms we would say : the choice of an orientation
of Rp fixes, via F : Rn — Rp, an orientation of the trivial normal
bundle of V = Ful{O) in Rn, and an orientation of m-space fixes, via the

one-one 6, an orientation of v = Im{8).
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(4.b) In other words, the transverse orientation of vP < v,

followed by the orientation of v should yield the orientation of R".

P’
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§ 5. Homelogies.

(5.1) Definition. Suppose there is, in a given manifold M, a
variety V whose oriented boundary consists of k.1 coples of the wvariety

vy for 1 si = a, and Sj copies of the variety — “j for 1 = j=s b, Then

we'll write

1'Y1 N o Va PRt Y Sy

and refer to this relation as a homology of M ; moreover we’'ll handle
homologies just like equations : so the sum of any two homologies will

also be deemed to be a homology, and we can take any term to the other

side provided we change its sign.(a)

(5.2) We'’ll sometimes write k,.v + ... + k.v = g to
1°71 a a

indicate that the sum of the varieties of M written on the left |is
(b)

homologous to a sum of varieties contained in the boundary of M.

NOTES
{(5.a)} Example. To see that varieties can occur in &8V with
coefficlents other than * 1, consider e.g. V = {an open Mobius strip
minus the arc vi} c M= Rs.
DA
e
e /,//’

Fig (5).

Then 8V = 2v1 v, — and so 2v, + = i iz a homology of RB.

1 7P
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In modern terms Poincaré’s homologies can be understood as follows:

We linearly extend the definition (4.3) to chains, 1i.e, finite
integral linear combinations of bounded varieties of V¥V, %o obtain the
boundary operator 8 : Cq+1(V) — Cq(V), vhere Cq(V) denotes the Abelian

group of all g-dimensicnal chains. Then ¢ = 0 iff ¢ € Im(38).

Somewhat confusingly, Poincaré will also use the different notion
which is obtained if we interpret "just like equations" of definition
(5.1) as allowing division by nonzero integers. He clarified this
distinction later in the Complément and called these homologies with
division. We'll call these rational homologies, since now it makes
sense to allow the coefficients to be rationals, and will denote them by
0 This notion too can be interpreted as above, by using now the
graded vector space of rational chains C{V;@), i.e. all finite rational

linear combinations of bounded varieties of V.

(5.b) We remark that Poincaré will make only a fleeting use in § 89
of this notion of homology rel bd(M). To make the given definition
complete and intrinsic, we must define boundary bd{M) of a manifold, and

this should be done in such a way that bd(M) is a subset of M.

So, we will assume here that M is a manifold-with-boundary, 1i.e. a
space locally diffeomorphic to a euclidean closed half space, with bd(M)
being all points of M which do not have a neighbourhood homeomorphic to

an open euclidean set.
With this understood, we can now interpret these relative homologies

as above, in terms of the quotient boundary operator & : Cq+1(M,bdM) —
C {M,bdM), where C _(M,8M) = C _(M)/C (8M).
q q q q( )
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& 6. Nombres de Betti.

(6.1) Definition. The cardinality of a maximal linearly
independent set — i.e. one for which there is no non-trivial homology
between its members -—— of closed r-dimensional varietlies contained in M

will be called the rth Betti number br(M) of M.{a)

(6.2) Example. Let M be a 3-dimensional domain whose
boundary is the disjoint union of n closed surfaces Si’ then bl(V) =
1 _ (b}
§Eib1(si) and bz(V) =n - 1.

NOTES

(6.a) As noted in (I.a) we have modernized the definition slightly:

Poincaré's numbers are one more than those of {6.,1).

From the definition it is immediate that the numbers br(M) are
diffeomorphism invariants, however it is not at all obvious that they
are finite for M compact. We’ll see later that they are indeed finite,

and in fact that they coincide with the modern Bettl numbers.

Yet more is true ... (6.1) can be shown equivalent to the definition
obtained by replacing "closed r-varieties" by "“closed r-chains”, i.e. ¢
& CP(M) such that d(c) = 0, where 8 is as in (5.a). So br(M) is the
rank of the free part of the rth homology group ker(8)/im(8) of &8, this

being well-defined because one can check the all-important ¢4 = 0,

Once again, it is immediate that this homology group HP(M; Z} is a
diffeomorphism invariant, but not quite obvious that it can be
identified with the singular homology of M. For a
manifold-with-boundary we can likewise define the relative homology
group HP(M, bdM; Z) as ker(38)/im(8), where now 8 is as in (5.b).

As noted in (I.a) the numbers defined by BETTI himself were
different from Poincaré’s : in modern terms, he had considered the least
number of elements required to generate HP(M;Z), rather than the rank of

the free part of this group.
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{(6.b) Proof. Like in (1.b) we’ll think of each S, as the boundary
of a thickening of a bouquet of % bl(si) circles. The given domain has
thus the homotopy type of S3 \ {unien of these bouguets}, and the
homelogy of this spherical complement can be calculated easily using the

Alexander duality of § 8. gq.e.d.

We remark that it was well-known since RIEMANN that bI(S) is even
for any closed surface S, and the number % bi(S) was called the genus of

the surface.




§ 7. Emploi des intégrales.

(Differential forms.)

(7.1) Definition. The integral

IV v wal..a%(xi’ e xn}.dxa1 Cn dxocr , 1= =sn,

over any r-dimensional variety V of n-space, will be defined to be

Zv J T wa1_.ap(x1, Cee xn).det(axal/ayj).dyl... dyr

where V = Y v is a partition (see 3.5 and 8.2) of V into some compatibly
oriented varieties v of the type (3.1), and for each v, the muitiple
integral is evaluated, using the equations x.1 = Oi(yl, ey yp) of v,
between the limits of Yy prescribed by the inequalities of v, a)

We'll always assume that the components ©e o are
1"

skewsymmetric in their indices, i.e. they merely change sign when two of
(b)

the indices @, are interchanged.

{7.2) Poincaré’s Lemma. The integrals fv w are zero for all

closed varieties V of n-space If and only if the { n cyclic sums

r+1

r. i
Z (_1) .3/6)(“‘{&)(051_{_1, pee ’aF'l'l,a]., e Pai_i]}’

are identically zero, i.e. iff dw = O throughout ®? . for a proof see my

paper in Acta Matih, vol, 9.(0)

(7.3) Remark. By using the methods of this Acta paper (i.e.
the generalized Stokes’ formula) it follows that the [le] conditions dw
= (3, in a neighbourhood of an m-manifold M of n-space, are sufficlent to
ensure that for each homology 8c =~ 0 of M we have facw = 0. However
they are not necessary : they can be replaced by only (rTl] analogous

conditions at all peints of M.(d)

(7.4) Proposition. For any w as in (7.3) one can find at
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most bP(M) numbers such that the integral fvw of w over any closed

r~variety ¥V of M is a linear integral combination of these numbers.

Proof. If we take t > br(M) such integrals {fv B, .,
1
fvtw}, ?here there is a non-trivial homology nlvl + nzvz + ... F ntVt =
0 between the corresponding closed varieties Vl’ and so by {7.3) we have
a non—-trivial linear integral dependence nl.fv w+ ...+ nt.fv @ . Thus
1 t
the additive subgroup of R generated by such integrals is free of rank =

br(M)' and so has a Z-basis containing = br(M) elements., g.e.d.

In other words, the indefinite integral fw of any r-form
Wwith dw = 0 has at most br(M) periods {= elements of above Z-basis).

Further it can be shown that this bound is the best possible,
i.e. there exists such an w Having br{M) periods. For r = 1, m-1, this

interpretation of the numbers bp(M) was given by BETTI himself.(e)

NOTES

(7.8) The definition does not depend on the partition V = Jp : this
follows from the change of variables formula for multiple integrals,

because any two v's are related by a positive functional determinant.

(7.b) There is no loss of generality in assuming this because it is
clear that the skew-symmetrization of the integrand

w=Y W, (xl, e xn) .dxa - dxa ,

1’ r 1 r

has the same integrals. We’ll in fact identify w with its indefinite
integral ¥V r— va. i.e. we will think of w as a differential form of

rR™,

For example, the integrals of dydx being the negative of that of
dxdy, we’ll assume dxdy = ~dydx, and this wedge product will usually be

denoted dxady.

(7.c) Here, for a function wi{x

df is defined by

o xn), the total differential




and, more generally, the exterior derivative of a degree r form w is the

degree r+1 form defined by

dw = 3}, dw Adx A LL.oAdX
o .. @ o
1 r 1 r
Sketch proof of (7.2). Since ded = 0, dw = 0 is necessary for the
integrability of the partial differential equations d&8 = w : in the
cited paper, Poincaré had checked conversely that (for R") this
integrability condition ensures that one has d8 = w for some 6 (and it

is this statement which is now usually called "Poincaré’s Lemma"),

Then (7.2) follows easily by using the generalized Stokes’ formula,
which too was established by Peincaré in the same paper :

S = fv dw .

av
This formula is deduced by an inductive argument starting from the

case m = 1, i.e. the fundamental theorem of calculus, g.e.d.

(7.d) In modern terms these “{rTl] analogous conditions” can be

formulated as follows

First recall that, by the tangent space TMx at the point x of the

manifold M, we understand the m-dimensional vector subspace of Rm
ax ax

ayl ¥ e H] aym

parametrization of a neighbourhood of x.

spanned by

, where x = B(yl, Cee ym) is any

Then that, a degree r real (or complex) differential form o € a" (M)

of M assigns smoothly, to each point x of M, a skewsymmeiric r-linear

map TMX X TMx {(r times) — R {or €). With respect to a local
parametrization, the local 1-forms dual to the local vector fields { g;
1
s e g: } are denoted {dyl, ce dyn}, and so locally such an w can
n
again be written uniquely as | wal..ar(yl. cee ym) .dxm1 Ve dxa;

The exterior derivative d : QP(M) — QP+1

{M}) can now be defined
exactly as in (7.c¢), since an easy verification shows that the choice of

the local parametrization is immaterial.
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r+i
demanding that w should be a differential r~form of M such that dw = 0.

With this understood, the required "[ " conditiong" amount to

(7.e) We note that (the indefinite integral [w of) any differential
r-form @ determines a cochain w € CP(M), t.e. a Z-linear map & : CP(M)
— R {or €}, and if dw = 0 this cochain vanishes on Im{3}, and so
induces a Z-linear map w : HP(M; Z) — R (or C€) : Poincaré is asserting
that, for some w, the group of residues w(HF(M)) < R attains its maximum

Z~dimension bP(M).

Example. The Cauchy residue formula shows that the period group of
the complex valued differential 1-form w = (1/z).dz of € \ {0} 1is the
additive subgroup of € generated by 2mi and so has rank bl(C N\ {0}) =1,

We remark that Poincaré's assertion (of which he offers no proof)
follows easily from {and is in fact equivalent to) de Rham’s theorem.
This theorem says that the groups kerd/imd, defined by the exterior
derivative d, coincide with the cohomology H*(M; Ror C) of M, i.e. the
groups kers/imé defined by the coboundary operator & : C' (M) — CP+1(M).
(8a)(c) = a(8c), acting on all real or complex cochains of M. So e.g.

Poincaré’s Lemma tells us that HP(RD; R) = 0 for all r = 1.
REFERENCES (contd. )
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§ 8. Variétés unilatéres et bilatéres.
(Orientabllity of manifolds.)

(8.1) Definition. An m-manifold M (see 3.5) will be called
orientable iff we can assign an orientation (see 4.1) to each of the
varieties v of its connected network (= graph), in such a way that the

mxm determinant det(ayi/ayb) is positive whenever v is contiguous to v’.

Since the above determinant is obviously always nonzero, M can
fail to be orientable iff either, its graph has a contiguous pair {v,v’}
with the determinant not of the same sign in all the components of vrw’,
or else, has a one-gided circuit (vl, e vq), i.e. one for which
making the determinant between v1 and vi+1 positive for 1 = 1 = ¢g-1,
makes the determinant between v_ and v, negative, (}%& also 36

Secand Chwﬂﬂé@nouf')

Now assume M oriented, and increase the size of its network by
adding a new v* which also parametrizes a porticn of the space M. We
choose a v which overlaps v', and orient v* in such a way that Iitis
determinant with v is positive. Then it is easy to check that the
determinant of v* with all overlapping v's is positive. Thus
orientability is a property of the space M, rather than of the network

of varieties v covering it.{a)

(8.2) Theorem. Varieties are orientable manifolds.(b)’(C)

Proof. In (3.5) we saw that any (non-singular) m = n-p
dimensional variety V of n-space is an m-manifold. If we orient the

parametrizations v_ constructed in (3.5}, as per convention (4.2}, then

P
a determinantal calculation (or the remark 4.b) shows that they are

compatible to each other in the sense of (8.1). g.e.d.

So an (open) Mébius strip, being non-orientable, cannot occur
as a variety V in any n-space, even though it is of course =a

2-dimensional manifold,

We remark also that 1if a closed m-manifold embeds in
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(m+1)-space, then it is necessarily orientable.{d)

NOTES
*
(8.a) A maximal network, i.e. one obtained by adding all such v ,

is nowadays called the differentiable structure (or analytic structure
etc.) of M.

(8.b) However orientability is not sufficient to ensure that a
manifold M can occur as a variety (of the first kind) in some n-space.
To see this note that if M = FMI(O) for some smooth function F : R"
— RrP having rank p at all points of M, then we can smoothly choose, for
L
each x € V, p linearly independent normal vectors vi(x} of (TMX) , the

orthogonal complement in R™ of the tangent space {(see 7.d) to M at x.

i
So, since since adding this trivial normal bundle TM to the tangent
bundie TM gives a trivial bundle M x ®" it follows that the

characteristic classes of such an M must be zero : cf. MILNOR.

For example, the complex projective plane CPZ, which is orientable,
but has non-trivial characteristic classes, cannolt occur as a variety in

any n-space.

The aforementlioned characteristic classes are important invarlants
of M which can be defined as follows. One embeds M in any RN with N
big, and considers the map x —— TMx of M into the Grassmann manifold
G(N,m) of all m-dimensional vector subspaces of RN. This map induces a
homomorphism H*(G{N,m)) -~ H*(Mm), and the cohomologf classes lying in

the image of this map are called the characteristic classes of M.

It can also be shown conversely that any M whose tangent bundle Iis
stably parallelizable, i.e. becomes {rivial after adding a suitably high
dimensional trivial bundle, does occur as a variety In some n-space.

Also note that if F : Rn — R has rank p at all points of Ful

(0},
then F 2(0) is a closed set of R® and an embedded submanifold of R®, so

e.g. Ful(O) cannot be a cylinder with a point missing or a figure eight.
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And, conversely, one can check that any embedded closed submanifold
of R® having a trivial normal bundle is of this type F_l(O).

However — see notes (1.a) and (3.d) — definition (1.1) suffices to

give all manifolds, provided we modify it by allowing = p equations.

(8.¢) For any smooth map f: N* — PP between manifolds, the
derivative at x, Tf : TNx — TPf(x), is the linear map which images the
a6 8(fe0)

basis vectors (see 7.d) of TN to note that the chain
3y, X dy

i i
rule for partial derivatives shows that T is a functor from the category

of pointed manifolds to the category of vector spaces,

An x € N is a regular point of £ if the derivative of f at x |is
surjective, and a ¥ € P is called a regular value of £ if any x with

f(x) = y is a regular point of f.

The argument of (3.5) shows that the level surfaces of f constitute
a foliation of the open set of its regular points, i.e. a partition into
leafs (= submanifolds) such that near each point one has local
coordinates Ups ooe un—p’ Ygr oo Yp in which each slice y = const, is
contained in some leaf. (Moreover for this foliation, the leaves are

closed sets of N and have a trivial normal bundlies in N.)

If N is compact, and rank(Tf)} is identically p, then it is easy to
see that this foliation is a fibration, i.e. is a union of open sets of
the type {leaf} x {p-ball}. (Generalizing earlier work of HADAMARD, who
had dealt with the case n = p, EHRESMANN showed that this conclusion is
true even for non-compact N, provided f is proper, i.e. such that the

inverse image of each compact set is compact.)

On the other hand, if rank(Tf)} is not identically p, then the closed
{n-p)-manifolds occuring as the inverse images f—I(y) of regular values
of f need not be diffeomorphic to each other. However PONTRJAGIN made
the fundamental observation that they are cobordant to each other, and
their cobordism class depends only on the smooth homotopy class of F,
Here, by a cobordism between two manifolds, we mean a manifeld of

dimension one more whose boundary is their disjoint unien.
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Nx {13

Fig.8,

For example, the above picture shows how the inverse image of the

regular value of a homotopy £, can provide such a cobordism. It shows

t
also that these cobordisms can be framed, i.e. their normal bundle in N
x I can be equipped with a trivialization, which restricts to given

trivializations of the normal bundles of the two manifolds in N.

Pontrjagin proved that there is a bijection between the framed
cobordism classes of codimension p submanifolds of N and smooth homotopy

classes of maps of N into the p-sphere.

For the case n = p, and N orientable, resp. non-orientable, the
framed cobordism class of the finite set ful(y) is determined by #(fuly)
= ¥ {sgn(x) : x € fdl(y)}, resp. #(f—ly) mod 2 (see fig. 8), where
sgn(x) = * 1 depending on whether fo preserves or reverses orientation.

So now the above result reduces to the following older one.

Hopf’'s Theorem. The homotopy classes of maps f from an n-~manifold

N into the n-sphere are classified by their degree

1

deg (£) = #(f "y},

or their degree mod 2, depending upon whether the manifold N is
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orientable or not.

Moreover, these degrees determine, and are determined by the map
induced by £ in nth homology with integral or mod 2 coefficients, (This
point enables one to generalize the definition of degree, and so of

intersection numbers — see 9.1 and 9.a — to continuous maps.)

These remarks illustrate the importance of the “implicit function

theorem” (3.5), and its generallzations (8.2) etc., in topology.

(8.d) Proof. If f is any embedding {= a one-one smooth function)
from a closed m-manifold M into {m+1)-space, then Alexander duality with
mod 2 coefficients (see § 8) shows that the complement of f£(M) in
(m+1)-space has two components. So we can smoothly assign a unit normal

vector to each point of f(M}. gq.e.d.

We note that now Poincaré refers to a Mobius strip in 3-space, and
apparently to any embedded m-manifold of (m+l)-space, as a (hyper)
“surface” : however we'll use this word only in the sense of (1.1).
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§ 9. Intersection des deux variétés.
{Intersection numbers.)

(9.1) Definition. Let v be a p-dimensicnal variety, of a
given oriented n-manifold M, which intersects an (n-p)-dimensional
variety v’ of M finitely many times, and in a transverse way. We assign
to each of these intersections X the number +1, resp. -1, iff the
orientation of v at x followed by that of v' agrees, resp. disagrees,
with that of M. The sum of these numbers will be denoted N(wv,»’}, and

called the intersection number of v with v’ in M.(a)

We note that N(v,v’) changes sign if the orientation of any
cne of the three manifolds {M,v,p’} is reversed, and that

NG, p) = (< dime-dim

N(w,v']}.

In (8.2) and (8.3) below we’ll work within a fixed oriented
manifold M, which will be either compact, or else the 1interior of a
compact manifold-with-boundary M (see S5.b) in which case we’ll denote
bd(M) by bd{M).

(9.2) Theorem. If there exists a p-variety C with 8C = 0 rel
boundary, such that Zi ki'N(C’Vi) is nonzero for given closed

{n-pl-varieties Vi , then we cannot have Ei k 0 ; and conversely,

V., «
i Qo
if this homology does not hold, then such a C can be found.

Proof (for case p = 1 only). To establish the direct part it
obviously suffices to check that, if W is any connected open subset with
aw = Vl + .., + Vt , and C is any transversal orienté& curve with C = O
rel bd{M), then N(C,Vl) + .., + N(C,Vt) = 0.

To see this note that, if C is closed, then it must go as many
times from the complement of W into W, as it goes from W into this
complement. Furthermore, the same is true also if C is an arc having
both extremeties on bd(M), because any such C begins and ends ouside H.
So, in all cases, N{C,d8W) is the sum of an equal number of +1’s and

~1's, and thus is zero.
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*
Conversely, suppose that the homology Eikivi *a 0, ki e Q

does not hold in M. If one of the Vi‘s is homologous to a rational
combination of the others we can always replace it by this combination
without affecting the value of the rational number Eiki.N(C,Vi}. So we
can assume without loss of generality that there 1is no non-trivial

{b)

homology amongst these Vi’s.

This implies, if M is without boundary, that the complement W
of VIU C th in M must be connected, for otherwise the 4 of any
component of this complement will furnish a non-trivial homology between
some of these Vi’s. And, if M has a nonempty boundary, it implies
likewise that each component wy of this complement must be incident to

the boundary of M.

So we can Jjoin the extremeties y and z, of a small arc yxz
cutting V1 transversely at x, to either each other in W, or else to two
points of bd(M} via two arcs in wy and WZ respectively. This gives us a
C with 8C = 0 mod bd(M} for which Ziki.N{C.Vi) = k1 is nonzero. gq.e.d.

{9.3) Lets now extend the above argument to p = 2 :

We will assume that M is a variety defined by some equations
Fa = 0 {and some inequalities) and that the p-dimensional C < M Iis

determined by n-p additional equations F; = 0.

As for the (n-p)-dimensional varieties \(.l ¢ M, we'll assume
that their points satisfy p-1 common additional equations @v =0 — 1i,e,
that they all lie on the (n-p+l)-dimensicnal variety W € M determined by
the equations Fa = 0 and @v = 0 — and that each of Fhe codimension one

sub-varieties \J.1 of W is determined by one more equation F; = 0,

We note now that N(C,Vi) = N(an,Vi), and that CnW is a curve
of W. Secondly we note that if we have }, ki'vi = 0 in W, then the same
homology is true also in M. The converse is of course not true; but, if
this homology holds in M, then we can always, by suitable choosing the

functions ®, find some W of the above type, in which it holds.

So, by applying the case p =1 to W, it follows that Theorem

{9.2) holds even when p = 2.(c)
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(9.4) Corollary (POINCARE DUALITY). For any closed n-

dimensional orientable manifold M we have bp(M} = bnup{M) for 0 = p s n.

I believe that this result has never been claimed before;
nevertheless it is known to many persens, who have even made some

applications of it.(d)

Proof, We orient M and choose in it maximal sets of
independent (see 4.1) p- and (n-p)-dimensional closed oriented varieties
{Cl’ .. ’CA} and {Vl, .. ,Vp}, where A = bp(M) and 4 = bn_p{M).

In case the number A of linear equations Eixi'N(Cj’vi) =0 is
less than the number u of unknowns 3 they would have a non trivial
rational solution Xy = ki' Then (by the direct part of 8.2) we will
have Eiki'N(C’Vi) = 0 for all closed r-dimensional C’s, So (by the
converse part of 9.2) we would have Ei k;.V, =5 0 in M. Since this s

1"
not so we must have A = p.

Likewise p =z A. g.e.d.

(9.8) Corollary. For any orientable closed n-manifold M with

n even and n/2 odd the middle Betti number bn/Z(M) is even.

In the proof we’ll make use of the

Definition. Given any closed oriented n-manifold M with n

even, and any b = bn/z(M) independent closed (n/2)-subvarieties Vi, V2,
of M, we have the bxb intersection matrix N = EN(Ni,VJ)]. Here, the

V.} denotes the

i’
intersection number of \1.1 with a transverse homolog!.,te.(ei

Vi’s are assumed transverse to each other, and N(V

Proof, Since n/2 1is odd the Iintersection matrix is a
skewsymmetric b x b matrix (see 9.1). So if b were odd its determinant
would be Zzero. So we would be able to find rationals l{.1 net all zero
such that Ejkj'N(vi’v ) =0, So (cf. proof of 9.4} we would have

J

k..N(C,V.,) = 0 for all (n/2)-varieties C, which impli k,.V, = 0
Ej 3 3 } ch implies EJ V5 g

in M, a contradiction. g.e.d.
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We will show later by means of examples that this result is

not true if M is not orientable, or if n/2 is even.(f)

NOTES

(9.a) In the paper the same definition is given more formally In

terms of determinants.

For example, for the case M = Rn, and v and v' as in (3.1), Poincaré
defines for each (x,x') € v x v', the number S{x,x') € {-1,0,+1} as the

sign of the nxn determinant

6xi/c'3y\j
6xi/6yk

,» 1 =1=mn, 1=jsp 1=k =nwp,

and then sets N(v,v') = ¥ {S({x,x") : x = x"}.

Likewise, when M, v, and v’ are varieties in t-space, defined by G =

0, G=0=F, and G = 0 = F' respectively, he sets N{v,»’} = ¥ {S{x,x’)
Xx = x'}, where now, for each {x,%x') e v x v’, S{x,x’') denotes the sign
of the txt determinant |acy/axi BF!’S/BXi 8Fa/8xi|.

However, the requirement that each intersection x be transverse,
i.e. that the above determinants be nonzero there, or equivalently, that
at each such ¥ the tangent space to M be spanned by the vectors tangent
to v or v', is not explicitly made in the paper.

"o, PP

{defined in 8.c) can be interpreted as the intersection number of the

Note also that the degree deg(f) = #(f—l(y)} of a map £ : N

fundamental cycle of N with its O-chain Yi{sgn(x).x : x € f_l(y)}, and
conversely, in the notation of {8.c¢), we have N{v,p’') = #(9~1{A)), where

@ =08x8", and A = {(x,x) : x € M} is the diagonal of Mz.

{(9.b) We note that the argument of this paragraph would’nt have
worked with integral homologies. In fact for p z 2 the analogue of
Theorem (9.2) for Integral homologies is false : e.g. we can have &

non-bounding V with 2V = 0 and so N{(C,V) = 0 for all transversals C.
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In the next paragraph Poincaré will assume that if the boundary of
any component of the complement of Vlu cen th contains a part of some

Vi then it must contain all of V this is not true (see below) but can

i .
be arranged at this point by replacing the Vi’s by suitable homologues.

Fig. 9.

Peincaré is also going to use the fact that each Vi occurs at most
twice in each component’s boundary, and that when it occurs twice these
occurences cancel out in the compeonent’s oriented boundary. Note that
this implies that any codimension one homology is a linear combination

of some having coefficients £ 1 only, and that Hnml(Mn;Z) is free.

{(9.¢) By slightly "enlarging” a variety of M having oriented
boundary Ei kivi’ one does get an  immersed (n-p+1)-dimensional
manifold-with-boundary W which contains all the Vi’s in 1its interior,
and since Zi kivi = 0 in W, the direct part of the case p=1 of (9.2}
now ylelds ), k,.N(C,V/) = 3.k .N(CAW,V,) = 0. )

Thus Poincaré has sketched a correct proof of the direct part of
{(8.2) for all p. However, for the converse, there are serious problens
with his skeiched argument.

To see this, lets assume we do not have Ei k Vi ﬂ@ 0 in M. To start

i
the argument rolling, we need a compact {n-p+l)-dimensional Immersed W
containing all the Vi’s in its interior : but, in the absence of a

homology between the Vi’s, it is not clear why such a W should exist?
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However, since varieties are null-cobordant {see 8.c), we can find
an (n-p+1)-manifold with boundary W having disjoint copies Vi of the
Vi’s in its interior, and so the image of a sultable map from W into M,

which extends the maps V, — V

N i’ might provide us with such a W ...

So lets grant such a W. Since we certainly deo not have Zi kivi “q 0
on this W, the converse part of the case p = 1 of (8.2) gives us a curve
c of W with 8¢ = 0 rel bd(W) such that Zi ki'N(C’Vi) is nonzero. Still
the proof is far from finished, because it is not at all clear why we

must have a transversal closed p-variety C ¢ M with CrW = ¢ 7

The above two gaps in Poincaré’s argument were pointed out by
Heegaard (1899), who in fact considered Poincaré duality (8.4) to be

false, and gave a "counter—example" to this effect !

For Poincaré’s response to this criticism see the Complément
briefly, he conceded that the second gap was serious, but showed that
Heegaard’s example was fallacious, and gave a new (and correct !) proof
of a stronger duslity theorem (equivalent to the modern group-theoretic

formulation).

(9.d4) HNotable amongst these was PICARD who had stated this duality

clearly, and used it for his study of non-singular complex surfaces.

Though (2.4) is stated in the paper only for closed manifelds,
Poincaré must have been aware that the same argument shows that (9.2)
also has as corollary the LEFSCHETZ DUALITY, bnmp(intM) = bp(M,bdM}, for
any oriented manifold-with-boundary M. Still more generally (if one
continues tc ignore the lacunae noted in 9.c¢) the arguments of (8.2) -
(9.4) also give bn_p(M N A} = bp(M, A), for any pair‘ (M,A) of compact

spaces whose difference M \ A an orientable n-manifold.

This yields ALEXANDER DUALITY, i.e. the relationship between the
Betti numbers of a closed subset A of a sphere Sn, and those of Iits
complement S” \ A : to see this note that bp(s“, A) = b, (A), except if

p = n, when it is one more,

Poincaré was certainly aware e.g. of the JORDAN CURVE THEOREM, 1i.e.

the case n = 2 and A = Sl of Alexander duality, and (86.2) and (B.b)

50




suggest that he might have been aware of the general statement too.

(S.e) Given bn—p independent Vi’s, we can choose a dual basis of
the Cj’s such that N(Cj’vi) coincides with the identity matrix 813 {the
proof of 9.2 shows this for p = 1). This shows that (for n even} the

intersection matrix N € Aut(Zb) = GL{b,Z), i.e. det(I) = + 1.

Though the matrix N € GL{b,Z) depends on the choice of the b
independent closed varieties V.1 of M, its congruence class ¥ = {PNP'} ¢
GL(b,Z) is an invariant of the oriented manifold M. Thus any property
of N which is shared by all members of ¥ — or, & fortiori, by all
members of the bigger congruence class NF = {PNP’ : P € GL(b,F)}, for

any field F 2 Z, e.g. F = Q, Dp or R — is an invariant of M.

For n/2 odd (the case considered by Poincaré}, and F a field 2 Z, no
new invariant is given by NF’ since we can always find a P € GL(bL,F)
o1 )}, so the
_1 D ¥ 1
class Ng is determined Jjust by the size or rank b of N.

such that the skewsymmetric N becomes diag( .. ,

However, for n/2 even (the case not considered by Poincaré) the
matrix N is symmetric, and has many other well-known congruerice

invariants besides rank :

For example its parity (N is called even if all 1its diagonal
elements are even, and odd otherwise}, its signature (i.e. the number of
positives minus the number of negatives in any diagonal matrix of
GL{b,R) congruent to it), and the fact whether it is definite or not
(i.e. whether 1its signature is * b), etc. : see e.g. SERRE or

MILNOR-HUSEMOLLER for more regarding congruence lnvariants.

HWe remark that Poincaré’s duality theorem is only the first of many

striking results about the intersection matrix, e.g.,

WHITEHEAD : a closed simply connected (see § 12) 4-manifold M is
uniquely determined, upto homotopy type, by the Iintegral congruence

class of its Intersection matrix N.

ROCHLIN : if a closed simply connected 4-manifold M has an even

Intersection matrix N, then 16 divides its signature.




DONALDSON : if a closed simply connected 4-manifold M has a definite

intersection matrix M, then it must be integrally congruent to % I.

FREEDMAN : Any symmetric integral matrix N with determinant * 1 is
the intersection matrix of some simply connected closed 4-dimensional

topological manifold M.

Using these results, and information about the congruence classes of
GL{n,Z), one obtains e.g. more than 100 million distinct simply
connected closed topological 4-manifolds M with bZ(M) = 32 and N

definite, out of which only 2 can admit a differentiable structure !

We remark, in this context, that in § 13, Peincaré will analogously

classify some closed 3-manifolds by the conjugacy classes of GL(2,Z),

(9.f) Two simple examples which show this are the Klein bottle and

the complex projective plane.

Note that {9.8) generalizes the fact that the b1 of a closed

orientable surfaces is even : another {deeper) generalization of this is

that all the odd Betti numbers b21+1(M) of a closed Kihler manifold
{(e.g. a non-singular projective variety) are even.
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& 10. Platonic 3-manifolds.

Generalizing from the accepted practice for surfaces Poincaré assumes

the following without proof.

Proposition 8. For any closed manifold M, one can find some polytope(s)
P having an even number of facets, and a differentiable surjection i+ : P
-3 M which is one-one, but for the fact that facets of P are identified

in pairs F = F' {in an obvious sense).

Orientability criterion : to ensure 84 = 0, each identification F = F'

should be such that it reverses the induced orientations of F, F' € &P.

(So, for dim{M} = 3, if we "walk" on P along 8F keeping F to our left,

then the correspending walk on P along 8F' should keep F' to our right.)
B

D
Ai 56 can be identified
as AC = BD, AB = CD to obtain the torus, and this is in fact the only

For example, the opposite sides of the square

tdentification of opposite sides of the square which obeys the
orientability criterion. (The other identifications AC = DB, AB = CBD
and AC = DB, AB = DC give non-orientable 2-manifolds, viz. the Klein

Bottle and the real projective plane respect}vely.)
1LY

A D’
On the other hand, for the cube P = Jffiijb , Since we can also
c
rotate facets, there are many ways of identifying opposite facets
without viclating the orientability criterion, e.g. the following five

given by Poincaré.

Example 1] Example 2| Example 3 Exaﬁple 4| Example 8

ABDC = A’B'D'C’ B'D'C'A’ BDCA B’D'C’ A’ DC’AE
ACC' A = BDD' B’ DD’'B’B DD'B'B BDD' B’ D'B’BD
ABR'A’ = cpp'C’ pp’c'c Cc’cop’ cop’C D'C’'Ch

Clearly Ex. 1 is RS mod 23, i.e. the 3-torus, while Ex.5 i3 the real
projective 3-space ( : we note that Poincaré uses instead of Ex.5 the

equivalent antipodal identification of the boundary of an octahedron,
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the Platonic solid dual to the cube).

[Triangulability. Prop. 8 implies and is implied by the fact that M has
a differentiable (finite) cell subdivision (in an obvious sense} : in
later sections Poincaré uses this version of Prop. 8 (We'll denote by
P/t the cell subdivision of M given by identification classes of cells

of P under ¢.)

A cell subdivision is called simplicial (resp. simple) iff each cell of
dimension i (resp. codimension i) is incident to i+l cells of dimension
{resp. codimension) one less, and these determine the cell uniquely. A

simplicial subdivision is also called a triangulation.

It is easily seen that any cell subdivision of M can be modified to
cbtain a simplicial or simple subdivision. So Prop.8 is equivalent to a
result proved later by Whitehead, viz. that differentiable manifolds

have a differentiable triangulation.]

[Triangulability of surfaces had led to their classification : one
begins by checking that any direction-reversing identification of pairs
of sides of any even polygon gives a surface, and then, by means of some
operations {see e.g. Lefschetz’s book)} one modifies the polygon to one
of the following 4g-gons with pairs of sides Iidentified as per the

commutator relation

1 1.-1

cde d .. = 1:

aba—lb_

This is the surface with g handles, To see this for g = 2 cut a surface
with 2 handles as follows to get a square annulus from which the surface

can be recovered by making the indicated tdentifications :

(<
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By homogeneity, the above hole can be anywhere, so this annulus can be

replaced by the required octagon as follows :

Poincaré must have hoped that a similar procedure would classify
3-manifolds : though this problem is very hard, recent work shows that

this hope remains alive,]

[There are only five regular solids, viz. the tetrahedon, cube,
octahedron, icosahedron, and dodecahedron, We will deduce this gem of

antiquity (it was known to Plato !} from the following.
Euler’s formula. For any cell subdivision of the 2-sphere one has
v-—-e+f =2,

where v, e, and f are the number of vertices, edges, and faces of the
subdivision. (More generally, it was known in 1895 that, for any cell
subdivision of a surface with g handles, the Euler characteristic v — e

+ f equals 2 — 2g.)

If cell subdivision is regular, r (resp. s) edges are incident to each
face (resp. vertex) of the subdivision, so we alsc have rf = 2¢ = sv.
Multiplying Euler's equation by rs, and using these, we get e(2r -~ rs +
25} = 2rs. So 2r - rs + 25 is positive : this, and r, 8 = 3, clearly
imply {r,s} = {3}, {3,4} or {3,5}.




The tetrahedron is both simple and simplicial, the cube and the
dodecahedron are simple, while their duals, the octahedron and the
icosahedron are simpliclial : thus the only three regular triangulations

of the 2-~sphere are as follows :

In the Cingquiéme Complement of this paper, there is another (and much
more important) example of a 3-manifeld which too is built from a
Platonic solid, i.e. the Poincare manifold ?, obtained by identifying

antipodal facets of a dodecahedron after a rotation of 2n/5,

Poincaré showed in the Cinquiéme Complement that Hi(?) o Hi(SS) VY i even
though ? is not diffeomorphic to S°.]

Given a cell subdivision, the (open) star of an {open) cell ¢ consists
of all cells of which o is a face, The intersections of these cells,
with the boundary of a small transversal disk of the ambient space with

centre in o, constitutes the link of o.

It can be shown that links of any smooth triangulation of a manifold are
spheres. Also, it is easily seen that links of cells of any P/t, of
codimensions = 2, are always spheres. But in general there are

singularities in cedimension z 3.

Proposition 9. An identification . of pairs of facets of a 3-polytope P
gives a 3-manifold iff the Euler characteristic of the link of each

vertex of P/t is 2.
Further, of the five examples tabulated above, Example 2 1is not a

manifold (it has precisely two singularities and their links are 2-tori)

but the remaining four Examples 1, 3-8, are all orientable 3-manifolds.
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(It will be later shown that all these manifolds are distinct.) 5

Proof. The absence of codimension s 2 singularities means that the
links of the possible singularities of M, i.e. the vertices of P/t, must
be surfaces. Their Euler characteristic being 2, these surfaces must be

2-spheres, So there are ne singularities.

For any vertex « € P/t, let va, eu, and fa dencte the number of
vertices, edges, and faces in the link of «. [t is easily seen that ¢

= cardinality of the class «, ea = half the sum of the number of facets
incident to each vertex of the class «, and va = number of classes of
edges incident to vertices of class «, taking care to count such a class

twice if both extremities are in the class of vertices .

A calculation shows now that Vo T %a + fm is always 2 for our examples,

except for the two vertices of Example 2 when it is 0. gq.e.d. We eluacked ‘
trak oH:w{ii fad VPR NTS P \3':(:" cube gwt wi all  Severrn oveadahle 3‘“'\“*‘“&/]‘93:

[This calculation alsoc reveals that fg — f1 + f2 - f3 {where fi denotes

the number of i-dimensional cells in P/t) is O for Examples 1, 3-5, but

for Example 2 this number equals 2.

In fact we have always f3 = 1 and fz = 3, and fl and fO can be computed
by enumerating the identification classes under « of the edges and
vertices of P. For instance for Ex. 2 we have f1 = 2 = fO, the

identification classes being {AB, B'D, C'C, B'A’, AC, DD’}, {AA', DC,
C'A’, B’B, C'D’, DB} and {A, B’, C’, B}, (B, D', C, A’}.

An alternative criterion due to Thurston says in fact that P/t is a
3-manifold iff fo - fl + f2 - f3 is zero. We note further that
Poincaré’s and Thurston’s criteria are valid even if the identifications
do not satisfy the orientability criterion.]

[If we take two cones aX and bX having only the base manifold X in
common, then the space S(X} = aX v bX is called the suspension of X. It
is intuitively obvious (and true !) that SX is =a topological
{(n+1)-manifold if and only if X is an n-sphere (and then of course SX is

an {n+1)-sphere},

However Edwards has proved the remarkable fact that the double




suspension S{S(?)) of ? is homeomorphic to a BS-sphere: note that the
topological triangulation of the 5-sphere thus obtained has S(?}, which

is not even a manifold, occuring as a link in it !

However it is always true, even for topological triangulations, that

1inks are homotopy equivalent to spheres.

Also closed or compact topological manifolds need not have a topological
triangulation : it is known that ? embeds topologically in 4-space (even
though it does not embed differentiably) and the closure of the bounded
component of R4 \ P can not apparently be subdivided into finitely many

cells t 1]
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§ 11. Each integral matrix T = @ g] with determinant 1 determines

the following subdivision PT of the cube P :

Thinking of T_1 as a linear map of the x-y plane, we subdivide the
bottom facet S into cells o obtained by intersecting it with the

integral transiates of the parallelogram le(S). For each o there is a

unique integral translate ¢’ of T(o¢) which lies in the top facet, and

we'll subdivide the top facets wusing these cells ¢,

facets are left un-subdivided.

The vertical

Poincaré considers the example T = é 1 when S subdivides into

triangles ABC and BCD, and the top into corresponding triangles A’'D'C’

and B'A’D’', and peints out that the number of cells of PT increases with
the size of the entries of the matrix T,

The case Tnl = [i é] is illustrated below :

3 . :
R
‘\ 7 T(S)
! ;)/L—/‘/ o o’
) ,-—'l IR -1 Nak]
?—v—-—:z;//j“ : ABE C’'B'G
| / \ AED A'H'C
1 !
2| E / e ADF B'D'G
D '
FDC we'c
S i
t
- B <
Al F C x
Example 6.

The identification ¢ of the facets of any subdivided cube PT
according to o = ¢', ACC'A’ = BDD'B’ and ABB’A’ = CDD'C’, satisfies the

orientability condition.

Further we see that PT/L coincides with the manifolds of Examples 1
4 respectively for T = I and [_? é]. More
checks the following.

and

generally Poincaré now
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Proposition 10. For any T = E: p

} e s5L(2,2), PT/L represents a closed

orientable 3-manifold.

Proof. Let GT be the group of affine linear transformations of 3-space
generated by (x, y, z) b (x+1, y, 2z}, (x, y, 2} —» (x, y+1, =z}, and

{x,¥,2)}) = (ax+By, ox+By, z+1).

We note that GT is a free and discontinuous group of transformations of
3-space, i.e. none of its non-ldentity elements has a fixed point, and
none of its orbits {g{x) : x € G} has a limit point. Moreover each X
has a neighbourhood which is disjoint from all its g-images for g #* 1,
s0 the quotient space RS/G of orbits 1is 1locally homeomorphic to

T
3-gpace, i.e. it is a 3-manifoid.

In fact PT/L is homeomorphic to €R3/GT :

For this we note that the unit cube P is a fundamental domain of GT’
i.e. each orbit has at least one member in P, and not more than one in

its int(P). Moreover, for each bottom facet o of P there is a unique

T!

s & GT such that s_l(P) n P = o, and then s{o) = ¢’. Thus ¢ identifies

all boundary points of the cube which are in the same orbit. g.e.d.

[The mapping torus of a diffeomorphismt : M — M 1is the manifold
obtained by the identifications (p,0) = (t(p),1) in the cylinder M x

f0,1]. We note that a T € GL{2,Z), i.e. a linear automorphism of Rz

mapping 22 onto 22, induces an automorphism 7 : RZ/Zz —3 RZ/Zz, and the
above manifold is the mapping torus of this toral diffeomorphism (with

the condition det(T) = 1 being equivalent to its orientability).

Poincaré will check that Exs. 3, 5 are not of the above Lype RS/G
their fundamental groups are finite, and they are covéred not by RS but
by the 3-sphere. O0One can also think of Examples 3 and 5, as well as P,
as S0{3) mod a suitable finite subgroup.

In the Troisigéme Complémwnt, Poincaré reconsiders Ex. 6 (and more
generally a mapping torus of any closed surface) starting from anocther,

algebraic geometrical, definition, ]

[The case [tr(T)| > 2 (i.e. when T has two distinct real eigenvalues A

£0




and Az, 0 < ]All <1< ]Azl) of above toral diffeomorphisms t s very

important because it has led to lots of interesting things:

For example, its zeta function exp(X%>1 %.Nm.zm}, vwhich ‘"countsg" the
numbers Nm of periodic points x, Tm(x} = x, of various periods m, turns
1 - Alhzz

out to be a rational function (= }, and it is was

(1 - Alz)(l - hzz)
found more generally that the same 1is true for any  hyperbolic
diffeomorphism, i.e. cne for which there is a continuous splitting of
the tangent spaces into two subspaces, of which one ‘"expands" and the

other "contracts" under the diffeomorphism.

By patching together the directed line segments (p,t), 0 =t = 1, of M x
(0,11, under the identifications (p.0}) = (t(p},1), we obtain a flow on
the mapping torus of tT. An analogous zeta function, counting the number
of closed trajectories of different lengths of this flow, turns out to
be a meromorphic function, and it is known more generally that the same
is true for any hyperbelic flow, i.e, those whose complementary tangent
spaces have an analogous splitting. (For the case of a "geodesic flow"
of the bundle of wunit tangent wvectors of a surface of "negative

curvature", this gives Selberg zeta function.)

Again, Anosov has shown that hyperbolic diffeomorphisms are structurally
stable, i.e. =all diffeomorphisms ‘'"near" to them are t{opologically
conjugate to them, and this result has played a key role in Smale's

study of generic diffeomorphisms and flows: see B.A.M.S. of 18967.]
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& 12, Fundamental group.

The system ¥ of An pertial differential equations

aya
3%, L C TR S SRR Yy

where the An differentiable functions ¥ i l1=e=2a, 151 = n, are

def'ined over an open set D x RA, is sald to be integrable if

8% aF a¥F

a%F :
o, i o, 1 - % o, .
ox; " lgayy ey T ok, ay, U

throughout D x RA. The following was known regarding these in 1885,

Proposition 11 (EXISTENCE THEOREM OF DEAHNA-FROBENIUS)., For each (p,q)

e D x RA, the above integrable system of differential equations ¥ has a

unique solution y“ = F;p,q) (Xl’ ce ,xn), valid over a sufficiently
small connected nelighbourhood N(p q) & D of p, and such that F;P.q) (pl’
,pn) =q,.

We now assume that ¥ is such that the above neighbourhoods N( of p

p. q)
can be chosen independently of g, and denote them by Np. Then, for

points pl, p2 of D so near that Np and Np intersect, we have a

1 2
well-defined substitution (= bijection) 812 .’ — R* such that

glpa) | p(p,,S ()

on N N N .
Py Py

Now let W be a manifold in D with a chosen base point b. On any loop (=
oriented closed curve) C of W through b, choose a finite number of such
nearby points b = Pyp Py oo GPi_g Py F b, and consider the
substitution S, _S

12723 S(t-l)t
substitutions one after the other.

obtained by performing the above
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Since this substitution is independent of the choice of the pi’s, we’ll
denote it by SC'
following C1 by CZ’ then 5

We note further that, if C1C2 is the loop obtained by

cc = SC SC : thus all such substitutions
12 1 2

form a group g which is called the monodromy group, of the integrable

differential equations ¥, on the manifold W, at the point b.

{Example. On (Rz \ {0}) x R the differential equations ¥ :

gz _ -y dz _ X

RN 0y 2, P

are integrable, with local sclutions z = tanwi(ﬁ) + k defined on domains
N(x v) not depending on z. Further, these solutions patch together into
helical surfaces, which are z-translates of each other, and which

partition (Rz N {0}) x R into 2-dimensional leaves as follows.

M iy 31= 4 ctvve on S'w»;&c.z.

5Smr{Ace = taQﬂli
X

Cbhzuvﬂla4¢4 ane Z - deamsiakes

5ﬁffﬁis)

Since going around the unit circle S1 < Rz \ {0} once {as shown) gives

the leaf-preserving substitution z +— z + 2Zr, the monodromy &g of ¥ over

this circle is isomorphic to the group Z of integers.]

{More generally, the n-dimensional plane field ¥ of D «x RA,

complementary to the fibers {p} x RA of the projectidh D x RA - D,
which is prescribed by the functions ?a X is tangent to the leaves
(e.g. helical surfaces for above case) of a foliation ¥ of D x RA, iff

the differential equations 7 satisfy the integrability conditions,

An n-plane field ¥ which is transverse to the fibers, and such that
?i{p.L(q)) = L(?i{p,q)) ¥ L e GL{«x,R), 1is said to be a (linear)
connection, If a connection is integrable then it is easy to see that
(p.a)

the local solutions F of ¥ are indeed defined on domains Np
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independent of q.

We note that ¥ — D (with the foliation ¥ equipped with the leaf
topology), or for that matter even its restriction to a single leaf Lg
of ¥, is an example of a covering of D : 1.e. each component, of the
pre-image of any sufficiently small connected Np & D is mapped

homeomorphically onto Np.

Definitions similar to the one above can be made for any manifold W &€ D
by looking at portions of the leaves, etc., lying above W : thus for the
example above, the portion of the helical surface L? above 81 is =
covering of the unit circle, and it can be seen that it is equivalent to

R — S1 € € defined by X > exp(2mix).

We note also that the above definition of 8g generalizes at once to any
cgovering ¥ — W, and members of gg are called deck or covering

transformations. Poincaré’s formulates this definition as follows :

He thinks of a covering ¥ as a multiple valued function F (e.g.
tanﬂl(y/x) in above example} having, for each small Np S W,
differentiable branches F©'9 . N — mh (= sections over Np of F — W)
which take distinect values Fp'q(x) for each x € N, and defines 8o

consist of all permutations SC of these branches resulting from

"following" them around all loops C at b.]

The point to note is that if C is any lacet, i.e. a path starting from
b, followed by a small loop, followed by the opposite path ending at b,

then the substitution SC reduces to the identity substitution.

v

Poincaré now sets C1 + C2 = C1C2 { : so this + may not be commutative)
and, motivated by the above observation, he puts C = 0 for all lacets C.
More generally an equivalence A = B, vwhere A and B are formal integral
combinations of loops at b, is obtained, starting from these elementary
ones, by using the rules : AsBe«B=A A=BandC=D=sA+C=sB +

D (but maybe not A+ C =D+ B}, 2A= A + A, 2A - 3B =0 & 2A = 3B, etc.

Proposition 12. The 1-dimensional homologies of a connected W are its

abelianized equivalences (thus e.g. if 4A — 3B + 7A + B = 0, then 11.A -




2B = 0).

Proof. This follows from the definitions of 1-homologies and
equivalences, and the fact that any oriented closed curve C |is
homologous to the loop ACA_l, where A is any path from the base peint b
to a point of C. g.e.d.

[Poincaré surprisingly cites 8% = 0, where I is any oriented 2-manifold
of W, as an instance of an equivalence | This is false, and in general

one only has the homology 8% = 0 (: consider e.g. a torus-with-hole W).

He notes also that, unlike for homologies, a base point is involved 1in
the definition of equivalences : however note that for connected W's the
isomorphism class of the group defined below 1is independent of the

chosen base point, ]

For any monodromy group Bqr Ve obviously have (1} C = C1 + C2 ) Sc =

SC SC and (2) C =20 = SC = {d. But we may also "imagine” a fundamental
12

group G (of W at b) of substitutions S, satisfying (1) and the stronger

C
(2°YC=04e SC = Id. Poincaré notes that the natural epimorphism from
G onto a 8g Can be 1-1, but is in general not so, because some loop C,
vwhich is not decomposable into lacets, may still give the identity

substitution in Eop:

Poincaré’s "imagine” can be interpreted merely as the existence of an
abstract group with required relations amongst some generators, or else
as a much stironger statement asserting the existence of Integrable
differential equations ¥ whose gq obeys (2'}), or an intermediate
statement asserting the existence of a universal covering ¥ — W, 1i.e.
one for which (2')} holds, or equivalently 8o = G,

The following was probably known to Poincaré (because e.g. he states in
the next section that the fundamental group of the manifold of § 11
coincides with the monodromy group GT of the covering RB — RS/GT).

Proposition 13. A covering § — W, with ¥ connected, is universal Iiff ¥

is simply connected, l.e. C = 0 for all loops of ¥.
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" Proof. Note first that each loop C at b lifts to curves C starting at
each of the points b above b, and ending at SC(E). Thus SC ig the
identity iff all the lifts of a loop C are themselves loops. But, since
% is connected, it can be seen, that this is eguivalent to asking that

Jjust one 1ift of C is a loop.

If ¥ is not simply connected, take a C in it which is not decomposable
into lacets. Since lacets 1ift to lacets, its imege C in W can not be
decomposable into lacets either. So S.: ¥ — % is the 1identity map,

C
even though C is not equivalent to 0, which contradicts (2°).

The converse is clear because only a trivial C can 1ift to a loop C in

the simply connected ¥. g¢g.e.d.

[{Thus the fundamental group G is a free and discontinuous group of
transformations of the universal covering and we have ¥/G 2 W. Also it
is easy to see that any diffeomorphism W — W' 1ifts to a diffeomorphism
¥ — ¥ commuting with the covering transformations. So ¥/G = F/G’ Iiff

G and G’ are conjugate in the group of all diffeomorphisms of ¥.

Poincaré had already proved the existence of a wuniversal covering for
surfaces some years before, so it is likely that he did intend his
"imagine" in a strong sense. (Existence, and even characterization, of

differential equations ¥ obeying (2') might well be known now ?)

Another point which supports this view is that, in 1885 the notion of an
abstract group was used very warily : but for this fact, Poincaré would
surely have, for the parallel case of homologies, also mentioned the

concomitant homology group 1]

[The above curve-lifting definition of 8 applies even to non-integrable
linear connections ¥ : this follows because PICARD'S EXISTENCE THEOREM
for ordinary differential equations supplies us with curves tangent to

any vector field contained in ¥.

We note that one no longer has C = 0 = SC = Id for these holonomy groups
Bg» and they are generally much bigger than the gg’s of an integrable ¥,

and can even be as big as all of GL(A,R}, i.e. there may not bhe any
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proper subspace V, of {b} x RA which is preserved by 8q-

b

In case there is such a Vb c {b} x RA, curve-lifting will gives us an
equidimensional Vp over each p € B, and the connection will be tangent
to the subspace V = U Vp of D x RA, which is in general a twisted (i.e.

not diffeomerphic to D x Vb) vector bundle over D. ]

[These days the fundamental group of W at b is written nl(V,b), with the
higher homotopy groups HJ(V,b}, J= 2, being defined 1iteratively as
follows : if QV is the space of all loops of V at b, with the constant
loop B as its base point, then n1(QV,B) = HE(V,b), etc. 1
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§ 13. In case a manifold can be recognized as the orbit space of a
known discontinuous group G of diffeomorphisms of a simply connected Y,
then G, being the monodromy group of the universal covering Y — Y/G, is

also the fundamental group of Y/G.

The above method applies to the manifolds of § 11 (and so Exs. 1 and 4
of § 10) and also to Ex. 5 of § 10 since it is visibly diffeomorphic to
83/2, where by 2 we denote the group of order two generated by the

antipodal involution of the 3-sphere.

Besides, Poincaré alsc gives the following method.

Proposition 14 (FUNDAMENTAL GROUP OF A TRIANGULATED MANIFOLD). For W

R

P/L as in § 10, choose a base point p € int(P), and conjugate points
int(F), ' € int(F'), in each pair {F,F'} of identified facets of the
polytope P.

m

(a) For each facet F, let % be the loop consisting of the line segment
from p to £, followed by the line segment from £' to p. Then {¥} 1is a
set of Ffundamental loops, i.e. any loop at p is in the equivalence class
of some integral linear combination (repetitions allowed) of these

loops. (In fact only half these loops are needed because ¥ = — %.)

(b) Furthermore, codimension 2 <cells of P/t, i.e. lidentification

classes
(F Y nF), (FVa(F,), .., (F_, )" n(F )}

of codimension 2 faces of P, give the fundamental equivalences

between these loops, which (together with the aforementioned ¥ = - ¥)

imply all equivalences.

Thus G is known via generators and relations, and abelianizing these

gives [the first homology group and sc] the first Betti number. If W is
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an orientable manifeld, then Poincaré duality yields [the codimension
one homology group and so] the codimension one Betti number. So for an
oriented manifold of dimension = 3, we can compute all 1its Bett]

numbers,

Proof. (a) Any equivalence class of loops contains a general position
loop. These have only 1isclated transverse Iintersections with the
{m-1)-cells only, and so can be decomposed as shown below into a sum of

loops of the type + F.

(2 0

(e

C=C!

{b) The required eguivalence follows because ?i = PV, V4P the vi's
being the consecutive vertices of the polygonal link of the codimension

2 cell of P/t in question.

Furthermore, any equivalence between our loops is determined by a map of
the 2-disk into W. Since we can assume this map to be in general
position, it will have only isolated transverse intersections with the
codimension 2 cells of P/t : and so the equivalence can be written as a

sum of as many fundamental equivalences. gq.e.d.

[As an application of the above method, let us consider again the case
of a surface with g handles, represented by a 4g-gon P with the

identifications ¢ as shown.
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Now P/L has only one codimension 2 cell, namely the identification class

of all vertices of P :
{2 n(A), (AY'nA(BY, {(BIn{A)',(A)N(B)}, ... }.

So the fundamental group G is generated by the loops {4, B, ... }

subject to the sole relation
d-B-d4+B+8% -~ ... =20,

Thus for g = 2 the fundamental group of a surface Is non-abelian.
Furthermore, the abelianization of the above equivalence is just 0 = 0,
so the first homology group of the surface is the free abelian group on

the 2g generators {4, B, ... }, and so b1 = 2g as previously stated.]
Proposition 15 (CUBICAL MANIFOLD ¥)}. The fundamental group of Ex. 3 of
§10 is of order eight, being isomorphic to the group generated by i, J,

and k, subject to k = 1j, i = jk, j = ki, and ikj = 1.

Furthermore, there is an isomorphic subgroup 8 of diffeomorphisms of the

3-sphere, and our manifold is diffeomorphic to the orbit space 83/8.
Proof. Let X, Y, and Z denote the facets of our cube P which lie on the
coordinate planes x = 0, y = 0, and z = 0 respectively, and let X', Y’,
and 2’ be the opposite facets. The identifications of Example 3 lead to
the following identification classes of edges :

{2, 2’Y', Y%} {Yx, X'2', ZY'}

{2y, Y'X', X2’} {Y’X, X'2, 2°Y}

So the fundamental group of this orientable 3-manifold is generated by

X, Y, and Z, subject to the corresponding four relations

Z-Y-X=20 X-Z-Y=0
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Y -X-2Z=s0 X+Z+Y=s0

Thus X —= 1, ¥ - Jj, Z — k, gives an iscmorphism of this additive group

with the multiplicative one determined by the requisite relations k =

ij, i = jk, jJ = ki, ikj = 1. These imply 12 = j2 = k2, 14 = 1. To see

this note that ikj = 1 gives k = 1"1j"1, which in k = ij gives i72 - 32.

Likewise i 2 = k2. Next, solve the 4 equations for i to get kj"l, jk,

[xh}

k™15 and 5 'k, and multiply to check i® = 1, and thus also i 2 = i%.

Any group element can be wriltten uniquely as iajb, 0 53, 0=sb

0 IA

= a 1.
. i . 3.3 .a.b

For, we can replace k by ij, and then each ji by 1ij to get 17§ .
Since both i and J§ are of order 4, we can clearly keep clearly 0 =a, b
= 3; but further we can also replacing jg by 12 and j3 by izj, so in
fact it suffices to keep 0 = b = 1. That the listed eight elements are

distinct is easily checked.

Now recall that this group of Hamilton had figured in the definition of
quaternions, which are points (x, y, z, t) of 4-space considered as
combinations x + iy + jz + kt, and multiplied using the group operations
and 12 = j2 = k2 = ~1. (This is analogous to considering points (x,y)
of 2-space as complex numbers x + iy and multiplying them wusing the

group £/<i* = 1) and i% = -1.)

So left quaternionic multiplication by i corresponds to (x, y, z, t) >
{(-y, %, ~t, 2) because i.{x + iy + jz + kt} = ix - y + kz - Jjt.
Likewise, left multiplications by j and k correspond respectively to (x,
vy, 2, t) = (~z, t, %, =-y) and (~t, -2, y, x). These generate the order

eight group 8 of diffeomorphisms of the unit sphere S3 < R4.

The elements of B8 preserve the boundary of the 4-cube {{x,y,z,t) : -1 =
X, ¥, Z, t 5 +1}, and replacing our 3-cube P by the facet t = 1, which
is a fundamental domain of 8, we c¢an check that the identifiecations ¢
are equivalent to identifying points of 8P belonging to the same orbit,

This shows that our manifold is diffeomorphic to 83/8. qg.e.d.
[The homologies Z — Y - X =20, X -Z ~Y«0, ¥ -X~-2=0, X+ 2Z+Y«

0, show that the first homology group of © is the abelian group on X and
Y subject to 2X = 0 and 2Y = 0, i.e. it is isomorphic to Z/2Z o Z/2Z.
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Thus the Betti numbers of € are b1 = b2 = (0, i.e. the same numbers as 83
or RP3 ; however the homology groups of these three manifolds are

distinct.

We remark that by recognizing right away that € is 83/8, we could have
avoided generators and relations : however Poincaré works out even Exs,
1 and 4-5 (but not the non-manifold of Ex.2} by above method, even
though they are all obviously of type Y/G with Y simply connected. }

[With quaternionic multiplication S3 becomes a Lie group, and if we
think of 8 as its subgroup generated by i, Jj, and k, then ¥ consists of
all left cosets of this subgroup. (Likewise, the dodecahedral manifold
? of the fifth complement is the left coset space 53/120 of another

finite subgroup of order 120 which has trivial abelianization, and so

83/120 will have even the same homology groups as Sa.)

X+1iy z+it
~zZ+it X—-iy
multiplication corresponds to multiplication of matrices of this type,

and since such a matrix has determinant 1 iff x2 + yz + 22 + t2 =1, we

Recall also that under x + iy + jz + kt & quaternionic

see that the Lie group 83 is isomorphic to SU{2) {and so B8 and 120 can
also be regarded as subgroups of SU(2).]

Propogition 16. The orientable closed 3-manifolid RS/G of & 11 has

T
Betti numbers b1 = bz =3 iff T=1; otherwise bl = b2 = 2, or 1,
depending on whether tr(T) equals 2 or not.

So, for EX. 1 we have b1= b2 = 3, while for Ex. 4 , b1 = b2 = 1.
o

Proof, let T = y g € SL{2,Z), and let the three generators (X, VY,

z) = (x+1, y, z), (x, y+1, z), and {ax + By, ¥x + d8y, z+1) of our

discontinucus group G {= GT) be denoted by C and C, respectively.

1 S 3

We note the following commutation relations between these generators :

C1 + C2 = C2 + Cl'

C1 + C3 c. + a.C1 + w.Cz.
C2 + C3

in

i

3
Cy *+ B.Cp +8.C,
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groups. ]
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' We assert that the fundamental group G of R3/G is isomorphic to the

group generated by C,, C and C, subject to the above relations,

17T 3

To see this note that any relation can be brought, by using the above

commutation rules into the form ml.C1 + mz.C2 + m3.C3 = 0. But it s
easy to check that the transfeormation ml.C1 + mz.C2 + mS.C3 of 3-space
is the identity iff the integers ml, My and My are all zero. So this

relation has just become 0 = 0.

Abelianizing the above equivalences we get the trivial homelogy 0 = 0

and two more :

R

(a0 — 1).C1 + y.Cg
B'Cl + {8 — 1}.C2

R

So the first homology group of RB/G is the abelian group generated by
Cl' Cz, and C3 subject to the above relations.

We note now that both these homelogies are trivial, l.e, become 0 = O,
iff T= 1. So in this, and only this, case the first homology group Iis

the free abellan group on 3 generators and b1 = b2 = 3.

For T # I, the above homologies are proportional iff the determinant
a1l 3
B &-1
only in this case, the Betti numbers are b1 = b2 = 2.

vanishes, i.e. iff tr(T) = a + 8 = 2. So in this case, and

In all other cases the homologies are non-trivial and hon-proportionai,

and so we have b1 = b2 =1. gqg.e.d.

[One can also calculate the first (and thus any) ﬁomology group of
RB/GT, this being Z @ Z/sZ @ Z/tZ, where the elementary divisors s = O,
L=z 0, s[t, of E;_1 Sil]’ are cbtained by diagonalizing this matrix via

elementary row and column operations over Z : explicitly, one has s =

h.c.f.(a~1,y,8,5-1) and st = # clet["‘"1 ¥ ]

B &-1
X ; , 3 o 1
This shows that Ex. 4, i.e. the manifold R /GT where T = _1 ol’ has
the same homology groups as Rg/GT. where T' = g ;], even though these

manifolds are (see below) distinct and have non-isomorphic fundamental
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§ 14. A classification theorem.

Poincaré begins this section by recalling an older result (Prop. 17
below) of his regarding surfaces, perhaps to serve as motivation for the

examples of 3-manifolds being discussed.

He remark that A LOT was known about surfaces {see following notes) in

18895, and some of it is needed to understand Prop. 17.

[The atony had olonted no doubd with dicphantine equations ... But, the

integral (or rational, or even the real) zeros of a polynomial P(Z,W)
being harder to understand, attention had turned to the associated
complex curve R = {(w,2) : we é, z € é, P(w,z) = 0}. This R is
generally a closed Riemann surface (= 2-manifold with a complex
structure) and can be visualized as the graph of the multiple-valued
algebraic function w(z) which solves P{w,z) = 0, with the projection ¢ :
R — @ &lw,z) = 2, being 8, (f1n1tely) branched cover1ng of R over the

extended complex plane G (= complex projective line GP ).

By this we mean that for each x € R, there is an integer n{x) =z 1, such

that { becomes z +— zn(X) in suitable complex coordinates near x and
£(x) : thus this notion generalizes the previous one of ({unbranched)

covering, which corresponds to the case n(x}) 2 1. (Since € 1is simply

connected, this case occurs iIff R € ; also note that since R is

compact, we have n{x) bigger than 1 for only finitely many X.)

Example. The complex curve R defined by W = (zwal). - .(z—at) is a
2-sphere with g = {(t-1)/2] handles.

{So, if we assume the classification theorem of surfaces, it follows

that any orientable 2-manifeold admits a complex structure.)

To see this draw in € the g+l line segments (al,az), (aS’aQ]’

’(a2g~1’a2g)’ and (at,m) or (at—l’

even. Our square root function w(z) has two branches, each single

at) depending on whether t is odd or

valued if we do not cross these lines, and going one inte the cther, the
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moment we cross any of these lines.

A
C N

Thus the graph R of w(z) is obtained by taking two copies of the above,
and identifying each dotted line of one copy with the corresponding
s0lid line of the other. Since the algebraic function w(z) is a
fortiori analytic, this 2-manifold R has a natural complex structure.
Moreover, as shown below, R 1is diffeomorphic to a surface with g

handles.

The projection { :R — é is the identity map on each copy : so each
point of & has two pre-images under {, except for the 2g+2 points ap
Boe s By, and also w if t is odd, which have one pre-image each. One
has n{x) = 2 at these 2g+2 points of R, and n{x) = 1 elsewhere.

~

We note that this ¢ : R — C is of degree d = 2, 1i.e, [Cul(z)t

;]

2
almost always, except at the B = t+1 or t (for t odd or even) branch
points, so the genus formula 2 — 2g =2d - B holds : iIn fact ({(his

formula holds for all algebraic curves.

Conversely it was known that any closed Riemann surface is the graph of

some polynomial equation f(z,w) = 0 over C, This followed from
Poincaré’s theory of automorphic functions : these generalized the
notion of elliptic functions, in which particular case the defining
equation can be written in the form w2 = 4.23 - gz.z — &g given by
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Heiergtrass.

One says that a Riemann surface is definable over F € € If there is a

defining equation f(z,w) = 0 with coefficients in F.]

[It was known furthermore that, for each algebraic function w{(z), there
is an Abelian integral w(z) = fzf(u,w(t)).dt (i.e. with £(u,v) rational)
such that the graph of the multiple-valued analytic function w(z),
together with its finitely many poles and branch points, gives likewise
a simply connected {and usually non-closed) Riemann surface R, whose
projection &: R — &, Z(z,w) = z, is (usually) an infinitely branched
covering, 1.e. at some points it can also look locally like z e”.
Furthemore, we can arrange that C is the composition of an (unbranched)
complex analytic universal covering y: R — R, ¥(z,w) = (z,w), and the

(finitely) branched covering £: R — €. (Exemplify.)

To classify Riemann surfaces one thus starits with the simply connected

case, for which there is the following celebrated result.

{At this point, we should recall pertinent electromagnetism, and give,

instead of the following, a complete physical proof.}

RIEMANN MAPPING THECREM. If a Riemann surface Is simply connected then
it must be complex analytically homeomorphic to either the extended

complex plane T, or the finite complex plane C, or the unit disk A = {z
: lz| < 1),

The following heuristic argument assumes that the result is known (see
e.g. Ahlfors book) for the case of simply connected domains of 6.

Proof. Given a complex analytic function on €, the level curves of its
real and imaginary parts are orthogonal. We imagine one of these to be
the trajectories of a steady state electrical current, and the other to

be the equipotential lines.

A unit charge al some point of our surface must lead to currents without
closed trajectories : this follows because, the surface being simply
connected, we would otherwise have more charges enclosed within such

closed orbits., These flow lines and equipotential curves give the
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required conformal 1-1 map on a simply connected domain of €. gq.e.d.]

[ e cuniouws that osome of the moat celebrated neaulls of the
nineteenth and twentleth centunles have deall nrespectively with the
following amagingly olmilan problems : does a given 2-manifold, resp.
n-manifold, admits a complex, resp. differentiasble, structure, and, if

so, how many 7?

For example, the Riemann mapping theorem tells us that the sphere admits
a unique complex structure, while the plane admits precisely two complex
structures : this last follows because C and A are diffecomorphic, but
not conformally equivalent, because, by Liouville's theorem, a

holomorphic function € — A is constant.

Also {anticipating its much harder XXth century analogue !) there are
2-manifolds which do not admit a complex structure : this follows
easily because, by virtue of the Cauchy-Riemann equations, the 2x2
Jacobian of a holomorphic map is positive, and so a Riemann surface
always comes with an orientation, so the underlying 2-manifold must be

orientable.

Conversely Gauss had (essentially) shown, without appealing to any
classification, that all orientable Z2-manifolds admit complex
gtructures: this and Riemann's theorem thus imply that any closed simply
connected 2-manifeld is diffeomorphic to the 2-gphere. (More generally
we'll see below that the classification theorem of surfaces follows from

the theorems of Gauss and Riemann. )

In the fifith complement of this paper, Poincaré posed the analogous
question : is any closed simply connected S—manifold’ diffeomorphic to
the 3-sphere 7 This celebrated problem, now called the Poincaré
conjecture, is still open.

But, surprisingly, the analogous problems in higher dimensions are now
largely solved !! E.g. it is known — due to the work of Smale, ... ,
Freedman — that, any closed n-manifold, n = 4, which has the same
homotopy type as the n-sphere, is homeomorphic to the n~-sphere. Bui not
necessarily diffecmorphic, as has been shown, by Milnor, for an infinity

of n =27, On the other hand, for n belonging to another infinite set
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{5, 8, 8, ...}, even this stronger conclusion is true @ it is unknown if

this is so also for n = 4.

Regarding Euclidean spaces it 1s known that all but one of them admit a
unique differentiable structure : the exceptional 4-space admits
uncountably many differentiable structures (which have as yet not been

organized into a nice "moduli space” : cf. below}.

The above followed by combining Freedman's work with that of Donaldson
mentioned before : curlously, Just as in the Rlemann mapping theonem,
ideae from physlce played o big nole in Doncldeon o theorem alea !]

It follows easily from the Riemann Mapping Theorem that oI is a
fundamental group of a closed Riemann surface R iff it is a fixed point
free and discontinuous group of complex analytic homeomorphisms, of é or
C or A, having a compact quotient, and the classification of closed
Riemann surfaces, upto complex analytic homeomorphism, is equivalent to
the determination of all such subgroups, upto conjugation, in the group

of all complex analytic homeomorphisms of C or T or A.

Before taking up Poincaré’s remarks re the main case R = A we’1ll look at

the other two cases.
Case R=C: now [ =1, and R is complex analytically homeomorphic to C.

If a holomorphic transformation of é images € to €, 1.e. If it 1is an
entire function, then its degree can not be greater than 1, otherwise it
will take each value more than once in every neighbourhood of infinity.
So, in this case, it is of the type, z — aztb, a = 0. Otherwise, it
maps some k € € to infinity, and so must be z +— 1/z-k, followed by =a
transformation of this type.

Thus each helomorphic transformation of & {= GPl) is a (projective or)
fractional linear transformation

Z > gg—;—g , wd — By # 0,
Since this has a fixed point, viz. a solution of the quadratic z. (yz +

8) = xz + B, it follows that ' = 1.
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(Note that we can assume a8 — By = 1, and that the group Hol{C) of
holomorphic transformations of € is isomorphic to SL(2,C)/{% I}.)

Case R =C : now ' is the free abelian group generated by two linearly
independent translations, and R is a complex torus R = /T, (We' 11
later organize all these possible complex structures of the 2-torus into

a nice "moduli space"”.)

Our ' ¢ Hol(€) can not contain transformations z — az+b, with a =# 1,
because these have a fixed point z = b/(a-1) in € : so I must consist
exclusively of some translations z 3 2 + b, If one of these
translations, "b3“ € T, is not rationally dependent on twe others ”bl".
"b2“ € I', then, by Kronecker’s theorem, the conjugates of the Iiterates
of “b3“ are dense in the parallelogram with sides b1 and bz, and so T
won't be discontinuous, So there are at most two rationally independent
translations in F; and indeed there must be two, since otherwise the

quotient is clearly noi conpact.

We note that we would have got the same answer had we set out to find
all groups of rigid motions of the euclidean plane which are
discontinuous, fixed point free, and with a compact quotient : possibly

this observation led Poincaré to solve the case R = A as follows 7

Case R = A . By above any closed Riemann surface with genus, 1i.e.
nunber g of handles bigger than one is of the type &/, where T is a

discontinucus and fixed point free subgroup of Hol(A).

[Being simply connected é is not of this type, besides there is ne
complex structure on the 2-torus other than the ones! considered above.
In fact a famous theorem of Gauss-Bonnet, applied to a normalized
hyperbolic metric (see below) on A says that the Euler characteristic of
such a A/T" must equal the negative of its hyperbolic area : so, since a

torus has zero Euler characteristic it can not be of this type.]

Any member of Hol{A) is a fractional linear transformation of the type

((Eé\—@e%‘z ,Zh3 2+ 1> EZ Leeman Duna Hat

~~

£/<‘z\-% zxd+i, 2 33> = Mobius ship )
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PR M E T LY

Bz + «

To see this we check first that the above transformations do belong to
Hol(A) and act transitively on A, So it suffices to verify that any f €
Hol(A) with f{0) = Q is of the above form, i.e. such that f(z) = a.z,
where |a| (= |a/x]) = 1. To see this note that Schwarz Lemma gives
|£(z)| = |z| and [f—liz]l = |z|, t.e. |f(2)| = |z], which implies that
the holomorphic function f must be a rotation about O.

Using the above formula one can now check that (besides being
orientation and angle-preserving} the transformations of Hol(A) map any
circular arc of A, which is perpendicular t{to 8A, to anolher such

circular arc {note that diameters of A are also such arcs}.

Poincaré's great insight of 1880 (the one he had while stepping into a
carriage !), was that Hol{A) could be regarded as the group of all
orientation preserving rigid motions of the following non-Euclidean

plane called a hyperbolic plane :

The lines are circular arcs of A perpendicular to its boundary, and the

angle between any two lines is the ordinary angle.

Here, by non-Euclidean plane we mean that all but one of the usual
axioms (e.g. “two distinct points determine a unique 1line”, "if two
distinct lines meet, they determine a unique point”, etc.} of school
geometry are still valid, the exception being the parallel postulate

“given a point not on a line, there is a unique parallel line through

it", Now, instead, we have an infinity of parallel lines :

The importance of the above insight lies in the fact that now all the
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.tools of school geometry, which do not use the parallel postulate, are

available to ug for Al

In particular, using any chosen line segment as a "yard-stick", and our
rigid motions’ group Hol(A)}, we can define a hyperbolic distance

function on A having the usual properties.

Note here that, under our group Hol(A), the "yard-stick"” shrinks
indefinitely as it moves towards 8A : thus the boundary of A Is at an

infinite hyperbolic distance from its interior points.

[Poincaré also interpreted Hol(é) as the group of orientation preserving
rigid motions of a hyberbolic 3-space and used it for the more difficult
study of the discontinuous or Kleinian subgroups I' Hol(&). {(See also
his “Science and Hypothesis")} But by and by 2-dimensional, but more
analytic, alternate methods were discovered. However Thurston has now
revived the more natural geomeiric methoed of Poincaré to obtaln
beautiful results about 3-manifolds, in the same spirit as the study of

2-manifolds done below. ]

With above geometric interpretation of Hol(A) in hand, Poincaré analyzed

Fuchsian groups (= discontinuous subgroups I' of Hol(A)) as follows :

We can define (Jjust as in the euclidean case) a fundamental domain P for
' as follows : we select any point Py € A which is not a fixed point of
any member of I', and take the closure of the set of all poinis which are

strictly nearer to Py than any of their conjugates under T.

Next we check that this P is convex : it 1s the intersection of the
closed half spaces Hij containing Pg and bounded by the right bisectors
hij of segmentis joining conjugates Pys pj of Py-

We now turn to the topological boundary of above P in A. By the sides
of P we will mean, maximal open intervals of the lines hij’ which lie in
this boundary, and do not contain any fixed point of a g € T of order 2
which preserves hij' The remaining points of this boundary are called
the vertices of P, (Note that the boundary of P in the plane is in

general bigger, since its intersection with 8A may be nonempty : these
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are called the limit points of P.)

Since the tesselation T = {g(P) : g € I'} is a subdivision of A into non
overlapping cells which fill it up completely, it feollows that for each
side s of P, there is a unique g € T such that g(P) is the neighbour of
P in this tesselation which shares t{he side s with it. Using this we

equip P with the pairwise side identification ¢ : s = g_l(s).

Under this identification each vertex v of P belongs to an
identification class. If this class is finite, the sum of the interior

angles of P at these vertices will be called the angle-sum of P at v,

Proposition 17. A discontinuous group I' of A has a compact quotient A/T

iff the above fundamental domain P is in the interior of A.

Furthermore P is a (hyperbolic) polygon, and the angle-sum at each of
its vertices v is Zn/nv, where nv is an integer 2 1, and A — AT & P/
Is a finitely branched covering, with n{g(v)) = n ¥ gerl, and n(x) = 1
elsewhere. Thus such a I’ ig fixed point free (i.e. the fundamental

group of A/T) iff all these angle sums are equal to 2mu.

Moreover, two such T's are conjugate in the group Diff{A) of
diffeomorphisms of A iff the quotients R/T are diffeomorphic and this
happens iff they have the same genus g.

[Our statement, as well as proof, are variants of what is in the paper :

in some respects Poincaré’s version is stronger.]

Proof. The (continuous) hyperbolic distance function of A induces a
similar distance function on the quotient, which must be bounded because
the quotient is compact. So P is bounded with respect to the hyperbolic

distance of A, and thus contained in a compact subset of A.

Next, I' being discontinucus, we note that the portions of the lines hij
which meet a given compact subset of A must be separated from each other
by a positive distance. So only finitely many of them can meet the
boundary of P, and thus P is a polygon. The quotient P/t, of this even

polygon under the aforementioned side identification, easily identifies
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with A/T.

Furthermore, as we go arcund the star of v in our tesselation T, we find
that the angles subtended at v by these conjugates of P, run one by one
through the angles of P at the vertices in the identification class of
v. However, Jjust one such run through this identification class may not
complete the star, we might have to repeat n, times : so in general the
angle-sums are of the type 2n/nv. The assertions regarding branching

and fixed point free I''s is now clear.

To see the last part we note the fundamental domain P (and so the
tesselation T) are by no means unique. For example we may cut off any
part of P, and then paste a congruent part to get another (but usually
non-convex) fundamental domain. So, using a procedure mentioned before,
we can replace P by a normal fundamental {(4g)~gon Q, say one with

opposite sides identified.

Given two groups " and I with the same g, we choose for them two normal

fundamental 4g-gons ¢ and Q' as above, and then a diffecmorphism f : Q
— ' preserving side identifications. This extends uniquely to a
diffeomorphism f : A — A commuting with I' and I', and clearly such an f

exists iff there is a diffeomorphism £ : A/ — A/T'. q.e.d.

We remark that Poincaré had also shown conversely that If P is an even
hyperbelic polygon, pairs of whose sides are congruent under some
motions g; € Hol{l} in such a way that the angle-sums are all of the
above kind, then the group I' ¢ Hol(A) which is generated by these gi’s

is also of the above kind.

Using this one can work ocut the conjugacy classes of éuch groups [ in

Hol(A), and thus classify the complex structures of any surface.

[For example the complex structures of a 2-torus can be organized into a

moduli space = C as follows :
To each I' spanned by two independent itranslations of €, associate the

lattice (= additive subgroup of C) given by the orbit L of O. If

(21,22) is any basis of L, with order so chosen that z = 22/21 satisfles
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Im(z) > 0, then any other such oriented basis is given by (az

o fB
L 622) where [? 6] e SL(2,2Z}).

Y

We note next that the groups I' and I’ commute with an £ e Hol(€)}, iff
some oriented bhasis (zi,zé) of " iz of the type (azl,azz), where
(21,22) is an oriented basis of T : this follows because we know that f

is of the type f(z)} = az + b.

Thus if we associate to each I' the subset S = {z = z /21} of the upper

2
half plane H = {z : Im(z) > O}, we see that I' is conjugate to I'" iff S
and S’ have a point in common, But then we must in fact have S = S’

this follows because S is an orbit of the modular group PSL(2,Z), 1i.e.

the subgroup of Hol(H) consisting of all transformations of the type

oz + o« B
Z vz 75 [? 6] g SL(2,Z2)}.

Thus we have one-one correspondences between the sets of all complex
structures on the 2-torus, all conjugacy classes of subgroups TI' of
Hol{C) generated by two independent translations, and the set
H/PSL{2,Z), which we’ll see below is a Riemann surface conformally

equivalent to C,

In fact the pilcture (see below) of the fundamental domain of the modular
group, shows at once that H/PSL(2,Z) is diffeomorphic to 2-space, and
that the quotient map j : H — H/PSL{2,Z) is finitely branched with n(x)
= 2 at pre-images of i, n(x) = 3 at pre-images of p, and ni(x}) = 1

elsewhere :

That H/PSL{2,Z) is conformally equivalent to €, and not A, however

requires some exira work : one needs to construct a modular function j :
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‘'H—> €, i.e. a surjective holomorphic function commuting with the action
of the modular group. Such a well known function was constructed first
by Dedekind.

We recall here that H itself is conformally equivalent to A, e.g. under
1+ 1z
1~ iz’
A if we =allow branched coverings, likewise one alse has branched

Z

Thus Dedekind’s j-function shows that even € is covered by

coverings of € by A. Two tesselations of A exhibiting these facts are

illustrated below :

Poincaré also used this H as a model for the hyperbolic plane 1in place
of A {(and likewise upper 3-space Ha, with a hyperbolic metric, to
study Hol(€)). We note that Hol(H) (& Hol(A}) consists of

oz + BB « B
Z > 7z + 38 ° [y 6] e SL(2,R),
and so is isomorphic to PSL{2,R) = SL(2,R)/{xI}. Likewise Hol(C) =
PSL(2,C).

The modulil spaces of complex structures on a surface with g = 2 handles
were worked out analytically by Teichmuller, Ahlfors, and Bers, and then

geometrically by Thurston : they are essentially (6g-6)-dimensional
disks. ]

{Any closed Riemann surfaces is lsomorphic to A/T for some discontinuous
(but possibly with fixed points) group I' ¢ Hel(A). This follows because
we can exhibit A as a branched covering of C by composing an unbranched

covering &4 —» R of a Riemann surface with g =z 2 handles with a branched
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covering (say as a graph of an algebraic function} R -—-» €, and to
exhibit A as a branched covering of a complex torus T we can compose the

branched covering j : A — € with the quotient map € — T.
Ref'inements of the above result are impeortant in number theory :

Bely’s Theorem : a complex torus T is definable over @ iff it is of the
type A/T for some finite index subgroup I' of the modular group PSL(2,7Z)
¢ Hol{A}.

Taniyama’s Conjecture : if a complex forus T is definable over @ then it

is of type A/T' for some congruence subgroup T.

Here by a congruence subgroup we mean a subgroup of PSL{2,Z) bigger than
some subgroup of the type I'(N} = {g ¢ PSL(2,Z) : g = I mod N }. Very
recently Wiles has given a proof of a speclal case of Taniyama's
conjecture. Wiles’' result has aroused a lot of interest because it was
already known, by work of Frey, Serre and Ribet, that it implies

Fermat’s Last Theorem !!

As the following list of results shows, Wiles’ Theorem is but the latest
instance of the extensive and fascinating Interplay between Riemann

surface fopology and number theory.

(1} Faltings proved that if a Riemann surface R of a vrational
polynomial equation F{z,w) = Q0 has = 2 handles, then the subset RQ < R
of rational sclutions Iis finite,

Amongst the tools needed to prove this is the clgssical result of
Hurwitz, viz. that, if R has g = 2 handles, then the group Hol(R) of its
holomorphic transformations, is finite, and in fact of order 84(g-1).
{As against this Hol(é) = PSL(2,C), and Hol{T) of a complex torus T =
€/T contains at least all the translations of C.)

{2} Faltings theorem was conjectured by Mordell who had himself proved
a famous result for the genus one case : if R has one handle, then there
is a finite subset S; € Ry such that Uiao(si) where S, , Is obtained
from Si by adding the third intersections with R of straight lines




" determined by palirs of points of Si' Mordell’'s theorem was conjectured

in a 1801 paper of Poincaré.

On the other hand Siegel has shown that, even in the genus one case, the
subset of integral points RZ ¢ R is finite (and Faltings proof involves

also a generalization of Siegel’s resuit).

For the genus zero case case RZ can be infinite e.g. for x2 + y2 = 1
(and at other extreme RQ can be empty e.g. for x2 + y2 = 3) but now the
knowledge of just one point of R0 determines them all : as the second

tntersections with R of straight lines passing through this point.

{3) Hasse and Weil proved that if R has g handles, and Rp is the set of
solutions of its defining equation mod a prime p, then [Rp[ differs from

p-1 by at most 2g(p)1/2. Note here that Rp 1s not even a subset of R !

Weil also conjectured a higher dimensional generalization of above
result, the pursuit of which 1led Grothendieck to launch a massive
programme, which finally culminated in Deligne’s proof of Weil's

conjecture.

(4} For the case of genus 1, the choice of a rational base point makes
R =T into a group (= C/A where A is a lattice) and R@ into a subgroup
thereof. Mordell's theorem 1s equivalent t{o saying that R0 Is a

finitely generated abelian group.

It is unknown whether the rank of the free part of this group can be
arbitrarily big, however Mazur has shown that its torsion is bounded

in fact the torsion part of R@ is one of the following groups Z/NZ
with 1 = N = 10 or N = 12, or else Z/2Z x Z/NZ with 1 = N s 4,

Note that any isogeny, i.e. holomorphic endomorphism, of the group T, is
induced by a map z + cz of €, which maps A to A, and that these
isogenies form a ring under addition and composition. For most T's the

c's have to be integral and this ring is = Z.

In case there is a non-integral c (e.g. 2 1+— iz for the lattice A

generated by 1 and i) it can be easily seen to be non-real : T's having
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such a complex multiplication have the property that by attaching their
points of finite order one can construct interesting abelian field

extensions of some algebraic number fields.]

Poincaré now turns to the classification theorem announced in his 1892

Comptes Rendus note.

Proposition 17 (CLASSIFICATION OF MAPPING TORI}. The manifolds RS/GT
and RB/GT, are diffeomorphic iff T is conjugate in GL(2,Z) to either T’
or its inverse,

fThis is a corrected version of the result stated in the paper
Poincaré's conjugation is (apparently) in SL{2,Z), and he makes no

mention of the inverse.]

Proof of "if". In fact the mapping torus of any diffeomorphism 7: M —
M is diffeomorphic to that of any conjugate v = uotovulz M — M

because the diffeomorphism (x,t) = {vi{x),t) of M x [0,1] maps the pair
of points ((x,0),(7(x},1)) onto the pair of points ((v(x),0),
(t’ (u(x),1}), and the two mapping tori are obtained respectively by

identifying these pairs of points.

Again the involution (x,t) m {(x,1-t) of M x [0,1) maps the pair of

points ((x,0),(t(x},1)) onto the pair of points ({t(x),0),(x,1))}), and

the identifications of the latter pairs gives the mapping torus of 1—1.

[RS/GT and [RS/GT being diffeomorphic, their fundamental groups GT

are isomorphic, i.e, we have also the "if" of the following assertion.

and GT

Proposition 17a. The groups G (= GT) and G* (= GT,) are isomorphic iff

T is conjugate to T' or its inverse in GL{2,Z)}.

Proof of "only if" {of Prop. 17a, and so of Prop. 17}. We note (see
proof of Prop. 16} that G’, being isomorphic to G, we can choose
generators Cl' C2, C3 of G', such that C, and C, span a normal subgroup

1 2
G12 which is free abelian of rank 2, and

C+C.=2C.+T(C) YCedgG

3 3 12’
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where T 612 — G12 denotes the isomorphism C1 [ oc.C1 + x.Cz, C2 =
B.Cl + 8.C

. _lee B
o defined by T [? 6] e GL{2,Z).

Replacing C3 by its negative, replaces T (in above relations) by Its
inverse : because, on applying above equivalence to T—I(w C) we get
-1 _ . - -1 .
-T (€} + C3 = C3 ~-C, {.e. C — C3 = — C3 + T "{C) Vv C e Glz' {This

shows again that GT is isomerphlc to GT-1L

Replacing Cl’ C2, by U(Cl)’ U(Cz), where U e GL(2,Z), replaces T by
U’E‘U‘1 : because the isomorphism of 812 defined by U(Cl) () UTU—i(U(Cl}

and U(C,) + UTU"ltu(cz) coincides with T.

If trace of T is not * 2, then the following sequence of such
replacements, of the generators Cl’ C2’ C3 of G', replaces T by T’

Since Cl' Cz’ C3 are generators of G’, we can write them uniquely as

a..C.' + al'C '+ a,..C.',

373 1 2° 72
= b3.C3 + bl.C1 + bz' 5
C3 = 03.C3 + cl.C1 + cz. 5

where the determinant of the coefficient matrix is necessarily + 1.

In case b. is not zero, we find a U = [g g] € SL(2,Z), such that p.a, +

q.b3 = O.3 {For this, first choose integers r and s such that r.b33 +
S.a, equals h.c.f. of ay and b3 : then there exist integers p, ¢
satisfying the required conditions p.r — q.s = 1 and P.2, + q.b3 = 0.)
Replacing C1 and C2 by U(Cl) and U(Cz), we see tpat we need only
conslider the case when b3 = 0.

. 1 %2
Since tr(T') is not * 2, by =0=a;=0 (so Cqy =% 1, b1 bzl =% 1)
Othervise, if b3 = 0 and B, # O, the integral combinations of C1 and C2
which are also integral combination of C,' and C,’, must be multiples of

1 27
Cz. i.e. the normal free abelian subgroup GlznG12 has rank 1 and is

So — C3 + L+ C.) € G12nG12 is a multiple of CZ'

generated by C 5 3
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Choose a vector space basis &, 7 of Gi2®m such that T'(€} = s.£ and

T (n) = s—i.n. where s and s_l are the elgenvalues of T'. If Cz = u € +

p.1, we have — C_' + C_  + C3’ = T’(Cz) =s.u.E+ s 1-P-ﬂ. which is a

3 2 -1
nmaltiple of C2 iff s =5 °.
It cy = -1 we replace C:3 by its negative, so we need only to consider
%
= = = = +
the case b3 0 84, Cq 1, and b b 1.
1 2
-1 1 %2
Now, if U = # I, we replace C,, C, by UWC,)}, WC,)}, so0 it
b1 b2 1 2 1 2
remains only to consider the case when C1 = C1 , C2 = C2 , and C3 = CS
+ Cl'C1 + C2‘C2'
In this case, the commutation rules of C1 s C2 , C3 show C1 + C3 = C3 +

o -C1 + .C2 and C2 + C:3 = C3 + B .C1 + & .C2, whereas we are given C1

+ C., =0C, + a.Cl + 7.C

7 3 and C2 + C:3 = C3 + B.Ci +8.C., : sonow T =T",

2 2

When tr(T) # £ 2, the same argument works with G, G' interchanged.

When neither T nor T’ has trace different from * 2, we proceed as

follows ;

Any [x B ¢ SL{2,Z) with trace 2 or -2 is conjugate to an element of

S 1 h -1 h p r
the type 0 1] or [ o 1| for, if y 20, a U= Lq s] e SL(2,Z)

with 2y.p — (¢—8).q = 0, makes the bottom left corner of

s - « Biijp r
-4 p]'lr 3] {a s
: 2 2
i.e. q.(a.p + B.q) + p.(y.p+ 8.q) =9.p + (8§ —a).pqg —B.4, equal to
zero, because this quadratic has a double root {o - 3)}/27. Using this
as lemma we will now get some group-theoretical information about G..

T

If tr(T) = 2, then either T = 1, and so each element of GT commutes with

any other, or else there is, upto sign, a unique such primitive element.
Further, in case tr(T) = -1, there is no such nonzero element, but now
either T = —I, when each element of GT commutes with the double of any
other, or else there is, upto sign, a unique such primitive element.
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~(By primitive we mean a nonzero element which 1is not a multiple of

another. )

The above follows because G can be generated by Cl’ Cz, C3 obeying C1
02 = C2 + Cl' C1 + C3 = C3 + C1, and C2 * C3 = C3 + h.C1 bt C2 : if h =
0, * C1 are the required distinguished primitive elements.

So, since G 2 G', tr(T) = 2 & tr(T')
= 2 e tr(T’) = -2, with T =~ & T’

2, with T=1+& T =1, and tr(T)
-I.

1§

When T = 1 h] and T' = [1 h ], with h and h’ nonzero, we choose in G'

0 1 C 1
(2 G) generators Cl’ 02, C3 obeying above relations. The uniqueness of
the distinguished primitive elements implies that C1 = % Cl’ and by
replacing Cl’ C2 by —C1, —C2 we can assume in fact C1 = C1 . Thus
C1 = C1 .
= bi.C1 + b2.02 + b,.C.)',
= cl.C1 + C .C2 +¢,.C.',
where bz.c3 - cz.b3 = 1 Using this, and the commutation rules of Cl’,
' L = + h'
C2 ) C:3 , it turns out that C2 + C3 C3 * h .C1 + CZ’ whereas we are
= . ' o= o+
given C2 + C3 C3 + h.C1 + Cz : so h * h.
-1 h R -1 h’ ’ -
WVhen T = 0 -i and T' = o -1 I’ with h and h' nonzero, a similar
argument again enables us to reduce to the case h'Y =  h,

The result follows because ! - (resp,. -1 -h ) is the inverse of L
-h 0 1 0 -1 0

?] {resp. Lé 1}). qg.e.d.

[The above pairs of inverses are in fact conjugate in GL(2,Z), for

-1 Ofit hy _ 1 -hjl-1 O and -1 o1 h| _ |1 -hj|-1 O
0 1]]o 1 0 11{ 0 1 ¢ 1f{] o0 1 -i}]4 0 1}’
However note that, in general, this is not so, e.g. 1 0 and its

1

inverse 0
-1 O

] are not conjugate in GL{2,Z)}.]
Since tr{T) is the same for T € SL(2,Z}, or its inverse Tul, or any

conjugate UTUdl, and can obviously take infinitely many values, Prop. 17

gives an infinite list of closed orientable 3-manifolds, which are
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diffeomorphic iff their fundamental groups are isomorphic.

[Since <C1,C2> o 22 and GT/<C1,C > = 7, GT is an extension of 22 by Z;

also conversely, whenever 0 — Z~ - G mié Z — 0 is exact, then G = GT,
where T: 22 — 22 is the restriction of the inner automorphism of G
induced by any element whose a-image is 1.

Thus Prop. 17a classifies all extensions of 22 by % upto group
isomorphism. (1f we consider instead isomorphisms of the extensions
which preserve the original group 22, then the same classification holds
again, and inis weaker result is much easier to prove, and generalizes

to extensions by Z of any group H.)

It seems that Prop. 17a generalizes to extensions of " by Z, and might
be true for many groups H other than 7" also. Likewise one has

topological generalizations of Prop. 17.]

Poincaré was unable to prove {as claimed in his 1832 note) that any two
orientable 3-manifclds having isomorphic fundamental groups are
diffeomorphic. Regarding this, and the question of deciding when a
finitely generated group is the fundamental group of some orientable
3-manifold, he now states prophetically that such problems will

"exigeralent de difficiles études et de longs développements”.
[Besides 17a, Poincaré also gives some other algebraical side-results.

Alsc, he again mentions the "Picard paradox" of generic surfaces having

lower Betti numbers. ]
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g 18. Scmetimes it 1is convenient to describe a manifold by a

combination of the implicit and parametric methods.

For example, a (n-p+q-A)—dimensional manifold U in n-space might consist
of points x which satisfy some p equations Fa(X; ¥y} = 0, where this
system of equations depends on a parameter y which 1itself runs on a

manifold W in g-space satisfying A constraints ¢B(y) = 0.

Or else, another (q — A)—dimensional manifold V of n-space might be
parametrized, x = Bi(y), by these y ¢ W. In case this parametrization
is globally valid, and the functions 6 are invariant with respect to a
discontinuous group G of diffeomorphisms of W, then we have V = W/G.

Example 7 (REAL PROJECTIVE PLANE). Let W = 82, the unit sphere of

3-space defined by x2 + y2 + z2 = 1, The restriction of the map 0: RS

— Rs, 6{x, y, z) = (xz, yz, zz, Xy, ¥z, 2zx) to W is of rank 2, and is
such that the inverse image of each point of V = 6(W} consists of two
antipodal points. So V & 52/2, 2 being the fixed pecint free order two
group generated by the antipodal involution (x, y, z) +— (—x, -y, —z).
We note that this real projective plane V & 52/2 is contained in the
S-dimensional affine subspace of RB given by the condition that the sum
of the first three coordinates is 1. (ke i h-sposme 0 Fauded
'\Y\Pm&e.divxj modli wamal SS-)
Besides, as Poincaré points out, note also that the non-orientability of
V stems from the fact that the antipode of a point having spherical
coordinates (¢, 0) hasg coordinates (¢ + n, ®m — 6), and this has negative

Jacobian -1.

[Note on the other hand, that the antipode map of 83 is orientation
preserving, which corresponds to the fact that the real projective space
83/2 (see Ex.5) was an orientable 3-manifold : more generally real

projective n-space RPn = s“/z is orientable iff n is odd.

Note also that there is a similar Veronese embedding € which realizes

n{n+1)
5 -

dimension is nowhere near the least possible : Whitney has shown that

the real projective {n-1)-space in space. However this

any closed n-manifold can be realized in (2n)-space.
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This number 2n is in general the best possible : for example it is known
that closed non-orientable 2-manifolds do not embed in 3-space, and, for
all k = 1, the real projective 2k—space does not embed in an wm-space
with m less than 2k+1. However, the problem of finding the least m such

that a given n-manifold embeds in m-space is usually a hard problem.]

Example 8 (SYMMETRIC SQUARES OF SPHERES). Let W = s31 »x sT71 the
product of (g—~1)-spheres in {(2q)-space qu =RY e RY, consist of all
2

ty =1 and 212 + .., + 2q = 1. Consider

(y,2) such that y12 oL 3
now the map 6: qu — mq(q+3) 2 defined by

e(yl. e ,yq; Zys e zq) = (yi+zi; N Zkyi)‘
Since the inverse image of any point of V = 8(W) is either a diagonal
point (y,y), or a pair {(y,z), (z,y)} of points of W, we see that V =
Sym(Sq_l) or Symz(Sq_l), the symmetric square (= the space of all
subsets of cardinality = 2) of gat

Propogition 19. For all q = 3, Sym(Sq-l) is a closed (2q-2)-dimensional
pseudomanifold, being in fact a closed 4-manifold for q = 3. For q = 2

It is a 2-manifold with boundary.

Further, these pseudomanifolds are non-orientable for q even, and
orientable for q odd, and all their Betti numbers are {irivial, except

the (q-1)th number which is equal to 1.

[Poincaré seems (see below) to assert that one obtains closed manifolds
for all @ = 3 : however this is false, for we'll see that there are

singularities for all q = 4.

Further Sym(Sl) is a Moebius strip with boundary, while Sym(Sz) is

diffeomorphic to the complex projective plane &Pz, i.e. the quotient of

2

€™ \ {0} under the equivalence relation (21’22) « {az azz).]

1’
Proof. This time the order two group, generated by (x,y) + (y,x), Is
fixed point free only on the complement of the diagonal (q-1)-sphere

Eq*1 c Sq_1 X Sqﬁl. So & priori we are sure only that W\ 6(Z) is an
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6pen (2q-2)-manifold., However, for q = 3, the possible singular set
6(Z} has codimension = 2, so then V is a closed pseudo manifold.
Poincaré works out the local nature of Sym(Sl) rniear any point of the

circle 6{(X) as follows :

Consider the image, under the above map @ : S1 P S1 — Vv, (yl, Yor 29
2p) b (X = yihE Xy T Y2y Xg T VoRZs Xy T ¥oZa Xg T Y %7Yp2),
of a small neighbourhood of the diagonal point (0, 1, 0, 1). This |is

diffeomorphic to the portion of a small neighbourhood of the origin of

the Xy "Xy plane which lies on or above the parabola x12 = 4x2 . To see
: 2 _ 2

this note that (yl—zl) = x1 - 4x2, to work out yl, zl, in terms of xl,

X53 then Yor Zoi and finally Xgr X4 and Xge

Poincaré works out the local nature of a complementary planar section of

Sym(Sz} near any point of the 2-sphere 68(Z) as follows :

Consider the intersection of the codimension 2 plane xl = 0 = x3 of
9-space, with the image under the map 6 : 82 X S2 — V, (yl, yz, Vg zl,
Zgr Zg) b (Xy =Yy FZy, Xy = V290 Xy S VptZa X T VpZg X5 T
Y1Z5*YpZys Xg = VptZg Xg = VaZa Xg T ¥iZg WWaZi, Xg = ¥pZatygZy), of a
small neighbourhood of the diagenal point (0, 0, 1, 0, 0, 1). This is

homeomorphic to a neighbourhood of the origin of the half cone 4x_X

24
2 ;
x5 = 0, x2 = 0, x4 =0, in xz—xq—xs space, Tozsee this ca;culate y1
and Y5 {from which Yq also follows) by X5 = Y, and Xg = ¥y then zy

and z, to be their negatives (and from this 23); and check that we have

a 1-1 parametrization of the stated section (e.g. Xg = y122+y221 holds
because right side equals —Zylyz whose square is 4x2x4 vwhich equals the

square of the left side.)

[An easier argument which shows the topological nature of the

singularities, for all q =z 2, is the following :

Note {first that on the g-dimensional  subspace of (2q)-space
complementing its diagonal, i.e. ony + z = 0, the map (y,z) +— (z,¥),
coincides with the antipodal map (y,z) + {(-y, —z). From this it Iis
seen that the 1link in W, of each point of 6(%), is the Jjoin of a
{g-2)-sphere (its link in 6(Z)), and a real projective (g-2)-space (its

link in the complementary g~1 directions),
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This link Sq"2 * qu—z igs, for all g =z 3, a closed pseudomanifold, but
is not {because of say homological reasons) a sphere unless q = 3, in
which case S1 * mpl =1 Sl * S1 = 83. For q = 2, S0 * RPO = S0 * {pt} is

a closed 1-cell.

We note that a similar argument shows in fact that the symmetric square
Sym(Mz) of any 2-manifold M is a 4-manifold,

We note also that the above 6 : 82 X S2 — CPZ is yet another type of
branched covering : on a tubular neighbourhood {2 € x X} of the
2-sphere I this map identifies (z,s) with (-z,s), 1.e. is equivalent to

(z,5) — (2°,8).]

Orientability. In local coordinates the involution (y,z) = (2,y} reads
(¢1! L ) ¢ _1; ¢1P -‘-'1'1 ¢q_1) E_) {¢1’ L | ¢q_1; ¢1) ";1! ¢q_1)l1 and
s¢ has Jacobian {~1)q . Thus this involution of Sq X Sq is

orientation preserving, and so Sym(Sqﬁl) is orientable iff g is odd.

From now on these (¢1, e ¢q—1) and (¢i, . ¢&_1) will be assumed
to be spherical coordinates, and we will denote by J and J' the

corresponding spherical volume elemenits :

Sinm f‘

We choose a diagonal point {u,u) and an oriented latitude U1 = {(v,u)

v e sT!) ang longitude U, = {{u,v}) : v ¢ s through it.

We’ 1l now check that the Betti numbers of Sq“1 X Sq“1 are all zero
except for b0 =1, bq_1 = 2 (with all {g-1)-cycles generated by U, and

1
Uz), and b2qw2 =1
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sBy duality it is enough to work out the numbers in dimensions = g-1.
Further, all manifolds of dimension less than q-1 can be deformed into
the (2q-2)-ball (sT1 % sT1) N (v v Uy = T x (T ¢ so

we are left only to deal with the dimension g-1.

To see that U1 and U2 are homologically independent, Poincaré uses the

fact that, for any irrational A, the periods of the closed (g-1)}-form Jl
+ A.JZ on U1 and U2 are integrally independent.

Poincaré next checks that any general position oriented (g-1)-manifold v
is homologous to m.U1 + n.U2,
accounting for intersection number being +1 or -1} number of times it

where m, resp. n, is the algebralcal (i.e.

cuts U2, resp. Ul'

To see this he draws (see the 2-torus case illustrated below) through

each intersection point with U,, a parallel Ué to U,, and through each

1’
intersection peoint with U2. a parallel Ui to U

2!
1" The sum of all these
parallels is homologous to m.U1 + n.Uz. Also we can cobviously replace v

by a homologous v’ which coincides with these parallels in a small
vicinity of each of these intersections. So the difference of v’ and
the sum of these parallels, is a cycle in the ball (Sq“1 X qul) \ (U1 v

U2), and is thus homologous to zero.

Poincaré’s argument for the Betti numbers of V = Sym(Squl) runs as

follows {the calculation of bO' bzq_z being clear, he works in other

dimensions only}:

Note that U1 and U2 coincide in this quotient, so they give rise to a

single {g-1)-cycle U of V. This U is homologically non-irivial because

the closed form J+J' has a nonzerec integral over it.




Next he says that we can 1ift any closed oriented manifold v of V to a
manifold w of W, by choosing continuously, for each point of v, one of

the two corresponding points of W. This w can be closed or non closed.

Case w closed : now & is homologous to O, or to an integral combination
m.U1+n.U2, and so v is homologeus to 0 or to {(m+n).U.

Case © noncleosed : by duality {(??) we need to work in dimensions = g-1
anly, So 8{(w), which consists of pairs of symmetrical points of W, is
of dimension = g-2. We can symmetrically deform it into the diagonal
(g-1)-sphere Z, and then cap it off in £. Thus we can replace v by a
homologous v’ which can be lifted to a closed w', and so we can apply

the above case.

[The argument of the last para is doubtful : e.g. V is usually not even
a manifold, and half the time non-orientable, so duality theorem dces
not apply to V. It does to W of course, but how does that imply above
reduction to dimensions = gq~1 ? Also he does’'nt spell out the above

deformation, though it can probably be done.

However we can use instead the obvious fact that the double 2.v of any
closed manifold v of V lifts to a closed manifold w. Thus the Betti

numbers of V are as given by Poincaré. ]

[The fact that Sym(81} is a Moebius strip is clear from the following
cutting and pasting :

e e e — =P
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[More generally the symmetric group En of n letters acis by permutations
on the n-fold product of s? « P! and the quotient ((Sz)n) / I is

diffeomorphic to CP".

An  inductive proof of this using Newton’s Theorem on elementary

symmetric functions runs as follows ..

Note that this argument used the fact that € is algebraically closed.
In fact {(RPl}n) / Zn is not RPn, e.g. for n = 2 we saw above that it is
a Mobiue strip, and for n = 3 it can be seen to be a solid torus. It

would be interesting to work this out for all n = 4 also.

Note also that Sym"(X) (see below) is somewhat different from ({x)n)/zn

for nz 3.]

By Prop. 7 the middle Betti number of an orientable closed manifold of
dimension 4k+2 ls even. Above V4 (= @Pz) is orientable and with middle
Betti number 1, so (as we pointed out before} Prop. 7 does not extend to

orientable closed manifolds of dimension 4k.

{Poincaré says that all the above V4k’s provide such examples, but this
is not so : for k 2 2, these are not manifolds ! Likewise he says that
the V4k+2’s, which are non-orientable and have middle Betti number 1,
show that Prop. 7 does not extend to non-orientabile closed
(4k+2)}-manifolds : again the examples are wrong, because these are not
manifolds. But, as we pointed out before, the Klein Bottle can be used

instead to show this. ]

[Other interesting examples like the ones considered above :

{1) Massey and Kuipers showed that S4 is the quotient of @Pz under

complex conjugation {21'22] —> [51,22], the quotient map e — gt
being a 2-fold covering branched like z +— z~ on a real projective

plane contained in 54.

{2} Borsuk and Bott showed that the symmetric cube SymB(Sl), i,e. the

e
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space of all subsets of S1 of cardinality = 3, is diffeomorphic to SS,

the quotient map S1 P S1 X S1 —3 S3 being a 6&6-fold covering branched

like z +— 28 on a circle contained in 83.

Moreover the above 3-sphere can be visualized as the union of two solid
tori, obtained by dividing S1 x S1 P S1 out by the obvious action of the

group of all permutations of 3 leiters.

(For other references on symmetric powers, e.g. the general theorem of

Dold-Thom, see Steenrod's "Reviews".)

{(3) The fact that Sym(Sl) is a Mobius strip has a simplicial
refinement: the 8-vertex Mobius strip results 1if we divide out a

suitable 9-vertex torus by its simplicial involutien {a,b) ¢ (b,a).

a /W/// q

/

Note that by adding the missing triangle we get the B8-vertex real
projective plane, which can be obtained also as the quotient of an
icosahedron by its antipodal involution. Further it can be seen that
neither the Mobius strip nor RP2 can be triangulated by less than 6

vertices, and that each has a unique triangulation with 8 vertices.

An analogous simplicial refinement of Symz(SZ) o CPZ (starting from the
tetrahedral triangulation of 82) has been used by Bier and Brehm to give
a ten-vertex triangulation of the complex projective plane.

However this time 10 is not least possible : Kuehnel found that GP2 has
a unique minimal triangulation with 9 vertices and this can be obtained

from a simplicial refinement of the Massey-Kuipers’ theorem. {(Probahly
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the Borsuk-Bott theorem also has an interesting simplicial refinement.)

In general it is a very hard problem to find the least number of
vertices required to triangulate a given manifold. For example, for
surfaces other than the 2-sphere, the main point in the proof of the map
color theorem Is to construct a triangulation with the least number of
vertices : these constructions of Ringel, Youngs and others are now well

understood via branched coverings.

However, for the case of the 2-~sphere, the main point is to show that
four colors suffice (to distinguish neighboring vertices of any
triangulation) and there is still no conceptual proof of this four color

theorem. ]

[Note on the role of symmetric squares in Van Kampen’'s embedding

theory, ]
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§ 18. Euler characteristic,

A subdivision P of a closed p-manifeld V is a partitien of V Iinto

p~1}' .o, of
dimensions p, p-1, ... , and we’ll denote by N the alternating sum,

finitely many regions (= nonclogsed manifolds) {vp}. {v

where aq denotes the number of the vq’s.
A subdivision P will be called a cell subdivision if each vq, resp. 6vq,

is diffecomorphic to a g-cell, resp. (g~l1)-sphere.

Proposition 20 (INVARIANCE OF EULER CHARACTERISTIC). All cell

subdivisions P of a manifold V have the same N.

{This is a corrected version of the result stated in the paper.
Poincaré ciaims the above even when each Eq is a simply connected
manifold-with-boundary, however this generalization is false :

2 2 2

E.g. if V = €P” or 8~ x S7, v, = int(D} and v& = ext(D), where D is a

closed 4-disk D ¢ V, and the lower dimensional regions {va}, {vz}, {vl},
{vo} constitute a cell subdivision of 8D = 83, then P is of above kind

and has N = 2, but for any cell subdivision of V one has N = 3 or 4.

(Poincaré probably intended this cellular version, because, at the time
he wrote §8 16-18, he apparently believed that the only simply
connected g-manifolds-with-boundary were closed g-cells ? This is like
his 1882 assertion that a closed g-manifold (of (g+l)-space)} is
determined by its fundamental group, which of course he found o¢ut that
he could’'nt prove, by the time he had finished writing up § 14. So
maybe §§ 16-18 were written before § 14, and this mistake was left in

simply because of inattention ?)

However the above result does remain true when the 5&’8 are Jjust

homotopically, or even homologically, trivial, and in fact even under
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some still weaker conditions. ]

Poincaré’'s first invariance proof. We note that any subdivision

satisfies the condition

(%) "all vq, g = p-1, are incident to at least two v s",

g+l

unless the boundary of some region 8 is not a manifold :

By putting a new vertex in some cells if need be (a process which
clearly does’'nt change N} we can in fact work only with cell
subdivisions having no singular region, 1l.e. a g-region, gq = p-2,
incident to just two (q+l)-dimensional regions. We will assume this
below for P, but not for the Pi’ i =z 0.

We have to check that N is the same for any two cell subdivisions P and
PO of V. For this it suffices to consider the case when PO is finer

than P, i.e. when each region of PO is contained in some region of P.

This follows because, given any two cell subdivisions of V, we can

easily find another which is finer than both of them.

Now Poincaré describes an algorithm, which, starting from PO’

successively gives (possibly non cell-)subdivisions Pi+1’ i = 0, each

having two regions less than the preceding subdivision Pi

START by searching F‘.l for a v, which is singular, and if such a v is

0 0

found, erase it (thus making its union with the two incident ul’s into

one region) to get Pler

Otherwise, search P.l for a v, which is incident to Jjust two v, 's, and if

1 2

such a v1 is found, erase it (thus making its wunion with the two

{o4




incident vz's into one region) to get Pi+1'

{and so on)

Till finally we come to the case when we search Pi for a vp_1 which

separates two up’s which are Iin the same region of P, and if such a up—l
is found we erase it (thus making its union with the two incident vp’s

into one region) to get Pi+1‘

If no such vp—l is found the algorithm STOPS.
Clearly such erasures preserve N. Further, Polncaré asserts that the

algorithm stops at Pi iff P.1 = P, so "q.e.d.”

[An analysis of the above proof. (1) Since the union of the erased vq

and its only two incident v 's is also a non closed manifold, each

step Pi = Pi+1, iz0, doeg+iead to a new subdivision of V.
(2) Alsoc each of these subdivisions is finer than P. If an erasure of
a region of dimension q = p-2 is made, this follows from the fact that
its two incident {g+lj-regions are automatically in same region of P,
otherwise P would have a singular region. And, if an erasure of a up_1
is made, this follows because of the extra condition that we took care

to insert, for this case, in our algorithm.

(3) If algorithm stops at Pi, and P.1 satisfies the condition (%), then
Pi = P. This is so because there are no singular regions. And, all
{(p-1}-regions must be contained in (p~l1)-regions of P, otherwise they
are erasable. This then 1implies that all (p~2)-reglons must be
contained in (p-Z)-regicns of P, otherwise they would be singular, and

SO On.

(4) Note that (%) is true for P, but Pi - P need not preserve (%),

o' i+l
In fact if Pi = Pi+1 involves an erasure of a Vis then it will preserve
(%) for all g # t, but might give some t-region incident to Jjust one

{t+1)-region :
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{5) Above example also shows that Pi > Pi+1 might change a cell
subdivision into a non cell subdivision. {Poincaré mentions this

"objection" at the end of this "proof" but does not actually say that it
falsifies — see (B) below — his argument.) In case our algorithm does
go though cell subdivisions, then of course (%} will hold at each stage

and the algorithm will stop only when P has been reached.

(6) Let P denote the tetrahedral boundary ABCD, and let PO be obtained
by subdividing the triangle ABC further as shown below. Then Poincaré’s

algorithm may run as follows stopping before P is reached :

A A A A s A
D
1) — b — L
o c D e c
C ¢
¥ 5 B 8 B

P, P P

L 2 P}, ’PQ + P

{7} Poincaré's first invariance proof 1is based on trying to show
something more than "PO ig finer than P" iff "P can be obtained from PO
by some sequence of erasures”, but most probably even this is false : in
fact the problem of finding a correct combinatorial reformulation of "PO
is finer than P" is still open even for triangulations.

(B) Poincaré’s second invariance proof will be based roughly on showing
instead that the relation "P and Q have a common finer subdivision" Iis
same as the "equivalence relation generated by erasures" : this geems

true and resembles a later theorem of Newman.

(9) Poincaré’'s second proof also contains a recipe — see Prop. 23
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below ~— for cell-subdividing any closed manifold : a complete proof of
triangulability of {differentiable) manifolds was however given much
later by Whitehead. ]

Proposition 21, For any cell subdivision of a p-sphere one has N = 2 if

p is even and N = 0 If p is odd,

Proof, By invarlance N is independent of the cell subdivision P of the
p-sphere. Let P be the boundary of the (p+i}-cube of (p+1)-space

enclosed within the hyperplanes X5 1, 1 =1 = p+l.

The g-faces of P are obtained by taking any pt+l-g of the xi’s and
setting them equal to +1 or -1, so aq = 2p+1"ql(p;1]. Hence

(1—2)p+1x1—ap+... tag=1- N,

and thus N = 1 - (ml)p+1. q.e.d.

Poincaré’'s second invariance proof will be by an upward induction on the

dimension p of V, with the inductive hypothesis used as follows,

Proposition 22. Let Prop. 20, and so Prop. 21, be true for dimensions

less than p. Then

= _1yPa-1

gp—g’pm1+.‘.i'gq+1—-1+(1) )
where Yy t > q, is the number of t-regions of any cell subdivision P of
a closed p-manifold V, containing a fixed gq-region vq on their boundary.
Proof, Choose a point in the interior of v , a complementary
(n—qg)-dimensional plane of the ambient n-space paséing through this

point, and a small {(n-gq)-dimensional ball in it with the chosen point as

centre,

The intersection of this ball with V is a {p~q)-dimensional ball, whose
boundary L is a (p-q-1)-sphere. Further, each of the vy t-celils of P
incident to uq intersects L in a distinct (t-g-1)-cell. (If all v had
only been assumed simply connected, these 1intersections need not be

simply connected.)
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Thus L, which is called the link of vq in P, becomes a <cell subdivided
sphere of dimension p-g-1. Stnce p-g-1 < p, the desired equality
follows by applying Prop. 21. gq.e.d.

By a quadrillage of n-space we will understand a cubical subdivision of
n—-space determined by n pencils of non-accumulating hyperplanes
parallel to the coordinate planes, Xy = ai,k , 131 =n,

Proposition 23 {TRIANGULABILITY OF MANIFOLDS). Let V be a closed
p-manifold in n-space. Then there is a quadrillage of n-space such thatl
the intersection of each of its {(n-t}-cubes Dnm with V is a (p-t)-cell

t

v and these cells constitute a cell subdivision Q of V.

tl
Poincaré gives no details, but it is likely that the above is correct.

Poincaré’s second invariance proof. We want to check that N(P) = N(R)

for any two cell subdivisions P and R of V.

For this we choose a quadrillage Q of V, which has to satisfy certain
conditions w.r.t. P and R which we’ll specify later. et P' be the
common subdivision of P and Q obtained by intersecting their cells
(likewise analogous common subdivision R’ of R and Q). We’ll prove N(P')
= N{P)} and N{P’) = N(Q) (and likewise N(R’) = N{(R) and N(R') = N(Q)).

Proof of N{P') = N(P) : We go from P' to P by erasing the hyperplanes
X, = a one by one. Let 6q denote the number of q-cells of P’ on this
plane, 6& the number adjacent to the (xi < a)-side of the plane, and 8&

the number adjacent to the (xi > a}-side of this plane.

Then Poincaré asserts that 6& = 6q_1 = 8& (with also 66 =0 = 65 and &
= 0). Assuming this, the erasure of the hyperplane decreases each aq by
6q + 8q+1’ and since the alternating sum over gq of these numbers Iis

zero, N remains same.
Proof of N(P’) = N{Q). By making the mesh of the quadrillage Q small

enough we can ensure that the interior ¢ of each cell of Q intersects

only one least dimensional cell vq of P : thus the cells of P
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intersecting ¢ are precisely those that are in the star of vq, i.e. have

vq on their boundary.
We now go from P’ to Q as follows .

We first erase all cells of P’ which are in p-cells ¢ of Q but which
have lesser dimension than p. So in each ¢ we are erasing the least
dimensional vq and, for each p > t > q, ¥y incident cells of dimension
t. Moreover the number of p-cells within c was 3p before and 1 after.
Thus the total decreagse in N is -1 + gp - + ... &y ¥ 1, which

p-1 g+l
by Prop. 23 is zero.

Next we erase all cells of P’ which are in (p-1)-cells of Q@ but which
have lesser dimension than p-1, and so on. The same verification shows
N remains same at each step. g.e.d.

[8% = 6q_1 = 6& can certainly be ensured by letting P’ be the
intersection of a rectilinear copy of P with a general position
quadrillage of the ambient space. And likewise R’ will come from a
rectilinear copy of R. But then we are not talking df the same Q but
rather of twe different Q's : thus there seems to be some difficulty

with this proof here.]
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§ 17. Having convinced himself of the invariance of the Euler

characteristic N, Poincaré now pushes ahead with its calculation.
Propogsition 24. Closed odd dimensional manifolds have N = 0.

Proof. The generalized face number BA“ of a cell subdivision P 1is the

sum, over all v, € P, of the number of pu-cells incident to v i note

A A

that BAA = o, and BA“ = BMA'

We will now sum the following triangular tableau :

8 By B

p,p—l_Bp,p~2 P, p- p,p-4
+Bp—1, p-2_8p-1.p—3+'8p~1,p-4 - s
+}ep—z,p-S_Bp-z,]:)—tl + ...,

---------------

The sum of the first row 1is the sum of the N's of the bounding
{p-1)-spheres of the ap p-cells of P, so (by Prop. 21) it equals 2ap.
Likewise that of second row is zero and that of third Iis Zmp_z. ete.

Thus the sum of the tableau is twice ap + ap_z + ...

On the other hand the sum of the gth c¢olumn is the sum of the «

q
expressions of Prop. 22 corresponding to the links of the g-cells vq of
P. Sc¢ their sums are 2ap_1, 0, Zap_s, O, ... . Thus the sum of the
tableau is also equal to twice « + + ...

p-1 p-3

Equating the two values one gets N =0. gq.e.d.

[We note that for p even, row summation of above tableau gives same

numbers as column summation, so no further information about N.

We note also that Poincaré’s column summation contains as a special case

some equations which are usually attributed to later mathematicians :

This is the case when P is a triangulation and so BHA = & [A+1] for all

AT | url
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it 5 A : this follows because each A-cell is now a simplex with A+l

vertices, and any subset of p+l vertices determines an incident p-cell,

So now the column summations of the above proof read,

p+i] p + p+2) P+l
“p [H*l] “p-1 [u+1] P e [.u+1 (1+(-1) oo

i.e. the so-called Dehn-Sommerville-Klee equations of a closed manifold.

By Prop. 21, it follows that for spheres, these equations hold also for

p = -1 if we make the convention ¢ , = 1 (i.e. that P has a unique empty

1
simplex). Then these equations are collectively equivalent teo the
functional equation {(z) = {(1-z}, where

glz) = ap.zp+1 o APt

Thus the zeros of £{z}, which of course occcur in complex conjugate
pairs, are symmetrical with respect to the line Re(z) = 1/2, and, for
many (but not all) spherical triangulations it is true also thalt these

zeros are in fact either real or on this line !
This suggests that the L functions of modular curves may  be

interpretable in terms of the combinatorics of the corresponding

tesselation of A ?]
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§ 18. Euler-Poincare’ Formula,

In this last section Poincaré completes the calculation of N. Note that
since his Betti numbers bi {see § B} were invariant by definition, the
following result contains Prop. 20. Also, by virtue of the Poincaré

duality (see § 9) it contains Prop. 24.

The following argument is in fact another invariance proof, and indeed
the one which affected later developements most : it implicitly gives a
new definition of Betti numbers depending on cell subdivigion, and

Poincaré identifies these numbers with the old invariant Betti numbers.

Proposition 25 {EULER-POINCARE FORMULA). For any cell subdivision P of

a closed p-manifold V one has

To make the argument clear we start with the Kknown case of surfaces

which Poincaré attributes (in § 18) to de la Jonquiére,

Proof for case p = 2. Assign to each of the «. vertices of P any

0

number, and to each of its oriented a, edges the difference & of the

1

numbers of its two vertices. These a, numbers & depend on the %

numbers, and conversely determine them upto an additive constant, so

there are in all a1 — ao + 1 linear relations between the &8’s.

Moreover, these linear relations are given by setting equal to zero, the
algebraic sum of the &8s, of some cycle X of edges of P : this is easy

and equivalent to the analogue of Prop. 25 for the one-skeleton of P !

We’ll now count these relaiions in a different way. Firstly, each of

the oriented ., faces of P furnishes such a cycle, viz. its perimeter 1l

Secondly, from any chosen b, homoleogously independent cycles C of V, we

1
construct cycles C" of edges of P as follows :

We divide C into arcs aiai+ each representing a crossing of a face of

1
P. Replacing each such arc by a homologous arc on the bounding polygon
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{see below) of this face gives us a homelogous cycle C' which consists
of edges of P and some portions of edges of P, these latter being
traversed twice in opposite directions. The required C" is obtained by

suppressing these portions,

We assert that any relation between the 8's is a linear combination of
the a, + b1 relations given by the M's and the C"s. To see this, let K
be any cycle of edges of P. Adding a suitable linear combination of the
C's to it we get L, which is homologous to zero. Being a cycle of edges
of P, this L must be the boundary of a sum R of faces of P, and the
relation corresponding to L, is the sum of the relations corresponding

to the perimeters II of these faces making up R:

[Note that we Just checked, for the above case, that the following new
definition of Betti numbers (to which we alluded to in the beginning) is

valid :

bi is the maximal number, of linear combinations with zero boundary of
i-faces of P, such that no nontrivial linear combination of these is a

boundary of a sum of {i+l)~-faces of P.

This is indeed true in general and the basis of most computations of

Betti numbers, ]
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The manifeold being closed and orientable, the sum of all the oriented
perimeters is zero, but no partial sum of the M's ls zero. And equally,
no other linear combination of the NT's and C"s is =zero, for then the
latter would not be homologically independent. Thus our new count shows
o, + b, — 1 linearly independent relations between the &’'s. Equating

2 1

this with o, — o

3 0 + 1 gives required formula. g.e.d.

Proof for case p = 3. Define 8’'s as above, and once again note that

there are o, = ao + 1 relations between them. Then again take the «

perimeters 1 of 2-faces, and definition of the b

2

1 cycles C" of edges of

P is also almost similar. Only this time aa, represent crossings of

1
3-faces of P.

Once again it is true that these gy + b1 cycles Il and C" generate all
the relations amongst the 8's : we argue as hefore only it takes more
effort now to see that once again L bounds a sum of 2-faces of P, We
start with any R with L as boundary. 1Its portions r in each 3-cell are
then deformed to homologous surfaces of their faces which is a sum of
some complete 2-cells and some portions. In this R’ these “portions"
occur twice with opposite orientation. Suppressing them we get R" which

is & sum of 2-cells of P and bounds L.

We now turn to the linear independence of these o, + b1 relations & = O
between the 8’s. If there is a dependence relation, the C"s can't be
involved in it, because then they won’t be homolegically independent.

Amongst the II's there are now many relations. For example the %y
boundaries ® of the 3-cells each give a relation, viz. that the sum of
the 's of its 2-faces is zero. Then as above we can make b2 closed
homologically independent {pseudo) 2-manifolds D", made up exclusively

from 2-cells of P, and we have b, relations £ = 0 corresponding to the

sumse of the perimeters II of the g—cells of each D". Duplicating above
argument it follows that any € = 0 is a linear combination of these a3 +
b2 relations. Besides the obvious dependence amongst these, viz, that
the sum of the &'s is zero, there is no other. So in all we have % +
b2 — 1 dependencies.

Correcting for them we see that the number of linearly independent
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+ b, —1). Equating it with

relations amongst the &8's is %, * b1 - ((x3 5

the old value oy = ey + 1, we get the required formuls aa - az + al -
=1 — b2 + b1 — 1 {which in turn is zero because of Polncaré duality b1
= b,. g.e.d.

2

The cases p =z 3 are proved by exactly similar argument.
[Poincaré was simultaneously trying to prove three things :

{1) That the new, and apparently dependent on P, definition of Betti

numbers, is in fact independent of P.

(2} That this new definition gives the same numbers b.l as the old
definition of § B,

(3) That, for any fixed P, the alternating sum of the face numbers o

equals the alternating sum of the {newly defined) Betti numbers b.1 of P.

Of these, his sketch for the algebraical result (3} was essentially
complete, though fancier and more and more general variations of this

important fact have been given later by Hopf, Lefschetz, and many

others,

A full proof of the invariance theorem (1) was given about 20 years

later by Alexander,

A proof that the new P-dependent {Betti numbers, and even) homology
groups {which are known to coincide with "singular" or "Cech" homology
groups) are the same as the geomeiric homology groups (implicit in § 6
of this paper) has apparently not appeared in print jet, though the book

by Buoncristiano-Rourke-Sanderson does contain a very similar result.]
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CHAPTER III

SUR LES NOMBRES DE BETTI
C.R.de 1'Acad. d. Sci., 128 {(1889), 629-630

The duality theorem of "Analysis Situs” has been termed Inexact by
Heegaard. However an example given by Heegaard {as well as an example
in "Analysis Situs” itself) only shows this provided one uses numbers as

defined by using the first of the following two definitions.

The gth Betti number of V is the maximum number of distinet closed
oriented closed g-manifolds v _of V, where

{1) for Betti, the vq’s were "distinct" if no oriented {g+l)-manifold w
has boundary 8(w) equal to the union of some vq’s, while

(2) in "Analysis Situs”, the vq’s were deemed "distinct"” if no oriented
(g+1)-manifold w has boundary 8{w)} equal to the union of some vq’s with

repetitions of vq’s allowed.

With this second definition, i.e. as stated in "Analysis Situs”, the
duality theorem is true : a new polyhedral proof of this will be given

in a longer paper.
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CHAPTER IV

COMPLEMENT A L’ ANALYSIS SITUS
Rend. d. Cir. Math. di Pal., 13 (1899), 285-343

§ 1. Introduction. This paper was written in response to Heegaard's
1898 criticism of Poincaré's {and Picard’s) duality theorem, viz. for
any closed orientable m-manifold V the qth and (m—q)th Betii numbers are
equal,

Example 3 of "Analysis Situs, i.e. 83/8, has, as we saw, l-manifolds C
which don’t bound (and whose multiple 4C bounds) while it can be shown
(although Poincaré did'nt actually do it) that all the oriented
2-manifolds in 83/8 do bound. (An example given by Heegaard also shows
the same.} Thus duality is false with Betti’s original definition of

his numbers.

The corrected definition of Betti numbers, as given in "Analysis Situs",

was the following :

bq(V) was defined as the maximal number of independent closed {oriented)
g-manifolds of V, where by independent we mean that there 1Is no
non-trivial homology between these manifelds, where in turn by a

homology we meant a relation, written as

¢ =9
and signifying that the left side (in which the g-manifolds vy might
repeat) 1is the codimension one boundary 8(w) of an (oriented)

{g+1}~manifold.

[Here an (oriented) g-manifold {or a q-chain) ¢ of V is being called
closed iff its codimension one oriented boundary 8(c) is zero (in modern
parlance one might call c a g-cycle of V). This (smooth) ¢ is wusually
not compact, while its closure ¢, which is compact, is usually not
smooth : it is usually not even a {(closed) pseudomanifold, i.e. it can

have codimension one singularities, However by resolving these, in the
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manner shown below, we can obtaln a nearby pseudomanifold :

In § XI Poincaré will attempt to show that given any g-cycle ¢ we can
find a cell subdivision in which c becomes cellular : such

triangulability questions are still of great interest.

But most later treatments of invariance of homology simply evade
triangulability by experimenting with different definitions of
"g-chain“: e.g. an obvious way to avoid § XI would be to call ¢ & V a

"gq-chain of V" iff it is a {cellular) chain of some cell subdivision.

Such "evasive" strategies, of which perhaps Eilenberg’s idea of singular
"g-chains" was the most far-reaching, have now exXtended the

applicability of homology theory far beyond smooth manifolds. ]

As before, we’'ll add and subtract homologles, as well as multiply them
by integers, in the obvious ways. Besides, Poincaré now makes the
explicit convention that they will also be divided by nonzero integers,
i.e. he uses homologies over @ (: to make this clearer one can use 2v1 +
302 *a

while the old 2u1 + sz ~ 0 still means that 2v1 + 3v2 itself bounds).

0 to denote that some integral multiple 2:‘1}1 + 3r.vz bounds,

{Betti's and Peincaré's numbers were one more than the numbers above
this was so because they arose as generallizations of Riemann’s
connectivity of a surface S, i.e. the number of closed cuts required to

disconnect S, and this is one more than the modern bl(S) used above. ]

At this point Poincaré answers (see notes of "Analysis Situs") the two

specific criticisms of Heegaard of his original intersection theoretic

1%
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proof of duality : he accepts one of these, and also remarks that his

old flawed "proof" apparently "works" even with Betti’'s definition !

In the following Poincaré will give a new combinatorial proof of
duality, based on a new definition of Betti numbers which (& priori)
depends on a cell subdivision, but will be shown Iindependent of the
subdivision and same =as the definition recalled above : so he will
{attempt to) carry out the entire programme which we cutlined in remarks
to § 18 before !
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& II1. Incidence numbers eij of a cell subdivision P (of a closed

oriented m-manifold V) having, for each 0 2= g 5 m, the oriented g-cells

vq = a?, - ,az {m-cells having orientation of V} are defined thus :
q
0 if ag_l is notona(a?), and
E: =
1 +1 or -1 if ag 11son a(a } withsameoroppositeorientation
s m+l 0
(besides we’'ll make the conventions 813 = 1 and eil = 1), These

schema, i.e incidence matrices gd {of Q's, +1's and -1's}, are not

arbitrary but satisfy the following necessary conditions.

{Poincaré only requires that uq’s be "simply connected" but, as noted
before, he probably intended "cells" (at some other places, his more

general "simply connected" needs to replaced by "n-sphere, n z 2").]

Proposition 1. For a fixed 1 and k the producls 8?583;1 are either all
zero, or else all but two are zero, these being +1 and -1. Hence we

always have

Proof, For g = m+l the result follows because there are precisely two
m-cells a? incident to a given az—l’ and for g = 1 the result follows

because each edge a1

N has precisely two vertlices,

For other values of gq the result follows because the product e?J 3;1 is
clearly zero unless ag has ak on its boundary, 1n which case precisely
two (g-1)-cells of the (gq-1)-sphere a(a } have ak on their boundary.
Hence ¥, e?J 3k1 =0V¥ i, k, 1.e. the product matrix eqeq_1 = 0. g.e.d.
[A new homology 7 Let G = {gl, Bor vv glG[ be any finite Abellan
group, with its elements totally ordered in some way, and suppose also

that a non-trivial character k of G is given. Now define the boundary

aK(vl, Vor Vg ... ) of any sequence of vertices by Zi n(gj, J = 1 mod
]G{) (vi, Vor oo vi, ... }. In other words we have just imitated the
definition of ordinary boundary which corresponds to the case G = Z/2Z
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when of course there is just one non-trivial character. In the general
case it can be checked that the |G|th power of 8 is zero, so the groups
ker(aKp)/im(akq) are defined whenever p+q = |G]. We will give some

results regarding these (apparently new 7} homology groups later.]

Exercise. On the boundary V of a simplex in n-space, defined by Xy = 0,
L X =0, X, F ... +x =0, let af]? denote the i-cell obtained by
omitting some g+1 of these n+l equations, say the aith, v mq+1 th

equations, and equip it with the orientation prescribed by the order of
the remaining equations. Then

e, = sgn (B - al) ... (B - ),

O(.q+ 1

if a?+1 results by omitting in addition the Bth equation, Using this

Poincaré verifies Prop. 1 for this cell subdivision P of V.

[To put the formula of Prop. 1 in its medern garb let Cq denote the

{integral or rational) span of the gq-cells, and define the boundary

-1
operator 4 : C — C b a(aq) =7, 129 then above formula says
P q q-1 PV 88y) = Ly e 4B, Y
808 = 0 : "boundaries have no boundaries". Simple as it 1is, this Iis

arguably the "most important formula of this century” : one defines
homology groups (kerd)/(imd) starting from it, and it is true that most

of the famous results of this century have involved homology. ]

We note that 8 : Cq - C ., 1s explicit in this paper, however Poincare

q-1
uses the notationc & f, c € Cq, f e Cq—l' i.e. a congruence involving

g-cells and {g~1)-cells, instead of the modern 8(c}) = f. Soc =0, ¢ €

[H]

Cq, a congruence involving only gq-cells, means that that ¢ is a cycle,
i.e. that 8(c) = 0; and more generally c & f, with ¢ € Cq and f € Cq

’

means ¢ — f = 0, i.e. that c-f is a cycle.

The conditions of Prop. 1 are by no means sufficient to characterize
incidence matrices which can arise from cell subdivisions of closed

manifolds :

e.g. as noted before the {(open) star (= aster) of any cell, 1i.e, the

union of all cells containing it, must be itself an open cell.
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' Poincaré poses the problem of combinatorially characterizing the set of
all incidence matrices belenging to a given manifold V : we note that a
later theorem of Newman does give a description of this set provided we

know one cell subdivision of V.

Poincaré also asks if two manifolds having the same incidence matrices
are diffeomorphic : this seems to have a positive answer since tLhe
diffeomorphism can be defined following the manner in which the cells

fit each other.
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§ III, Betti number bq(P) of a cell subdivision P of a manifold V is
the maximum number of independent closed oriented g-dimensional

manifelds (= g-cycles) of V, which are made up of cells of P.

Note that Poincaré is not requiring the homologies to be cellular
bq(P) has been defined Jjust 1like bq = bq(V) except for the last
condition. So we have bq = bq(P)).

Proposition 2 (EULER-POINCARE FORMULA}. Let P is a cell subdivision,

having aq g-cells, 0 = q = m, of an oriented m-manifold. Then
bm(P) - bmwl(P) + bm~2(P) - ... = mm(P) - am_1(P) + am_z(P) - ..

Proof. The set of cellular g-cycles consists of all ¢ € Cq(P) such that
8{c) = 0 (or ¢ = Q).

If c e Cq(P) is such that 8(f) = ¢ for some f & Cq+1(P) then ¢ (which is
closed by Prop. 1) is obviously homologous to 0. In § VI we’ll prove

the following converse :

If a cellular g-cycle bounds some (q+l)-manifold, then it also bounds a

cellular (gq+t)-manifold.

It thus follows that the image of 8 : CQ+1(P} — Cq(P) constitutes all

the homologies ¢ = 0 possible between cellular closed g-manifolds of V.

Poincaré now defines aq’ = '"number of q-cells of P distinct upto

congruence beiween g-cells", and aq“ = "number of g-cells of P distinct

upto homology", i.e. aq’ = dim(Cq/kera) and aq“ = dim(Cq/ima).

So o0 - o " =dim(imd) = « ’
q q

*and b (P) = a " -~ a ' {also check e« =
q q q m

q+1
am’ + 1 and aO" = 1) and the required formula follows at once by
calculaling the alternating sum of the equations aq = aq+1’ + aq"
g.e.d.
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§ IV. Subdivision map C(P) — C(P’) is defined by

ag — T, Bla,q, 4,k

{Poincaré uses = in place of +—), where P’ is a (cell) subdivision of a
subdivision P of some manifold, and B(g,h,J. k) = the kth of the g-cells
of P’ which belongs to the jth h-cell of P (i.e. not contained in any
lower dimensional cell of P : note that this cell of P is uniquely
determined by the cell of P'), and the cells Bl(q,q,J,k) are assumed

oriented compatibly with the g-cell of P to which they belong.

Proposition 3. Above linear map C{P) — C(P')} is a chain map, i.e. it

commutes with the boundary operators of P and P'.

In the paper above statement, whose proof is obvious, is formulated of

course in terms of congruences.

The necessary condition of Prop. 3 is by nc means sufficient, 1i.e. we
can have a surjective chain map C(P) — C(Q}, imaging each g-cell to a
union of g-cells, without Q being isomorphic to a subdivision of P (e.g.
take P = a triangulated 2-sphere, and Q = P \ {a triangle} v {a 2-torus

minus a triangle}).

124




& V. Proposition 4 (INVARIANCE THEOREM). For any cell subdivision P of

a closed oriented m-manifold V we have bq(P) = bq for all 0 = q = n.

Proof. Consider any cell subdivision P’ finer than P and let

Y@.Bl(g,h, j,k) = 0 be a g—cycle of P'. Take a maximum h occuring in it,

and let Sa.Bl{q,h, J,k} denote the porticn of this cycle contained in a
X h

maximum dimensional aj.

The boundary of the cycle’s portion contained in a? mist be contained in

the boundary of a?. This follows from the fact that 3{Swa.B{g,h, j,k))}

equals the boundary of Yw.B(q,h,j, k) \ Sa«.Bl(q,h, j, k), which is contained

in some cells of P of dimensions = h and other than a?.

If h > g the (gq-1)-cycle 8(S o.B{q,h,J,k)) of the (h-1)-sphere B(ag)
bounds a g-manifold of this sphere. So, by using the result to be
proved in § VI below, it also bounds a q-chain of P° 1lying on this

sphere.

[Note that the triviality of the requisite Betti number of the sphere in
fact follows if we inductively assume the theorem in dimensions less

than m and use the result of § VI.]

If we replace the portion S«.B(qg,h, j, k) of Ja.B(q,h, j, k) by this g-chain
we get a new g-cycle of P' homologous to JYw.B(q,h,j, k). By repeating
this construction a finite number of times we see that our g-cycle is

homologous to one with all h's equal to q.

For a gq-cycle of the type ¥ a.B(q,q,j,k) = 0, the coefficients o, of the

portion Sa.B(q,q,J,k) = 0 contained in an ag, are all equal to each




" other. This follows from the fact that the boundary of this portion has
q
J,

g-cell of P can be joined to each other by a sequence of such g-cells,

to be on the boundary of a and any two g-cells of P’ belonging to this

each sharing a {g-1)-face with the preceding.

Thus the original g-cycle of P' has been shown homologous to the chain
subdivision of a g-cycle ijag of P. Thus we have shown bq(P’) 5 bq(P).
Since bq(P') = bq(P) is obvious we obtain bq(?’} = bq(P).

So the numbers bq(P) do not depend on the cell subdivision P. This
follows because any two cell subdivisions P and Q have a common finer

cell subdivision P', and thus bq(?) = bq(P') = bq(Q).

Given any t homologously independent closed q-manifolds of V we will

show in § X1 below that there exists a cell subdivision Q of V with

respect to which these t manifolds become cellular. So it follows that

t =b(Q) =b (P). Sob =b (P), Since b_z= b (P} is obvious this
q ¢ q( ) q q( ) q q

gives the required bq = bq(P). g.e.d.
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§ VI. The following was used in §§ III, V.

Proposition 5 (CELLULAR HOMOLOGIES SUFFICE). If a cellular g-cycle
bounds some {q+l)}-manifold, then It also bounds a cellular

(g+1)-manifold.

Proof {(for a cell subdivision P of a 3-manifold W only). If a cellular
2-cycle ¥, b? is the boundary of some 3-manifold V £ W, then V must be
already cellular. This follows because, W being a 3-manifold, the
set~theoretic boundary bd(V} equals } b?, and if a 3-cell had points of

V and also of its complement then it would also have a point of bd(V).

Let us now consider the case of a cellular l-cycle ¥, b1 which 1is the

J
boundary of a Z-manifold V € W, Without loss of generality we can
assume that this V is in general position with respect to P. We will

now show how to modify V so that it becomes cellular.

If the portion V(a?) of V contained in it consists of a finite number of
arcs meeting the boundary of the 2-cell in finitely many points not
situated on any bj' then by replacing Vby V- =V - K+ H + K' (see fig.
below) we can ensure that any such point ceincide with a vertex of the
2-cell :

For an a? having some b s as edges, it may still happen that V(a?)

J

consists of these b,/ s, and a finite number of arcs meeting the boundary

J
of the 2Z-cell in finitely many nodal points situated within these bj’s :
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To move a nodal point, situated on an edge b, of a? to a vertex of a? we

J

proceed as fellows. On V draw an arc L very near to b, but meeting it

J
only at its two endpoints. Let 51 be the surface obtained by "rotating"
this arc to a similar arc L’ on another 2-cell of P through bj‘ The
construction V — V' = V — Vit S, o+ Sl’ (see Dbelow) now either

removes the nodal point of ai or moves it to a vertex of the 2-cell :

This follows because if, for V', there were a nodal point of a? on b

J

then there must be an arc on V’na? ending in this nodal point but this

is impossible because this arc is eventually in S

with a?.

1’ which shares only bj

[Note that this new V' 1ls not in general position with respect to P
since it shares the region SI' with a 2-cell. However by perturbing It

slightly we can ensure this, and also that no new intersections with
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edges of P are created. ]

Our new V cuts each 2-cell in arcs L having end polnts on its vertlces.

To move each such L. to the boundary of the Z-cell choese a 2-cell Q < a?

whose bhoundary is L plus an arc L’ on the boundary of a2 Joining the end

i
points of L. Then delete a small "vertical" strip of V passing through
L, and replace it by two cells like Q situated "above" and "below" it,

plus a new vertical strip through L':

For the new V thus obtained the portion V{a?) of V in each 3-cell bounds
a 1-cycle made of the edges of the 3-cell. We now replace V(a?) by =a
Z2-chaln of a(a?) which bounds this 1-cycle. Doing this for each 3-cell
we finally obtalin the required ceilular V which has the same boundary as

the original V. g.e.d.

Note : for the sake of simplicity Poincaré works out much of the

following also for the case of a closed oriented 3-manifold only.
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*
& VII. The reciprocal (or dual) polyhedron P .

The derived P’ of a cell subdivision P is the cell subdivision obtained
by subdividing the cells of P, in any order in which their dimensions
are non decreasing, by coning the already subdivided boundary of each

r . . . r
cell a, over an interior point P(ai).

[A cell subdivision P is & poget (= partially ordered set) under the
relation "is a face of" and its derived P° consists of all simplices

(P(a]), p(aj), P(a}t;), ...} where a] < a? < a_f; <.

More generally the derived P’° of any poset P is the (abstract)
simplicial complex (= a finite set of finite sets closed under £ ) of
all its totally ordered subsets {ai, aj, By e }, a, < aj < a <

{and this P’ can be visualized geometrically by representing its

vertices by suitable points P(ai) of some euclidean space).

We note that the Betti numbers etc. of any poset are defined to be those
of its derived simplicial complex ; this agrees with the old definition
for cell complexes P because bq(P) = bq(P’) (a very simple case of the

invariance theorem of which Poincaré will give new proofs below).]

To each cell a?nr (remember that Poincaré is working in a 3-manifold) of

P we associate the dual cell b? € P’ as follows : b? = P(a?) and bg is
the cone over P(a?qr) of the union of all b corresponding to cells a?ns

of P which contain a:;“r on their boundary.

The fact that bz is an r-cell is equivalent to saying that the 1link of
ai_P is an (r-1)-sphere : this follows because the aforementioned union

of the b?'s is homeomorphic to this link.

[Also note that given any poset P and an element p thereof, there are

two important kinds of subcomplexes of the derived P', wviz. the ones
i i i Cen i z a, . >

which consists of all simplices {al, aj, ay } with p a, > a.\j 2,

> ... , and the others which consists of all simplices {ai, aj, a, U

with p = a; < aj < ay <,
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When P is a cell subdivision of a manifold then these subcomplexes of P’
cover the (closed) cells of P and their duals. As Poincaré points out
later, everything pertaining to duality holds for all posets P for which

all subcomplexes of P’ of the above kind are cells.]

There is a unique way of orienting the dual cells such that the

orientation of each a?—r followed by that of its dual bi agrees with the
3

given orientation of the 3-manifold V. We will denote by P the cell

subdivision comprising of these oriented dual cells bg.

*
We observe that the 1-1 onto dual cell correspondence P ¢— P is

order-reversing, i.e. that a?_P is g face of ag—s

i{f and only if b? is a
*

face of bg, and further that the Incidence matrices of P are the

transposed incidence matrices of P :

4-r

3 {P).

ro.*
eij(P ) = e
*
[So the poset P is isomorphic to the opposite poset of P, i.e. the same
set with the partial order reversed. Note also that any poset and Iits

opposite have the same derived, and so the same Betil numbers.

Also note 4-r in place of 3-r in above formula : this amounts to saying
that the dual of the boundary operator 8 : Cr(P*) — CP_1(P*) is the
coboundary operator § : CS—P(P} — CQ_P{P) defined by (Sf)(ai-r) =
fiaainr). (Here CY(P) denotes the group of all g-cochains of P, 1i.e

functions from g-cells of P to integers or rationals. }]

* *
A direct proof of bl(P ) = bl(P) : Start with a 1-cycle Zbi of P . By

"rotating” it a bit we can write it as {pi where each c, denotes a

1-cell in P’ obtained by Joining the barycentre of a 3-cell to those of
two of its faces, We now use the fact that for each such ¢ one has a
homology ¢ = d,~ d, + A where A is an edge path on the boundary of the

J k
3-cell of P to which ¢ belongs :
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Inserting such homologies we see that our Ebi = Eci is homologous to a a
]
1-cycle EAk of P. So b, (P ) = b, (P).

To see the opposite inequality start with a l-cycle of P and write it as

EAk where each A, denotes an edge path on the boundary of a 3-cell.

k
Replace each such A by a homologous ¢ — dj + dk' Next note that each d,
- d3+1 {coming from two 2-cells having a common vertex) is homologous to
a sum of some c’'s [belonging to a sequence of 3-cells in the star of

this vertex which connect the two 2-cells)

So the given l-cycle of P has been shown homologous to a sum of some
*
¢’s. Rotating it a little we see that it is a 1-cycle Eb; of P . Thus
* *
bl(P) = bl(P ) and so bl(P) = bl(P ). q.e.d.

E ]
The above proof generalizes easily to give bq(P ) = bq(P) for all g (and

in § X, Poincaré will give yet another direct proof of this).

[A proof simpler than above is to check that the Betti numbers are
invariant under a single elementary stellar subdivision (i.e. putting a
new vertex inside just one cell and coning) :

* *
The result bq(P ) = bq(P) follows from this verification because P and
P have the same derived, and a derived is a sequence of elementary

stellar subdivisions,

*
Poincaré remarks also that bq(P ) = bq(P], together with the use of
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special kinds of triangulations, leads to a simpler proof of invariance,

however this seems uncertain, ]
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§ VIII. Reduction of incidence matrices, By arithmetical equivalence
we will understand the equivalence relation, in the set of all integer
matrices, which is generated by the operations : "add to some row (resp.

column) some other row (resp. column)”.

Propoeition B. Any integral pxq malrix A is arithmetically equivalent

to another integral pxq matrix H = Ehij} such that h.1 =0 for jJ > i, or

J

i > p, and also for i < j provided hjj and h11 are relatively prime.

Since the set of divisors of all ixi minors is invariant under above
operations, the size of the largest nonzero minor of A, i.e. its rank r,
must then be the same as ihe number of nonzero hii’s, and further, Ar =

greatest common divisor of all rxr minors of A =] {‘hiil:hii # O}.

It appears that Poincaré had the following algorithm A +— H in mind for

the proof of the above "bien connu” result.

Proof. Amongst our arithmetical operations (generated by the ones
mentioned above) we have all signed transpositions (i.e. interchange of

two rows or columns with a change of sign of one of then)

R
e.g. by adding the first row to the second gives 1 , which in
R R_+R
2 21
-R
turn is congruent to [R + R gince it is obtainable from it by adding
2 1
the second row to the first, and finally, by adding the first row of
-R
this last matrix to its second row, we get RZ .
1

Using these transpositions we make the first row nonzero with its
smallest nonzero element (in absolute value) at {1,1). In case it does
not divide some other element of the row we add to the column of this
element a suitable multiple of the first column to reduce the size of
the smallest nonzero element of the row. Then bringing it to (1,1) we
check again for divisibility. Eventually it will divide all other

elements of this row and so they can be made all zero.

Next use transpositions to ensure second row nonzere and that the
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element at (2,2) is smaller than all elements to the right of it in the

row. As above we test whether it divides them, .... , and so on.

TR}

J
relatively prime, we can make it

Clearly this accomplishes the required iriangularization. In case h.1

i < J, is nonzero, with h,, and h
JJ ii

zero by adding to the ith row a times the jth row and to the jth column
b times the ith column, where the integers a and b are chosen so that
ahjj + bhii = —hij.
elemente of the ith row become zero.) g.e.d.

(In particular if some hii = 1 then all other

{Poincaré was thus unaware that complete diagonalization 1is always
possible (see H.J.S.Smith, Phil. Trans. Roy. Soc., 151 (1861), 2893-328 =
Collected Works, vol.1l, 367-409). However he rediscovered this fact
later and gave a proof of it in § 2 of Second Complément (without any
mention of Smith). We give below an algorithm for diagonalization which

only invelves a slight finesse in the cone used above.

Proposition 8 (SMITH NORMAL FORM). Any integral pxq matrix A is

aritmetically equivalent to a unique pxq matrix of the type

dlag{dl....,dr)o

where the elementary divisors di’s are, with the possible exception of

dr for the case r = p = q, all positive, and such thal each di divides
d

i+’
Proof. Let m denote the minimum absolute value of {(all) the nonzero
elements of A # 0, We assert that A is equivalent to a matrix whose m

divides all elements. Since an A with m = 1 is such, we see that it

1

would suffice to check that, if m does not have this divisibility

property, then A is equivalent to a malrix with a smaller m.

To do this bring #m to the ({1,1) spot by wusing above signed
transpositions. In case m does not divide some other element in the
first row (resp. column) we can reduce the absolute wvalue of this

element below m by adding to its column (resp. row) a suitable nonzero
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“integral multiple of the first column {resp. row), this being clearly a
permitted operation. Otherwise, we make all other elements of the
first row and column zero by these operations, and then choose sonme
other element which m does’'nt divide : there must still be one, or else
there was no such element to start with. Adding its row to the first
row we bring it to the first row, and then reduce its absolute wvalue

below m as bhefore.

The assertion being established we can now work with an A whose m
divides all elements. We bring #m to the (1,1) spot and make all other
elements of the first row and column zero. Then we repeat the whole
process for the matrix obtained by omitting the first row and first

column ...

Thus we get an equivalent matrix of the required diagonal shape with the
required successive divigibility of the diagonal elements. Only the

requirements regarding their positivity need to be ensured.

If there is a row or column of zeros (this happens unless r = p = q} we
can change the sign of any row or column by using two signed
trangpositions involving this line of zeros : so in this case we can

make aill the di’s positive.

Even if there is no line of zeros by using two signed transpositions we
can change the signs of any pair of diagonal elements. ©So we can ensure
that at most one of these remains negative, and, in case this negative
diagonal element is not already dr' two more signed transpositions will

ensure this also.

The uniqueness of the reduced matrix follows from the following

characterization of its components :

(1) r is the rank of A, i.e. the largest 1 such that there is a nonzero
ixi minor of A,
(2) each product Ai =d,..d, (or for i =r, d

1
commnmon divisor of the ixl minors of A, and

1-4._;1d.]) ts the highest

(3) dr is positive unless p= q = r and the determinant of A |is
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negative.

The above three statements follow because they are invariant under our

operaticns, and true for the final matrix. gq.e.d.

Thus a matrix is arithmetically equivalent to the identity matrix In iff
it belongs to SL(n,Z), and this group is generated by the nzw n matrices
which have 1's on the diagonal and a single nonzero, and = 1,
off-diagonal element : this follows because pre and post multiplication
by such elementary matrices 1s equivalent to the row and column
operations which generate arithmetical equivalence. So, more generally,
a pxq matrix A of integers is arithmetically equivalent to B iff we can
find P € SL(p,Z) and Q € SL{q,Z} such that PAQ = B.
Identifying each rxt matrix M over Z with the Z-linear nmap z" - Zt
given by x —> x.M we can reformulate yet again : a group homomorphism A
7? 5 79 is equivalent to B : P — 7 iff we can find sense

preserving isomorphisms P and Q of Zp and Zq such that the diagram

p__A M
P

commutes. This shows that the quotient groups z%/im(A) and ZV/im(B) are

iscomorphic; so
zYin(a) = o{z/a,7 ¢ |4, ] > 1} 0 27,

from which the fundamental theorem of finitely generated abelian groups,
i.e. that these are direct sums of cyclic groups, -follows at once,
because any such group generated by q elements 1is, by definition,
isomorphic to a group of the type 29/1m(A).

We note that if we alse allow unsigned f&ranspositions of rows or
columns, i.e. if the above P and Q can be chosen from the bigger groups

GL(p,Z) and GL{gq,Z}, then the Smith normal form has all di > 0.

Over @ the analogous notion of algebraical equivalence, i.e. PAQ = B for
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some P € GL{p,0) and Q € GL(qg,®), is still simpler, because now the

normal form depends only on the rank. ]
Just the algebraical invariant r suffices for the next result.

Proposition 7 (POINCARE DUALITY). For any cell subdivision P of an
m~manifold V, the qth Betti number satisfies

b (P) =« (P) - r(ed(P)) — r(eTH(P)),
q q
*
and thus coincides with the (m—q)th Betti number of its dual P .

So, using invariance theorem, we get bq(V) = bm_q(V).
Proof. The formula follows al once because rank of the matrix ed {resp.
€q+1) coincides with dimension of the image of the corresponding

G-linear map 8 : C_ — Cq—l

(resp, 8 ' C - Cq) and so its kernel
9)

q+rl’ g+l
has dimension aq - rfe

So we have also b (P*} = q (P¥) - r(em—q(P*)) - P(em-q+1(P*)}. But
m=dq LI S I m-q+1, * g+l *

we Know aq(P) = mm_q(P Y, (e*(P)) = ¢ (P) and ({(e* “(P))

m_q * _ *

e (P ). So we have bq(P) = bm~q(P ). q.e.d.

[We note that, though it amounts to the above argument, the above
formula is obtained in the paper as a corollary of an algebraical
version of Prop.8 below, i.e. while reducing the following tableaux to
their reduced form, one allows multiplication of a row or column by a
nonzero rational : this enables one to make all d, = 1. 1.

AN ALGORITHM FOR COMPUTING HOMOLOGY

Poincaré uses arithmetical operations on the following initial qth
tableaux of a polyhedron (a matrix of size (aqfa "l)x(a rer ] built

q q q+l
from two successive incidence matrices),

»*
Ia (cq+13
q

(ehH” o
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taking care to add to each row or column of the tableaux a row of column
of the same kind (first or second) only. Using these he obtains a

sequence of intermediate tableaux

bt
ij "ig
Y 50

ending in a tableaux, having t and ti'j in normal form.

13
(1} We will continue Poincaré’s tableaux reduction a little further.
After having normallized tij’ and ti’j e wiéil also normalize the
submatrix tab of tij formed by its last aq - r{e ) rows and last aq -
r(e?} columns: since only these rows and columns are involved 1in this
step, ti’j and tij' remain normalized during this stage. We'll refer to

the tableaux so obtained as the reduced gth tableaux of P.

(2} Alsc for us each "normalization" means diagonalization {see Prop.
6') & 1la Poincaré's Second Complément, Iinstead of the weaker
triangularization (see Prop. 8) with which Polncaré makes do (except for

the trivial algebraical version) in this paper,

Poincaré equips each of the first aq rows of these tableaux with a

q-chain cq, and the remaining aq—l rows with a (g~it)}-chain cq_l. as

follows :

The chains associated to the rows of the initial tableaux are

9 d q-l aqml,'
o

q g-1

and, when we add to the row having the chain ¢, the row having the chain

¢’, the chain ¢' is changed to ¢’ - c.

With above refinements {1) and {2) Poincaré’s tableaux reduction gives

the following sharper result.

139




" Proposition 8 {CANONICAL BASIS OF P). The reduced qth tableaux of P
furnishes the basis c? , 1 =1 = - r(eq) for the Iintegral q-cycles of
P, and the multiples di(eq+1).c§ , 151 = r(cq+1). of these cycles,

constilute a basis for the integral qg-boundaries of P.

Proof. Clearly c? is always a basis of C_. And, since tij : SL(aq,Z),
we see that T, t, . ¢, 15 j=a, is also a basis of C_ for all
1 1 1 q q

tableaux.

For any intermedliate tableaux the following equations hold :

q - q-1

al( Ly tij ¢y ) = Zi’ b seh

To see this note that, for the initial tableaux, these are the defining
equations of the boundary operator,

-1

a(ady = z» 3., a‘;f,

J Ji
Furthermore, each elementary column operation simply adds one equation
to another while each elementary row operation is simply a

re~arrangement
t.c + t'.c' = (t+t’).c + . (c’— )
within one side of each equation.

Using above equations of 4 for the reduced tableaux, we see that no
nontrivial combination of the first P(eq) members of this basis of Cq is

a cycle, So the remaining ones, which are cycles, give a basis

3

q q :
{Ei tijci r(e?) < § o= aq} (1}
(where 1 = { = aq) for the g-cycles of P.

We next check that, for each intermediate tableaux, all g-boundaries are
q!
! a1 g

because, for the initial tableaux, these expressions are Zisj’i a; =

linear combinations of the expressions Zitij’c this follows as before
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B(agfl), and so generate all g-boundaries.

For the reduced tableaux only the first P(€q+1) of these expressions are

g+l, «

nonzerc, Further being multiples, di(e ).ci , of basis elements, they

are linearly independent, and so constitute a basis for the g-boundaries
of P.

We now (finally 1) use €916 = 0 (i.e. 808 = 0) to see that ¢P's are

CI"']) L

g-cycles for at least 1 = 1 = rie Subtracting suitable

combinations of these from the g-cycles of (1) we get cycles (1)’ which
are as in {1) except that the summation is now only over ried) < i = mq,
i.e. all coefficients are from the submatrix tab which we normalized.
So the nonzero cycles {1}’ are nonzero multiples of some c?

r(eq+1} < 1 = g, Since the cycles c? , 1 = 1 = g, thus found are
linearly independent and generate the cycles of the basis (1) it follows

where

that they form another basis of g-cycles (and so g = mq ~ r(e). q.e.d.

[Note that Prop. 8 shews that the gth homology group of P is given by

b

q+1) > 1} o Z ! )

R

H (P) Q{Z/di(cq+1)2 L 4, (e

where bq = o —r(eh r(sq+1) (other applications will be given

elsewhere).

Thus the homology of P is an algorithmically computable invariant of the

gsequence of its incidence matrices.

It should be interesting to similarly study invariants of other
sequences {or arrays) of matrices &4 {maybe even with negative "Betti
numbers" bq = aq —~r(e?) - r(eq+1} '} which somehow reflect (like the

incidence sequence) the way in which the cells of P fit together 7 |
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§ IX. The intersection number of a g-chain Vl = Eiaia? of P (a cell
subdivision of an oriented closed m-manifold) and an {(m—q)-chain V2 =
- *
Eiai’bT 9 of the dual subdivision P satisfies
= + !
LV, V) L%
This follows because each g-ceil of P intersects only the dual

¥
{m~q)-cell of P and that too just once and always with the same

orientation,

Proposition 8. It is possible to find a q-cycle V1 in P such that
*

E(Vl,Vz} is nonzero if and only if V2 “0 0 does not heold in P .

Proposition 9 : The above assertion is true even If " in P " and in
E .
P " are omitted.
{In Analysis Situs we saw that this implies the duality theorem.)
Proof. Note that a(v ) = 0 in P is equivalent to the equations
*
¥, o e¥ (P) = 0 which are same as the equations Z o g q+1(? ) =0
17174 1741
*®
On the other hand V? 0 does not held in P iff there are no Qi € @
— *
such that 0 e J1q+ (P ) =« for all i, l.e. Lff the matrix e (P

has less rank than the augmented matrix [e™ 1(P*) «']l, i.e. iff the
null space of the latter matrix has smaller dimension, i.e. iff we can
find &, « O (and so also @, € Z) guch that Z o, 8J1q+1(P } = 0 holds but
Eiaiai’ = 0 does not hold. This proves Prop. 9.

The “only if" of Prop. 8' was correctly proved in An;lysis Situs. For
"i{f" {for which an incorrect proof was given in Analysis Situs) we can
use § XI below to find a cell subdivision P of the m-manifold in which
the glven nonbounding V is cellular, znd then use Prop. 8 to find a Vi
of P such that I(Vl,V ) is nonzero., g.e.d.

Proposition 10. The gth Betti nrumber of P colncides with the one
defined as per Betti’s original definition (see § 1) iff the greatest

common divisor of the largest sized nonzero minors of the (qg+l)th
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Incidence matrix of P Is 1.

[The following shows that Betti’s qth number coincides with the leasi

number of generators of the qth homology group.]

Proof. This follows at once from Prop. B : the cycles c? L1 o= i =
r(£T*1) bound iff d.l(z:q+1
adding to bq(?} the number of i's such that di(sq+1} is bigger than 1,

) = 1. So Betti's gth number is cobtained by

and coincides with bq iff the product ﬁr of these di’s is 1. g.e.d.
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§ X. The following proof indicates an "arithmetical” (= combinatorial)

¥
argument for bq(P) = bq{P ) which applies also to some abstract schemas.

Proposition 11. Let P‘be a cell subdivision of a closed oriented
* .
J-manifold and P the dual subdivision. Then all homologies Iinvolving

. ,
edges of P and P are linear combinations of homologies of the types

8] 0,0 00C 00
— an a, = a, — b
zﬁb aﬁk d ka N
1 O O 1 o,

where b_ = {resp. as a ] Is an edge of P (resp. P) and is a

h g

2 0 2
vertex of a (resp. bk is vertex of bl)

Proof. The boundary of any face of the 3-cell b (resp. ak} is a linear
combination of homologles of the first (resp. second) type, s0 it
#
follows that all homologies of P (resp. P) are also such combinations.
*
Since a i-cycle of edges of both P and P is necessarily a sum of a
l-cycle of P and a 1- cycle of P , we only need to show that any 1~cycle

of P can be modified by means of above homologies to a l-cycle of P

For this we partition the given l-cycle into edge paths

ah]{ah 2 )(a .ag}(ag cee

lying on 3-cells ..., ai , ai , ... of P respectively. Homolegies of

the second type change this cycle to
G 0,00 C.00C 0]
ah)(ahbkaj}(ajbmat)(at e
which can be repartitioned into edge paths as
0.0 000 00
a’hbk)(bkajbm){bmat e
and using homologies of the first type this changes to

Q,,,0 0,,,0
bk){bk"'bm)(bm ey
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where the edge paths are respectively on the 3-cells ... , b, , ... of

*
the dual complex P . g.e.d.

-Poincaré points out that the above argument works for any abstract
3-dimensional P whose vertex links have Betti numbers = 2 : thus he Iis
anticipating the later generalization of duality to homology manifolds,

i.e. P's whose vertex links have homology of a sphere.
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§ XI. It is easily seen that a manifold can be cell subdivided if and
only if it can be triangulated, 1i.e. subdivided into simplices.
Poincaré now gives some ldeas re the deeper .preblem of whether a

gsubdivision exists at all.
Proposition 12. Any (differentiable) manifold V can be triangulated.
Attempted Procof. We assume triangulability in dimensions < p.

Poincaré assumes that the connected V is defined to be a union of
manifolds v each parametrized by a p-~submanifold of some g-space defined
by g-p equations. Then, using implicit function theorem, he reduces

this to the modern definition of V being a union of manifeolds v’ each

paramirized by p-space.

Then, within each »', he defines v" to consist of points which are not
in any of the other v’'. Poincaré says that "clearly" one can express V
as a union of manifolds v" having disjoint interiors (but these v" need

not be cells or even simply connected).

[However this is far from “"clear® : the v"* he just defined are certainly
not such. Sc some modification — e.g. shrinking away common parts in

some manner — is needed. ]

In each of these v" parametrized by p variables Zyr Zoy e, WE choose
an origin and consider (half) rays tal, taz, ..., L>o0. It will be
assumed that they cut 8v" finitely many times (it seems very likely that

this can be arranged by a slight perturbation of these v").

So, excluding the special rays, i.e. those which have points of tangency
with 8v", all rays cut 8v" an odd number of times. The special cone of
special rays cuts dv" in a éubvariety U of dimension = p-2 which divides

dv" into some regions R,

Such an R € 8v" is called of the first kind if one (and so all) rays
leave v" from it; otherwise of the second kind. Using the inductive

hypothesis we triangulate all these (p-1)-dimensional regions of the '
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first kind.

This triangulation is now extended to a cell subdivision of »* into
pyramids, or sections of pyramids of (p-1)-simplices over the origin,

furnished by unions of ray segments passing through them, and then each

sectioned pyramid further subdivided into p simplices of dimension p :
¥

|
g /

These triangulations of the manifolds »" however suffer from the defect
that the triangulations of the boundaries of two v" may not coincide.
To overcome this difficuliy we take a common simplicial subdivision of
the various triangulations of each dv". This results in a subdivision
of the two simplicial ends of each simplex of v", and so the latter can

be triangulated as the join of its subdivided ends. 7?7 g.e.d. 7

Poincaré says that we are now "débarrassé des derniers doutes” re
triangulability, however ihis was really established beyond the shadow

of any doubt only much later by Whitehead, Cairns, and others.




CEAPTER V

SECOND COMPLEMENT A L’ ANALYSIS SITUS
Proc. Lond. Math. Soc., 32 (1300), 277-308

Introduction. Poincaré says that he’ll doubtless be returning to the
far-from-finished business of "4nalysis Situs” many times, but for the

moment it is only to simplify and clarify results already in hand.

§ 1. Notational review. We mentioned that by “ai e P simply connected"
Poincaré probably intended to say that a? is a cell : this becomes all
but certain now for he writes that this phrase means that (the boundary

of') a? ig a "hypersphére” (see also the conjecture at the end).

The p-dimensional elements of any cell subdivision of our closed
oriented p-manifold will be given the manifold’'s orientation. Also, as
mentioned before, corresponding to each orientation of the lower
dimensional cells of P, the lower dimensional cells of its dual P* will

be oriented in such a way that the incidence matrices satisfy
el ¥ *®
PN = ey va .

Propogition 1. With above orientations the intersection  number

N(a?,b?_q) is +1 or -1 with sign depending only on q as follows :

g =0 1 2 3 4 5 B 7 B
+ — - + + - - + +0T
Proof. Let 8?5 = €§;q+1 = 1, and let the oriented agfl be given by the

1 =0, ..., Fp—q = 0, ¥ = 0, where omitting the
last equation (and replacing it by ¢ > 0} gives the oriented a?.

sequene of equations F

l.et the coriented b§“q+1 be given by the sequence of equations ¢1 = 0,
~1

é = 0. We have ¢ = 0 at the common point of b?_q+1 and aq )

g-1 - J
and ¥ > 0 at the point common to its face b? 9 and a?. By adjusting ¢
pPd p-g+l
- i Ji

= 1 it now follows that the orlentation of b? 1 4s given by the sequence

we can assume ¢ < 1 in b§‘q+1 and ¥ = 1 on this face From €

18-




of defining equations ¢1 =0, ..., ¢ = 0, 1-y = 0 (so replacing last

g-1
equation by 1-¢ > O gives ¢ < 1 as desired].

By definition the interseciion number N(a?,b?mq) is the sign of the pxp

determinant formed by the partial derivatives of

Fl""’FquJ ¢1=Ol"'l¢ =0, 1I-¢ = 0

while N(aq—l,bp_q+1) is the sign of the pxp determinant formed by the
J J g

partial derivatives of

F., ... ., F__ ,¢=0, ..., = 0.
1 p-q v ¢q~1

The result follows because these two determinants (which are equal upto

sign) have the same sign if and only if q is even. g.e.d.
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& 2. We now sketch Poincaré’s diagonalization of integer matrices.

' Proposition 2. Any integer matrix can be diagonalized by pre- and post

multiplying by two integer matrices of determinant % 1

Proof. Let us denote the rank and elementary divisors of the given

integer axt matrix A by r and di‘ 1 =1 = r(A).
There exists P € CGL(s,Z) such that g.c.d. of the first row of PA is dl.

We’1ll argue out only the case s = r and d1 = } since the general case

can be reduced easily to this.

For any P € GL(s,Z), the g.c.d. of the first row of PA divides the
g.c.d. Ar of all rxr minors of A. So to ensure that it is 1 it will
suffice to arrange that if any prime p divides Ar then 1t does not

divide all elements of the first row of PA.

Since d1 = 1 there is a row i{p) containing an element ¢ not divisible
by p. If the elements of the first row of P were all divigsible by P
excepting the i(p)th which equals the (p-2)th power of ¢ mod p, then,
since the (p-1)th power of c mod p is 1, an element of the first row of

PA is not divisible by p.

Now choose any s relatively prime integers satisfying the above
divisibility conditions with respect to the distinct prime facters p of
Ar’ and then any P € GL(s,Z) having these as its first row.

Next we find a Q € GL(t,Z) such that d, is the leading element of PAQ.

1

Choose any t relatively prime integers such that their scalar product
with the first row of PA is‘dl, and then choose & Q with these as first

column.

Now we make all other elements of first row and column zero, and then

repeat the above two steps for the remaining rows and columns.
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The g.c.d. of the remaining elements being d2" this will now come to
(2,2) spot ... so we'll finally get the normal form diag(d,, d,, .. ,d_
0, .. ) of A due to Smith (1861). qg.e.d.
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§ 3. Arithmetical invariants of incidence matrices. To calculate
these, we diagonalize these matrices via arithmetical operations, but
note that one may also use (unsigned) transpositions of two rows or
columns (equivalently a row or column can be multiplied by -1J.

[This follows because the incidence matrices e?j are never of maximal
rank (since nonzero multiples of cells don't bound) and so their
arithmetical invariants are also invariant under the (slightly) coarser

equivalence of Prop. 2.

We’1l allow this extra operation even for "polyhedra of the second type"
{see § 4 below) having a nonsingular square Incidence matrix. This
makes sense because a subdivision gives a polyhedron (of the "first" or
ordinary kind) and we are interested only in those arithmetical
invariants which are also invariant under subdivision (e.g. the size of
an incidence matrix is uninteresting).]

Poincaré equips the ith row (resp. Jjth column) of any e?j obtained from

?j by using arithmetical operations with a g-chain c? {resp.
(g-1}-chain yg_ll as follows :

£

The chains associated {o e?j are ag {resp. ag—i) and when we add to the

row {(resp. column) having the chain ¢ (resp. ¥), the row (resp. column}

having the chain ¢’ (resp. ¥'), the chain ¢ (resp. ¢') is changed to

3

c+re’ (resp, ¥ — ¥).

‘o -1 q . q
Proposition 3. 8(cg = .eg. q holds for all e}, equivalent to &],.
P l) XG 1) ?J 1J 1}

s

Proof. The result follows because for e?j these are the defining
equations 8(&?] = Zje?j aq_l of 8, and each elementary row operation
amounts to adding one such equation %o another, while an elementa;y

column cperation amounts to a rearrangement ey + e'y’ = (ete'ly +

e’ (y'-y) under the summation sign. g.e.d.

g
i3’
shorter proof {(given before) of b (P) = « {P) — r(e
= 4 94 * p-g+l, *
in turn yields bq(P) = bp_q(P ) because (e¢*(P)) =¢" " 7(P) V q.

Poincaré now obtains the
q+1) - r(aq), which

Applying this result to the diagonalized e
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Also this shows that Betti’s gth number exceeds (Poincaré's) gth Betti

art bigger than 1,

number bq(P) by the number of elementary divisors of
and the product of these divisors gives the number of "distinct” cycles
whose multiples bound, 1.e. ]Tcr(Hq(P){, A manifold will bhe said to
have no torsion (see § B for a justification of this terminology) iff

‘this produci is 1 .

[We see that Poincaré has thus given up on his tableaux and reverted to
incidence matrices (which are in fact called "tableaux" in this paper,

but we'll use tableaux only in the sense of the previous paper).

But, as we saw, the complete reduction of the tableaux gives much more
extra information than the diagonalization of the Incidence matrices,

e.g. one gets a Hodge basis of P, and thus its (colhomology groups :

R

b
iy (P) @{Z/di[sq+1)2 : di(8q+1) >11ez 9,

b
Hi(p) = @{Z/di(sq)z : di(sq) s 1y ez 3.

- *
P q+1(? )

*
And so also, by using above formulae and %P , one

obtains the full Poincaré duality of (colhomology groups :
- *
H (P) = P ).

It is curious that Poincaré set up his tableaux only to diagonalize
their corners : it seems reasonable to suppose that at some time he must
have intended to reduce them further, but somewhere aleng the line he
gave up on this good idea ! We'll give more details about the

combinatorial Hodge basis mentioned above later.]




& 4, Computations. Instead of using P's of the above or first kind, in
which the cells a? 's were “distinct", Poincaré now uses more general
polyhedrons P of the second kind, in which the ag 's are still cells but
“not necessarily distinct".

This means that the closure of any cell iz obtainable by making some
identifications of the faces of a closed cell (so these P's are roughly

todays CW complexes). The incidence number S?j of a2 P of the second

kind is the sum of the the ordinary incidence numbers e?., as aqri runs
-4 q 1J J

over all occurences of aj in ai.

Proposition 4. The formulae given above for Bettl numbers etc., in

terms of the invariants of incidence matrices, generalize to all P's of

the second kind.

Poincaré does'nt give a proof but an obvious approach is to see that
proof given previously for subdivision invariance extends to such P's,

and that by subdividing P can be made of the first kind.

However this proof does not extend to P's of the third kind, i.e. those
for which the 2 ’s are not necessarily cells, and it 1is easy to sce

that Prop, 4 is false for such P’s,

Preposition 8. One has HO = 7 and HB = 7 for Exs. 1-5 of § 10 of

"pnalysis Situs", and the remaining homology groups are as follows :

Example 1| Example 2| Example 3| Example 4| Example 5
i 72 7° 0 z° 0
2
H, 7° 2/28 7/2761/2L| T ® 1/2Z 7/21

Procf for Ex. 2. Our P has (for all examples) just one 3-celland three

faces each occuring twice in its boundary with opposite orientation, so

83 = [0 0 O].




Indexing the three rows and the two columns of 82 by the three faces
ABDC=R'D'C'A’, ABB'A’=DD'C’C, ACC’A'=DD’B’'B, and the two  edges
AB=RB'D' =C’C=B’A'=AC=DD', AA’=DC=C’A’=B'B=C'D'=DB we see that

0 0]
82 = 2 -2
0 0]

To check e.g. that sz = 0 note that the second edge has two occurences,

iz
viz. DC and DB, in the boundary of the copy ABDC of the first cell, and

21 = 2 because the first edge
has two occurences, viz. AB and B’A’, in the copy ABB'A’ of the second

these have opposite orientations. Again e
cell, and both are with positive orientation.

Likewise the two edges index the two rows and the two vertices

A=B'=C' =D, B=D’=C=A" the two columns of the first incidence matrix,

1_ 1 -t
£ 1 -1l
The three matrices are respectively of ranks 0,° 1 and 1, and the

elementary divisors of the last two are 2 and 1 respectively. So Ex. 2

has the stated homology.
The computations for the other examples are analogous. gq.e.d.

[Poincaré ignores Ex. 2 while illustrating his method : this he did
because Ex. 2 is not a 3-manifold and all his definitions are made only
for manifoids. Actually the (ordinary) homology of the underlying space
of any cell complex P is also defined to be H(P), for it is known that,

even for all such spaces, this definition does not depend on P.

However as Ex. 2 shows, duality need not held for non-manifolds : so
maybe Poincaré did not make this generalization for he felt that
ordinary homology is not the "right" homology for non-manifolds 7

We remark in this context that Macpherson has now changed the definition
so as to take into account the Lhe presence of singularities, and for
this new intersection homology, Poincaré duality does hold for all

orientable pseudomanifolds like Ex. 2.




&

We note that Exs. 4 and 1 (; S1

their homology is also given by Prop. 6 below} and Ex. 5 (= RPS} is

xSlxsl) are particular cases of Ex. 6 (so

defined in the paper by using antipodal identification of the boundary

of an octahedron rather than that of a cube.

Another difference from the paper is of course that Poincaré only gives
ranks and elementary divisors of the incidence matrices, but as we have

seen, these immediately yield the (co}homology groups of P.

Note that Exs. 5, 4, and 3 (¢ S°/8) all show that the 1- and
o-dimensional Betti’s (as against Betti !) numbers of an orientable

3-manifold can be different. ]

We recall that Example 6 {considered in §§ 11,13,14 of "Analysis Situs")
gives for each T & SL(2,Z) an orientable closed 3-manifold M (or MT) and
two such manifolds M and M' were shown to be diffeomorphic if and only
{f T is conjugate to T’ or its inverse in GL(2,Z). Furthermere, the
fundamental group and Betti numbers of these manifolds were calculated.

Peincaré now computes their torsion.

Proposition 6. The homology of the orientable closed 3-manifclds MT, T
€ SL(2,Z), of Ex. B, is given by

H1 # 7 @ Z/dl(TmI}Z @ Z/dz(?—l)l and H, =%

Proof. The assertion that the second homology has no torsion is in fact

true for all orientable closed 3-manifolds : see § 6 below.

r

To calculate H1 we use § 13 of ”Anal&sis Situs”, where it was shown that

irTT= [: g , then H1 ts isomorphic to the free abelian group
generated by Cl’ CZ’ and C3 subject to the relations

R

(u‘.—l).C2 + 7.C3 D’,

B.C2 + {6--1).C3

iz

So, by diagonalizing the matrix T-I, of the coefficients of the above
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relations, we obtain the required result. gq.e.d.

[It follows that amongst these infinitely many manifolds MT there are
many examples of non-homeomorphic manifolds having the same homology
groups : e.g. the manifolds cerresponding to T = [_? é and [g é] are
such. However, as shown in "Analysis Situs”, these manifolds are

homeomorphic if and only if their fundamental groups are isomorphic.

In § 11 of "4dnalysis Situs" these MT’S were also obtained by a palrwise
identification P of the faces of a suitably subdivided cube. So, if
nenzero, di{T—I} and dz{T—I) coincidg with the elementary divisors of
the incidence matrices of this P (to illustrate this Poincaré writes

down these incidence matrices for the subcase T = [:1 é} 3.1

Proposition 7 (HEEGAARD’S EXAMPLE), 41l {x, y, z) € G3 satisfying

22 = xy and Ix|2 + [y|2 = 1

form a closed connected orientable 3~manifold with H1 2 7/2L and HZ 2 0,

Proof. 1f (x,y,z) satisfies these three (real) equations, then 0 = |x|,
ly|. |z} =1, so the set V of all such 3-tuples is compact. It Iis
smooth because a calculation (which we omit) shows that the Jacobian of

these three equations is always of maximum rank 3 on V.

To find a cell subdivision P of the second kind for V we begin by
rewriting its defining equations as

|z|2=l><!-|b’| , 2.¢=&+ }x]2+[y|231,

where x = ]x}elg, y = |y!eln and z = ]z}eic.
So V can be obained from the 3—cell 0 =u=17=2r 0 s v = §&+n = 4n, O
=W = |x| =< 1 by identifying boundary points for which x, y, and z are

the same as per the above equations : & ’

w = (| x 5 Ve éﬁ_?




These identifications are as under :

(1) Each line segment m = c¢ of the bottom face |x| = 0 (resp. £ = ¢ of

ic

the top face {x| = 1) gives the single point (x,y,z) = (0, e, 0)

| =
{resp. (x,y,z) = (ekg, 0, 0)lof V.

(2) Furthermore, each pair {0, v, w), (2m, v, w) of points of the box
gives the same point (x,y,z) = (we'", (1~w2)1/2, |w|1/2(1—|w|2)1/zeiV/2)

of V.

(3} Finally, each pair (u, 0, w), (u, 4m, w) of points gives the same

point {we_lu. {1—w2}1/2e1u, w1/2(1-w2J1/2) of V.

Doing only the identifications (1) on the above box we get a 3-ball with

boundary cut up inte four (curved) quadrilaterals :

Now {2) and {3) are equivalent to the identifications  ADEF=BCDE and
ABCD=ABEF of ihese quadrilaterals. ’

Doing these we get the reguired P : it has ocne 3-cell, the 2 faces
ADEF=BCDE, ABCD=ABEF, the three edges AD=AF=BE=BC, AB, CD=EF=DE, and the

2 vertices A=R, C=D=E=F,

With respect to this order of the cells, the Incidence matrices of P

turn out f{o be as follows :
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' ' 1 =17
e =0 0], & = [8 (1) f] Voo oy,
0 0

For example ez =0 (resp. 823 = 2) because the copy ADEF of the first

11 H
face contains the two occurences AD and AF of the first edge (resp. DE

and EF of the third edge) and these have opposite (resp. positive)
11 iz 1 (and not O as in paper) because there Iis
only one occurence, viz. A, of the first vertex, in the copy AD of the

orientations. Again ¢
first edge.

Normalizing the matrices and using the previous results we see that the

Z, HZ 2 (g, H = Z/2Z and HO 2 Z, qg.e.d.

HH

homology of V is given by H3 1
[We can use the method of § 12 of "Analysis Situs” on the above P to
check that its fundamental group is also isomorphic to Z/2Z. However
this (as well as some of the above) effort is wasted because

-

Heegaard’s manifold is diffeomorphic to RPB {= Poincaré’s Ex. 5 } !

To prove this note that ABCD=ABEF amounts to feolding back and pasting
the two quadrilaterals having edge AB in common in the last diagram,
This results in a 3-ball with two poles A,B and an equator

E{=C)F{=D)E(=C) marked on its boundary :

Under the final BCDE=ADEF these poles are switched and the equator gets
rotated by n (e.g. great circle arc AF goes to BE, AE to BF, etc. ) i.e.
this is nothing but the antipodal Iidentification on the bounding
2-sphere of this 3-ball : so V =& RPB.

So the link at the origin, of the variety defined by Q(x,y,z} = 0, where

Q is any non-degenerate quadratic form over ©, is homeomorphio to RPB

this follows because a unitary change of coordinates will make the
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¢ ; 2
equation z° — xy = O.

In fact, still more generally, the link at the origin, of the complex
hypersurface in e given by Q{Zl’ e ,zn) = 0, where Q is a
non-degenerate quadratic form over €, Is homeomorphic to the unit

tangent sphere bundle of the (n-1}-sphere.

And this can be seen simply by noting that the equations (zl)2 S
(zn)2 = 0 and [zilz L+ |2n|2 = 1 are equivalent to (xl}z ¥, o+

2 _ B 2 2 ‘ - =
(xn] = 1/2 = (yl} + .., % (yn) and Xy, * ... Xy = 0 (here 2y
Xk * lyk) ! Liawmot ke’ &?‘\3’0?\-‘(@ 0‘? Lc{smr?_f; Mhows e LWA}r;ux_ VGM.(JXG

iy Crnet'ak e *f e an e foufr &'"QWM%KVE HaanRIam?fﬂ )
For more on the topology of links of isclated singularities of complex

hypersurfaces see Milnor’s book on this topic. ]
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& 5, Invariancé under subdivigion. The following argument generalizes

that of §X of (the first) Complément.

*
Proposition 8. Dual subdivisions P and P have the same Betti numbers

*
and torsion coefficients (i.e. Hq(P) 2 Hq(P T ¥a .

Proof. We note that the boundary of each Jjoin q+1.b?+1, where a§+1
(resp. b?+1) igs a face of the cell a?"m“1 {resp. bﬁwq—iJ dual to bT+1

(resp. ag+1) is given by the product formula

a(a§+1.b?+1) = a(a§+13.bT+1 ¥ ag+1.8(bT+i),

where 8 is the reduced boundary, i.e. boundary of a vertex is taken to

be 1 (= empty cell) rather than 0.

We will show that upto addition of homologies of the type

a(a§+1).bT+1 . aﬁ*l

.a(b?+1) ~ 0,

*® *
any cycle of P (resp. P ) is homologous to a cycle of P (resp. P}.

For this note that the product formula implies that a bidegree (g, m+1)

chain T A I p™L - v 9 ™! {5 a cycle iff each CY = D cd is a
i"ki"k' 1 17107 i ki'k pem-1

1 L '

is the boundary of some (g+l}-chain D? contained in this closed cell.

cycle. Further each of these cycles Cg, being in the closure of &

So the given cycle can be rewritten as EiB(D?+1).b?+l, which can be
changed, by adding homologies of the above type, to the bidegree {(qg+t,m)
cycle Y, Dq+1.6{bm+1).
171 i
*
Using a sequence of such homologies we see that any cycle of P, 1i.e.

one of bidegree (0,t}), can be changed to one of P, 1.e. of Dbidegrese

(t,0). And likewise we can go in the opposite direction.

Thus we get a i-1 onto correspondence between H(P) and H(F*}. So P and
" .
P have the same Betti numbers. Further they have the same torsion

coefficients because any order k > 0 element of H(P} which is given by a




“cycle whose kth but noriesser mueltiple bounds, corresponds to an order k
*
element of H{P ). (Alternatively one can check that the correspondence

iz additive,) g.e.d.

* -
Since e (P ) is the transpose of 8p+1 9(p) it follows as an immediate
corollary that the qth torsion coefficients of P coincide with Iits
(p+ti-q)th (not (p-g)th as misprinted in paper} torsion coefficients

(this is essentially same as Hq(P] = g I(p)).

Let us consider (cf. § 16 of ‘“Analysis Situs”) a cell subdivision
obtained from another by an erasure of a (g-1)-cell Iincident to

precisely two q-cells, which have no other (g-1)-cell in common.

*
Poincaré notes that both P and P can be recovered from their common
derived P’ by a sequence of such erasures, thus Prop. 8 also follous

from the following.

Proposition 8. Homology Is invariant under erasures of the above type.

Proof. We note that the erasure of an a?_i incident to {only) a? and
ag (which have no other {g~1)-cell in common} is equivalent to the
following combinatorial operation on the sequence & = (e of its

incidence matrices :

If the addition of the kth row of ed to the Jjth row makes the ith column
zero and creates no other new zeros, then omi:i the kth row and ith
column from £ after doing this addition ; also omii the kth column from

4 -
e ! and the ith row of &7 1; keep all other malrices same.

We note that both aq and aq—l decrease by 1, and the Bumbers of cells of
other dimensions remeins same; also that operation affects only the

incidence matrices 8q+1, eq, and eq_l.

qtl

However neither the rank or the elementary divisors of ¢ change
because the omitted kih column was identical teo the jth. Likewise the
image of the map 4: Cq_1 - Cq_2 {corresponding to gq—l) is unaffected

because the boundary of the omitted a?_l is also the boundary of another

g-chain on the boundary of aq. However the rank of Eq decreases by ohe
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but only an elementary divisor = 1 is lost in this process this
follows because one cannoi obtain the cycle bounding ag as the boundary
of a chain which is the sum of the new bigger g-cell and the remaining

g-cells of P.
Thus the homology groups are unchanged. ¢.e.d.

[A fundamental theorem of Neuman says : two triangulations of the same V
are related by the equivalence relation generated by stellar

subdivisions.

Since one can recover a simplicial complex from a stellar subdivision by
a sequence of erasures the above proposition, in conjunction with this

Newman's theorem gives a proof of the invariance theorem.
Note that Newman's theorem implies that the invariants of V are

precisely all invariants of incidence matrices under the relation of

combinatorial equivalence generated by the above operation. ]
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with the preceding the (g-1)-cell associated to the in-between vertical.

g, choose for each of these g-cells the same (resp.
opposite) sign as for the preceding, according as the product of the two

Starting with a

elements of the in-between vertical is +1 {resp. -1). Then the boundary

of the "closed chain" Zl<i<t + a? of g-cells contains none of the
(q~i)-cells associated to the verticals, except possibly the one shared
by a* with its predecessor a3 This last pamed (g-1)-cell is in the

1 t’
boundary iff the product of the elements is +1 (resp. -1) according as

the number of horizantals is odd {fesp, even}). g.e.d.

Proposition 11. If a square matrix of 0’'s, +1's, and -1's, has no

one-sided "closed chains" then its determinant must be 0, +1, or -1,

Proof. The stated property and |det| are invariant under an interchange
of two rows/columns, as well as multiplication of a row/column by *1.
So we can restrict ourselves to the case when the given square matrix A
nas 1 in the (1,1) spot, and all the other nonzero elements of the first

row are also 1.

In case the kth element, k = 2, of the first row is 1, we make it zero
by subtracting, from the kth column, the first column. This does not

alter the determinant,

We assert that the resulting matrix A’ still consists only of 0's, +1's,
and -1', and also does not have a one-sided ”closed_chain".
We will take k = 2. Let a be any element of the second column of A, a’

the corresponding element of A', and 2, the element of the first column

in the same row. Consider the ‘“closed chain" 11aa1, where 11 =

horizantal joining the first two elements of the first row, of A. If a

and a1 are both nonzero, then aa1 = 1, i.e. they are both +1 or both -1:
this gives a' = a — a, = 0. So A’ is also over {-1, 0, +1} as asserted.
Now consider any "closed chain" of nonzero elements of A’. It has an
even number of elements on the new, i.e. second, column. If it  has

none, it is a "closed chain” of nonzero elements of A, and so two-sided.
Otherwise it can be "factorized" as follows into "closed chains" having
exactly two elements on the second column, with these being consecutive;

and it is easy to see that it will suffice to show that each of these




t

"components" is two-sided.

k=2

L,

-

¥ e

So we will assume that our “closed chain" has exactly two (nonzero)

P

AL

elements a’, b' on the second column, and these are consecutive. We

have fo show that it is two-sided.

Since a’, b' are both nonzero, exactly one of {a, al}, and likewise
exactly one of {b, bl}’ is zero, and the other is 1. If & and b are
nonzero, then our "closed chain" is one of A, so two-sided. If 2, and
b1 are nonzero, then it is a "closed chain" of matrix obtained from A by

multiplying its first column by -1, so again two-sided.

Finally, if a = 0 and b1 = (0, consider the "closed chain" of A formed by

alllb, and the part of the "closed chain" of A' not containing a’ and
b’. This has one more vertical than the "closed chain” of A’ being
considered, and the product of its elements is the same except for a

gsign change. So the "closed chain" of A' Is two-sided in all cases.

Use the above process to make all but the first element of the first row
1. Now continue with the smaller square matrix obtained by omitting the
first row and the first column. The result follows because finally we

are left with a singular matrix or [%1]. g.e.d.

[We note that a matrix A over {-1, 0, +1} is arithmetically equivalent

I 0
to | TIA) via matrices over {-1, 0, +1} if and only if it has no

0 0
one-sided “closed chains” {interchange of two rows/columns is allowed).

To see "if" we proceed as in the above proof, noticing that all other
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elements of the first column can also be made zero in same manner,

before omitting the first row and column.

To see "only If" we note that the above diagonal matrix has obviously no
one-sided “closed chains", and from it deduce as above the same property

for any matrix related to it by such operations.

We note that this is only a sufficient condition that a matrix over {-1,
0, +1} have all elementary divisors 1, such matrices need not be

diagonalizable via matrices over {-1, 0, +1}.]
[There is an alternative argument which gives more.

Proposition 11°’. Let Q be any set of complex mumbers, containing {-1,
0, +1}, which is closed under multiplication, and let A be a square
matrix, with entries from §}, such that the alternating product of any
nonzero "closed chain” having an even (resp. odd) number of horizantals
is +1 (resp. —1). Then det(A) e Q.

Here by alternating product we mean a.bwl.c.dwl.

(see fig. above).

In the following we'll use the stated conditions only when there is at
most one horizantal/vertical on each row/column : however note that the
"factorization" pictured above then implies the condition for all

"closed chains".

Proof. The given conditions are equivalent to saying the sums of some

pairs of nonzero terms in the right side of

_ _ T
det(A) = Zp (=102 1(1)%an(2) *** Pan(n)

are zero,

To see this, interpret mw and ¢ o be the permutation matrices given by
the starting (resp. end) points of the horizantals of the "clesed chain"
and rewrite the condition a.b l.c.d ' =z%1as (a.c. ...) ¥ (b.d
.} = 0. (The permutations keep rows/columns not occuring in the

"closed chain" fixed.)
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" Dropping all such pairs we get elther det(A) = 0 or else the value of

the determinant is equal uptc sign to any of its nonzero terms. g.e.d.]

Proposition 12. If P has an orientable g-skeleton, then qul(P) is

free.

Proof. This follows at once from the previous two results because
Tor(Hq_i(P)) = @iZ/di(eq(P)), where Hidi(sq(P)) is g.c.d. of the biggest

sized nonzero minors of £{P). g.e.d.

[The converse is false : one can e.g. extend the triangulation of a

Mobius strip embedded in S:3 to a triangulation P of Sa.

We note that a necessary condition that the manifold admit some P all of
whose skeleta are orientable is that the Stiefel-Whitney cohomology
classes of P be all zero. It is possible that this condition 1is also

sufficient 7

For more on these and other characteristic classes of a manifold see the
book by Milnor on this topic.]

For example, the 1l-skeleton of any P (for which each edge has two
vertices) is clearly orientable, so HO{P) is always free (of dimension

equal to the number of components of P}.

Again, the orientability of (the p-skeleton of) the p-manifold P implies
that Hpul(P) is free ( : a fact which we had verified before in many

computations involving orientable closed 3-manifolds).

On the other hand a non-orientable closed p—mahifold always has
(p-t}-torsion, e.g. the real projective plane ﬁPz (i.e. Ex. 7 of
"Analysis Situs”) has the following cell subdivision P of the second
2 Z, H, = Z/2Z and HZ o.

R

kind, whose incidence matrices give H

0 1
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Poincaré ends by announcing that "if a closed p-manifold has the same
homology groups as a p-sphere, then it is homeomorphic to a p-sphere”.

He says that its proof, being long, will be given elsewhere,

Actually this “"theorem" is false, as Poincaré himself showed later by
giving in the “Cinquiéme Complément” an example of a closed 3-manifold

not homeomorphic to S3 but having the same homology groups as 83.

[It is amusing to note that, in this entire series of papers, there are
only two results which Poincaré labelled as "Theorems”, viz. the purely
matrix theoretical Propositions 2 and 11 given above ! Perhaps this was
done to draw the attention of London mathematicians like Cayley and

Sylvester to what was likely to appeal most to them ?]
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CHAPTER VI

SUR L'ANALYSIS SITUS
C, R, Acad.Sc. 133 (1901), 707-708.

The most interesting closed 4-dimensional (differentiable) varietlies are
complex surfaces. Of these we will confine our attention here to those
given by an equation of the type

2% = Flx, vy},

where the polynomial F is such that the complex curve
F(x,y) =0

has only ordinary points or ordinary double points., We have calculated

the fundamental group of these 4-dimensional varieties.

[Poincaré says that he encountered these surfaces while trying to figure
out the variations of some double integrals needed to study the (power
series) developements of some perturbation function : this probably
refers to some work on dynamical systems, which, together with complex
surfaces, was one of his main motivations for writing "Analysis Situs”.]
We note also that, if y Is constrained toc be on a closed curve, then 22
= F{x,y) gives the closed 3-manifolds of Example 6 of "Analysis Situs”,

or else, straightforward generalizations of these.

fOne gets the mapping torus of a diffeomorphism of some surface M2 (in
Ex. 8, we had M2 = Tz) : so the fundamental group of this 3-dimensional
submanifold of the given 4-dimensional variety is an extension of the

fundamental group of M2 by Z.1

We will show that the A-dimensional varieties given by 22 = Fix,y} are
simply connected, MNote that here we are considering these varieties
with their (isolated) singularities, i.e. the conical points arising

from the (ordinary} double points of the above algebraic curve.
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Further, we’ll also show that the fundamental group of the smooth part
is finite, and its order depends on the mnumber of factors of tLhe
polynomial F{x,y) as follows : if deg(F) is even (which we can always

ensure by a simple transformation) and F decomposes into n factors,

which are all of even degree, then [nl[ = Zn—l. and if these factors are
not all of even degree, then I“ll = 2n—2
[Obviously Poincaré is considering points at infinity also : we know

that in @2 the smooth part of Heegaard's surface 22 = xy Is not simply

connected, but has m, = Z/2.]

1
Also, Poincaré mentions again in this note the weaker but older result

of his colleague Picard : the first Betti number of a generic complex

surface 1Is zero,




CHAPTER VII

SUR CERTAINES SURFACES ALGEBRIQUES :
TROISIEME COMPLEMENT A L'ANALYSIS SITUS
Bull.Soc.Math.France 30 (1802), 49-70.

As the following will show Poincaré’'s analysis of the varlety V =
{(x,y,2) € é X & P & i 22 = F(x,y}} employs a rich diversity of tools,

(el &x C £ gjw“&,j{q'c bwn&/u,[’ (P, =% G?FR?)
Complex polynomial F(x,y):

We will assume throughout that this is such that if F =0 = g; = gE at
0%F  8%F  4°F 2 Y
{a,b), then —| . — — ( }* is nonzero at (a,b) : in other words,
2 2
ax ay dx8y

if the terms of degree = ! of F(x-a,y-bj} vanish, then those of the

second degree should constitute a nondegenerate quadratic form.

2

From Prop. 10 onwards we’ll also demand that Q—g is nonzero at all (a,b)
ax

where F and QE are zero (this condition accounts for the fact that the

ax
results are non-symmetrical in x and y).

Proposition 1. If the degree degx(F) of F in x is 2p+t or 2p+2, then
for almost all y € G, the equation F(x,y) = 0 in x has 2pt+2 distinct

roots {xo(y}, xi(y), (y)} in €.

» *op+1
From now on we'll dencte by Y = € \ {Al’ P Aq} the set of all y such
that F(x,y) = 0 has 2p+2 distinct roots in the extended complex plane
{there being a root at infinity iff deng is odd).

Proof. The point to note is that, in the prime decomposition of F{x,y)
€ C(y)[xl, no irreducible can repeat : otherwise we would have F = 0 =
gg = gg at infinitely many points (a,b) € € x €, which is impossible
because the second degree terms at any such {a,b) constitute a
nondegenerate quadratic form, and so these (a,b)’'s are isclated points

~

of the compact space C x €,
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So the polynomials F{x,y) and gg(x,y} are relatively prime in C(y)[x].
Since C(y){x! is a principal ideal domain one has P(x,y).F(x,y) +
Q(x,y).gg(x.y) = 1 in C{y)[x] for suitably chosen rational functions P,
Q € C(y)Ix}. (Note, on the other hand, that C[x,y] has non-principal
ideals like (x,y).)

So, if y is not one of the finitely many zeros of the denominators of P
or Q, then there s no x such that Fix,y) = 0 = gg(x,y). This implies
that if y is also not one of the finitely many common zeros of the
2p+2 2p*1 in F{x,y}, then Fi{x,y} = 0 has 2p+2

coefficients of x and x

distinct roots in the extended complex plane. g.e.d.

[Poincaré in fact assumes that the degree of F in x is even, and so his
xi’s are all in the finite plane €. This can always be ensured by using

the homeomorphism {x,y,z) +— (X',y,2")

z

2p+2 !

X = a(y) +L’ , =
(x’)

X
where polynomial al{y) is so chosen that F{a(y)},y) 1is not identically
zere : then 22 = F{x,vy), degx(F) = 2p+1, changes to (z')2 = G(x',y),

where G is a polynomial in X' and y of degree 2p+2 in x’.]

[We will denote by VY the inverse image of Y under the projecticn map V

— €. This is contained in the smooth or non-singular part Vn s of V,
gince at any (xo,yo,zO) € VY there is the well-defined tangent space
aF agF
X‘&EJO + y.EﬁJO - 22.(F)0 = 0,

In fact it was checked that we never have {BF/ax)O =0 = (F)O. So the

derivative of the restricted projection map VY — Y is of maximal rank

at each (x i.e. this map is a smooth fibration.

o*yo'zo) €Vy

This remark shows that an exact sequence
0 ¢, -6, —FIl o,

0 Y

which we'll meet below is merely a part of the homotopy sequence of this
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fibration : GO’ CY and qul f= free group on g—-1 generators) being,
respectively, the fundamental groups of its fibre VO’ total space VY and
base Y. ]

By a complex curve (resp. complex surface) we’ll mean a subset of G X é
{resp. C X G X $) satlisfying some given complex polynomial in two (resp.

three) variables. (This polynomial is of course not uniquely determined

by the subset.)

For example z2 = F(x,y) determines our complex surface V and F(x,y) = 0O
a complex curve szo contained in it. This complex curve has some
isclated singularities, We now turn to some non-singular curves

contained in V.
Hyperelliptic curves Vy

These are given by 22 = F({x,y}), where y is constrained to have a fixed

value in € \ {Al’ e ,Aq}. {(If y = Vi then Vy will be denoted Vt.)
t

As we saw before (by building it up from two copies of C-with-cuts : cf,
remark (3) below) the topology of these curves is that of a surface with
p handles, To analyze the surface V, we however also need the following

information about the geometry of these curves.

Propogition 2. Let U denote the hyperbolic, paraboliec, or elliptic
plane respectively for pz 2, p=1, or p=1, For each y € Y there
exists a complex analytic covering map U - Vy whose  covering
transformations constitute a group Gy of motions of U Furthermore
there is a Gy—invariant tiling of U by centrally symmetric convex
4p—-gons Ry such that the covering map images all the vertices to xO(y),
all the centres to x {y}, and all pairs of mid-points of opposite

2p+1
edges to the remaining roots {xlfy), e ,xzp(y)} of Fix,y) =

We omit Lhe proof but discuss below some aspects of the fascinating and

rich theory {also pioneered by Poincaré !) of Fuchsian groups and

automorphic functions to which this result belongs.

ITh




Remarks re Prop. 2 :
{1} We first recall the meanings of some words used above :

The hyperbolic plane is the open unit complex disk A, the "lines" being
circular arcs (including its diameters} which are perpendicular to its

horizon 8A. The angles are the usual ones.

The parabolic plane is the complex plane €, with the wusual straight

lines and angles,

The elliptic plane is the extended complex planr € (so it is in fact a
2-sphere, not a plane !), the "lines" being great circle arcs, and the

angles being the usual ones.

By an orientation preserving rigid motion of U we will mean any complex
analytic homeomerphism U — U. This makes sense because such a map
preserves angles and maps "lines" into "lines"; further we can, in each
case, define a distance (unique upto a constant multiple) which is

preserved by these motions.

{Later we'll also need affine motions of U, 1.e., those which map each

“line" linearly on a "line", but need not preserve angles.)

The notions of convexity, polygon, central symmetry, mid-point, etc.,

are now defined, for each case, in the usual way.

Given a group of motions a complex analytic function on U is called an
automorphic function of this group if it is invariant under it.
Obviously only discontinuous or Fuchsian groups can have non constant

automorphic functions.

(2) The Fuchsian group Gy of Prop.2, which is isomorphic to the

fundamental group of Vy, is in addition also fixed point free.

This implies, for the genus p = 0 case, that Gy = 1 and so the tiling of
U (a 2-sphere now) has just one 0O-gon, viz. all of U! And, for all p =

1 this condition implies that the sum of the angles of the 4p-gons of




‘the tiling of U is 2m.

The identifications of the opposite pairs of edges of any 4p-gon of the

tiling can be effected by 2p motion SJ

which generate Gy'

However conversely Gy does not determine the tiling uniquely (and this
ambiguity will play an important role in the computation of the
fundamental group of V) : we will say that two polygons are equivalent

if they generate the same Fuchsian group.

Turning to the coordinates (x(u}, Yo z(u)) of the covering map U — V0
we see that we have (z(u))2 = F(x(u),yo) identically in U, 1i.e, that
x(u) and zf{u) are automorphic solutions of the polynomial equation 22 =

F(x,yo) with group Gy.

(3) The above generalizes in fact to all nonsingular curves ®(x,z) = O;
also there are generalizations for non-compact surfaces : in fact later

Poincaré will use one such result (see proof of Prop.8 below).

The special feature of the hyperelliptic case is the ceniral symmetry of

the polygons.

Using this we can split {(in 2p ways !} any chosen polygon R = R into
two {2p+1)-gons R’ and R" which are interchanged by the central symmetry
of R.

Accordingly the complex curve Vy splits two parts, viz. thehimages of R’
and R" under the covering map. Each of these is a copy of € with Z2Zp+i
0 to Xj’ 1 = j = 2p+l, the two lips of the Jjth cuts
being the images of the twe halves of Lhe jth edge of R' of R" :

cuts running from x




Thus we see again that Vy is obtainable by identifying each lip of a cut
of one copy to the other lip of the corresponding cut in the other copy.
And, we see alsc that the central symmetry of any polygon R is a 1lift to
U of the involution (X,y,z) ¢ (X,y,-z) of the hyperelliptic curve Vy.

Consider now the bigger Fuchsian group E;, obtained from Gy by attaching
the central symmetry of the polygon R (and thus of all polygons). So Gy
is a subgroup of E; of index 2, and R’ and R" are two tiles of a finer

tiling of U generated by this bigger group.

The group E; is not fixed poinE free, and if we divide U out by its
action we obtain the 2-sphere €. This corresponds to the fact that Iif
we divide out the complex curve by the involution (X,y,2) ¢ (x,y,-2)
we obtain a 2-sphere, viz. the complex curve z = F(x,y), which can be
parametrized by the automorphic functions (z(u))z and x(u} of @; .

[(4) The (multiple-valued) inverse u{x) of the Fuchsian function x{u)}

(and likewise of z(u)) equals some Abelian integral over the complex

X
curve, i.e. one has u(x) = [ Q(t,Vﬁ(t,yO))dt, where Q 1is a suitable
rational function of two variables. (The dependence of Gy and Ry on y

can be worked out from this formula.)

For p = 1 these are the elliptic integrals of Legendre, so named because
they arose while computing arc length of ellipses. (However the
geometry for the case p = 1, i.e. the usual euclidean geometry of €, is

parabolic, not elliptic !}

We note that each choice of generators of the Fuchsian group determines

some periods of the above indefinite integral, or meromorphic

differential form Q(t,Vﬁ(t,yO))dt, of the complex curve V, and the
additive subgroup of € spanned by these periods is isomorphic to the

free part of Hl{vO’Z}'
The so-called normal periods correspond to a somewhat different choice

(than Poincaré’'s) of a fundamental polygon, viz. that in which the 4p

edges identified as per the defining commutator relation of ni(VO).
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'(5) Inverting elliptic integrals Abel, Gauss, and Jacobi innaugurated,
in the 1820's, the study of elliptic functions u(x). (More generally,
for any p, these Iinverse Abelian functions are variously called

automorphic functions, Fuchsian functions, hyperelliptic functions etc.)

The same Abel had previously shown that the general fifth degree
polynomial equation in one variable is not solvable by radicals : so

maybe Abel was searching for transcendental solutions for degrees =z 5 7

In fact these functions do provide such solutions : e.g. (1) shows that
x(u(z}z=0) are precisely all the roots of the degree 2p+l or 2p+2
polynomial equation F(x,yo) = 0 in x. Unfortunately however {the
rational functions entering inte the integrals giving) these
transcendental solutions have been explicitly worked out for very few
cases with pz 2! (See e.g. Klein's book on the icosahedron for fifth

degree equations, and an appendix in Mumford’s book on theta functions. )}

Of course for p = 0 and p = 1, when these solutions are rational and

elliptic functions respectively, one has explicit formulae, For

instance, 22 =1 - xz has the solutien (z({u), x{u)} = { 1 5 4 2),
. 5 3 1 + u 1 +u

u e €; while z° = 4x” — x — 1 has the solution (z(u), =x(u)}) = (9’ (u),

p(u)), u € €, where the Weierstrass function p(u) is the inverse of the

elliptic integral

X dt

v 4t3 -t -1

J

(22 =1 — x2 has also the solution (zf{u),x(u)) = (cos(u}, sin{u)}, u e

C, but this does not parametrize the 2 points at infinity.)]

Proposition 3. The covering map U — Vy C Vy,
tilings (as in Prop.2) of U, and the set of roots of F(x,y) = 0, are all

the group Gy' the set of
continuous functions of y € Y. Furthermore, each of these tilings or
roots is a locally single-valued continuous function of y which get

permuted when y describes a closed curve,

Proof. The continuity of the roots and of the covering map seem obvious

{and the latter can he precised by studying the behaviour of the
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integrals of remark (4) with respect to the parameter y).

The confinuity of Gy follows because these are motions commuting with
the continuous covering map, and the continulty of the set of tilings

follows because this set determines and is determined by Gy'

To see the local continuity of any our tilings look at any 4p-gon R of
this tiling and the roots corresponding to its vertices, centre and edge
mid-points. The local continuity of these roots and that of the
covering map now uniquely specifies a nearby 4p-gon, and thus a nearby
tiling, for any nearby y. q.e.d.

Proposition 4. If p = 1, and V_, consists of all poinis of V for which y

C
is on a simple closed curve C ¢ Y, then VC is diffeomorphic to one of
the orientable 3—manifolds of Example 6 of "Analysis Situs”.

Proof. Choose any map 8 — C, £ — yc , with yc Next, wusing

—4 y .

£+t
Prop.3, we choose twe independent translations w and w’ of €, which vary
continuously with ¢, and generate the group GC of covering

transformations of the covering map € — VC .

Since Gq = G§+1 the pair {w, «' ) of translations should change to an

equivalent one when ¢ increases by 1, i.e. it should change to (aw +
' s _ |« 7

Bw', yw + S’ ) where TC = LB 6] € SL(2,Z)}.

For each {x,y,z) of VC choose any £ € R such that y = and let (w,w’)

Y

<
be the corresponding pair of translations of €, Next choose a u € C
which ig above (x,y,2) with respect to the covering map € — V. and let

g

£ and n be the real numbers defined by u = £w + 7',

It is easy to check that the set of all such 3-tuples of numbers (£&,%,&)
is an orbit of the discontinuous group of 3-space generated by the

transformations ;

(€, n, &) > (€+1, 0, ),
(&, n, &) — (&, n+1, &),
(&, n, &) > (86 — ym, — BE + am, L+1).
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For example to see the last note that u= €&w + 7' = (6§ - n).(aw +
Buw'} + (- BE + an). (yw + du').

So VC is diffeomorphic to the quotient of 3-space by the group GC

generated by these three transformations. gq.e.d.

[The fundamental group GC of VC is thus the extension of the fundamental

group GO (= 22) of V, by Z. We recall that in "Analysis Situs” Poincaré

0
had classified all such extensions upto group isomorphism and had thus
proved that the manifolds of Ex. 6 are diffeomorphic if and only if they

have isomorphic fundamental groups.

As noted before Ex.6 is a particular instance of the mapping torus
construction : given a diffeomorphism ¢ of any manifeld M we have a
manifold N of one dimension more obtained by dividing out M x R by the Z
action (%, t) +— {@(x), t+1},

It is easily seen that a manifold is a mapping torus iff it fibers over

the circle, and the exact homotopy sequence of this fibration shows that

nliN) is always an extension of Hl(M) by Z.1
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Monodromy :

By Prop.3 we can choose, in a unique way, for any curve yc in Y, a

continuously varying (4g-gon of a) tiling of U for the group G§ = Gy R
<

starting from a (4g-gon of a) stipulated tiling for ¢ = 0. We will

denote by MC the corresponding affine flow of points of U (i.e MC lies

in the same moving 4g-gon for all & and has the same convex coordinates

with respect to its moving vertices).

That is, we have a a one-parameter group of diffeomorphisms MO > MQ

which map each each "line" of U linearly on a "line" but need not

preserve angles.

[This flow of U depends only on the curve yg of ¥ and is independent of
the stipulated tiling for ¢ = 0 used in the above definition.]

We note that these affine motions M, +— M, commutes with the groups G

0 & 0
and Gc of rigid motions of U {and so if Yo = yc, these are in the
normalizer of GO = Gc), Thus there is also a well-defined flow of

oints P_ e V_ =V in V (and if = a diffeomorphism of V., = V_).
P ¢= T Ty, Yo T V¢ P o~ ¢
Propesition 4’. For any p, and any simple closed curve C ¢ Y based at

Yo VC is diffeomorphic to the mapping torus of the above monodromy

diffeomorphism of VO'

Thus the fundamental group of V

c is isomorphic to an extension of the
by Z,

fundamental group of VO
FProof. Just as in the case p = 1 choose any map R -3 C, { - yc , with
yc = yc+1. Next, wusing Prop.2, we choose 2p continucusly varying

1 rSop :
the covering map U — V

c

generators S of the group G, of covering transformations of

For each (x,y,z) of V_, choose any ¢ € R such that y = and choose a

y
C g
point MC € U which is above (x,y,z) with respect to the covering map U

— VC and let € and 7 be the real and imaginary parts of the initial
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‘point MO € U of its flow line.

It is easily seen that the set of all such 3-tuples of numbers (£&,n,¢)
is an orbit of the discontinuous group GC of U x R generated by the 2p+1

transformations :

(€, n, §) — (g (&m), ¢, (§m), &), 1 =k = 2p,
(&, n, &) —> (0(&,7), 91{5,71), Z+1),

Here ¢, (£,v) and ¢, (€,7) denote the real and imaginary parts of S (§+in)

for £ = 0; and £+in — e(E,n)+1el(€,nJ is the monodromy diffeomorphism
MO — M, of U

1
By definition the quotient of U x R by this group is the mapping torus

of the induced monodromy diffeomorphism of VO.

The subgroup of GC generated by the first 2p transformations is clearly
isemorphic to GO. The fact that it is normal follows from the fact that

the diffeomorphism M

0 — M1 of U is in the normalizer of G,. q.e.d.

0

182




[SOME NOTES ON EXTENSIONS OF GROUPS BY Z AND POINCARE'S SIXTH EXAMPLE :

He emphasize that for us an extension of H by Z always means a group G

which flts into some exact sequence of the type

s J
0 —> H y G > Z > 0

and not, as is sometimes the case, such a short exact sequence j itself.
{We note that sometimes such groups G, or else short exact sequences j,

are also called " extensions of Z by H *.)

Thus, for any H, there is the surjection % which associates to each
isomorphism class [j] of such exact sequences the isomorphism class [G]

of extensions of H by Z.
PROBLEM. For which groups H is % a bijection 7
He will reformulate this problem by using the following definition.

Groups H given an automorphism J of a group H we will denote by H

J J
the group generated by H and a new element g, subject to the relations

of H and the new relations g + h = J(h) + g ¥ h € H.

Example, H = Z has only two automorphisms, viz. the identity map I(n) =

n and its negative (-I){n) = — n, and the two groups one gets are

Z, =<h, g | g+h=h+g and Z_

; =<h, g | g+h=-h+ g,

I

These two groups are non-isomorphic since the former "is Abelian while
the latter is not : more generally note, for any H, that the group HJ is

Abelian iff J is the identity automorphism I of H. ZI and Z_I are

respectively the fundamental groups of the 2-dimensional torus and the

Klein Bottle, viz. the mapping tori (SIJI and (Sl)_I of the circle 51 =

R/Z obtained by using the diffeomorphisms I : R/Z — R/Z

Ad

A Gy )= (xt,8) (g ) = (x41,4)

(3<r3) = (x,4t1)

(i) = (-%,9+1)

%_ﬂ—-——«a “




We remark that the homology groups of these surfaces are denoted
Hi(2+1}' So H1{2+} are the Abelianizations ZZ and Z ® Z/2Z of their

fundamental groups Z, more generally, for any G, one defines Hi(G) as

I H
follows, and it is true that Hl(G) is the Abelianization of G,

Group homology. Hi(G;Z) is defined to be Hi(X/G,Z) where X is any space
deformable to a point on which G acts as a discontinuous group of fixed

point free transformations.

Of course it needs to be checked that such an X exists and that this
definition is independent of the choice of X in a natural way.
Following Milnor there is also a pleassant canonical choice for X, viz.
the infinite Join EG = G * G * ,,. with the diagonal action of G. Its
quotient BG = EG/G is called the classifying space of the group G.

It is easily seen that if G = H where H = HI(M) and the group

J H]
automorphism J : H — H is induced by a diffeomorphism J : M — M, then

we can take X/G = mapping torus M so the homology of HJ coincides

J H
with that of the mapping torus MJ.
We solved above, for the particular case H = Z, THE PROBLEM OF
CLASSIFYING ALL GROUPS H, . This ties up with the problem menticned

J
before as follows.

For any Abelian H, the exact sequence j determines an automorphism J of
H : choose any g € G such that j{g) =1 and set J{(h) = g + h - g.
Conversely, any J € Aut{H), determines such an exact sequence j : let G

= HJ and set jl(g) = 1.

1

between isomorphism classes of exact sequences j and conjugacy classes
of all pairs {J,J '} € Aut(H).

It is easily verified that this gives a bijection [Jj] &— [J,J

184




(These remarks generalize also to non-Abelian groups H, provided we

replace Aut(H) by %%%%g% ; this because the above J is now well-defined
. . . Aut (H)
only upto an inner automorphism, i.e, J € Tnn(H) )

So e.g. the statement " % is a bijection when H = 22 " is equivalent to

the following.

Proposition 5. The group G = (312)J is isomorphic to G' = (ZZ)J, if and

only if J is conjugate to J' or its inverse in GL{2,Z).

This strengthens Prop.17a of "Analysis Situs", moreover the argument
given below is more conceptual than Poincaré’s,

Proof of "if" . If AJ = J'A then the map HJ — HJ, (where H = Z7)
given by h ~— A(h) and g + g is well-defined because g + h +r— g +
A(h) = J’A(h) + g = AJ(h) + g and J(h} + g +> AJ(h} + g. This can be

checked to be an isomorphism H, = H

J J?
If J' = J_l then the map HJ — HJ, given by h — hand g +— - g 1is
well-defined : for this note on the one hand that g+ h r— - g + h =
(J’)_lfh) — g (since putting h = J' (k) here we get —g + J'(k) =k - g,

i.e. g+ k=J1(k) + g, arelation of HJ,) = J{h) —~ g and on the other

that J(h) + g +— J(h) — g. This gives an isomorphism HJ = HJ,.
Proof of "only if", Llet ¢ : G' 2 G be any isomorphism. We'll wuse the
following properties of ¢(Zz)

(a) ¢(22) is, like 22. a free Abelian group of rank 2.
2, ., . 2, )
(b) ¢{Z") i=s normal in G because Z~ is normal in G’.

(c) If a nonzero multiple of some element of G is in ¢(22) then that

element is in ¢(22} : this follows from G’/Z2 ¢ 7 which that the

subgroup Zz of G’ has the analogous property.

2 2

then ¢{22) =7 and so,

in this case, ¢ itself provides the required isomorphism between the

It follows from (b) and (c) that if ¢{22) £z
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"exact sequences Jj and j' or, equivalently, the required conjugation from

J to J' or its inverse.

So lets assume from here on that ¢(Zz) is not contained in 22. Then we

have in addition the following :

(d) ¢(22} N 22 is free Abelian of rank 1 : to see this use (2) and

$Z) L
$(2°) N 7°
which follows since J ¢(Zz) — Z is a nonzero (but possibly
non-sur jective} map with kernel ¢(22} n Zz.
Z2
{e) ——— = Z , since by {(¢) this guotient is free.
2 2
#(Z7) nZ

(f) J, being an inner automorphism of G, maps the normal subgroup ¢(Zz}
N Z° of G onto itself.

It follows from (e) and (f) that we can choose a basis B of 22 such that

with respect to it J has a matrix of the type

o 3] o [

if det(J) = 1, or of the type

-1 t op 1 t

c 1 o -1
if det{(J) = -1.
{So unless tr(J) = £2 and det{(J) = 1, or tr{J) = 0 and det(d) = -1,
¢(22) is necessarily equal to 7° ; thus generically one has ¢(Zz) = z°
and it is only a few exceptional cases which make the proof hard.)
Moreover in the det(J) = -1 case we can modify 8 so that the matrix of J

is one of the following two matrices :
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o5 53l

To do this we use the conjugations,
1 b 1 ti11 -by _ 11 t-2b
0 1 0 -1}]|o 1 o -1 !
and their analogues for the case when the (1,1) element is -1, followed
1 0 1 ojf-1 0] -1 1 and
¢ -1 0 -1 01 01
1 0 1 1 1 0 _ (-1 1
2 1 0 -iji-2 1 o 1}

In the det(J) = +1 case we can only change the sign of t by means of a

by the conjugations

similar simple conjugation (which we omit}. Thus we have the following.

{(h) We can choose an integer basis g8 of 22 with respect to which J has

one of the following matrices, where Lt = 0 ;

1 t -1 t -1 G -1 1
ol @t Jolt e ol

Likewise it follows, by using ¢“1 instead of ¢, that there is an integer
basis B’ with respect to which the matrix of J' lg also from one of the

above listed possibilities,

We note that for a matrix J of the above four types the Smith invariants
of J -1 are (t,0}, (2,2) or (1,4), (2,0} and (1,2} respectively; and
also that, in case (2), the Smith invariants of J2— 1 are {2t,0), These

facts will be used to prove the following.

(i) The matrix of J with respect to B ig identical with that of J' with

respect to 3,

This will complete the proof, for then B € GL{2,Z}, where B{(B) = g,

provides a conjugation between J and J’.

Since g + h —g —h =Jh) + g —g—-h=J(h) —h we start by noting
that the subgroup HJ # HJ of HJ generated by all its commutators
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"coincides with Im{J ~ I}, (More generally the lower central series Gi'
1 =20, of the group G = (ZE}J is given by G.1 = Im{J — I)* ¢ here GO = G
and Gi+1 =G # Gi , the subgroup generated by all commutators g + h — g
)

+ h with g € G and h € Gi'

So the first homoleogy group of H i.e. 1its Abelianization, is

J 3
isomorphic to Z @ (ZZ/Im(J -~ 1}), and we have a similar expression for

the first homology of HJ, . Since HJ & HJ,

isomorphic, and so the matrices J — I and J° — I must have the same

their homologlies are
Smith invariants.

Also the isomorphism of homologies implies that J and J' have the same
determinant : to see this note that HS((ZZ)J) = H3({T2)J) g Z iff the
mapping torus (Tz)J is orientable, and this happens iff det(J) = 1.

These necessary conditions show that the matrices of J and J’ (w.r.t. B

and B’ ) are same except possibly when they are both of type (2).

For this we use the fact that HJ =4 HJ, implies EHJ z 2HJ, where 2G
denotes the group generated by doublee of all elements of G, and hence
the Abelianizations of these doubled groups are also lsomerphic. So
using 2g + 2h — 2g — 2h = J2(2h} +2g — 28 + 2h = Jz{Zh) — 2h it follows
as above that the matrices (J)zm I and (J’)z— I also have the same Smith
invariants {(and likewsise (J)N— I and (J’)N— I have the same Smith
invariants for all N 2 1), This new condition shows that the matrices
of J and J' are same when they are both of type {2). gq.e.d.
Examples. J = [? ;] € GL{2,Z) is not conjugate to its inverse J-1 =
[—S _é {even in GL(2,Q) !) because their characteristic polynomials
J—xI| = -1-4x+x° and |J '—xI| = -1+4x+x* are distinct. For the same

reason a matrix A € GL(n,Z) and its inverse A_l are usually not similar.

If A e SL(2,Z), then it has the same characteristic polynomial as its

inverse and the above argument does not apply. Nevertheless it is easy
0 -1
to see that 1 0

SL{2,2Z) {or even in GL+(2,R) ! ) because

| R | O e R B

} € SL(2,7Z) is not conjugate to its inverse [_? é] in
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gives b = ¢ and a = -d, and so ad-bc = ~a2~b2 can't be positive,

Further we note that a conjugation with {? ué} changes any A e SL(2,7)
to (A_ll’ , S0 we ask : Is an integer matrix A always similar over Z to
its transpose A' ? As we'll see later the answer to this question is
"No", and there exist matrices A & SL(2,Z) not conjugate to their

inverses in GL(2,7).

{On the other hand recall that A is similar to B over @ iff A — xI and B
— %I have the same Smith invariants over the p.i.d. @(x]l, se it follows

that A and A’ are similar over @.)

2 1
5 1 -5 -2
inverse [ 5 2] in GL(2,Z)} by virtue of the next result which applies

However note e.g, that the matrix e SL{2,Z) is conjugate to its
because the common characteristic polynomial 1+x2 of these 2 matrices is

irreducible over O and the Gaussian integers Z{i] constitute a p.i.d..

Before stating this we recall that tdeals Y% and B of the ring Z[6] are
said to belong to the same ideal class iff all = b8 for some nonzero a,b
e Z[{8], and that for any algebralc number 8, there are only finitely

many ideal classes, and their number is the class number h of Z[&].

This basic finiteness theorem of Kummer is a by-product of his careful
analysis of an insufficient argument which he {and independently Lame’)

Py yp # ZP Kummer

had found for Fermat’'s Last Theorem p 2 3 = x
showed that this argument established FLT for regular primes p, 1i.e.
those which do not divide the class number of Z[exp{(2ri/p)l. (For more

regarding this see Edwards book on FLT.)

Proposition 6 (LATIMER-MACDUFFEE THECREM). The class number of the ring
Zie], where 6 is a root of a monic degree n polynomial f(x) e Z[x]
Irreducible over @, is equal to the number of similarity classes of nxn

integer matrices A such that f{A) = 0.
This they deduce from a natural i-1 onto correspondence [A]l ¢ {4]

between similarity classes over 7 of matrices having f(x) as

characteristic polynomial and ideal classes of Z[8] : we remark that
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{(for n = 2) this correspondence was studied by Poincare’ himself, Jour.
de 1’Ecole Polytech, 47 {1880}, 177-245 !

We note that while proving Prop.5 we saw that the infinitely many

é ? , n =0, are not similar to each other, yet they

all satisfy f(x) = (l-x]z. So above result is not true if f(x) has

integer matrices

multiple roots; however we note that L-M also give a version of the

above result for all f{x) having distinct roots.

Prop. 5 shows that the full classification of the groups (22)J is quite
deep, e.g. just to enumerate such groups with tr(T) =t we need class
numbers of some quadratic number fields and more, but what we have Iis

already enough for the following.

Proposition 7. Let 8{t) be the number of diffeomorphism classes of
3-manifolds defined as in Example 6 of "Analysis Situs" witha +d = t.

Then, for t # £ 2, B(t} is finite, and we have

h(t)/2 = 6(t) = h(t),

where h(t) is the class number of Z[(tz— 1)t

1.
For t = 2 or -2 the number of manifolds is countably infinite (cf. proof
of Prop. 5).

Proof. B(t) is the number of isomorphism classes of groups (ZZ)J with
det{J} = 1 and tr(J) = ¢t. So, by Prep.5, this 1is the number of
conjugacy classes in GL(2,Z) of pairs {J,Jul} of 2x2 integer matrices
having characteristic polynomial x2 - tx + 1. Its discriminant t2u4 is
the square of a rational, only if it is the square rz’of an integer r.
So {t|=|r{, |t]+ir| must be equal to 1, 4 or 2, 2; and only the latter
can happen, and then t = * 2 and r = 0, Otherwise, the polynomial Iis

irreducible over @, and the result follows by using Prop.6. q.e.d.

The finite set of ldeal classes [U] of Z{8], equipped with the
operation, [} + [8] = [UB] where U5 denotes the ideal generated by all
products ab, a € %, b € B, becomes an Abelian group which is called the

class group of Z[6].
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(Thus each polynomial f{x) € Z{x] has two important finite groups : the
usually non—-Abelian Galois group and the Abelian class group. In some
ways Lhese are, respectively, the algebraical analogues of the

fundamental and homology groups of a space.)

Under the Poincaré~Latimer-MacDuffee correspondence {A] «— [U] (which
has heen extensively studied by Taussky} the zero ideal class is

represented by the companion matrix

of the polynomial f{x) = X" - alxn_1 e maL, and negatives of ideal
classes correspond to transposition of matrices (: thus the class group
of Z[8] contains elements of order = 3 if and only if there are matrices

A satisfing £{x} = 0 for which A is not similar over Z to A’).

(If f(x)} = |A — xI| is reducible, then the direct sum of the companion
matrices of iis elementary divisors, i.e. prime powers occuring in the
Smith invariants over @(x) of A — xI, is the Frobenius normal form of
the similarity class over @ of A. Taking all possible “Smith
factorizations" of a given monic f(x} e Z{xl, this process gives, upto

similarity over @, all possible nxn matrix solutions of f(x) = 0.)
We can now improve Prop.7 to the following

Proposition 7'. For t # % 2, the number 6(t} of diffeomorphism classes
of 3-manifolds defined as in Example B8 of "Analysis Situs” witha +d =
t is given by

h{t) + nz{t) + 1

B(t) = 2 :

where h{t) is the order of, and nz{t) the number of elements of corder 2

in, the class group of Z[(tz— a)'?.

Preoof. This follows because, by the above remarks, 8(t) = number of
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“pairs {[#},-{Y]}} in the class group, and this equals 1 + nz(t) plus half

of the remaining h — nz(t) —~ 1 elements. ¢.e.d.

We conjecture that there is, but have so far not found, an H for which §
is not bijective. This amounts to finding a group G with two isomorphic
normal subgroups H and H' having G/H & Z = G/H’ and such that there is
no automorphism of G which maps H onto H'. On the other hand we can

improve Prop.5 as follows.

Proposition 8’. % is bijective whenever H is a finite group, simple

group, or a surface group.
Here by a surface group we mean the fundamental group of a surface.

Proof. If j{x) is not zero then x cannot be of finite order in G. So,
if H is finite, H = Tor(G). Thus any isomorphism G — G' between two
extensions of H by Z preserves H, and so determines an isomorphism of

the two exact sequences.

{The same remark shows that Tor{H) = Tor(G) for any H. So for an
Abelian H, when Tor{H) is a subgroup, there is an induced exact sequence
0 — H/Tor(H) LN G/Tor(G) ——Q—é Z —> 0. Thus G is an extension of
H by Z iff G/Tor(G) is an extension of H/Tor(H) by Z.

For a finitely generated Abelian H, H/Tor(H) « " for some n, and any
isomorphism G — G’ between two extensions of H by Z preserves Tor{H)
s0 the result will follow for all finitely generated Abelian groups H

also if it were known for H = Z".)

If H is a simple group then the result follows bécause {(with same
notation as in proof of Prop.5) now either ¢(H)nH = 1 or ¢(H)AH = 1§,
with the former possible only if H # Z,

Prop.5 dealt with the (hard) case of the fundamental group 22 of the
2~torus., If H is isomorphic to the fundamental group of a surface of
genus p = 2 then again we have ¢(H) = H since H has only one non-trivial

normal subgroup which is isomorphic to Z, with quotient IZp. g.e.d.




One has parallel generalizations of the topological Prop.17 of "4Analysis

Situs"”.

Proposition §". Let M be a manifold whose fundamental group H has %
one-one, and Is such that each automerphism of H 1is Iinduced by some
diffeomorphism. Then two mapping tori of M are diffeomorphic iff their

fundamental groups are isomorphic.

Proof. The fundamental groups of the two tori are extensions G and G’
of Hby Z. Let G = H, and G = H, and let ¢ € Aut(H) be the
conjugation from J to J' or its inverse. Choose an F € DIiff(M) which
induces ¢. Then [x,t] > [F{x),t] gives the required diffeomorphism of

the two mapping tori, g.e.d.

We remark that the harder problem of classifying all mapping tori

(rather than of a specific manifold) would entail tackling the following

Question. If two diffeomorphic (n+l)-dimensional manifolds are mapping
toruses of n-manifolds M and M', then is it true that M Is diffeomorphic

to M ? (There ig a similar gquestion for homeomorphisms. )

We note that the hypothesis of the above question implies that M x R is
diffeomorphic to M’ x R, thus an affirmative answer would follow if the

the following cancellation property were valid.

Q. MxR=2M xR=a2M= M 7

However the angswer to this second question (which has been extensively

studied) is in general NO !

For example, a theorem of Mazur says that in dimensions n = 5 one has M
« B% = x ™2 if and only if the n-manifolds M and M' have the same

simple homotopy type (a notion much weaker than being diffeomorphic).
Again, Kirby and Siebenmann have shown that, for any simply connected

tepological 4-manifelds M, either there is no other, or exactly one

other such manifold M’ with M x R =2 M x R, and that both cases occur.
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The cancellation property is known to hold for many classes of smooth

manifolds, e.g. all simply connected ones,

For groups (Zn)J , n =3, we give only a preliminary result which can be

much improved (however we do not know if N can be reduced to 1).

Proposition B. There exists an N depending only on n such that we have

+
{z“)J = (z“)J, onty if (WY is conjugate to (3N in GL(n,2).

Proof. As in the proof of Prop. 5 we check that if the isomorphism ¢
(z“)J, - (z“)J, maps Z" into itself then ¢{Z") = 2" and ¢ itself
provides the required isomorphism between the exact sequences j and J’

or, equivalently, a conjugation from J to J' or its inverse.

So, in this generic case {we'll Justify this terminology below}, we can
in fact take N = 1. It is the remaining exceptional case, ¢(Zn) not

, . n .
contained in Z°, which will concern us from now on.

Exactly as before we see that the quotient of Zn by ¢(Zn) n Zn is Z,
that J preserves this subgroup, and so z" has an integer basis B w.r.t.

which the matrix of J is

+
| Tl,n—l

0n~1,1¢n—1,n—1
where ¢ € GL{n—-1,Z). (Likewise a similar basis 8' for J'.)
{A) ¥ is of finite order in GL{n~1,Z). To see this note that the

restriction j : ¢(Zn] —» Z of the surjection j : (Zn)h — Z has 1mage

rzZ, for some r > 0, and kernel ¢(Zn) N ",
Thus ¢(2") = K, where K = ¢(Z")  Z', and L € Aut(K) is the restriction
of either J” or J ' to K. Since ¢(Z") is Abelian, this restriction must

be the identity automorphism of ¢(z") n z".

(B) There exists an N depending only on n such that for any element
of finite order in GL(n-1,Z) one has {w}N = 1.
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For this, note that if ¢ is of order r, then the minimal polynomial {=
highest Smith invariant of ¥ — xI = least degree polynomial satisfied by
¥} has non-repeated irreducible factors because x" = 1 has distinct
roots, and each of these factors is a dth cyclotomic polynomial for some
d|r. with the l.c.m. of the d's belng r : so r must be bounded. {For 2

more precise result see below. )

We will take such an even N, so w.pr.%, our basis B8 the matrix of (J)N is

of the type

t1,n—1

On~1,11n—1,n~1

and (J’)N has a similar basis with respect to g'.

{Thus ¢(In) = 7" unless the eigenvalues of J are Nth roots of unity.)
(C} We can choose S in such a way that the sub-matrix ty poq OF (J)N
has at most one nonzero entry. This follows because if the first row
has element a in the pth column and a nonzero b in the gqth column, 2 = p
< ¢, then we can make q zero, replace p by {p,gq), and leave all other
elements unchanged by using the conjugation Mnl(..}M, where the nxn
matrix M is like I, except for 4 spots (p,p)}, (p,a), (q,p), and (q,q),

b a

a
at which it has, respectively, ¢, ——, d, and — o) with c.——m—T
b (a)b) (a-) (a,b

d'TEWBT = 1 {cf. Newman, "Integral Matrices", p.42)}.

Using these all the off-diagonal elements of the matrix of (J)N can be
made zero except possibly that at the (1,2} spot which we’ll denote by
t. Likewise for the matrix of (J’)N, for which the element at the {1,2)
spet will be denoted t'.

As explained in the proof of Prop.5, the Smith invariants (|t[, G, ...,
0} of (J)N ~ I must coincide with the Smith invariants (]t’l, 0, ...
0) of (J’)N — I, Sot=+%t’, and thus the element of GL(n,Z) relating

+
)y,

the integer bases g and B’ of Z", conjugates (J)N to (J’ g.e.d.

We note that (B) of the above proof is part of the argument by which




Vaidyanathaswamy proved that if an element of GL(n,Z)} has finite order
r, then the sum of the totients ¢(pa) = pa_l(pwl) of all maximal prime
powers pa, other than 2, which occur inr, must be no more than n.
Also, conversely (by using a method mentioned before) he showed that,

for each such r, xr = 1 has a matrix solution in GL(n,Z).

It is known also that there is an N depending only on n such that any

finite group of GL(n,Z) has order less than N.]
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RETURNING TO THE PAPER IN HAND we now find Poincaré beginning his

analysis of the smooth 4-manifold V Vn s < V.

<
Y

Proposition 9. The smooth 4-manifold VY = {(x,y,2) e V: y e Y} is the

orbit space of a fixed point free discontinuous group G, of 4-space

Y
which is isomorphic to an extension of the fundamental group G0 of any

of its complex curves VO = {{x,y,z2}) e V: y= Vg € Y} by the free group

Fq"1 on q-1 generators.

Proof. The non-compact surface Y = € N\ {A ., A}, a Z2-sphere minus

i,
Fd-1

q peints has fundamental group isomorphic to

In fact Y is the quotient of U by a Fuchsian group of the second kind,
i.e. one whose tiles, which can be chosen as shown below, have some
cusps on the horizon. We note that the sum of the tile's angles is
again 2r with the angle at each cusp being zero, and the group (& Fq—l)
s generated by g motions Ti which identify pairs of edges incident to

the same cusp, and cne has the relation TiTZ..Tq = 1,

¥ i maps each

e

tile onto Y with the non-cuspidal vertices going to a single point O,

The corresponding covering map { yC obeys Yo () =
; .

and pairs of identified edges determining disjoint cuts OAi .

Next, using Prop.3, we choose 2p continucusly varying generators S

’Szp ( c
-V, (=V ).
g yC

1’

of the group G, of covering transformations of the covering maps U

For each (x,y,z) of V, choose any £ € U such that y = and then a

y g
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oint M
P e

— Vq‘ Next, choose any path in Y from Yo to yc , and let £ and 70 be

the real and imaginary parts of the 1initial point MO € U of the

€ U which is above (%,y,z) with respect to the covering map U

corresponding menodromy flow line through MC'
It can be checked that the set of all 4-tuples of numbers (&,70,¢',8"},

£'+ig" = L, thus associated to each point {x,y,z) of V is an orbit of

Y ]

the discontinuous group GY of U x U generated by the 2pt+q

transformations :

{g» n! C,» c“)k—+(¢k(€'n)’ wk(g’n}! C’: C"): 1 = k = 2pl
(& m &, €6, (&), 0 (&), &, (&,8"), k' (€,8"), 151 =q.

Here ¢k{£,v) and wk(s,n) denote the real and imaginary parts of Sk{§+in)

for & = 0; £+in > ei(g,n)+iei’(§,n) is the monodromy diffeomorphism MO
11

projecting an arc in U from some ¢ = ' +ig" to its conjugate Ti(C) =

(Ki(ca’cn)' Kia(ca,cu))-

—> M,, of U determined by any closed curve Ci of Y obtained by

To see this note that the complement of the cuts is simply connected, so
the monodromy MO — Mq is unchanged as long as we deform the path from
Yo to yc in this complement, but if we add Ci {i.e. a closed path around

one exceptional point Ai] it changes by the amount MO — Mli .

On the other hand, the first 2p transformations account of course for

the fact that the choice of MO {(resp. M.) was ambiguous upto action of

g

GO (resp. GC). Since the monodromies MO ) Mli commute with GO it

follows also that the isomorph of G. generated by these transformations

0

is a normal subgroup of GY .

{Notation : We’ll use the notations Sk , 1 =k = 2p, and Ti’ 1=1=gq,

also for the defining transformations of G So in particular G, will

b 0
be identified with the forementioned normal subgroup of Gy.)

Finally, since we have exhibited GY as the group of covering
transformations of the simply connected covering U x U of VY it follows
that it is isomerphic to the fundamental group of VY (more details, some

special to this case, of this isomorphism, are given below). g.e.d.
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The isomorphism GY — nl(VY) : this associates to each g € GY the

element of nl(VY) consisting of the homotopic closed curves of Y based
at Yo which occur as the projections of arcs from any point NO e U x U

above g to the conjugate point g(NO).

Its surjectivity is immediate since each closed curve at Yo lifts to
such an arc. For injectivity, Poincaré’s argument {whose refinements

will be used later fto prove Prop. 11} runs as followus.

If a closed curve of VY at Yo can be continuously made arbitrary small

(i.e. is homotopically trivial) in V then it can also be made

Y 1

arbitrarily small in a deformation (VY}# of VY determined Dby

constraining ¥y to lie outside some guardian circles, i.e. small disjoint

2-disks D, , one around each exceptional point A

i i

So the y-projection of this closed curve, being also arbitrarily small,

encloses none of these disks. So the given closed curve of VY can be

deformed to one having constant y-projection Yo t.e. to a curve in VO.

Turning to the x-projection, we now note that, being also arbitrarily

small, it cannot obviously enclose more than one of the roots XO, e

x2p+2 of F{x.yo) = 0. In fact, it cannot enclose any, because otherwise
z, which is a square rooi of F{x.yo), undergoes a sign change, which is

not possible because this is projection of a closed curve of VO'

But this implies that our curve lifts under U — V0 to a closed curve.

So only 1 e Gy images to 1 € nl(VY).

Proposition 10. Any pair {xa(y),xb(y)}, y € Y, of roots of Fix,y) = 0

approaches a common value X alt some Ai’ and conversely, for any i, the

ab

equation F(X,Ai) = (0 has some double roots x in €, but none of higher

ab
order. Furthermore, the variety VY has only finitely many singularities,

, A,, 0) with 8F zero, and at these the
b i 8y

links are real projective 3-spaces,

viz. the conical points (xa

In the following we'll refer to the non-singular points (Xab’ Ai, G}
with g; nonzeroc as the removable singularities of V.
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Proof, We remark that the first assertion is not explicit anywhere in
the paper but Poincaré does seem to need something like it later. it

seems to be true "in general", for otherwise 1 would be the
W) =)

germ of a bounded analytic function, which is possible by Licuville’s

theorem only if it is a constant.

Conversely, since F{x,Ai) = 0 has less than 2p*2 distinct roots, it

follows that some pair of roots approaches a common value &, and §
2

cannot be the limiting value of more than two roots, because then i_g
ax

would be zero at (E,Ai), contradicting the second hypothesis on F.

Using the Jacobian criterion, i.e. that a point of V is non-singular if
one of the three partial derivatives of z2 - F(x,y¥) 1is nonzero, it

follows that the possible singularities are at the points mentioned.

To see that these are indeed singularities we use the first hypothesis
on F which says that its Taylor expansion at these points starts with a
non-degenerate second degree form. So, by using the discussion in the
Complément re Heegaard's example, we see that the links at these points

are not 3-spheres, but real projective 3-spaces. q.e.d.

We remark that in the paper Poincaré makes the connection with Heegard’'s
example only after giving a geometric argument (see proof of Prop.12)

which shows that 111(\’n S )} might have elements of order two.

fAnd, Jjust before this reference, Poincaré repeats a mistake of
“Analysis Situs” by stating that such loops don’t bound 2-manifolds !
This curious slip, at this stage of the game, sugges%s that parts of
this paper might have been written before the first Complément ? }

We recall that the group GO has as 2p+2 generators the central

symmetries s, of U with respect to U where u, € U is a chosen preimage
in of the root X, besides {sa)2 = 1 these are subject to the Fuchsian
relation that a certain product of all of them is 1. The subgroup G, of

0
EO consists of products s of an even number of these sa’s.
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Proposition 11, The fundamental group nl(v s OF V) Is isomorphic to

the quotient of Gy by the relations {Tis'l‘.l_ =s, s ;5 =1}, where (a,b)
runs over all pairs for which there is a removable singularity, resp.
removable singularity or conical point, (xab, Ai’ 0) of V.

Proof. The above 1is equivalent to saying that nl(Vn g or V) is

isomorphic to the quotient of G, obtained by dividing out by the normal

Y
subgroup generated by the Ti’s and the stipulated 5. S ‘g,

b
To see this we start by noting that the isomerphism G, — nl(VY),
followed by the map induced by the inclusion VY < (Vn SOF V), gives an
epimorphism GY — Hl(vn g or V), because clearly any loop of V can be

4

deformed slightly so that its y-projection misses the q points Ai'

The kernel of this epimorphism keeps an account of the new deformations

involving the points Ai of the y-plane.

For example T.l is in this kernel because Vn s has arbitrarily small
loops whose x-projections don't enclose any reoots and whose

y-projections are loops around Ai shrinking to this point.

Likewise sasb is this kernel because within Vn s or V¥ one has an

arbitrarily small closed curve whose y-projections are constants
approaching A.l and whose x-projections are small loops around the nearby

roots xa{y) and xb(y) shrinking to the double root xab(Ai).

Since any other deformation involving the Ai’s is a composition of such
deformations it follows that the kernel 1is the aforementioned normal

subgroup of G g.e.d.

v

Poincaré notes that Picard had already proved for these {and other)
surfaces that bl(Vn g or V) = 0. But, for p = 1, when GO = the funda-
mental group of the torus, nl(Vn g, o V} is Abelian by above result. So

we see that nl(Vn_S.or V) = Hi(Vn.S.or V) is a finite group.

[From Prop. 12 below it will follow that niivn S } is actually the
quotient of GO Just by the relations T STi—I = g, We remark that an

i
analogous result for first homology had also been proved by Picard, and
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was the inspiration for Poincaré’'s "Quatriéme Complément”.]

We’'ll see below that nlfvn g Or V) is a finite group for all p and we'll
compute this group. For this Poincaré’s key argument is the geometric
one given below (the figures below being essentially as in the paper),

Proposition 12, If (x Ai’ Q) is the only removable singularity,

ad’
resp. conical point, with y = Ai’ then the relations 'I‘isT.1 L. s in 56
. - 2 .
are equivalent to S Sq = 1, resp. (sasd) = 1.
{(If there are many such points with y = A then 'I‘.lsTi"1 = g Iis
equivalent to the totality {sasd = 1 or (sasd) = 1} of such relations.)

Proof. With Poincaré we’ll look at the case p = 2 only though it will

be clear that the argument is qulte general.

The six roots X,» as well as the generating central symmetries S, € Eb,
will be denoted Jjust by their indices a, b, ¢, d, e and f. We Join
these roots, in clockwise order, to another point O of the x-plane.
Thinking of thisg cut x-plane as a G0 tile of U we now examine the
monodromy of these cute as y describes a small loop about Ai'

If (ad, Ai’ 0) is a removable gsingularity the {(cuts to the} reots a and

d interchange, i.e. Oma becomes Om’d and Ond becomes On’a :

Poincaré gives the following method for computing the conjugation

._1 -—
’I‘i.s.Ti of GO :
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A base point MO

symmetries are represented by loops, starting and ending at this base

is chosen, say outside Om’dna. The generating central

point, which intersect just one of the final cuts. To see the effect of
the conjugation on it one notes in order the 1initial cuts which this

loop intersects,

For example in the above picture we show a loop which intersects only Ob
out of the final cuts, and we note that it intersects in order the
inttial cuts Ond, Oma, Ob, Oma and Ond. This shows that 'E‘i.b.'I'i—1 =
dabad. Likewise one checks that a » d, ¢ = dacad, d - dad, e = e

and f + { under this conjugation.

The conjugating relations a = d, b = dabad, ¢ = dacad, d = dad, e = e

and f = f are clearly equivalent to the single relation ad = 1,

1f {ad, Ai’ 0) is a conical point the {cuts to the) rcots a and d remain
distinct during the monodromy, with Cma changing to Om’a and Ond to On’d

as shown below :

Computing the conjugation by above method — e.g. flg. shows why
Ti.b.Ti-1 = dadabadad — the result follows because the conjugation
relations a = dad, b = dadabadad, ¢ = dadacadad, d = dadad, ¢ = e and ¥

= f are equivalent to the single relation (ad}2 = 1. gq.e.d.
Despite Peoincaré’s assertion that ‘"nothing Iis easier now than

determining the fundamental group" there certainly seem to be some loose

ends left in the argument given below.
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Proposition 13. The variety V is simply connected, 1I.e. HI(V) = 1,
Moreover nltvn s |- (Z/zz)“'l if the degree 2p+2 polynomial Fix,y) e
C(y){x] has n factors all of even degree, while nl(Vn “ ) o= {Z/BZ)H_Z if

some of these factors are of odd degree.

Proof. As y describes a loop the Z2p+2 roots of our polynomial undergo a
permutation. Using this we obtain a homomorphism from qul, the

fundamental group of Y, to the Galois group of the polynomial F.

If the polynomial F is irreducible {(V = Vn s now) the Galois group of

course interchanges any two roots xa and X However (though it seenms

b’
likely) it is not clear why the image of the above homomorphism also {as

Poincaré asserts) acts transitively on the roots of F.

Granting this, we see from Prop.11 that our group is G

o divided out by

all relations s =sg_ , so0 it is = 1.
a b

In case F is not Irreducible (now Vn o is smaller) the asserted ul(V) =
1 seems to require even more : if roots Xy and Xy belong to different

prime factors we need an A, at which they approach a common value (see

i

Prop.10). Using this we are still dividing out G, by all relations S, =

0

Sk and so Hl(V} = 1 always.

For "1(Vn.s.)' using Prop.12, we still have s, = Sy if X, and x, are

roots of the same prime factor of the polynomial (these (xab’ Ai’ 0) are
the removable singularities) but if they belong to different prime
factors we have only (sasb}2 = 1. Thus nl(Vn.S‘) is generated by n (=
number of factors of F) commuiling elements of order two.

.

We finally note that these conditions, in conjunction with the Fuchsian
n,

relation of GO , also give fj (a) b 1, where a runs over representative

roots of distinct irreducible factors of F, and n, denotes the degrees

of these factors. When all these ni’s are even this just reads 1 = 1,

but otherwise is a nontrivial relation. gq.e.d,

[More re fundamental group of complex varieties :
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The theorem of Picard (i.e. that a smooth complex surface of CP3 is

simply connected} is now a particular case of the result that smooth
projective varieties obtainable from some smooth hypersurfaces as their

{transversal} complete intersections are simply connected.

Shafarevich gives a proof of the above using a homotopy version of the

"weak Lefschetz theorem" {provable via Morse theory as e.g. in Milnor).

On the other hand Shafarevich’s book also contains examples which show
that any finite group can occur as the fundamental group of a smooth
complex surface (not of course in @Pg)! The starting point for this |is

the branched covering
- - n
(Cx ... x C)/ En = CP

(to which we referred before alsc) which has, for n large, a linear
gsection which is an unbranched covering over a 2-dimensional smooth

variety, etc.

However on the whole "very little is known" (in Shafarevich's words)

about the universal covering spaces and fundamental groups of varieties.

We note also that when nl(V) = 1 and the gingularities are points with
known links (as was the case in this paper) Hl(Vn s } can be calculated
by using van Kampen's theorem re fundamental groups of two spaces and

their intersection and union.]
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CHAPTER VIII

SUR LA CONNEXION DES SURFACES ALGEBRIQUES
(Comptes Rendu de 1’ Acad. Sci. 133 {1801} 969-873.)

In this note Poincaré announces some Iimprovements to results which

Picard had obtained very recently re connectivity of surfaces.

Let f(x,y,z) = 0 be a complex surface [in 6-dimensional space (é)S] to
which corresponds a four-dimensional variety V [viewed intrinsicallyl.
We will assume that the surface can have only ordinary singularities,
i.e. complex double curves or triplanar peints, and that the assoclated

variety V is non-singular.
6—5Fau.
~

//
D g A T

"

£
i@
vV

[Note in thig context that two general position 4-dimensional (affine)
subspaces of B-space have as common intersection a subspace of dimension
4 + 4 - 6 = 2, while three such subspaces have as common intersection a
subspace of dimension 4 + 4 + 4 -6 -8 =0, 1.e. a point; and that more

than three such subspaces have an empty common intersection. ]

As partial justification for his assumption Poincaré recalls an {older)
theorem of Picard on resolution of singularities of surfaces: in complex
3-space, any surface is birationally equivalent to one having only
ordinary singularities, while in complex 5-space, any surface |Is

birationally equivalent to one having no singularities,

Also Poincaré remarks that the assumption is necessary because otherwise
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even the underlying variety V might have singularities, and then the
definitions of "Analysis Situs" become ambiguous, unless one completes

them by adopting some new conventions. (See also below.)

If we keep y constant on our complex surface we cbtain a complex curve
f{x,z} = 0, which corresponds to a Riemann surface S (= Sy)' [It should
be absolutely clear by now that Poincaré thinks of varieties (=
"manifolds") and Riemann surfaces as intrinsic objects, while complex

curves and complex surfaces are within some ambient space.] For almost

all values of y this complex curve has a constant genus p — and for the
exceptional values Al’ e Aq , l.e. for the singular points of the
y-projection map, the genus ig lesser — and we'll dencte by w

1'
’pr any choice of 2p (homologlically) distinct l-cycles of S.

Poincaré now recalls that as y traces a small loop arcund Ai the Riemann
surface S varies {this is the monodromy of the Troisiéme Complément) and
comes back to its original position S with its points having undergone
some transformation. The induced automorphism of Hl(S) (= Zzp) is
denoted Ti , and Poincaré christens the subgroup of Aut(Hl(S)) (=
GL{2p,Z)) generated by these Ti’s as the Piecard group.

Picard has shown that Hi{V) is generated by w € Hl{S) subject to the
H, (S)
. _ o 1 . 1
relations w = Ti(w) fi.e. HI(V) = EiIm{I“Ti} ] : so the first Betti
number of V ig equal fto the number of distinct solutions of the system

of 2pq equations in Zp unknowns
i
(A) x = c, . X, ,
7Ly %y %
where T, (w,) = §, ctw ‘
it J Tty d

At first sight it seems that the number of distinct l-cycles of V can be
still smaller. For example we can imagine a surface with one A, which
occurs as the limiting position of a surface with two nearby singular
points A1 and Az around which the monodromy transformations are inverses
of each other. For such a surface there are no new relations, but some
of the 1l-cycles of S do become zero as y — A, because the genus of the

curve f{x,A,2z) = 0 is less than p .
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However such a c¢ase never arises for the surfaces with ordinary

singularities that we are considering !

Poincaré goes on to make a very persipicuous observation : "If this does
arise for other surfaces, one might wonder if these cycles ought to be
regarded as equivalent to zero; one would be now in a situation where
the ordinary definitions are ambiguocus, unless supplemenied by new

conventions, and the answer would depend on the conventions one adopts”.

fQuite clearly Poincaré ig, unlike his inheritors, not keen te hastily
generalize his definitions to varieties-with-singularities in the
"obvious way" : the recent discovery of intersection (co)lhomology —
which, and not the obvious singular {colhomelogy, 1s the ‘correct”

definition for such varieties — shows that his caution was Jjustified.]

Now Poincaré recalls the definition of Picard’s 2- tori Q x C, where
i-cycle Q of S is invariant under monodromy as y varies over the closed
curve C. It was unknown if these 2-cycles are distinet or if there are
other 2-cycles besides these; the following are the results to which

Poincaré was led while looking at this question.

HZ(V) is generated by the 2-cycles listed below :
Tuc 2-cycles of the first type, namely the surfaces Sx and S obtained

by keeping x or y constant, and

2~cycles of the second type, Wl + .. * wq , Wi = Qixci’ where the Qi's
are l-cycles of 5 obeying
Ql + ...+ Qq = Tlml) + ...+ Tq(ﬂq),

and each C.1 is a closed curve in the y-plane around Ai'
The only relations amongst these 2-cycles are the following :

Hl + ...+ wq = 0 iff for some l-cycles V, of S such that Ti(Vi) = ¥

i
the sequence of l-cycles
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-V, , ..., &8~V ,C

is cyclic, i.e. one has T1(91“ Vl) = sz V2, e, Tq(Qq— Vq) = Ql— Vl'

Poincaré was unable to decide if Picard’s tori sufficed to generate all

2-cycles of the second kind.

Proceeding now to H3(V) we will show that it has as basis the distinct
3-cycles Q2 x 82 where @ is an invariant 1-cycle of S (i.e, preserved by

all transformations of the Picard group} and S2 = € is the y-plane.

Since the number of such invariant 1-cycles equals the number of

distinct solutions of (A) we verify that bi(V) = bg(V).
Thus the consideration of the Picard group suffices to determine all the

Betti numbers of V. Poincaré asserts that it likewise suffices for the

calculation of the torsion coefficients of V.

209




W

CHAPTER IX

SUR LES CYCLES DES SURFACES ALGEBRIQUES;
QUATRIEME COMPLEMENT A L’ ANALYSIS SITUS
{Jour. de Math. 8 (1802) 169-214.)

§ 1. Introduction. We will use the principles of “"Analysis Situs” and
its first two complements to improve some results re cycles on algebraic
surfaces which have been obtained by Picard in the course of his “beaux

travaux"” on algebraic surfaces.

Notations. Let V be a given closed variety (= smooth manifold) of
dimension p, and let wq denote varieties (closed or not) of dimension ¢

“"traced" on it,

Then Poincaré recalls that a congruence qu = qu_l signifies that the
terms of the lower dimension (written here on the right side) constitute

the boundary of the remaining terms : thus this 1is equivalent to the

modern 8¢ ] = .

D) = Dy
Supressing the higher dimensional terms Poincaré gets a homology qu—i &=
0 : thus this signifies that the (g-1)-chain qu_l is a boundary of some

g=-chain,

For Polncaré a "cycle" of dimension g means a qu such that qu = 0 but
not Ean = 0 for any nonzero integer n : these days of course g-cycles
are g-chains satisfying Jjust the first condition (for which Poincaré
uses the word "clomed") and Poincaré’'s ‘'cycles" are those which are

homologically non-trivial over Q.

To avoid confusion we will sometimes change Poincaré’s notations so as

to conform with modern usage.

OUR OBJECT is to calculate the {rational} homology of a <closed smooth
4-manifold V which occurs in complex 3-space as a complex surface
f{x,y,2)} = 0 having only ordinary singularities. For all but finitely

many values y = Al’ cee Aq {# O or ) the complex curve defined by
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setting y equal to a constant will be assumed to be of constant genus p.

[We emphasize that our complex variety V is itself smooth, and the Ai’s
are merely the singular points of the map (x,y,z) +— y from V to the

complex line @ (= C).

Picard and Poincaré’s method of studying the complex variety V via the
singularities of a map to the complex line, as well as their results,
were generalized to higher dimensicons by Lefschetz. The partitioning of
an algebralic variety into codimension-one varieties obtained by keeping

one variable constant is called a Lefschetz pencil.

The analogous method of studying a real variety via a map to the real
line was initiated by Lyusternik-Schnirelman and Morse and is called

Morse theory. Singularities of some such maps are shown below :

In fact Thom observed that one of Lefschetz's results — the weak
Lefschetz theorem — is best proved via Morse theory. On the other hand

the best proof of the deeper hard lLefschetz theorem is still via Hodge

theory which involves complex analysis on the smooth complex variety.]

Polyhedron P and its subdivisions P’, P". As y (% Ai) varies, the genus
p Riemann surface S above y varies, [If we constrain y to be in tLhe

complement of some chosen cuts OA OAq, then this variation gives

Ii ver
a unique homeomorphism between any two of these Riemann surfaces, and
so, the cholece of a cell subdivision P of any one of these S's fixes a

unique homeomorphic cell subdivision on all these S's.
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'On the other hand, a y (# A, and # 0) lying on a cut OA; can be

i
approached from two sides, so we obtain by this process, for iis S, two

homoeomorphic subdivisions, related to each other by the monodromy
transformation Ti' The superposition (in the obvious sense) of these two

subdivisions of S will be denoted P; or just P’.

As will be Jjustified later in § B, we can assume that the variation of y

between O and Ai on the cut O}-"~..1 preserves P;.

Finally, since the point O can be approached from within any of the g
sectors, we obtain, for its S, g homeomorphic subdivisiens. The

superposition of all of these q subdivisions will be denoted by P".

Poincaré denotes the faces, edges and vertices of P (resp. P', resp. P")

by F, B and C (resp. F', B’ and C', resp. F", B" and C").

Polygon Q. Just as in the “Troisiéme Complément” we now "open up" the g
cuts OA.1 and consider the complex line € = S2 ag a polygon (@ with 2q

sides, with identifications of pairs of edges done in the manner shown :

Thus, there is a unique vertex o, of the polygon Q which corresponds to
Ai, but the g vertlices Bi all correspond to 0. Note also that, with the
indicated orientations, the boundaries are given by d(ef) = ¢ — f§ and 3Q

= E(miﬁi - miﬁi+1)’ the summation being over all i mod g.

Cell subdivision H of V. We note that we can obtain V from the
cartesian product of Q and P by identifying each of its fibers {y} x P,
y # % with the subdivided Riemann surface S above the corresponding

point y of €, and by making, in the q fibers «, x P, the identifications

i




governed by the nature of the singularity at Ai.

However these identifications do not ideniify cells with cells. To make
them cellular, Poincaré now modifies the above construction slightly,
and defines H by making the above Iidentifications on the subdivided
cartesian product QxP which uses, for each fiber {y} x P with y lying in
the open intervals BimiBi+1 of 8Q the subdivision {y} x P, and for the
g fibers {B}ix P the still finer subdivision {Bi} x P",

Proposition 1, The cell complex H 1Is obtained from the subdivided

cartesian product Q x P by making the cellular identifications

@By x o= B
Bi X B = Bj Xx 8, 6 € P",

X 0, ¥ € P%,

and, for each i, some identifications amongst cells of the type @, X &,
¢ € P; governed by the nature of the singularity at Ai (which too will
be considered cellular, for we can always, if need be, replace P} by a

i
finer subdivision).

Furthermore, each chain of H is homologous to one which does not contain

such cells x, X ¢, ¢ € P%.

We remark that in the paper the verification of the last assertion,
which uses the product formula for boundaries,

dime

8lo x 8) = 8{(c) x B + (-1) o x 8(8),

is completed only in the beginning of § 2,

Proof. Let us with Polncaré partition the cells of QxP intoe four
categories depending on whether their first factor is Q, an «f, an «, or
a 8. Then a little refliection shows that two cells can get identified
only if they are in the same category other than the first (which has no
identifications) and that the identifications above the points of 8Q are

as stated.

To see the second part note that a(aiﬁi x ¢} = BEmiBi)x¢ - miBix8(¢)
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implies aix¢ 2 (Bix¢) - aiBix8(¢). g.e.d,
[REMARKS REGARDING ABOVE IDENTIFICATIONS :

Most of the arguments of this paper apply to any 4-dimensional

polyhedron V constructed as follows : start with

(i} a 2g-gon Q with identifications x = ti(x) of edge pairs as above,
{ii) a surface S of genus p, and

(ii1) gq diffeomorphisms Ti: S — S whose product is the identity,

and let V be cbtained from QxS by making the identifications (x,y) =
(ti{x),Ti(y)) whenever x = ti(X)'

We note that such a V is necessarily smooth except possibly over the
vertices o, of § : these singular fibres are S/Ti‘ {Some arguments of

this paper need a condition on these fibers e.g. that Hz(S/Ti) = 7,)

If these singular fibers are also smooth surfaces (with projection § -
S/'I‘i being in general branched) then the 4-manifold V is foliated (i.e.
partitioned smoothly) into compact leaves {of which only a finite number

have genus less than pl.

However this nice situation can prevail only if the tangent bundle of V
splits off a smooth Z-dimensional plane bundle, i.e. when the second

Stiefel-Whitney class of V is O.

"Quand le point M vient en Ai’ les deux modes de décomposition de la
surface S en polyedre P se confondent; d'autre part, ce polyédre
dégénere ..."

We will interpret these words of Poincaré as meaning that all complex
surfaces f(x,y,z) = 0 are quotients of V's of the above (1-i1i-1ii} kind,
the extra identifications being all only over the points Ai'
For "ordinary singularities" the geometry of these identifications had
been worked out in Picard’s book and Poincaré will later cite many of

these facts e.g. that in this case each singular fiber has Jjust one
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fundamental 2Z2-~cycle : H2{S/Ti) x Z. Also § 5 of this paper will

elaborate further on the identifiications above the points Ai'

We note that because of the identifications at @, the two copies of P at

a point M approaching Ai along the cut OA, do approach coincidence in

i
the topology of H, but not in the topology of QxP :

If they did, the two copies contained in them, of any loop of P, would
be deformable to arbitrarily near, and thus homotopic, loops : i.e. the
action of the monedromy transformation Ti on nl(P) {(and so on nl(P))
would be trivial (cf. proof of Prop. 4). Thus the discontinuity (in the
topology of QxP) between the two copies of P as M — A, is in facl our

i
measure of the non-triviality of the monodromy action.

Lastly we remark that it would be interesting to see how far any smooth
4-manifold can be treated by these methods : e.g. 1is it always of
(i-ii~iii) type ? In the light of the fact that the (co)homology of
closed smooth 4-manifolds is subject to severe restrictions, it seems
one can hope that many techniques used only to investigate the homelogy

of compiex surfaces actually apply to all smooth 4-manifolds 7]

Notation. Poincaré omits the product sign x : so e.g. his aiBi+1Fk

correspends to our aiBi+1 x F Moreover, he omits the first factor of

K

a cell of QxP if it is Q : so e.g. his F, denotes, depending wupon the

k
context, a face of P, ag well as the 4-cell (or hyperbox) Qka of QxP.

We note also that the first factor in Bix¢ e H, ¢ € P*, 1s essentially

redundant because Bix¢ = Bjx¢ in H {(see Prop. 1).

215




-

§ 2. Three dimensional cycles.
Proposition 2. For any face F of P we have
Q x 8(F) = Ei(miBi+1 x F) — Zi(aiﬁi x F)

in H, So, If z is a homologically trivial 1l-cycle of P, then the
3-chain ¢ x z of H is homologous to one which only contains 3-cells {or
boxes) of type aiBi X Fk.
In the above, and in some other formulae, it is understood that some

terms are to be chaln-subdivided as per the definifion of H given above.

Proof. For this note that the boundary of any hyperbox is given by 8(Q
x F) =8(Q) x F+ Q x 8(F) = Ei(aiﬁi - a131+1) x F+Qx 8(F). g.e.d.
Notation. Poincaré denotes by S(M) the Riemann surface above a point M
of the cut OAi between O and Ai’ and its two P's, obtained by thinking
of M as being respectively on the lip aiﬁi or aiBi+1' are dencted
(rather whimsically !) by MP and {MP) with cells being {MF, MB, MC} and
{(MF), (MB), (MC)}. The superposition of MP and (MP) 1is denoted MP’
with cells {MF', MB’, MC’'}.

[This time we’'ll stick to Poincaré’s notations, though perhaps we should
have changed S{M) and MP’ to M x S and M x P’, and MP and (MP) to M x P
and (M) x P, where M and {M) denote the two coplies of the point M on the
two lips of the cut.]

Proposition 3. The map quq.(Qqu) + Ek,ieki'(“iﬁixpk) — Equ-Bq
associates to each 3-cycle of H, a l-cycle of P which is invariant, i.e.

one whose homology class is preserved by the Picard group.

We note that we have used 9&1 instead of Poincaré’s 6& because these

integral coefficients can depend on both k and ti.

Proof. Since the boundary 6(2q§q.{Q X Bq) + Ek 1BL1.(miBi b FL)) is

zero, its sub-chain consisting of all cells of category @, 1.e. Q x
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a : =
(Zﬁchq). must also be zero : so 6{25Cq8q) 0 and
a(zk,ieki'(“iﬁi X F&)) = — Zﬁqq.a(Q) X Bq , 1.e.
6():k 1 Opy (g By % F&)) = zq,icq'(aiﬁi+1 X Bq) - Zq,igq'(“isi X Bq).

The intersections with S(M), M e OAi, 1 21i=gq, of (the cells of) the

last equation, gives us the equations

G(Ekeii.MFk) = chq.(MBq) - Zﬁ,icq'MBq'

As y departs from M, from the side aiﬂi of the cut OAi' makes one
complete turn around Ai’ and comes back to M from the side aiBi+1 of
this cut, the cycle {ﬁﬂq.Bq deforms continuously from its initlal
osition Q, = .MB_ to its final position Q] = .(MB ) : thus the
P i T 2t "By P p = Lgtq (1B

above equations show that the homclogy class of our l-cycle is invariant

under the monodromy transformations Ti’ 1=1i=4q qg.e.d

Notation. As in the above proof we denote by Qi = thq'MBq and Q; =
[%Cq.(MBq) the l-cycles of S(M) corresponding to a given l-cycle thq'Bq
of P. The Rlemann surface above O will be dencted SO’ and Ui and U;
0 obtained from the cycles Qi and Qi of S(M)
by moving M to O olong OAi' We note that U, and U; depend on M, and

i
0 _ 0
that as M approaches 0 these cycles approach Qi = 2q cq'Bi X Bq and Qi+1

will denote the cycles of S

= Zq Cq'Bi+1 % Bq respectively.

Proposition 4. The image of the map of Proposition 3 consists of all

Invariant 1-cycles of P.

As we'll see below, Poincaré’s proof is somewhat incorrect, however it
does give a weaker result, and probably can be repaired completely for

the case of "ordinary singularities”.

Proof. 1If } £.B is an invariant l-cycle of P we can choose, for each 1

= 1 = ¢, an integral 2-chain Zkeki'pk of Pi’ such that B(Zkeki.MFk) =
AMB ) — & _.MB_for any point M between O and A, on the cut OA,.

Loq MBy) ~ L, 15 1By VP i !

As M approaches A1 along this cut the cycles Qi and Qi approach




coincidence in H, and so the above equation gives B(Zkeéi.aixFé) = 0,

i.e. that Zkaﬁi'“ixpﬁ is a 2~cycle.

We can in fact choose the above 2-chain Zkeﬁi'FL in such a way that, not

only is Zke%i'“1XFi a 2-cycle, but that it is identically zero :

Assume first that singular complex curve above Ai has only one
non-trivial 2-cycle z (this happens when only "ordinary singularities"
are allowed) : choose as above an initial 2-chain Ekeéi'Fk for which
Ekgki'aiXFi is a 2-cycle = nz for some n, and if n is nonzerc replace it
by the 2-chain Ekeki'Fk - nz.

[However in the general case below Poincaré’'s argument seems to use that

(%) the cycles Q.1 and Q; approach coincidence in QxP.

As was peointed out before also (*) can happen only if
(%*%) Q and Ti(Q) represent the same element of ni(P) Vi,

a hypothesis which apparently is stronger (is it really ?) than the
given hypothesis that they represent the same  element of the
Abelianization Hl{P) of nl(M). Conversely, it is very 1likely (cf.
Prop.6) that any element of nl(P) which is invariant under all the T,'s

i
can be represented by an Q satisfying (*).]

For the general cage Poincaré gives the following argument :

Let R be the region of S, swept out by the cycles U, and Ui of 5, as M

travels from M to Ai' (ghis is suspect, however ifione has (*) gne only
needs to come close enough to 1’\.1 and bridge the small gap by a homology
to define this R.) This region R (which depends on M) is bounded by Ui
1 and Qi as M

approaches Ai implies that the corresponding cycles Ui and Ui also

and U!l becauge the coincidence of the two cycles Q

coincide as M approaches Ai' Transporting R along OAi to M we get a
region of S{M) bounded by Qi and n; and we will choose the 2-chain
Ekeéi.MFk so that it covers this region. The above assertion follous

because R becomes zero as M approaches Ai'




[Since this "swept out" argument will be used again also {even for the
"ordinary singularities" case) it seems that as such Poincaré’s argument
will only show that @'s obeying (%) are in the image of the map in
question. However it is fairly certain that, at least for the "ordinary

singularities" case, the necessary repair work is not hard.]

With the 2-chains chosen as above, we have for each 1 2 1 % q,

B(Ek xF } = Eq(C aiBi+1 - Eq(cq.aiﬁiqu) - Zk Bii.BixF' s

and adding these q equations we get
6(2q§q.Qqu + zk k1 .B xF ) = Ek,i eki'BiXFk

To complete our proof we'll now show that the right side of the last

equation is zero :

When M goes to O along OAi the 2-chain Ekeki'MFk becomes Ekeki'BiXF ,

i.e. the 2-chain of SO, bounded by the values Qi and Qi+1 which Ui and
U; take as M goes to 0, which is swept out by Ui and U; as M traverses

the complete cut OAi' So
, _ 0 0
8(Ek9k B xF ) Q1+1 — Qi ,
and summing these q equations (here i is mod g} we see that G(Zk i
9'1.B.XF§) =0, i.e. that the “right side" in question is a 2-cycle. 5o

Ek i kl B xF' is some multiple n,S. of the fundamental 2-cycle of the

0
Riemann surface above 0. We want to show that n = 0.

For this, Poincaré considers a point M describing a contour of the

following type which is infinitely close to {but away from !} the cuts :
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We will think of Ek { 8&1'81XFL as the region of S0

moving i-cycle which initially is Q? , moves like U1 as M moves from O
to (infinitely close to) Ai’ then like Ui as M moves back to 0, then

like U2 as M moves from O to (infinitely close to) A

chalked out by a

o ete.
[This is okay : the "small Jjump" which the moving l-cycle actually makes
at some contour point M close enough to A, when motion "like U, " is

1 1
.

changed to that "like U} " can be filled in by & small homology of S

1 0

The movements of our l-cycle stem from monodromy w.r.t. ¥, which in turn
(see "Troisiéme Complément”} is due to the motion w.r.t. y of the branch
points of f{x,y,z) = 0 considered as a (multivalued) function z =
F{x,y). These values of x are the branch points of a moving branched
covering ¥ 5 &? {initially given by (x,0,2) +> x}. If the projection
under it of our l-cycle misses these branch points initially, then it
will continue to so miss, or as Polncaré puts it, flee from these moving

branch points, for all time,.

We note now that, since Z&,i eﬁi‘BiXFé is a 2-cycle of SO’ it is
unchanged if we replace its generaiting moving l-cycle by a nearby one

so we can, without loss of generality, assume that our moving 1-cycle
does flee from the above singularities as above. Note now that if such
a family of moving l-cycles is deformed 1In any way through familles
fleeing from branch points, then the 2-cycle Ek,i B&i'BixF’ still

k
remains unchanged.

Since our contour was away from the cuts (despife being infinitely close
to them !} each branch peoint retains its identity, 1i.e. they describe
disjoint arcs on the x-plane Sz. So we can deform our moving family in
such a way that it misses a chosen fixed point in the complement of
these arcs. This shows that the branched projection of our 2-cycle
misses a small disk of S2 around this fixed peint. Thus n =0 and our

2-cycle must vanish. g.e.d.
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Proposition 5. If a 3-cycle X&Qq.(Qqu) + Ek,ieki'(aiﬁixpk) of H is
such that Zﬁcq.Bq bounds in P, then the 3-cyclie must bound in H.

In conjunction with Prop. 3 and of Prop. 4 this shows (modulo a 1little
doubt about the proof of the latter !} that H3(V) is isomorphic to the

subgroup of Hi(V) Invariant under the action of the Picard group.

Proof. Using the hypothesis and Prop. 2 we see that our 3-cycle is
homologous to one which has only cells of the category «f. So to

complete the proof it suffices to check that
H has no nonzerc 3-cycle containing only cells of category aff :

If Ek,ieki'(aiBiXF&) were a nonzero 3-cycle of H, then its intersection
with S(M), 1i.e. Ekeﬁi’MFk would be & nonzero 2-cycle of MP;. So when M
approaches Ai its limit Zkeﬁi'(ai X F&) should be a nonzero multiple of
the Z-cycle covering the entire singular complex curve above Ai' This
contradicts the fact that if in B(Zklieéi.(aiﬁika)) = 0 we consider
only cells of category a we get Ekeki'(ai X F&} =0Vi gq.e.d.

Proposition 6. Each element of HI(P) which Is Invariant under all Ti

can be represented by a l-cycle Q for which Qi = Qi for all i,

For totally invariant cycles of this kind one gets a 3-cycle of V | just
by multiplying by the complex line € : so the surjectivity of Prop. 4
follows from this result, and a perhaps more natural approach towards

H3(V) is to establish Prop. 6 first 7

Poincaré however gives no proof of Prop. 6 bub simply writes that this
is clear because of "the arbitrary fashion in which we can make our

Riemann surfaces correspond with each other".

By this he might be meaning that we have the liberty of deforming the
fibers above one of the two lips of any cut before matching it to the
pre-image of the other lip. This argument does appear to show the above
but only under the apparently stronger hypothesis that our homology
class is the image of an element of the fundamental group nI(P) which is

invariant under all the Ti’s.
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& 3. Two dimensional cycles, Using Prop.l we need ito consider only
Z2-cycles without cells of category o. Then, re cells of calegory Q, we

observe the following.

Propeogition 7. Any two 2-cycles of H which contain 2-cells of category

(3 are homologous to each other mod cells of other categories.

Proof, If a O-chain Ze C of the surface P is the boundary of ECqB
then 6(chq(Qqu)) stk(Qka) + cells of other categories.

So any 2-cycles of H whose category Q part is Eek(Qka), with Zek = 0,
is homologous to a 2-cycle having no cells of category Q : this follows

from the above because a O-chain }g C_ of P bounds Iff the sum Eek of

k7k
ite coefficients is zero.

The result now follows because, given any two Z2-cycles with category Q
parts Eek(Qka) and ZeL(Qka), we can certainly find integers n and n’

such that n({pk) + n’({?%) =0, g.e.d.

A l-cycle Ki = Zke B’ of P; is said to be a vanishing cycle at Ai iff

Ek X (a xB }) =0 in H.

Proposition 8, There is a 1-1 correspondence between 2-cycles
Zk i kl(a By xB )+ Z&B (BixF ) of H and sequences Ky = Ekeki'Bk of
1-cycles of P;, whose sum ZiKi bounds Ekei Fﬂ in P", and each K,

vanishes at Ai'

We note that, in the above, the coefficients 6" depend only on the index

k because we have B xF& = BJxF" in H.
We note also that the exceptional cycle SO = Ek BixFi — i.e. the
Riemann surface £(x%,0,z) = 0 — is one of the above 2-cycles, and that

whenever all 8’ are zero, the above 2-cycle must be a multiple n.SO,
i,e., then all 8" must be equal to each other.

Proof. That EiKi bounds a({%e" F") in P is clearly equivalent to saying
that we have T ki(ﬁika} a(zka" By xF") in H.
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Further, if each Ki vanishes at Ai’ i.e. Z%BQi(aixBﬁ} = 0 in H, we have
—Zkeki‘BiXBk = B(Ekeki(aiﬁika)). Adding these g equations to the one
above we get a(zk,iski(aiBiXBk) + Zkek'BiXFk) = 0.

Conversely, intersecting the equation a(zk,ieki(aiBiXBk) + Zkek.ﬁika) =
0 with S(M), where M is on OAi, wWe get B(Zkeéi(MBL) = (0, which shows
that K.1 = Ekeki'Bk is a cycle of P for each 1.

Further, considering category « terms of B(Zk,ieki(aiﬁixgk) +
Zkek'BiXFk) = (0 we get X&,ieki(miXBk) = ( which happens iff Zkeki{aika)
= 0 for each i. So each Ki vanishes at Ai and we have Ek,ieki(BiXBkJ =
6(£k9k.Bika). q.e.d.

These vanishing l-cycles also explain the lowering of the generic genus
p at the singularities, e.g. if the fiber is a torus with a double curve

C as vanishing cycle as shown below, then genus decreases from 1 to 0 :

We note that the property that a 1-cycle EKGL‘MB& becomes zero (when M
approaches Ai) in the cartesian product QxP is much stronger than that
it is a vanishing cycle at Ai {i.e. that it becomes zero in H when M
approaches Ai) : e.g. 1in contrast with the following assertion, we saw
before that a l-cycle of the type w - Ti(w) satisfies this stronger

property only if it is homologically (and even homotopically} trivial.

Proposition 8. If w Is any l-cycle of P;, then the cycle w - T%w)
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'vanishes at P;. Conversely, any vanishing cycle of P; is of this type.

Proof. The direct part iz immediate since we have the identifications
aix¢ = aixTi(¢), ¢ e Pi, at each singularity Ai'
For the converse, Poincaré only gives references to Picard’s book
(vol.I, pp. 82 and 95) which gives explicit description of the ordinary

singularities and their monodromies Ti' q.e.d.

The notion of vanishing c¢ycle of course makes sense even 1if the
singularities are not ordinary. However then (Poincaré notes} all

vanishing cycles are not necessarily of the above first kind.

Proposition 10. A 2-cycle Zk 19&1(“1Bixsk) + Ekai'BiXF; of H bounds iff

there is a l-cycle K of P such that for any Mi lying on any cut OA we

i
have Ekeki,MiBé = MK~ (MiK)' Furthermore, the 2-cycle S, does not
bound in H.

i o

Proof, If the 2-cycle bounds we have some equation of the type
a(stk.Qka} + Ek,ick'aiBiXFk) = E&,iaki(miBiXBk) + Zkek.Bika (0).
On intersecting this with the Riemann surface S above a point y e int(Q)
we get B(Ekek.Bk) = 0 in the cell subdivision P of S. We assert that

this Ekek'Bk is our required l-cycle K of P.
To see this we note that (0) is equivalent to
AL, 1Sk % B = By 10y (o ByxB) + By 58y (03B, ¥B)
- Zk,iek'(aiBiXBk) + Ek,iek'BiXFk , (1)

and on intersecting this with the Riemann surface S(Mi) we get

6(Ek,i§&.MiFi) = DOy MiBy + (MK - MK, (2)

which shows the required Zkeii'MiBﬁ = MK - (MiK).
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Conversely note that the right side of (2} is a 1-cycle vanishing at Ai:
so this equation can hold only if B{Zk igk.aika) = 0. In case the

singular fiber above A, has a single fundamental Z2-cycle 2 — Poincaré

i
asserts that this case alone can happen for the case of ordinary
singularities under consideration — this Z-cycle Ek iq&.aixFi must be
n.z for some integer n. We can in fact assume n = 0 for otherwise we

can always replace {& iC&.aixF& by Ek ick'aiXFi - nz.

[Poincaré here asserts that we can always ensure Ek ick'aiXFL =0 in H,

however this seems moot as the "swept out" argument of § 2 is in doubt.]

Using (2) and Zk ic%.aixF& = 0 we now get (1), and so (0), if we set the

subdivided Zk,iCé.BixFé equal to Ek,ieﬁ'BiXFﬂ .
For the last part assume that the 8' are all zero and (0) holds. We
note that K is now an invariant il-cycle, and (2) is the homology between
it and its transform under Ti' So the corresponding 3-cycle (given by
the slightly cloudy Prop. 4 of § 2 !) of H is the chain on the left side
of (0) on which 8 acts. The left side of (0) is thus zero, which shows

that all 8" are also zero. g¢.e.d.

Proposition 7'. Besides the 2-cycles of Props. 8 and 10 there Iis

exactly one more homologically distinct 2-cycle.

Proof. We know already (Props. 8 and 10} that this additional 2-cycle
must have some cells of category (, and (Prop. 7) that there is at most
one such 2-cycle, and that in it the sum of the coefficients of all the

Z2~cells of category Q must be nonzero.

Also it is clear that if a 2-cycle bounds, then the sum of the
ceefficients of its category Q cells is zero. Thus it only remains to
exhibit a 2-cycle such that the sum of the coefficients of its category

Q cells is nonzero.

Forr this we'll assume that for some X = X all the m points of our P

(above the chosen base point y € int(Q)) which have x = x_ are vertices

0
of P. {In § 5 we’ll check that this is permissible.} Then if Cl’ bee s
Cm denote these vertices we must have B(QxC1 + ... + Qme) = (., To see
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'this we note that as y turns around an Ai the Ci’s, being the m roots of

the equation f(xo,y,z). Just permute with each other : so the sum
Ekaiﬁixck equals the sum ZkaiBi+1ka.
Alternatively, QxC1 + ... 0+ Qme is a 2-cycle (and will be called

exceptional alongwith the cycle SO

coincides with the Rlemann surface f{xo,y,z) =0, g.e.d.

or f(x,0,y} = 0) because it obviously

Proposition 11. The second Betti number of V equals 2 + (4 — p) - (2p -
n), where u = Zki‘

l-:.I = number of homolegically Iindependent i-cycles which vanish at Ai’

p = rank of the ux2p matrix formed by the coefficients of these p cycles
with respect to a basis of HlfP), and

n = number of homologically distinct invariant 1l-cycles of P,

[In the paper one has p = 2p — r — 1. We note that though Poincaré
proceeds exactly as follows, some misprints at the very end make his

final formula wrong. ]

Proof, Using the preceding results we have the following generating

2~cycles of H :

Begides SO and f(xo,y,z) = {0 (which are homologically distinct and
independent of the others) the remaining 2-cycles are determined by

length q sequences U whose sum bounds in

1’ o’
SO' and which vanish as we transport them, respectively, to AI'

, Uq of l-cycles of S

L

Aq. Furthermore, we know that there is a homology between any Lfwo of

these Z-cycles iff the difference of the two sequences is of the type Qz

- Ql' e, Ql —- Qq, where Qi’ 1 =1=gq, are the cop}es in SO of the

same l-cycle Q of P.

The requirement that the sum of the Ui’s bounds means that the number of
non-exceptional cycles equals the number of distinct dependencies
amongst the rows of our ux2p matrix, i.e. g — p. Alsc, since ., - 91,

2

, 91 - Qq is a zero sequence iff Q is invariant, we see that the

number of distinct homeclogies is 2p — n. gq.e.d.

We remark that Poincaré claims the above even when there are wvanishing
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cycles of the second kind, i.e. not necessarily of the type w—Ti(w).
However, for the case of ordinary singularities, he now points out the
following explicit construction of the generating Z-cycles of H {(cf. the

preceding C. R. Note )

Let the vanishing cycle U, = Tl{wi)—w then transport w, along cne loop

1 1! 1
("petal") of the flower-shaped contour we used in § 2 to get a surface

with boundary T (wl) - w Do likewise with U,, etc. Since sum of the

1 1’ 2’
U's bounds, ¥ @, is homologous to the sum J Ti{wi)’ and the sum of all

these surfaces has zero boundary. This is the required 2-cycle,
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§ 4, One dimensional cycles. Once again we start by noting (see

Prop. 1) that we only need to consider cycles not having any category o

cells.

Proposition 12 (Plcard). Any l-cycle Ek g (e BxCy) + Zke" (B,xB.)
of H is homologous to one having all 8' zero, i.e. to a l-cycle of S0 .
We will use below the assumption that the maps induced in 1l-cycles at
each o, by the defining identifications of H are surjective : presumably

Picard had checked this for “ordinary singularities” in his hook.

Proof. Considering terms of category « in G(Zk ieii'(aiﬁixcﬁ) +
Zkek.(Bika)) = 0 we get Zk,ie ..(a.xC } = 0 which happens iff
Zkeki.(aixCQ) = 0 in H for each i. So the sum of all the 8, for which

ki
aixC£ is a fixed vertex of H is zero, and this implies Ek K1 =0 V1.

So the O-chain zkeki'ck of P is the boundary of some 1-chain Ekcii'B,

K
') =0 in H

In fact this l-chain can be so chosen that Ekcﬁi'(“iXBk

To see this note first that when M approaches A. along OAi the equation
B(Ekckl MB, ) = Eke -MC, becomes a(quk L0y xB ) = Zkekl'aixck = 0, so
chki'(“1XBk} is certalnly a 1-cycle of the singular fiber above A,. In
case this is nonzero, we use the aforementioned surjectivity to choose a
1-cycle Ekek"Bk of Pi such that Ekeki'(aixsk) = Equi.(aika) and

replace Ekck BL by chk B’ Ek i’ k .

Having chosen such a 1-chain we now have 6(Ek§Li.{aiBixBL) =
Ekcﬁi'(B'XB,) + Ekei..(a.ﬁ xC’} which shows that the given 1-cycle
Ek i k1 (a, B xC ) + Eke“ (B xB") is homologous to one having only
category B edges. gqg.e.d.

Proposition 13 (Picard). Hl(V) is isomorphic to the quotient of HI(S)
obtained by dividing out by all classes of the type w -~ Ti(w].

Proof. We saw above that the l-cycles w of S generate Hl(V). Besides

0

the relations given by homologies within SO we have the relations w -

Ti(w) = 0 amongst these l-cycles. This follows since @ — Ti(w) = 0 can
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be transported to Ai where it vanishes. Also we know that for the
“ordinary singularities" these are the only l-cycles wvanishing at Ai
(see Prop. 9). This implies (? this Is not clear ?) that there are no

further relations amongst our generators for Hl(V)' q.e.d.

We shall call a i-cycle of P" a surviving i-cycle if it is not a linear
combination of the vanishing cycles of P;, 1 = 1 s q. Using the

Poincaré duaslity theorem , & 2 and the above result give the fellowing.

Proposition 14. The number of homologically distinct surviving I-cycles
of P" is equal to the number of homologically distinct Iinvariant

1-cycles of P.
Poincaré also gives an argument independent of his duality theorem :

Proof, With respect to a choice of a basis wj of HI(S) we will think of
each Ti as a (2p)x(2p}) matrix. The number of subsisting cycles is equal

to the number of distinct solutions of the system
{A) x = Ti(x), 1=1i=gq, C
of Zpg equations in 2p unknowns.

On the other hand we can also assume that our basis is such that the
bilinear form (yle - ylxz) + (y4x3 - y3x4) + ... is invariant when both

¥ and y undergo the same transformation ’i‘.1 151 =q.

[Though for our purpcose any non degenerate skew-symmetric form invariant

under the finite group generated by the T,’s will do, Poincaré seems to

i .
be using a geometrically interesting one, viz. the intersection form of
Hl(V) {see § 9 of "Analysis Situs”) which is obviously preserved by the
monodromy : thus the Picard group sits within the subgroup Sym{2p,Z) of

GL{2p,Z) determined by this skew-symmetric form, ]

On comparing with this form, we see that a cycle m, o, + m, o Mgty +
mgW, o of S is invariant under all T.1 iff the 2p-tuple (—mz, m .
Mgy Mgy . } is a solution of the system of equations (A). This shows

that the two numbers in question are the same. q.e.d.
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Poincaré concludes this section with a discussion of what transpires Iif
we allow singularities of other kind. Now V may not be a 4-manifold, so
the definitions of "Analysis Situs” become debatable : should one e.g.
consider a l-cycle which only bounds a 2-manifold with a singularity
(say a conical point) as a boundary or not 7 In sum he feels it 1is
better to postpone this study and consider only the case when V is a

4-manifold.
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§ B. Miscellaneous remarks. Poincaré now wants to examine further the

following points which had come up in the course of the above arguments:

1» That the polyhedron P’ (= P;) covering S(M) remains homeomorphic to
itself as M varies between 0 and Ai on OAi'

2 That there is a natural 1-1 correspondence between the Riemann
surface S, at 0 and each of the above Riemann surfaces S(M).

0

32 That there is indeed a region R of S, as in the proof of Prop. 4.

0

4. That a region of SO defined in the proof of Prop. 4 (when M

described that flower-shaped contour) does not cover all of SO'
5. That a vanishing cycle at Ay 1s necessarily of type w — Ti(w).

G+ That all the m points of S0 taking a certain constant value of x =
X, are vertices of P.

He says that the legitimacy of these hypotheses being almost evident he
did’nt want to interrupt the above arguments to give an “"explicit proof"
of these, especially since it would have entailed choosing a particular

P, but that now he will give such a proof.

[Actually, in our opinion, Poincaré still won't give an "explicit proof"
of these hypotheses (of which all but 3:-5- do seem evident anyway) but
rather some examples — since quite a few algebro-geometrical
assumptions will be made below — which do however serve to bolster
one’s belief in the above hypotheses, and more important, which serve to

elaborate further the nature of the basic identifications of § 1.]

A canonical polyhedron P. We start with a generic base point y and

cover its Riemann surface S with a P having m = degz(f) faces F these

k?
being 2n-gons given by the coples of the x-plane with cuts OBl' e
OBn — the n branch points Bj are all the solutions of the equations f =
0= g; — which are to be joined to each other (as per the nature of

the multi-valued function z of x defined by f = 0) by gluing a lip of a

cut in one copy to the other lip of the same cut in some other copy.
[Instead of choosing these cuts as straight lines of the x-plane it 1is

better to choose them to be projections of (usually non-euciidean)

"straight lines" in the u.c.s. of S : see "Troisiéme Complément”.]
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We will assume that when y varies, the branch points B . Bn remain

1!
distinct from each other and from the origin 0 of the x-plane, except
for finitely many singular points Al' B Aq (# 0) of the y-plane, at

which
(1) some two of the branch points interchange, or else
{2) one of the branch points comes to the origin 0 of the x-plane.

[Poincaré asserts that this is so for the case of "ordinary
singularities”, and similar assertions are made later re other
assumptions : our policy will be to just record the assumptions, without
worrying about the extent of their validity, and thus simply treat what

happens as an example of a V !]

As before we now cut the y-plane along OAI’ e s OAq and denote by Q
the resulting 2g-gon, and we transport our P by monodromy (over arcs of
intQ) from the base point to all points excepting the g-singular poinis.
This gives, above points Mi on the cuts OAi' two polyhedra MiP and
(MiP), and above the origin 0 of the y-plane, g polyhedra, whose
superpositions are P; and P", We now examine these superpositions

separately for the above cases {1} and (2).

EXAMPLE (1). Let us suppose that when y makes one full circuit around
Ai the cut 0}31 becomes the dotted line OBé froem 0 to B3 and the cut OB:3

becomes the dotted line OBi from C to Bl’ but all other cuts return to

their initial values :

as2




For the sake of simplicity let us assume that if we go arocund the branch

point B, in the x-plane we simply permute two of the m sheets (= faces

1
of P} of our Riemann surface : we’ll call these the first leaf and

second leaf of S, Then going arcound B, will alsc simply permute these

3
same two sheets of S, and Pi will coincide with P except for these two
sheets which will each get subdivided into three cells {ai, Bl, 71} and

{az. 32. 72} as shown.

Cur P’ will now be same as P except that these two faces will each get

subdivided into three faces «, 8, and ¥, as shown above.

Verification of 1., This is clear because, as M varies between 0 and
Ai' the branch points remain distinct from each other and from 0, and so

the subdivision P' retains this shape.

Verification of 2., The above isomorphism between the polyhedra P'above
various points M of OAi gives the required diffeomorphism between their

underlying spaces S(M)'s,
The identifications at Ai will be assumed to be as under :

The cuts 083 and OB, get identified respectively with the dotted cuts

1

OBi and OBé and the region B disappears. MWMore precisely what we mean by

this is the following.

We first define GBi or GB; — resp. DB.1 or DB; — to be the edges of P’

]

above 0}3.l or OB; such that we have

6(81) = BID - B1D + BBD - BSD and

3(32} = BiG - BIG + BéG - BBG'

[In the paper GBi or GB; - resp. DBi or DB; — ig def'lned to be the
edge of P’ above OB.1 or OB; which has the first leaf to its left (G is

for "gauche" } and the second leaf on its right — resp. the first to
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its right (D is for "droite”) and the second to its left — as we move
out on it starting from G, resp. D. However this is incorrect for then
we do not have the above formulae which we will use below.]

Then as we go around Ai the pairs of edges {GBl,GBé}, {DBi,DBé},
{GBs'GBi} and {DBS'DBE} permute with each other, and at Ai these pairs
of edges get identified with each other; furthermore the 2-cells 31 and
62 of P’ disappear at Ai'

Verification of 5. Clearly the 1-chain
w= B.D — B,b - 83G + BIG

3 1 i

of P° is a cycle. Moreover it does not bound, and since Ti(w) = — g, it

{(or rather its double 2w) is a vanishing cycle at Ai of the type w -

TiEw). It can be checked that there is no other vanishing cycle at Ai'

Verification of 3+, Let Q be any l-chain of P, having at a point Mi on

OAi the copy
Qi = Cl.BlD + CZ'BIG + CS.BZD + €4'BZG + H {other edges)
in MiP, and thus the copy

Qi = Cl'BSD + QZ.BSG + §3.81D + §4.B1G + H

fi

in (MIP)' If Q is a 1-cycle we'll have here Cl - cz and CB = — C4.

An easy calculation now gives the equation

Q -+ (g-8,y).0=¢,(BG-B

i G+ BG-~-B.G-B,D+BD-BD=+ B3D)

1 3 3 1 1 3

whose right hand side is Cl.a(Bz—ﬁl).
If Q is an invariant cycle {Poincaré had faliled to use this information
in the "swept out” argument of Prop. 4 !) we must have <1 = §3 :  this

because now Qi - Q; is homologically trivial while the vanishing cycle w

is not. ©So now the above equation reads

Cl.a(ﬁz— Bl) = Qi - Q;
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and we can choose our 2-chain to be Cl.(Bz— Bl) which vanishes at Ai as
desired because the regions Bl and 82 disappear due to the
identifications at Ai'

EXAMPLE (2). If at Ai the branch point B, goes to 0, then the other

1
cuts can spiral around O (see below) with their final dotted positions
possibly cutting their initial positions, but not cutting the small (and

vanishing as we approach Ai) cut OB

1

We now obtain P' from P by subdividing each of its faces into five faces

«, B, ¥, &, and £ as shown above.

Verification of 1.. As We approach A, the above shape remains same,

i
only the cut OB, becomes smaller and smaller, so P’ remains same.

i
Verification of 2., The diffeomorphisms S(M) &— S(M'} betwsen the

surfaces above pairs M, M of points of OA.l between O and A are again

i
immediate from 1e. We note further {this is equally true in Example (1)
and will be used later) that the points at infinity correspond to each

other under these diffeomorphisms.
The identifications at Ai will be assumed to be as under :

The cut OB1 will disappear. Moreover all intercepts of all (solid or

dotted) cuts will diasappear, excepting the final intercepts (containing




”Bi) : the final intercept of the solid cut OBi will get identified with
the final intercept of the dotted cut OBi. Moreover the faces «, B, 7,

and § will disappear.

Verification of 5., This time there is no (homologically nontrivial)
vanishing cycle. (Poincaré says that these singular points A1 are not
"essential” and that in fact they can be avoid altogether.)

Verification of 3., Let the two coples of a 1-cycle at Mi € OAi be

Q = L& 0B + L&, 08, + L&, 08, and
Q;= £ &,.0B, + [ £,.0B, + [ &4 0B,

(the summation being over various edges of P above indicated cuts).

This gives

inQ:l=)jc2.6(a+7+6)+Ec3.a(cx+ﬁ+6)

because of

da + ¥y + 8) = OB2 - OBé and

8loe + B+ 8) = OB3 - OB&.
So we can take } g .(a + ¥y +8) + [ L . (e + B +3) to be the required
region since it approaches zero as Mi approaches Ai' (Note that in this
"inessential" case no use was made of the hypothesis that @ 1is also
invariant : so any cycle § is unchanged by the T,’s corresponding to

i
these inessential Ai’s.)

The remaining remarks apply to both exampies,

Verification of 4., As y describes the flower-shaped contour, the arcs
described by the branch points remain in the finite x-plane. So the
moving cycle Qi of SO’ being a combination of the edges above the cuts
OBi' will alsoc remain away from the point at infinity. (Use 1is being

made here of the fact that the points at infinity correspond to each

R L




other under S, «— S(M).) So we don't suweep out all of S

0 o

Verification of B, This is clear because we had chosen all points of

our Riemann surface having x = 0 as vertices of P.
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A LOOK BACK AT POINCARE’'S "ANALYSIS SITUS"
by

K.S.Sarkaria

{Talk given in "Congrés International Henri Poincaré"

at Nancy on 17/5/94)

§ 1. THIS IS A VERY BRIEF REPORT on a year-iong Topology Seminar
which I ran during 1993-84 at Panjab University. The detailed lecture

notes of this seminar will be published elsewhere.1

Our object in this seminar was to get an over-all picture of what
had been happening in this century’s Topelogy, and with this in mind we

had adopted the following strategy.

(i) To understand the mathematics of Poincaré’s "Analysis Situs”

and its five Complémenis as clearly as possible, and

{11} to understand the threads connecting Polncaré’s ideas to

future developements as clearly as possible.

In the course of doing (i) and {ii) we also got

(iii) some new results.

§ 2. THERE IS NO DOUBT that Poincaré’'s "Analysis Situs” and 1its
five Compléments {Pl, 1892-1904, constitute a breathtaking, epic,

monumental {almost any superlative seems inadequate !) work.

In fact if I were merely to make A LIST of the big ideas which
occur one after another in it, I would over-step nmy time t

Nevertheless, let me at least start making such a list :—

& Boundary operator, Betti numbers, homologie= (using smooth and
T N

! A first edition of most of these notes (about 150 pp) is available.
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oriented "singular chains” of a differentiable manifold : §§& 1-8).
(However we note that Poincaré became aware of torsicn only later, in
the first Complément, while giving another definition of homology via

incidence matrices of cell complexes. )

{The extent to which Peoincaré’'s ideas have overshadowed this
century’s mathematics can perhaps be gauged from this simple 1little
fact:

Out of all the Fields Medallists, with the exception of perhaps
three or four, everyone of them — irrespective of his domain : number

theory, algebra, analysis, ... — has used some homology in his work !}!

Perhaps not since the invention of the calculus has a single tool

so strongly influenced mathematics as homology. )

¢ Periods of indefinite integrals (= differential forms) and

{implicitly) de Rham cohomology (§ 7).

# Intersection matrices and Poincare’ Duality in orientable
closed manifolds (§ 9, with a correct proof only later in § IX of the

first Complément).

{Again it is remarkable how many fantastic results of this
century —— going back from Freedman and Donaldson, through Rochlin and
Whitehead, to this beautiful duality of Poincaré - are at heart really

assertions about the intersection matrix of an M4k 1)

¢ Triangulability of differentiable manifelds (assumed in § 10,
with attempts at proof lailer in § 16 via quadrillages, and in § XI of
the first Complément via a method of rays.)

¢ Monodromy of integrable linear PDEs (= flat connection) on a
manifold and definition of the fundamental group Hl(M} as the "most

general" such group of M (§ 12},

{This definition of nl was later put on a firm footing, and used

in his de Rham homotopy theory, by SULLIVAN {8], 1977.)

® Also the now standard (via homotopy classes of loops based at
a point) definition of nl(M). and again a third "“combinatorial”

definition which gives relations for nl(M) if M is a CW complex obtained
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by pairwise identification of faceis of a polyhedron {(§§ 12-13}.

¢ Many computations of fundamental groups and homologies, and a
classification theorem for some affine 3-manifolds (which is perhaps the

“deepest" result of the main paper : § 10-11, 13-14).

{In Dennis Sullivan’s words this result is "1/8 th of Thurston’s
theorem" : the latter says roughly that any "irreducible” 3-menifold can

be equipped with one of 8 specified "geometries”.)

The above is only the beginning (based on §§ 1-14 of the main
paper}, but let me just stop here, and now tell you some more about the

first and last items of the above partial list.

§ 3. POINCARE’S FIRST DEFINITION OF HOMOLOGY. He starts off
Analysis Situs by defining what we would now perhaps call
a "differentiable quasi-affine non-singular complete intersection” vl oc
RN, i.e. a clean intersection of N-n smooth hypersurfaces of an open set

of RN def'ined by so many smooth equations.

The aforementioned open set 1is assumed def ined by sonme
inequalities. He now staris replacing, one-by-one, these Iinequalities
by equations, and by adding these, one-~by-one, te¢ the N-n defining
equations of V, gets the complete boundary of V. Then the boundary a8V
of V is defined by dropping further the singularities : so e.g.

- \\\ “
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fig d

Each V is {transversely) oriented by ordering its defining N-n
equations (so a transposition of 2 of these equations gives not V but
—V), and the boundary components are oriented by placing the new
equation in the end {this 1is what gives the arrows in the above
picture). Polincaré realizes {unlike Betti before perhaps 7) that

"varieties" can repeat in 3V, e.g.
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Whenever an integral linear combination of r—dimensional

"varieties" equals a boundary 4V he writes

C1W1 + czwz S

R
e

Starting with these primitive relations (with =all Wi € M) he now
generates all homologies of a manifold M (see below for his definition
of manifold) by "treating them just like equations" : i.e. by allowing

such relations to be added, and terms taken to the other side if one

changes sign, or multiplied by integers (and cccasicnally — and this of
course makes a big difference ! — even division by nonzero integers).
WE BREAK HERE FOR POINCARE'S DEFINITION OF A MANIFOLD M : First

he sort of retreats and considers more restrictive ‘"parametrized
varieties" i.e. v° ¢ RN with a 1-1 onto 8 from an open subset of R® to
" given, But next he generalizes enormously via the idea of
continuation : vy and v, are called continuations of each other if v,
is nonempty and is also a parametrized n-variety, e.g.

V.
~

i e,

Conti -r\ua.t\'ons
not Conbinuations

$ig. 3
He defines M as a graph { = résaux comnexe) whose vertices i are
parametrized varieties vi(of RN) with edges {i,j} corresponding to pairs
of varieties which are continuations of each other. In modern terms he
has defined the notion of an abstract manifold M together with an
immersion into some RN {but for him the latter 1is always "extra

baggage”, and this is quite explicit as one reads on the paper).

RETURNING TO HOMOLQGIES, we now see Poincaré defining Betti
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. numbers br(M) as the cardinality of a maximal set of linearly
independent (i.e. no non-trivial homology between them) and closed (i.e.

with 8¢ = Q) combinations of r-dimensional subvarieties of M.

(Betti’s numbers on the other hand had been defined restricting
the ceoefficients <y to be always {-1, 0, +1} : so Betti was in fact
talking of the least number of generators required to generate Hr(M) —

see below. )}

IN MODERN TERMS POINCARE'S DEFINITION RE-INTERPRETS AS FOLLOWS
Let CP(M) be integral combinations of (oriented) '"r-varieties" of M,
generalize d by linearity to all these to get & : Cr[M) — Crml(M) and
since 8¢9 = 0 define H,(M) = kerd/ind . Then Poincaré’s b (M) 1is the
Z-dimension of HP(M) mod torsion, {(As mentioned before Polncaré did

become aware of torsion too, but later.)}

RELATIONSHIP OF THIS DEFINITION WITH SINGULAR HOMOLOGY. There
are esgsentially 2 differences., If we use all continuous (instead of
Just smocth} oriented v’s we get the definition of singular homology as
given by LEFSCHETZ [5], 1933. If we further use ordered (instead of
oriented) v's, we get the current definition of EILENBERG [2], 1944. Ve
note finally that standard techniques — cf. EILENBERG {3}, 1947 — show
that, for the case of smooth manifolds M, the aforementicned Poincaré

homology groups H,(M) coincide with the singular homology groups of M.
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§ 4. POINCARE AND 3-MANIFOLD THEORY. Extrapolating from the
cage of 2-manifolds {also from his experience with fundamental domains
of some Kleinian groups)} Poincaré assumes the triangulability of closed
3-manifolds, i.e. that they can be obtained from a 3-polyhedron by a

pairwise identification of its facets.

Since analysis of similar identifications had led to a
classification of Z2-manifolds, Poincaré now quite naturally wants to

make lists of the 3-dimensional ones the same way.

LIKE ALWAYS HE STARTS OFF FROM SOMETHING VERY SIMPLE, He points
out that the Z-torus is a square, with opposite sides identified, and it
is the only orientable Z2-manifold obtained this way. So what can we say
about the parallel 3-dimensional case of the cube ? (Note also that any
3-polyhedron is a subdivided cube, so the undivided cube can serve as a
starting point as one scans for all closed 3-manifolds : e.g. the famous
homology sphere P3 of Poincaré would be encountered at the "next” level
in such a scan because the dodecahedron is combinatorially a very simple

subdivided cube. )

ol
[z}

THE CUBE. Even if we only allow 1its opposite facets to be
identified, we have much more leeway now than for a square : wWe are
allowed (see fig. above) to first rotate a facet (through 0, n/2, n, or
3n/2} and then identify with the opposite one. (We disallow reflections

because we want orientable 3-manifolds only.)

Accordingly let us adopt the notation abe, 0 = a,b,c = 3, to
denote the cell compiex obtained by rotating three compatibly oriented
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' adjacent facets of the cube through these multiples of n/2, and then
identifying with the opposite facets.

POINCARE’S FIRST FIVE EXAMPLES are (in the above notation) 000
{(the 3-torus), 113 {a non-manifold), 111 {quaternionic space), 001 (=a
twisted 3-torus), and 222 {projective space, which he defines a little
differently by using an octahedron).

In each case he tests for non-singularity by computing the Euler
characteristic of the links at the vertices of the cell complex (the
cther points are obviocusly non-singular) and computes (for the four
manifolds he gets) the fundamental group and the Betti numbers to show

that they are topologically distinct.

During our seminar we checked that there are exactly three more
manifolds of this kind : 002, 022, and 122 (Poincaré was certainly aware

of at least the first of these because it belongs to the series below).

POINCARE’'S SERIES 00T, T e SL{2,Z). These manifolds are defined
combinatorially as follows. Each integral matrix T with det{(T) = 1
determines in a natural way (see fig. below) a T-subdivision of the unit
square. Use this to subdivide the top of the cube, and analogously
subdivide the bottom using the inverse matrix, and leave the vertical
faces of the cube unsubdivided. Then 00T 1is obtained by identifying
opposite pairg of vertical faces without deoing any preliminary rotation,
and by lidentifying each piece of the subdivided bottom with the

corresponding piece of the subdivided top.

v 3]

T
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Alternatively 00T is also defined group-thecretically {(Poincaré
uses this for all his computations) as the quotient of 3-space by the

discontinuous group generated by the three affine motions

(2,¥,2) > (x+1,y,2), (xX,¥v,2) +— (x,y+1,z}, and

{((x,¥),2) +— (T{x,y),z+1).

{These manifolds play a bilg réle in the third and fourth

Compiéments — which deal with monodromy, etc., of algebralc surfaces —
where Poincaré thinks of 00T as a torus bundle over the circle, viz. the
mapping torus of the toral automorphism T : RE/ZZ — RZ/ZZ ! more

generally he also considers surface bundles over the circle.)

Using his group theoretic definition of these manifolds Poincaré
now proves the following (which he had announced in his 1882 Comptes

Rendus note),

POINCARE'S RIGIDITY THEOREM. 00T is homeomorphic to 00U if and

only if T is conjugate to U or its Inverse in GL(2,Z}.

We remark that the above is in fact a corrected version of the
result stated in the paper (the "or 1its inverse" is necessary, also
Poincaré seems to conjugate within SL{2,Z) which won't doj. In our
seminar we checked that the above is true even if det(T) = -1 = det(U)
(when of course these manifolds are non-orientable} and we also obtained

the following arithmetical addendum to Poincaré’s result.

’

ENUMERATION OF POINCARE'S SERIES. There are infinitely many
topologically distinet manifolds 00T with tr{T) = & 2. However for all
t other than * 2, the number P(t) of such manifolds with tr(T) = t s

finite, and is given by

hit) + nz(t) + 1

P{t) = 5 ,

172

where h(t) = number of ideal classes of Z[(t2—4) } and nz(t) = number

of elements of order 2 in this class group.
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A similar rigidity and enumeration result can most probably be
established for another infinite series 22T containing the manifolds
222, 221, and 220. Since these manifolds 22T are definable "like" lens
spaces (starting from RPS minus a disk instead of a disk) we see that
Poincaré’s result is close (in spirit at least !) to the classification
of lens spaces given in REIDEMEISTER {7], 1935.

More obviously Poincaré's rigidity theorem is akin to the later
rigidity theorems of BIEBERBACH [1], 1811, and of MOSTOW {61, 1966. The
former deals with conjugacy, by means of affine motions, of
discontinuous groups of Euclidean motions, and thus is especially close
to Poincaré’s result, which deals with a similar problem for some

discontinuous groups of affine motions.

We remark alsce that some definitive general results on the
conjugacy of discontinuous groups of affine motlions of 3-space have been
proved by FRIED-COLDMAN [4], 1983. For example they show that a closed
3-manifold is affinely flat if and only if it is finitely covered by a
torus bundle over the circle (i.e. an 00T). These authors also show
that these are all the closed 3-manifolds which admit three (viz. the
ones modelled by the left-invariant metric of a solvable 3-dimensional
Lie group) of the eight "geometries" of THURSTON [9], 1982.

From the above [ think it is amply clear that Poincaré’'s
impressive contributions to 3-menifold theory are by no means limited to
the very famous problem about closed 3-manifolds which he left to us (IS
ONE OF THEM AN EXOTIC HOMOTOPY SPHERE ?)} or to the enchanting (and
ubiquitous !} EXOTIC HOMOLOGY SPHERE P3 which he discovered in the fifth
Complément of this paper.

REFERENCES

[P] H.POINCARE’, OQeuvres de — , vol. VI, Gauthier-Villars (1853)
188-498. These papers, i.e. a C.R. note, 4dnalysis Situs, and itgs five
Compléments, appeared first over the years 1892-1904,

{1] L.BIEBERBACH, Uber die Bewegungsgruppen der euklidischen Raume

246




I, II, Math. Annal. 70 (1911) 297-336 and 72 {(1912) 400-412.

{2] S.EILENBERG, Singular homology theory, Ann. Math. 48 (1944)
407-444 .

{3] _ y Singular homology in differentiable manifolds, Anmn.
Math. 48 (1847) B870-881.

(4] bD.FRIED and W. H. GOLDMAN, Three-dimensional affine
crystallographic groups, Adv, Math, 47 {1983} 1-49.

[8) S.LEFSCHETZ, On singular chains and cycles, Bull. Am. Math., Soc.
39 (1933) 124-129.

{6] G.D.MOSTOW, On the conjugacy of subgroups of semisimple groups,
in, “"Algebraic groups and discontinucus subgroups", Proc. Sympos. Pure
Math. A.M.S. (1868) 413-418.

{71 K.REIDEMEISTER, Homotopieringe und Linsenraume, Abhand., math.
Sem. Hamburg 11 {1835) 102-109.

[8] D.SULLIVAN, Infinitesimal computations In topology, Pub.
I.H.E.S. 47 (1977) 269-332. '

[9] W.P.THURSTON, Three-dimensional manifolds, Kleinian groups and
hyperbolic geometry, Bull. Am. Math. Soc, 6 (1982) 357-381.

K.S.Sarkaria,
Department of Mathematics, Panjab University,
Chandigarh 160014, INDIA,

14T




