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The seminar for this year will meet, starting 31st August 1994,

on Wednesdays and Fridays, from 3:30 p.m. to 5:30 p.m. in Room No. 17.

As already announced, besides reviewing Poincaré again — we went
over Poincaré’s Analysis Situs and 1its five Compléments during the
seminar of 1993-84 — we’ll focus this year mainly on simplicial methods
in topology, i.e. the work of Eilenberg, Kan, Moore, etc. Our goal will
be to identify Connes’ cyclic cohomology with equivariant loop space
cohomology; however the scenery, along the way to this, is so enticing,

that we’ll also be making many side-trips ...

All are welcome to attend the seminar.

- (fusne

(K.S.Sarkaria)

P.S. (23.12.94) -~ These are provisional notes of the 28 lectures gliven
from 31.8.94 till 23.12.94,

PP.s. (!0-4-75j - f\’{@:} lGese wolze [0ok evewn ~move P\’W\‘s\'m/\ai
5 ann bcht } A\’huwAkcﬂ @f Covrechoacs —~+BOSR%T_&f Ao ails o
Obtﬁjvhamﬁi%? LATan wf 6a&ih% — Meed & ke yvade. P“SO ANT e

CoNered 3Luﬁ2 e ot &€ amcmdlif&uXauﬁ hAﬁijzAAGbQ Ve }{ﬂA}QAﬂJL Stades

e (55 & KKA wol Saﬁag‘)‘/ﬁw\'% f\\»”;ea‘ \fkgn} IBhes/ ol hawe & Ao .-



CONTENTS

Chapter 1. Poincare’ : Homology Theory

(1.1) The importance of Poincaré 1
(1.2) The birth of Euler characteristic theory 1
(1.3) The idea of a manifold 4
(1.4) The birth of homology 4.
(1.5) "Doing sums" 6
{1.8) But why ... ? (and introduction to seminar) 7
Chapter 2. Eilenberg-Steenrod Axioms
(2.1) E-S categories 9
(2.2) Gimp io
(2.3) E -S homology theories 14
(2.4) Ehain 13
(2.58) Oriented chain complex 14
(2.86) Homology of chain complexes ig
(2.7) Oriented simplicial homology 16
(2.8) Pontrjagin duality 17
(2.9) Yop 22
(2.10) Gimp < XYop 22
(2.11) Aff(K) and Proj(k) 3
(2.12) More maps for Gimp 14
(2.13) Products .27t
(2.14) Singular chain complex 13
(2.15) Simblicial approximation 32
(2.16) Spectral sequences 32
(2.17) Eilenberg-Steenrod Theorem 38
(2.18) Other examples of homologies on Gimyp : 37
(a) Associative homelogies (b) Commutative homologies (c)

fayer’s homology (d) Bier’s homology (e) Cyclic cohomology ()
Cyclotomic homology (g) Cohomology with compact  supports (h)
tquivariant homologies (i) Homology of Proj(K) (j) Hyper simplicial

homology, etc.

i}



(2.

(a)

19)

Variants of singular homology (b) Cech cohomology

Other examples of homologies on Xop :

Alexander-Kolmogrov homology (d) Whitehead’s duality

(2.

(3.
(3.
(3.
(3.
(3.
(3

(4.
(4.
(4.
(4.
(4.
(4.
(4.
(4.
(4.
(4.
(4.
(4.
(4.
(4.
(4.

(5.

20)

1)
2)
3)
4)
5)

.6)

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)

1)

Acyclic models theorem

Chapter 3. Poincare’ : 3-Manifolds & De Rham Theory

"On rattling"

The birth of homotopy theory

The birth of 3-manifold theory
Linsenraiimen

On the combinatorics of the 2-sphere

The birth of de Rham theory
Chapter 4. Minimal complexes

Eilenberg-Steenrod properties of Ty

Milnor’s uniqueness theorem

Obstructions

Eilenberg’s filtration and Hurewicz’s theorem
Semi-simplicial complexes

Completion

Minimal complexes ,
Eilenberg-Maclane complexes, Hopf’s theorem
Equivariant homology

Self—obstruction classes, Postnikov’s theorem
Equivariant homotopy

Pigeon-hole theorems

Extension

Moore homology

The free group of a complex
Chapter 5. Realization

Function algebra R[X]

50

(c)

54

$6
S¢
59
€5

€6
68

Ti

17
79
81
83
37
12
3
a5
99
02,
106
It

\é
iq

V21



(5.2)
(5.3)
(5.4)
(5.5)
(5:¢)

(6.1)
(6.2)
(6.3)
(6.4)
(6.5)
(6.6)
(6.7)

(6-8)

69
(6-\0)

Visualizing categories and functors

Local singular homology of Lin(K)

Sheaf cohomology

Two computations of Hochster

COkeﬂ—tﬂacaMlqdrmss a aﬁd&baA-fLuAd?YS
Chapter 6. Operator Algebras

Quantization

Envelopihg Lie algebra

Poincaré’s proof

De Rham theory of Lie groups

De Rham theory of Lie algebras

De Rham theorem

De Rham theory of simplicial complexes
Cjceic vedoy Spaceg

Non - covnmuukadve A Pervendlan %NVM$
ShLﬁhw}

W)

122
124
127

130
%)

133
133

136
137

Fa|

s
A
4%

(54



Chapter 1.
PoiNcARE : HoMoLosy THEORY

(1.1) THE IMPORTANCE OF POINCARE to twentieth century mathematics
is clear e.g. from the réle which one of his most important discoveries,
viz. HOMOLOGY, has played in the last hundred years : in fact, not since
Newton’s and Leibniz’s DERIVATIVE, has a single 1idea so completely

dominated a century of mathematics as this one !

But having said this, it’s important also to stress that Poincaré’s

work too was done on the "shoulders of (other)} giants", e.g.

(1.2) The birth of Euler characteristic theory of course goes back
at least to Euler who knew, that for any cell subdivision of the

2-sphere, one has
v—e+f =2,

where @T\Xjand f are, respectively, the number of vertices, edges, and

faces of the cell subdivision.

REMARK. Thus it all began with ‘“counting" ... and indeed this
interaction topology-combinatorics is still all-important, e.g. the
Euler characteristic theory of today (i.e. Lefschetz Formulae, Zeta
Functions, etc,) has given us the celebrated Deligne-Weil Theorem which

"counts" the number of points of a variety over a finite field.

We note that Euler’s Formula was known even to DESCARTES, and
perhaps (?) even to the PLATONISTS, since they (almost) knew of the

following corollary of Euler’s Formula.
Theorem. The 2-sphere has precisely five regular cell subdivisions.

Here, we are using the word regular in a combinatorial sense : we

want every face to have the same number (say r) of edges, and we want



every vertex to be incident to the same number (say s) of edges.

(As against this, the Greeks’ '"regular" was meant in a geometric
sense: so their analogous result was partly weaker and partly stronger

than the one stated above.)

Proof. Multiply Euler’s Formula by rs and substitute rf = 2e¢ and

sv =2e to get e(2r - rs + 2s) =2rs. So 2r - rs + 25 has to be
positive. Since also — with any reasonable definition of ‘"cell
subdivision" — r =z 3 and s = 3 we see that we must have {r,s} = {3},

{3,4} or {3,5}.

The following pictures show (combinatorially) regular cell
subdivisions of 52 having these values of r and s. (The existence of
such geometrically regular cell subdivisions — which the Greeks showed

— is somewhat harder. )

Y= 3 s=4
+=5=3
Y= 4 5= 3




Finally it can be checked that, upto an isomorphism of cell
complexes, the above regular cell subdivisions of the 2-sphere are the

only ones having these values of r and s. qg.e.d.

However it was POINCARE who launched Euler characteristic theory in
real earnest (in §§ 16-18 of "Analysis Situs”, 1895) with the following

far-reaching generalization of Euler’s Formula.
Theorem. Given a closed manifold X, the alternating sum
f - +f£ —f + ...,
o} 1 2 3

of the numbers fiof i-dimensional faces of any cell subdivision of X, is
independent of the cell subdivision, and is thus a topological invariant

e(X) of X.

In fact Poincaré (improving an earlier definition of Betti) also
constructed finer invariants bl(X) of X, these being numbers which

determine the aforementioned Euler characteristic by
e(X) = bo(X) — bl(X) + b2(X) - bg(X) + .

Not only that! Poincaré went on to define yet finer invariants of
X, which in today’s language can be thought of as finetely generated

Abelian groups H1(X) which determine the aforementioned Betti numbers by
bx(X) = dimQ(Hi(X)).

Note. The current Jargon of point-set topology and abstract
algebra came into vogue only during 1920-30 : so you won’'t find
expressions like "open set" (and perhaps even ‘"set" 1), "finitely

generated Abelian group", etc., in the “Analysis Situs".

REMARK. For cell subdivisions of manifolds Poincaré also gave
additional combinatorial relations (see & 17 of Analysis Situs and our

notes on it from last year’s Seminar) which easily give, for the case of



triangulations, the so-called Dehn-Sommerville equations.

(1.3) The idea of a manifold too pre-dates Poincaré, and goes back
at least to RIEMANN (see p.10 of Poincaré Seminar notes). However it
apparently appeared first in a (more-or-less !) fully developed form

only in Analysis Situs (see § 3 of last year’s notes).

Poincaré made all his definitions (of Euler characteristics,
homologies, etc.) only for manifolds, and stated {in the third and
fourth Compléments, which deal with algebraic surfaces) that it was not
clear whether the obvious generalizations of these concepts were the
“right" ones for singular spaces. Quite obviously he was loathe to
renounce POINCARE DUALITY ("Analysis Situs” § 9, and the first two
Compléments) ... it is amusing to note that now we do have the ‘'right"
generalizations for singular spaces (e.g. Intersection Homology, for

which duality holds in much greater generality).

(1.4) The birth of homology theory. "Analysis Situs” contains
THREE distinct (and now all equally important) definitions of homology

(of which the "second” one we’ll consider in 3.6 below)

SINGULAR HOMOLOGY. Poincaré’s "first definition” (which corrected
Betti’s flawed definition of the numbers named after him) involves
considering closed varieties of a manifold X which are “independent" in
the sense that no non-trivial integral linear combination is a boundary
(Betti only considered combinations Wwith coefficients -1, 0 and +1 : see
§8 5 and 6 of last year’s notes). This definition (modulo the fact that
Poincaré ignored torsion) is essentially (see Remark in 2.14 below)

today’s singular homology H,(X).

HOMOLOGY OF CW COMPLEXES. Though Poincaré never quite defined a CW
complex (i.e. a space obtained from a point by iteratively adjoining
higher-dimensional cells via some, not necessarily bijective, maps of
their boundaries) he gave many nice examples of these (see e.g. 3.3) and
his "third definition” (see the first and second Compléments) gives in
fact an algorithm for computing homology (and by this time he was

keeping track of torsion too).



More precisely he showed (upto a point only !) that the Betti
numbers and torsion coeficients of X can be calculated via any CW
‘ complex K homeomorphic to X by computing the rank p and elementary
divisors dr of 1its 1incidence matrices Mi (note that because an
(i-1)-cell can "occur" more than once in an i-cells some entries of Mi
might be integers with absolute values greater than 1). In modern

terminology Poincaré’s result is the following.

Theorem Hi(X) = Zfi(K)—p(Ml)*p(Mi"l) ® {Z/dr(M1+1)Z}

Once again, to keep our perspective historically correct, it is
important to remember that, in all of the above, Poincaré was inspired

— via Betti — by the ideas of

RIEMANN, who had, beginning with his famous Inaugural Dissertation
of 1851, visualized the solutions of a non-singular polynomial equation
f(x,y) = 0 over C as a closed (real) surface F, and discovered the
remarkable fact that, up to a rational substitution of variables, the
equation is conversely determined by the connectivity bl(F) + 1 of F,

which he had defined as follows.

"Wir unter einer nfach zusammenhingenden Fliche eine solche
verstehen, die durch n-1 Querschnitte in eine einfach zusammenhingende
zerlegbar ist." (Innaugural Dissertation of 1851; see p.10 of his

Collected Works.)

In other words, Riemann deemed the connectivity to be 1 if any
closed curve separated the surface into two parts, and then inductively
to be of connectivity n = 2 if, by cutting along a suitable closed

curve, one obtained a surface of connectivity n — 1.

For example, shown below is a closed surface of connectivity 5.

S Grole ACy = 0 vn wftk)
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We remark that in fact almost all algebraic topological invariants
of X can be interpreted as (sometimes very sophisticated !) measures of
its "connectivity" in wvarious diverse senses : the simplest such
interpretation being that of bo(X) which is the number of path

components of X.

(1.5) "Doing sums” (to use J.F.Adams favourite phrage) is what
leads to new theories (which in turn enable us to do yet méfé sums). In
particular our "hero", Poincaré, firmly believed in doing lots and lots
of sums (see e.g. 3.3) : with this as my alibi, I intend to share with

you many questions and exercises which I find interesting (or amusing).

Exercise. Classify the foilowing connected subspaces of Rz upto

homeomorphism :
HENRI P OI NCARE
Exercise (Sprouts). This is a two-person game starting with any n
points of R The players take turns alternately, and each move

consists of first joining two (possibly same) points by an arc not
intersecting previously drawn arcs, and then marking a new point in the
middle of this arc, taking care that no point ever winds wup with more
than 3 edgés terminating in it. The game ends (with that player losing)

when no such move can be made.



(i) Find all possible lengths (in number of moves) of such a game.
*
(ii) Does there exist a winning strategy for one of the players ?

(I remember the rules of Sprouts from an old article in Scientific

American by Martin Gardner, and that (ii) was unsolved at that time.)

Exercise (Proving). Again this is a two-person game starting with
any n points (= "statements") with the players taking turns alternately.
But now each move consisting of drawing any directed arc (=
"implication") from one of these statements to another, subject only to
the restriction that this implication be "new", i.e. not a concatenation
of existihg implications. The player making the last move wins ( =
"gets the credit" for having completed the proof of the "theorem" that

the n given implications were equivalent).
Answer above questions (i) and (ii) for this game too.

(Hint : The analysis of both the above games is facilitated by some

rudimentary topological ideas.)

Poincaré’s love for "doing sums" was what made him an "applied"
mathematician par excellence, and (also!) one of the great physicists of
this century. (To quote Chandrashekar — who himself got his Nobel
pretty late — Poincaré was "the greatest physicist of this century not
to have received a Nobel Prize".) But these facts about him, and the
supposedly “pure"” nature of algebraic topology, then prompts the

following question.

(1.8) WHY DID THIS PRAGMATIC PROBLEM-SOLVER  AND  APPLIED
MATHEMATICIAN INVENT ALGEBRAIC TOPOLOGY ? For the detailed and very
eloquent way in which Poincaré himself provides an answer to this, the
reader should at this point re-read the Introduction of Poincaré’s
"Analysis Situs” (for this, and our comments on it, see the Notes of

last year’s Seminar). Briefly we recall that Poincaré realized that



Topology gave us the means (= higher~dimensional analogues of the "badly
drawn figures of a good geometer") to appropriately. VISUALIZE, and thus

perhaps solve, many diverse problems.

In particular he mentions that the solutions of polynomial
equations, resp. ordinary differential equations, can often be usefully
visualized (following Riemann and Picard, resp. Poincaré and Dyck) as
manifolds, resp. manifolds-with-flows. The results which topological
methods have bestowed to these fields, 1i.e. Algebraic Geometry and

Global Analysis, are by now just too many to enumerate.

Poincaré hoped that a wuseful visualization would help also in

understanding the structure of the finite groups contained in a GL(n,C).

A finite group 1is Jjust one special kind of combinatorial
configuration : more generally we can hope that topological methods
would shed light on many diverse combinatorial problems. This is indeed
so, and now there are many combinatorial results -— including some of
Quillen, Aschbacher-Segev et al. pertaining to finite groups — which

have been discovered or proved by topological methods.

THE EMPHASIS OF THIS YEAR'S SEMINAR will precisely be on this
interaction Combinatorics > Topology, and the combinatorial
configuration to which we’ll give pride of place is that of a SIMPLICIAL
COMPLEX (see 2.2).

The study of simplicial complexes will inexorably lead us to
various generalizations (chain complexes, semi-simplicial complexes,
hypersimplices etc.) which have been developed to "visualize" them
and/or to get more "elbow-room” (this is analogous to how a number

theorist gets more room by enlarging N to @, R, €, @, etc. etc.).
p

We remark that the final generality of these combinatorial methods
is incidentally such that they also suffice for the other two
applications of Topology which Poincaré had in mind, viz. to Algebraic

Geometry and Global Analysis.



Chapter 2.
ENLENBERG-STEENROD AXIOMS

(2.1) E-S CATEGORIES. We recall that a category € is a class —
in case € is a set we’ll call the category small — with a partially
defined multiplication which is, firstly, associative — 1i.e. whenever
fg and gh are defined, then (fg)h and f(gh) are defined and are equal —
and, secondly, such that for each f € € there exist identity elements D
and R of € — i.e. elements which leave unchanged all elements of €

which can be multiplied with them — with D and Rf defined.

Exercise. Check that f € 6 has a unique such domain D and range R,

and that fg is defined iff range of g coincides with the domain of f.

By a functor T : € —— 9 between two categories we mean a map which

preserves multiplication and identity elements.

From now on we'll refer to the members of 2 category as its
morphisms, with the invertible ones called equivalences, and the
identities called objects. If a morphism f has domain D and range R
then we’ll write £ : D — R, and we’ll refer to the partially defined

multiplication of ¢ as composition.

A category will be called an Eilenberg-Steenrod Category if it
comes equipped with some specified couples i.e. ordered pairs {(g,h) of
morphisms with hg defined, a specified reflexive and symmetric binary
relation ~ on each set Morph(A,B) of morphisms from object A to object
B, and some distinguished morphisms and objects called excisions and

points respectively.

Two morphisms of Morph(A,B) equivalent under the relation generated
by = will be called homotopic, and if [f] is an equivalence in the
category obtained by replacing each Morph(A,B) by Morph(A,B)/~ , then f
will be called a homotopy equivalence. A nmorphism which is a

composition of some homotopy equivalences and excisions will be called a



generalized excision.

By a morphism of couples f : (g,h) —> (Jj,k) will be meant a triple
f of morphisms of € yielding the following commutative diagram (thus

couples of € and their morphisms constitutes another category)

REMARK. Here commutativity of a diagram means that any composition
of its morphisms is wuniquely determined by Iits domain and range.
Imagining each morphism as (an abstract) "voltage drop", we see that
this is analogous to Kirchoff’s voltage law, i.e. that the sum of the
voltage drops around any closed loop is zero. (See e.g. Bollobas’s book

on Graph Theory about more on Kirchoff’s laws.)

By an E-S functor T : € — 9 between two E-S categories we’ll mean

one which preserves couples, homotopies, generalized excisions and

points.

Without futher ado, we now take a first look at the (for wus) most

important category.

(2.2) 6Gimp. A finite (and unless otherwise specified) nonempty
set will often be called a simplex, its elements being its vertices. An
(unless otherwise specified) finite set of simplices K will be called a

simplicial complex if it is closed with respect to < .

We will identify the vertices v of simplices of K with the
corresponding cardinality one simplices {v} of K, and denote this subset
of K by vert(K). A simplicial'map is a function f from a simplicial
complex K to another simplicial complex L, which maps vert(K) into
vert(L), and is induced by this restriction as follows :

flo) = {f(v) : v e o}.

By a simplicial pair (X,L) will be meant an ordered pair of

10



simplicial complexes with K 2 L, and by a simplicial mep £ : (X,L) —~
(S,T) of pairs we’ll mean a simplicial map of K into S which maps L into
T. The pair (K,0) — where O denotes the empty simplicial complex -—

will be identified with the simplicial complex K.

We’ll associate to each pair (K,L) the couple consisting of the two
inclusions L - K — (X,L) of pairs, and will associate to each

simplicial map f of pairs the obvious morphism f between their couples.

Two simplicial maps f and g between the same pairs will be called
contiguous iff for each simplex ¢ of the domain, f(o)ug(o) is a simplex

of the range.

All inclusions of the type (K, KnL) — (KuL, L), where K and L are
any two simplicial complexes, will be called simplicial excisions; and,
finally, simplicial complexes having just one vertex will be called

points.

The class of all simplicial maps between pairs constitutes, under
composition, and together with the structure defined above,” an E-S

Category which we’ll denote by Gimp.

(2.3) E-S HOMOLOGY THEORIES. Suppose there are associated to each
object A of an E-S category € some discrete or compact Abelian homology
groups Hq(A), q € Z, and to each morphism £ : A — B of € are
associated induced homomorphisms f, : Hq(A) —> Hq(B) of these groups,
and to each couple A —» B —> C are asociated connecting homomorphisms
8 : Hq(C) —> Hq~1(A)' Then this constitutes an E-S Homology Theory on
¢ provided the following Eilenberg-~Steenrod Axioms hold.

Axiom 1. f = 1d -» f, = id.

Axiom 2. (fg), = f, g,

Axiom 3. f, 0 =8 f, for any morphism f of couples of €.
Axiom 4 (EXACTNESS AXIOM). For any couple A — B — C of € we

have the following long exact sequence

~— H (A} — H(B) —- H (C) - H (A) — ..
q q q gq-1

11



made up of the corresponding induced and connecting homomorphisms.

REMARK. Here, exactness means that the kernel of each map
coincides with the image of the preceding. We note that this Iis
somewhat remniscent of Kirchoff’s current law, i.e. that the algebraical
sum of the currents eﬁterlng and leaving any node must be zero.
(Question : Is there a useful common generalization of electrical
network and "diagram-chasing" theories 7) Exactness was recognized
explicitly in full generality first by Hurewicz, soon after Kolmogrov
had pointed out that Alexander Duality is a corollary of the Poincaré

Duality of (Sn,A) on account of the exactness of its long sequence.

Axiom 5 (HOMOTOPY AXIOM). f =g = f, =g, .
Axiom 8 (EXCISION AXIOM). £ excision = f*wisomorphism.
Axiom 7 (DIMENSION AXIOM). A point = Hq(A) =0V q=#0.
In case Axioms 1 through 6 hold, but Axiom 7 does not hold, then we

say that we have an extraordinary homology theory on €

REMARK. For all examples of E-S categories € to be considered it
is easily seen that the above axioms amount to saying that homology H,
is a functor from & to the category €zact of 1long exact sequences
obeying Axioms 5-7. So given any E-S functor T : ® — € between such
categories, HT is an E-S homology on ®. This observation will be used
repeatedly to get many examples of E-S theories starting from one on the
category Chain (see 2.4) which contains €gacl, and is also "bigger" than

Gimp in the sense of (2.5) below.

'‘REMARK. If a map between categories preserves identities but
reverses multiplication then it is called a contravariant functor. The
definition of an E-S cohomology on an E-S category is exactly similar to
above except one uses * and q’s as superscripts and reverses their
arrows (also one writes 8 in place of 4). For all examples of E-S
categories € considered this amounts to saying that cohomology is a

*
contravariant functor H : € — Gract obeying the duals of Axioms 5-7.

Note. It will be wunderstood from now on that "groups" (e.g.

co/homology groups) can also be R-modules (with R-linear maps between

12



them) where R is any fixed commutative ring with unity. However one has
now no simple (see however the Universal Coefficient Theorem)
relationship between homology and cohomology unless R happens to be say

a field F (when of course "groups" means vector spaces over F).

(2.4) €hain. Its objects are chain complexes (C), i.e. sequences

ICINYS Syc S B8,
q+1 q g-1
with 62 = 0, and morphisms are chain maps f : (C) —> (D), 1i.e. degree

preserving maps commuting with the 8’s.

Its couples (f,g) are all short exact sequences of chain complexes

(here (0) is the chain complex with all groups zero)

(0) —s (©) -5 (0) -85 () —s (0)

Two chain maps f, g :(C) — (D) are called chain homotopic iff

there exist homomorphisms h : Cq — Dq+1 such that
dh+had = g-1f

Exercise. Show that this is an equivalence relation on

Morph((C), (D)).

The equivalences of €hain will be deemed to be its excisions, and a

chain complex (C) will be called point-like iff Cq —Qa Cq—l is an

isomorphism whenever q is even and positive or else odd and negative.

Note. We will sometimes consider separately the category CGochain
of cochain complexes obtained by writing q's as superscripts and
reversing arrows (and replacing 4 by 8) in the above definitions, but
sometimes we will just identify the two categories by the "sign-changing
trick” cd = ¢c .

-

REMARK. To see how the terminology ‘“"chain complexes" came into

being we point out that a free Abelian Cy equipped with some specified

bases B was essentially Lefschetz’s abstract cell complex, the members

13



of B beihg its (abstract) cells, and the matrices of 4 in these bases
being its incidence matrices. This obvious generalization of Poinqaré’s
geometrical cell complexes was soon superseeded by Mayer’s chain
complexes, whenever the choice of the bases is immaterial. We note
however that sometimes — e.g. for computing Whitehead Torsion -— the

choice of the bases B is all-important.

(2.5) Oriented chain complex. We will now construct a natural
embedding Gimp < €hain of the category of simplicial pairs into that of

chain complexes.

By an orientation of a simplex of cardinality g we’ll understand a
total ordering, upto an even permutation m, of its vertices, and we’ll
denote an oriented simplex by [v_.v v ] where VoVyr eV is a total

0V1 Vg q
ordering of its vertices representing its orientation.

Now define Cq(K) to be the Abelian group generated by all such

oriented simplices subject only to the orientation relations

_ _ n
[vn(O)Vn(l)"'vn(q)] = (-1) '[val"'Vq]’
and we define the homomorphisms Cq(K) 9, Cq-l(K) by
- PR .
d [VO e vq] = ¥y (-1) [vO SV e vq]

Exercise. Show that these homomorphisms are well-defined and

satisfy 62 = 0.

More generally, the chain complex C(K,L) of any pair (X,L) is
defined to be the termwise quotient of C(K) by C(L), with 8 being the

induced homomorphisms in these quotient groups.

Furthermore, for each simplicial map f, there is a chain map f
between the corresponding chain complexes defined by
f[vov

v]=I[f(vIf(v,)..f(v) 1,
q 0 q

1 1

where the right side is to be interpreted as zero in case the f-images
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of two of the vertices coincide.

This completes our definition of the requisite one-one functor from

Gimp to Ehain.
Theorem. The oriented chain complex functor is an E-S functor.

Proof. The only non-trivial part is to check that if f and- g are
contiguous simplicial maps from K to L, then the corresponding maps f, g

C4(K) — C,(L) are chain homotopic.

To see this we define, wusing the contiguity of f and g and

motivated (see also 2.12) by the following picture,

the "prismatic operator"” h : C,(K) — C*+1(L) by
_ Ry
h[vovl.:.vq] =X, (-1 [f(vo)f(vl)...f(vi)g(vi)...g(vq)],

and an easy verification (Exercise) shows that one has then indeed the

requisite formula 8h + hd = g — f. g.e.d.

(2.6) Homology of chain complexes. This important E-S homology

theory, on the E-S category €hain, is defined as follows :

We associate to each chain complex (C) the groups

ker (C -9 ¢ _q)
H (C) = 4 = i L
4 im(c_ . %25 ¢
q+l q

and to each chain map f : (C) —> (D) the group homomorphisms Ty : Hq(C)
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— H (D) induced in these quotients. Lastly, to each short exact
sequence of chain complexes (0) —— (C) NN (p) -8 (E) — (0) we

associate the group homomorphisms 8 : Hq(E) — Hq—l(c) defined by

1 1

8 [zl = [f 6ag =zl

Exercise. Show that the above formula makes sense.
Theorem. The above H, is an E-S homology theory on €hain .

Proof. Axioms 1-3 and 5-7 are trivial (check). The proof of the
Exactness Axiom is long but straightforward using "diagram chasing”
(i.e. the method you must have used to do the preceding exercise) and so
is left as another Exercise (cf. Kelley-Pitcher or p.128 of Eilenberg

and Steenrod’s book.) g.e.d.

REMARK. Generalizing the notion of a chain complex we can define a
8 8 a a

p-chain complex to be a sequence ... — Cq+1 — Cq —> Cq—l —_— ...
with aP = 0. For each 0 < g < p we can define its g-homology to be the
ker(3)? : : .
graded group H, (C) = ~————— , with the induced and connecting
4 im(3)P™4

homomorphisms f . H, (C) —H, (D)andd¥:H, (E) > H (C)
P a4 T*.gq *.q *.q *-q,q-p

being defined exactly as above. The same argument shows that, for each

q, this gives an E-S homology theory on the category pEhain of all

p-chain complexes.

(2.7) Oriented Simplicial Homology (with coefficients Z) 1is the
E-S homology theory obtained by restricting the homology of chain

complexes to Gimp £ Chain (see 2.5).

Coefficients. If instead of the functor K > C,(K) we use the
functors K +— C,{(K)®G or K + Hom(C,(K},G), then the homology of chain
complexes pulls back to oriented simplicial (co)homology H,(X;G),

*
H (K;G) with coefficients G.
Exercise. Show that the functors Gimp — Ehain defined by K +—

Cyx(K)eG and K +— Hom(C,(K),G) are indeed E-S functors — Hint : use

that Cq(K) are free Abelian groups — and thus the above (co)homologies
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on Gimp are also E-S.

(2.8)  Pontrjagin duality. As a lead-in into what I wish to recall

let us look first at the case of field coefficients F, when C.(K;F)

C, (K)eF consists of F-vector spaces and linear maps,

8 el

e—C (KF) T ckh) < e (KGF) e— ...,
g-1 q g+l
and has the dual complex,
* ) *
L— (Cq_l(K;F)) — (Cq(K;F)) — (Cq+1(K;F)) _— .,

*
where V denotes the vector space of all linear forms « : V —> F, and

* * ¥*
f : V — W denotes the linear map « > oof.

Exercise. Consider each cochain a € C'(K;F) = Hom(C (K),F) as a
function from oriented simplices of K to F (which changes sign when the
orientation of the simplex is reversed) to define its value <a,c> on any
chain c € C_(K;F). Check that this bilinear form is non-singular and
that one has the Stokes’ formula <8a,c> = <a,8c> . (Likewise the dual

complex of the cochain complex identifies with the chain complex.)

We will use below this natural identification of the cochain

complex of K with the above dual complex.

*
Theorem. HY(K;F) = (Hq(K;F)

*
Proof. We define a linear map ker(d +1) — (Hq(K;F) as follows.
The elements of (H (K; F) are linear forms on ker(aq) which wvanish on
1m(8q+1); but 6q+ (a) = 0 iff a(6q+1c) for all c¢ e Cq+1(K;F); the
required map restricts each « to ker(aq).

Clearly this linear map is onto because any linear form on ker(aq)

can be extended to all of C (K F). Also it is clear that the kernel of
*

this linear map contains 1m(6q) because if « = aq(B) then alc) = B(aqc)

and thus a vanishes on ker(aq).
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¥*
In fact the kernel is precisely im(aq). To see this note that Bq
induces an isomorphism of (Cq(K;F))/ker(aq) with im(aq). So any «
vanishing on ker(aq) is the pull-back under Bq of a unique linear form o

on im(aq), and thus of any extension B of « to all of Cq_l(K;F). g.e.d.

REMARK. The above arrangement of argument is as in a paper of Serre
(Comment. Math. Helv. of 1955) and shows that one can identify the
cohomology of the dual complex (of continuous linear forms) of a chain
complex of Hausdorff locally convex vector spaces with all aq’s
continuous and with closed images, with the dual of the homology of the
given chain complex (the hypotheses “ker(aq) and im(aq) closed" enables
one to use the Hahn-Banach theorem to extend continuous linear forms

defined on them). Using this he established the well-known Serre

duality theorem for compact complex manifolds.

We turn now to the case of discrete Abelian coefficients G. The
the chain complex C (K;G) = C_(K}®G now comprises of Abelian groups and

homomorphisms between them :

3 E
—cC . (Ke) —TL ¢ (ko) <l (ki) e— ...
g-1 q q+l

The dual complex

* *
" aq M 6q+1 N )
.— (C (K;G)) ——— (C (K;G)) —— (C (K;G)) — ... ,
q-1 q q+l

*
is now defined by using the character groups A of these discrete groups
»* * *
and the induced maps £ : V — W, o > aof, between them.

Here we recall that by a character of A we mean a group
homomorphism « from A into the circle group T = {z € C : |z| = 1}, and
the set A* of all these a's is also made into a group by defining
{(eB){a) = a(a)B(a). Also, following Pontrjagin (see Annals of 1934) it
is useful to equip it with the topology of pointwise convergence which
makes it (by virtue of Tychonoff’s theorem) into a compact Abelian

group.
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Thanks to this device Pontrjagin was able to prove the very
remarkable fact that the original discrete Abelian group 1is naturally
isomorphic to the discrete group of all continuous characters of A* (and
likewise, if we start from any compact Abelian group A, then we can
recover it as the character group of the discrete group A* of all its

continuous characters).

Thus now the above dual complex consists of compact Abelian group
and continuous boundary operators with closed (by virtue of the
compactness) images. Thus (cf. above Remark) we can identify its
cohomology with the character group of the homology of the original
chain complex. (One again uses a "Hahn-Banach" theorem : any continuous
character of a élosed subgroup of a compact Abelian group extends to a

continuous character of the entire grooup.)

Also the dual complex identifies naturally (cf. above Exercise)
with the cochain complex of K with compact Abelian coefficients provided

»*

by Lhe character group G of G. So putting all this together we get
q * *
Theorem. H?'(K;G ) = (Hq(K;G)

We remark that the easier field coefficients duality became clear
only after the discovery of the above duality theorem by Pontrjagin

(perhaps because it is so easy to confuse a finite dimensional vector

space with its dual).
Some examples of character groups :

(a) For each z € T one has the homomorphism Z — T given by n +—

*
2" and these are the only characters of Z, thus Z = T.

Conversely each n € Z determines the continuous homomorphism T — T
given by z +— zn and these are the only continuous characters of T,
*
thus T = Z.
(b} Each mth root of unity z € T, Z" = 1, gives the homomorphism
Z/m —> T defined by [n}l +- z" and these are the only characters of

*
Z/m, thus (Z/m) = Um the subgroup of T consisting of all mth roots of

18



n
unity. In the other direction, the m characters of Um are z >z , 0 =

*
n < m, and so (Um) = Z/m.
(c) Now let A be any finitely generated Abelian group, so A |is
isomorphic to the direct product of some cyclic groups. But clearly

* *

G x H ,

ild

»*
(G x H)

E 3
which shows, on using (a) and (b), that A must be a torus (of dimension

equal to that of Ae@) times the product of some finite cyclic groups.

(d) Let p be any prime number and let Z[—%—] be the {(non-finitely
generated) additive subgroup of Q consisting of all rational numbers
which can be written as m/pn . The images 21, 22, ... of the succesive
powers of —%— , under any group homomorphism

Z[L] — T,
p

have clearly to obey the condition (zi+1)p =z, and it is clear that
each such sequence
. P _
{zl, Zyy oot 02, € T, (Zi+1) Zi}
determines a different character of Z[—%-], It can be shown (Exercise)

*
that there are no other, thus the character group (Z[—%~]) is
isomorphic to the solenoid Fp, i.e. the compact Abelian group formed by

all such sequences of T under pointwise addition.

Note that Z[—%—] is isomorphic to the Abelian group (under termwise
addition) of all sequences Ny, Dy, of integers subject to the
relations pni = ni+1.

In other words Z[-%~J is the direct limit of the sequence of group
homomorphisms Ai (= 2} — Ai+1 (= Z) given by multiplication by p,
while its dual Up is the inverse limit of the sequence of continuous
group homomorphisms Bi (= T) «— Bi+1 (= T) given by pth powers. (There
is a similar relationship between the dual of any direct 1limit and the

inverse limit of the duals.)
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REMARK. The reader might wonder if there 1is any relationship

between the above and the additive group of p-adic integers Z (i.e. the
141

inverse limit of the sequence of natural epimorphisms Z/pi «—— Z/p 2

There is :
Ext(Z,Z[—l—]) =z 7 /7 .
: 1Y p

For this see the paper of Eilenberg-Maclane in which Ext was first
defined (Annals 1842). The problem which led to this work was posed Dby
Eilenberg and (his teacher) Borsuk in 1937, viz. to classify homotopy
classes of maps from the complement of a solenoid Fp in the 3-sphere S

to the 2-sphere 52 . The above formula of Maclane, and earlier work of
Eilenberg (obstruction theory) and Steenrod, now lets them state the

answer as
s\ 1, %] = Ext(z,z1-11),
p p
(with exactly similar results for the groups Z[—é—] of (e) below).

Exercise (cf. Eilenberg-Steenrod, pp. 230-231). Give an explicit
embedding of Fp in the 3-sphere and also show that Fp is a
compactification of R with Tp/R £ Zp/Z .

(e) It is easily seen (Exercise) that any additive subgroup A of Q

containing Z is uniquely determined by a generalized natural number
_ n n n
a = (pl) 1(p2) 2 .. (pi) i

of Steinitz (is this the mathematician who was also World Chess Champion
from 1866 to 1894 ?) : let n, = supremum of the powers of the prime p;
which divides the denominators of the rationals of A (thus ni is a

non-negative integer or infinity). So we’'ll also write A = Z[~é—].

1
a

] is the direct limit of the net of group

Z —E—Efg—e GB = Z, o = B, where now « and f belong to

Clearly ZI

homomorphisms Ga
P, the divisibility poset (i.e. a = B iff a{B) of all natural numbers

dividing a. So
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1 *
(zi---1y =71 _,
a a
with the generalized solenoid Fa being the inverse limit of the dual net
of continuous group homomorphisms of T. (Question. Is the topology of

#*
the "biggest" solenoid Q of some use vis-a-vis the study of the

divisibility poset of all natural numbers ?)

{(2.9) 3op. The E-S category ZXop of pairs (X,A), X 2 A, of
topological spaces, has as morphisms f : (X,A) — (Y,B) continuous maps
of X into Y which throw A into B. The pairs (X,0), where O denotes the
empty topological space, will be denoted X, and, corresponding to each
pair, we’ll define couples and their morphisms Jjust as in 6&imp, and

peints will be, well, one-point Spéces.

Two maps f,g : (X,A) — (Y,B) will be called homotopic if we can
find a map h : (X x [0,1], A x [0,1]) — (Y,B) which composed with the
injections x +— (x,0) and x +— (x,1) of (X,A) in (X x [0,1], A «x

[0,1]) yields f and g respectively.

As excisions in Iop we won’t take (unlike in Gimp) all inclusions
of the type (X,XnY) — (XUY,Y) but only those for which X is closed in

XUY and the union of the interiors of X and Y is XUY.

(2.10) Gimp & Xop. We’ll now give a natural way of visualizing a
simplicial complex (a purely combinatorial object !) as a nice
topological space. Much of the interaction between Combinatorics and
Topology has been via this realization functor, or functors very closely

associated (see e.g. 2.11) to it.

We associate to each simplicial complex K the subspace of Rvert(K)

defined by
|K| = {o : vert(K) — R : alv) 20, J alv) =1, suppla) € K},
to each (K,L) the pair (|K|,|L]), and to each simplicial map f the

cont inuous map defined by
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[£](a) (W) = T {alv) : £(v) = w}.

The objects of 3op equivalent to objects lying in the image of this
functor are called triangulable pairs of spaces, and we’ll denote by

Iriang the full subcategory of Xop defined by such pairs.

THE IMPORTANCE OF THIS WONDERFUL FUNCTOR &imp € Top for topologists
arises from the fact that almost all (i.e. excluding fractals,
foliations, quotients of some group, etc.) spaces which a “normal
mathematican” works with are (at least upto homotopy type) triangulable,
and S0 can be studied via finitistic methods; and, for
combinatorialists, its importance stems from the fact that it often lets
them visualize their finite but shapeless objects K by means of spaces
occuring in ‘"every-day life". We’ll be looking at the idea of

realization in more depth in Chapters 4 and 5.

Note. We will be sometimes using the above definition of |K| even

when K is not closed under <€ .

(2.11) Aff(K) and Proj(K). The above visualization of simplicial
complexes is the most common one; so much so that we will mostly Jjust
write K and f instead of |K| and [f]. However there are some other

closely related visualizations which are equally natural.

For example, dropping the inequalities in the definition of |K|, we

will also associate to K the subspace of Rvert(K) defined by

Aff(K) = A{o : vert(K) — R : ¥ alv) =1, suppla) € K},

to (K,L) the pair (Aff(K), Aff(L)), and to each simplicial map f the

continuous map defined by
[£](e)(w) = § {alv) : £(v) = w}.
Exercise. |K| has the same homotopy type as Aff(K}.

For each v € vert(K) we’ll denote by v : Rvert(K) — R the function

via) = alv). Under pointwise addition and multiplication  these
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functions generate the graded ring R{vertKl of polynomial functions on

Rvert(K)'

Theorem. Aff(K) ¢ Rvept(K)is an affine variety, being indeed the

subset of the hyperplane }v = 1, defined by the monomial equations voo=

0, o ¢ K, where vo = n {v e o}.

Proof. The result follows because a point a« of this hyperplane is
not in AFF(K) iff suppla) ¢ K, i.e. iff vSUPP(®) oy o Mm fav) = v e

supp(@)} is nonzero. gq.e.d.

Dropping further the sole non-homogenous equation }v = 1, it is
natural also to consider the projective variety Proj(K) ¢ vaert(K) —
here vaert(K) is the space of all one-dimensional vector subspaces of
Rvert(K) — defined by the equations vo o= 0, o ¢ K.

Exercise. If U is the subspace of RPvePt(K) consisting of all
one-dimensional subspaces of Rvert(K) not contained in the codimension

one subspace }v = 0, then U n Proj(K) is an open dense subset of Proj(K)

homeomorphic to Aff(K), and so Proj(K) is a compactification of Aff(K).

REMARK. We will later on compute (see Chapter 5) the singular
(co)homology of Proj(K) and relate it to (the & priori finer) Dolbeaut

cohomology of this projective varieties.

Note. The above definitions make sense even if R is replaced by Z
or any field F. This point will be of importance later when we consider
the Weil zeta function (this counts points over finite fields) of

Proj(K) .

(2.12) More maps for Gimp. For many purposes there is not enough
"elbow-room" in Gimp ... so we will sometimes go the whole hog and work
in the full subcategory of Xop determined by Gimp (this is essentially

equivalent to working in ZXriang).

On the other hand we’'ll at other times just go as far as using all
(simplex-wise) linear maps |K| — |L|, i.e. those which can be extended

to a linear maps Rvert(K) — Rvert(L). It is easily seen (Exercise)
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that a linear map is determined by its values on the vertices, and that
it is (the realization of) a simplicial map iff it maps each vertex to a

vertex.

Though compositions of (simplex-wise) linear maps are linear, their
inverses (Exercise) need not be linear. So it is useful to relent a bit
more and admit all piecewise linear maps |K| — |L|, i.e. those which
are of the type gf_1 where g and f are linear with f being bijective.
Clearly the inverse of a bijective piecewise linear map is also

piecewise linear.

We remark that till 1956, when Milnor settled it in the negative,
the Hauptvermutung, i.e. the "big problem", in topology was whether or
not homeomorphic simplicial complexes were always piecewise-linearly

homeomorphic.

We note also that the notion of being piecewise linearly
homeomorphic depends on the field R. Our object in this section is to
recall a remarkable theorem from 1926 which tells us that in fact this

notion is purely combinatorial !

Towards this end, let us (cf. last section) denote our simplicial
complex K as a polynomial in its vertices with each term (within which
no vertex repeats) corresponding to a simplex of K. Dividing this

polynomial out by any given o € K we can write it uniquely as

‘with none of the terms of the "remainder" R (which is sometimes called
the antistar of o in K} divisible by o (the "quotient" Q is called the

link of ¢ in K and is usually denoted by LkKG ).

We now define the stellar subdivision at o of K to be the

~

simplicial complex with one vertex more, denoted o , defined by
st(K) = 0.(80).Q + R,
where do denotes the subcomplex consisting of all proper faces of o.
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Exercise. Imaging o to the barycenter of |o| — i.e. the point of

vert(K) . .
R given by v +— 0 unless v € o when v +— card(o)

vert(sd K) _  pvert(K) o o that this restricts to

-— one gets a

linear projection R

a homeomorphism |stK| = |K].

We’'ll say that two simplicial complexes are combinatorially
homeomorphic iff they are are related .by the equivalence relation
generated by that of being isomorphic to a stellar subdivision. (In
other words we should be able to go from one to the other by a finite
sequence of simplicial complexes such that each is either isomorphic to
a stellar subdivision of the preceding or else has the preceding

isomorphic to a stellar subdivision of itself.)

Newman’s Theorem. Two simplicial complexes are combinatorially

homeomorphic iff they are piecewise linearly homeomorphic.

*
Exercise . Is the relation of having a common iterated stellar

subdivision transitive ? (If so, this will obviously coincide with the

relation of being combinatorially homeomorphic.)

By the barycentric subdivision sd(K) of K we’ll mean the simplicial
complex obtained by performing stellar subdivisions on all simplices o

of K in any order such that dim(o) is non-decreasing.

The particular choice of such an order does’nt matter because any

~

such sd(K) will consists precisely of all simplices of the type {o, T,
v, .. ), Kaoe>T>v>.... To see this assume inductively that the
sd of the subcomplex determined by simplices preceding o is of this type

and use st(K) = ¢o.{(80).0 + R.

~

More generally (removing the hats from our o¢’s) we’'ll also

consider the subdivision functor
sd : 9Dosets — Gimp

on the category of partially ordered sets P by letting sd(P) be the

simplicial complex consisting of all totally ordered subsets of P.
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Using this one can sometimes even use any £ preserving or
reversing, i.e. monotone maps f : K — L between simplicial complexes;
in fact as the following exercise indicates, such maps can be useful

even when K and L are not closed under < .

Exercise. Let K be any finite set of simplices not closed under ¢
, then |sd(K)| has the same homotopy type as the non-compact space |X].
(Hint : Assume inductively that there is a deformation of the union of
the realizations of the preceding simplices to their sd , and then cone

~

over o the part of this homotopy which lies on 8¢.)

REMARK. Many natural constructions (e.g. deleting a subcomplex,
doing identifications, taking cartesian products, ...) take us out from
Gimp but keep us within Posets. Provided one takes a little '"care" it
is usually possible to come back into Gimp, without losing any relevant

topological information, by means of the functor.

Exercise. Identifying the two ends A and A’ of an edge AA’ we get
a CW complex P homeomorphic to the circle. However sd(P) of the

underlying poset is not. What "care" will you take to corect this ?

(2.13) Products. Given two simplicial complexes |K| and L] the
natural subdivision of the product space ]KI X !LI which presents itself
is by means of the cells o x 8, oo € K, 6 € L, i.e. the convex hull, in

Rvert(K) X Rvert(L)’ of the finite set of points (v,w), v € o, w € 0.

If one wants to stay within Gimp one way out (see below) is to use
the subdivision functor sd on the poset K x L, (0,0) = (t,v) iff 0 & =

and 8 £ v.

Exercise. Check that the linear map which images each vertex o x 8
of sd(K x L) to the barycenter (obvious definition) of the cell o x ©

gives a homeomorphism of |sd(K x L)| with |K| x [L].
However since sd(K x L) has far too many simplices we’ll often use
instead the E-S subdivision Kt X Lt which depends on the choice of total

orders t on vert(K) and vert(L) : it consists of all simplices of the
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i ce i f K,
type {(vo,wO),(vl,wl),...,(vq,wq)} with {vO,vl, vq} a simplex o
{wo,wl,...wq} a simplex of: . L, and with vovl'...vq and wOwl‘..wq
non-decreasing sequences w.r.t the chosen total orders t.

. K vert (L
Exercise. Check that the obvious isomorphism Rvert( )X )
Rvert(K) x Rvert(L) of vector spaces images IKt x Ltl onto K| «x

[L|. (Hint : see the diagram of 2.5.)

This very economical triangulation of the product only suffers from
the aesthetic defect that it depends on the total orders t. So
Eilenberg and Steenrod also consider the simplicial product K A L. which

0
any sequences supported on the simplices of K and L.

is defined just as above, except that now v vl...vq and wowl...wq can be

Since its dimension is bigger than that of the product we certainly
can not expect K A L to %Fiangulate it. However, as the following

shows, for most purposes one can work even with this.

Exercise. Show that |K A L| has the same homotopy type as |K| x
|[L]. (Hint : wuse the deformation retraction provided by the two

projections of each vertex.)

REMARK. Perhaps motivated in part by the above, Eilenberg and
Zilber later defined (see 2.18 and § 4) the notion of a semi-simplicial
complex. In this terminology Kt X Lt supports the product of the
semi-simplicial complexes of non-decreasing sequences associated to K
and L, while K A L supports the product of the semi-simplicial complexes
of all sequences associated to K and L. These semi~simplicial complexes

of vertex sequences will play a big réle in the following.

(2.14) Singular chain complex. We fix a Hilbert space V, and by
an (ordered) standard simplex o we’ll mean the convex hull of a finite
sequence of (distinct) affinely independent points VoVy c vq : thus
there are (g+1)! standard g-simplices having the same set of vertices,
and from any standard g-simplex o, to any other 8, there is a unique

affine homeomorphism 60 which preserves the specified vertex orderings.
Now let X be any topological space. By a singular simplex Tlo] of
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X we’1ll mean any continuous function T imaging a standard simplex o into

X (rather than just its image T(o) € X).

Any linear integral combination of standard simplices will be
called a standard chain, and likewise one of singular simplices will Dbe
called a singular chain of X. 1If T is =a continuous function into X
defined on the union of some standard simplices oi, then we’ll denote

the singular chain ZiniT[Ui] by T[ZiniUiL

We now equip the free Abelian group of all standard chains with the
(1)
o7, VWV, ... V

(1) ~01 a
and 0 =1 = g, then o 1) denotes the standard simplex Vo¥y SeVy o vq .

Likewise we equip the free Abelian group of all singular simplices of X

boundary operator defined by do = E.l(—l)1 where if o =

with the boundary operator 8 Tlol = T[8c]. Clearly both operators obey

82 = 0.

We now define the singular chain complex C(X) to be the quotient of

the above determined by the relations
Tlel = Ulg] iff T =U o @c.

The singular chain complex functor op ——> ghain associates to each

pair (X,A) of topological spaces the quotient C(X)/C(A), and to each
continuous map f between pairs the chain map defined by Tlol. +—> fTlol;
the homology of C(X)/C(A) will be denoted H,(X,A) and called the
singular homology (with coefficients Z) of the palr (X,A).

The quotient chain complex C(X) is also free Abelian : in fact if
(following Eilenberg) we choose, for each q = 0, Jjust one standard
g-simplex Aq, then clearly C(X) is isomorphic to the free Abelian group
generated by all singular simplices of the type 11a%], ¢ = 0.

The above reformulation of Eilenberg’s definition seems convenient
e.g. we can now represent any element of C(X) by a singular chain of the
type Ticl, ¢ being some suitable standard chain. (Moreover it can be
shown that one gets the same homology even without the above relations

and this fact might conceivably be of some use ?)

29



REMARK. Before Eilenberg, there were the oriented singular chains
of Lefschetz, defined just as above, except that he wused oriented
standard simplices o and his C(X) was given by the relations T[- o] = -
Tl{o) and Tlo]l = U[Q) iff T = U o 80, where now 6c : o -— 6 is any
orientation preserving affine homeomorphism. It is easily seen
(Exercise) that this C{(X) is not free Abelian. However it too gives the
same (co)homology. Clearly any element of this C(X) can be represented
by Tlcl], with ¢ being now some oriented standard chain : thus
Lefschetz’s definition is the same as Poincare’’s (see our notes of last
year on §§ 4-6 of Analysis Situs) except that the latter worked only
with smooth manifolds X, and used only smooth T’s of maximal rank. As
was shown by Eilenberg in the Annals of 1947 the homology of such smooth

singular chains is again the ordinary homology of X.

In case U is an open covering of X we’ll say that a singular
simplex is U-small if its image is contained in some member of U In
the course of the following proof we’ll see that the singular homology
H,(U) of the covering U, i.e. the homology of the sub chain complex
C,(U) determined by the ﬂ~small-singular simplices, is the same for all
open coverings of X. (This is unlike some other homologies which equal

some "limit" as the coverings become smaller and smaller.)
Theorem. The singular chain complex functor is an E-S functor.

Proof. Only the verifications re homotopy and excisions are
non-trivial. We show first how each homotopy h : X x [0,1] — Y gives

rise to a corresponding chain homotopy h : C,(X) — C*+1(Y).

For this we multiply each standard simplex by a perpendicular unit
segment and orient (by an increasing induction on dimension) these
standard prisms o x [0,1] of V in such a way that the following boundary

formula holds :
8(oc x [0,1]1) + 80 x 10,11 = o x {1} — o x {0}.
We now suppose each of these prisms equipped with the E-S
subdivision of (2.13). Then for each singular g-simplex T : ¢ — X we

have a singular (g+l}-chain T x id : ¢ — X x [0,1] and composing this
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with the given homotopy we get (by virtue of the above boundary formula)

the corresponding chain homotopy.

Next we show how, given any open covering U, we can chain homotop
singular simplices to U-small singular chains. For this we assume
inductively that we have already done this in dimensions less than q,

and shall show how 1t can be now done for each singular g-simplex Tlo]

imaging each proper face of ¢ to a member of U.

We subdivide o so finely that T becomes a U-small singular chain of
X. We use a copy of this triangulation on ¢ x {1}, leave the rest of
the boundary of o x [0,1] unsubdivided, and extended this triangulation
of its boundary to all of o x [0,1]. (For example we can iterate the
stellar subdivision shown below.) Using this, and the identity homotopy

h: X x [0,1}] — X, h{x,t) = %, the same construction as above tells us

how each T can be chain homotoped to a U-small singular chains.

Le E_S &*kot'\vision oA

,_/’7 \)n\aw {“ﬂuul

S/

wee sol Mere & G'X{i}

This implies that any inclusion (X,XnY) — (XUY,Y), where the union
of the'interiqrs of X and Y in XuY is XUY, induces an isomorphism in
singular homology. Indeed by above we need to work only with sub chain
complexes c generated by singular simplices whose images are contained
either in X or in Y, and then c(XuY) = c(X)+c(Y), which gives

c(X)/c(XnY) = c(X)/c(X)nc(Y) = c(X)+c(Y)/c(Y) = c(XuY)/c(Y). q.e.d.
More generally we will define singular {(co)homology with

coefficients G other than Z just as in (2.7). By above result these are

all examples of Eilenberg-Steenrod homologies on Zop.
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(2.15) Simplicial approximation. Here we give two results re the
geometry of simplicial complexes and their implication re E-S

homologies.

Theorem. Every simplicial subcomplex is a strong deformation

retract of a closed neighbourhood.

Proof. 1In case the subcomplex L is not full in K (e e L = o e L)
make it full by doing a subdivision. So it is a retract of its open
simplicial neighbourhood. Another subdivision and we can get such a

closed neighbourhood too. gq.e.d.

Corollary. The restriction to Gimp of any E-S theory on ZXop |is

also an E-S theory,

Proof. Only the stronger-looking excision axiom of Gimp was in

doubt and now this follows at once by using above result.

Theorem. Any continuous map between simplicial pairs is homotopic

to a simplicial map of some subdivision of the domain.

We omit the proof of this “"simpl[licial approximation theorem".

Note that this has the following immediate corollary.

Corollary. If two E-S homology theories on fop coincide on Gimp

then they’ll automaticall coincide in Iriang.

So to prove the uniqueness of E-S theories it suffices to look at
the purely combinatorial case of E-S theories on Gimp, and the theorem
pertaining to this will be established in (2.17) below. For this we

need a new tool.

(2.18) Spectral sequences. In 1946 another applied mathematician
called Jean Leray (= editor of the Topology section of Poincaré’s
Oeuvres, 1953) added two very original (and as we’ll see very fruitful)

ideas to topology, of which we’ll consider one now.
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(The other, viz. that of cohomology with coefficients in a "sheaf",
we’ll consider later. Leray’s ideas sprang from a seminar he conducted
while a prisoner for five years in a German P.0O.W. camp during World War
II ' In this context we note that (conséientious objector) André Weil

had also, somewhat earlier, made similar use of the "hospitality"” of a

French jail — in fact such good wuse that in his Apprentisage he
strongly recommends a stint in jail to all aspiring mathematicians !1!)
The idea is that when a chain complex C = (cq,a) comes (this

happens quite often !) with a natural filtration, i.e. is a union of a
given increasing sequence c'= (cg,a) of sub chain complexes, then it is
useful, instead of going all at once to H(C), to approach it
step—by?étep as follows (this simplification of Leray’s definition was

found later by Massey, Annals, 1952).

For each r we have

H(ch) H(c"T )

nct e

r

the long exact homology sequence (see 2.6) of the pair (CP 1,C ). On

adding (i.e. taking the direct sum of) all these triangles we get an

exact couple,

2

il

Note now that (gh)2 = 0, and let E H(El) be the homology of E1 under
2 2 2

this differential d1 = gh; also let D = f(Dl). Further let f: DO — D
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be the restriction of the above f; g: D2 — E2 the quotient of the above

g; and define a new h : E2 — D2 like the conhecting homomorphism of

: . 1 2
(2.6). This gives (Exercise) a new exact couple with D° replaced by D
and El replaced by EZ. Iterating this construction we have thus, for

each r =z 1, an exact couple

The sequence of differential groups (Er,dr), each of which 1is the
homology of the previous, 1is called the spectral sequence of the

filtered chain complex.

In case the filtration is of finite length (i.e. ¢’ =¢C for all r
sufficiently big) it is easily seen (Exercise) that the differentials a"
become zero for r sufficiently big and that one has then EN = H(C)
this fact is denoted briefly by writing E” = H(C), and one says that the

spectral sequence converges to the homology of C.

While doing "sums" with spectral sequences it is useful to bigrade

these spectral groups as follows. We start by assigning to the summand

p p-1 1 . . . . 1 .
H(C /C ) of E the bigradin (p,q). The differential d is
p+q ptq & &g *hd
homogenous of bidegree (-1,0). So there is an induced bigrading of E".
2

Further from the above definition it 1is easily checked that d is
homogenous of bidegree (-2,1) (i.e. is a "knight’'s move"). More

generally a" has bidegree (-r,r-1).

Using this bigrading it is usual to display the bidegree (p,q)
summands of each E' at the (p,q) point of an integer planar lattice. We
note that in most applications the summands are nonzero only in the

first quadrant, e.g. the second term of a spectral sequence may be
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provided by Axiom 4, to define, exactly as in (2.18), th
(Proc. Sympos. A.M.S.

©0)% — &~ e - & T -« - - >p

Here the bold dots denote nonzero groups while all other places are

2ero groups. We note e.g. in the above example the

spectral sequence
must collapse at r = 4 (i.e. E

= H(C)) because clearly (just from their

length, i.e just from "dimensional considerations") it follows that the
the differentials d° are zero. (It is simply amazing how many
interesting results have been proved by playing this — as Bott calls it

— "tic-tac-toe" with groups !)

(2.17) Eilenberg-Steenrod theorem. Consider any generalized (i.e.

we insist only on the first six axioms) Eilenberg~Steenrod homology

theory h, defined on Gimyp.

We now use the skeletal filtration KO < K1 € .. of a simplicial

complex K, and the long exact homology sequences

h(k") s> h(k™

h(Kr+1,KP)

Bt

e so-called
1963) Atiyah-Hirzebruch spectral sequence o q(K)

P,
of this homology theory h .

Theorem. This spectral sequence converges to h,(K) and its second

term is given by
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2 .
E K) = H (K h (pt)),
S 5 (Kb (pt)),

where H, denotes the oriented simplicial homology of K.

Proof. The assertion re convergence is clear. For the rest we’ll

give a mere sketch. Using the axioms one checks that E; q(K) {ié

isomorphic to the direct sum of Lhe groups hq(a,ad) as o runs over all

p-dimensional simplices of K. But hq(a,ac) hq(pt). So we see that

E; q(K) = Cp(K;hq(pt)). Next one turns to d1 and checks that this is
nothing but the oriented boundary operator of the chain complex

Cy(K;h(pt)). This implies the stated isomorphism. gq.e.d.

We remark that the recovery of the oriented chain complex from the
axioms (mentioned in the above proof) is essentially what is done in
Ch.III of the Eilenberg-Steenrod book. In fact the above spectral
sequence was “folk-lore" amongst topologists 1long before Atiyah and
Hirzebruch made use of it in the aforementioned 1963 paper (which

created topological "K-theory").

Corollary. An  E-S homology theory h, on 6Gimp is uniquely

determined by its coefficients.

Proof. Since now h, also satisfies the dimension axiom hq(pt) is
zero for nonzero g. So, using the above and dimensional considerations,
it follows that the spectral sequence collapses at the second tern.

This gives h,(K) = H*(K,ho(pt)). q.e.d.

We remark that if K — L is any simplicial map, then the spectral
filtration of L pulls back to a filtration of K. The associated
spectral sequence of such a filtration {(for the case of ordinary

homology) was used by Serre in his famous paper on fibrations.

Another very important filtration is that of the singular
(semi-simplicial) complex "defined by Eilenberg wusing his complexes
Sn(X). Its spectral sequence relates the homotopy groups of X to its
singular homology groups and was one of the key tools used to unlock
some of the musteries of homotopy groups of spheres. We’ll look at this

more in § 3.
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REMARK. A homology theory satisfying Axioms 1-6 is not determined
by 1its wvalues on {pt}. However there may be a more involved

classification of such homology theories ?

(2.18) Other examples of homologies on Glnp. So far we have
considered just two homologies for a simplicial complex K, viz. the
oriented homology of (2.7), and the singular homology (2.14) of the
realization ]K[ (see 2.11) of K (and miraculously it turned out that
these two homologies are in fact isomorphic). We will now remedy this
situation by giving a long (but nevertheless still very incomplete) list
of many other such homologies. (Warning. Homologies will be coming out

of-your ears by the time this seminar ends !)

We’ll see, by applying the Eilenberg-Steenrod Theorem (2.17), that
some of these definitions also lead to the same homology groups (however
it is to be stressed that the novelty of the definition can be very
important for combinatorial applications) while for some other of these

definitions even the homology groups will be different.

At this point we give the following important definition (although

we’' 1l study this notion in more detail only later in Ch. 4).

SEMI-SIMPLICIAL COMPLEX. By this we mean a set S which is
partitioned into disjoint subsets S{q}’ q =z 0, with elements of S{q}
called the g-dimensional simplices of S; furthermore, to each g-simplex
o, g 2 1, are associated q+1 {g-1)-dimensional simplices Bi(d), 0=1i =

q, called the faces of ¢, in such =a way that one has
8,08, =98 oai if 1 < j.
There are many natural semi-simplicial complexes which one can
associate to a simplicial complex K.

For example we can consider K itself as a semi-simplicial complex

provided we choose (cf. 2.13) a total order t for 1its vertices : now
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60(0) is obtained by omitting the least vertex of o, 61(0) by omitting

the second least vertex, and so on.

Another very important example is that of 2.14, 1i.€. all the
singular simplices of the realization ]K]. Now one defines the faces of
a standard simplex as above, and the restriction of the singular simplex

to these faces gives the faces of the singular complex.

It is to be observed that the two specific homologies we menfioned
(oriented and singular) were defined via the two semi-simplicial
complexes Jjust ment ioned. We’ 11 now consider below other
semi-simplicial complexes Ka K etc., which can be naturally

ssoc’ “comm’
associated to K, and define some other homologies of K via them.

(a) Associative homologies.

We will denote by C(Kassoc) the free graded Abelian group generated
by all associative monomials, i.e. all finite sequences of vertices,
which are supported on the simplices of the complex K. So the C(K) of

(2.5), which we’ll now also denote by C(K ) is the quotient of

orient”’
C(K ) under the relations
assoc
v v v (—l)n V.V v
n(0) 'n(1) " “m(q) 0’1 """ g
We define the homomorphism 8 : C (K ) — C (K ) by
q assoc q-1" "assoc
. ) i .
B(VOV1 ce vq) = Zi (-1) VoVy -+ Yy - vq
An easy computation shows 62 = 0, and we’ll denote by H*(Kassoc) the
h 1 i ai .
omology of this chain complex (C*(Kassoc)’a)

REMARK. Sometimes (see Ch. 6) we will think of C(Kassoc) as the
quotient of the free associative algebra Z<vert(K)> by the ideal
generated by monomials not supported on K. When so doing we’ll assume
that it has unity, and accordingly will augment the chain complex by 8 :
CO(Kassoc) — Z = C—l(Kassoc)’ the homomorphism which assigns to each
O-chain the sum of 1its coefficients : thus homology gets changed
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slightly in an obvious way to a so-called reduced homology. (For some
combinatorial arguments too it is helpful to have the empty simplex in K

one can think of C_, as the group corresponding to this "simplex".)

1

Theorem. The quotient map C,(K ) — Cy (K . ) commutes with-
assoc orient

the boundary operators and induces an isomorphism

H*(Kassoc) = H*(Korient)'

Proof. It is easily checked (Exercise) that the above quotient map
is a chain epimorphism, that it induces a natural transformation from
the homology H*(Kassoc) to the E-S homology H*(Korient) = H,(K), and
that this last is an isomorphism of homologies for K = pt.

Thus, by (2.17), it’11 suffice to check that H*(Kassoc) is also an
E-S homology, and as far as this is concerned, all axioms are clear

(Exercise) except the homotopy axiom.

For this we use the two given contiguous simplicial maps f, g : K
— L to define (as in 2.5} a homomorphism h : C,(K}) — C*+1(L) by

h(vov vq) = Zif(vo)f(vl)...f(vi)g(vi)...g(vq) ,

17

and an easy calculation {Exercise) shows 8h — hd = g — f. q.e.d.

Warning. Just as we abbreviated C(K } to C(K) we’ll also

orient

frequently abbreviate C(K ), etc., etc., also to C(K) (see 3.1)!
assoc

(b) Commutative homologies.

We now turn to C(Kcomm) the free graded Abelian group generated by
all commutative monomials of vertices supported on the simplices of the

complex K, i.e. the quotient of C(K } under the relations
assoc

S

VT[(O)VTI(l) Vn(q) = oVl - q .
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These relations are not compatible with the boundary operator of

C(K ) : so unlike C(K . } (cf. also (e) below) we cannot define a
assoc orient

quotient boundary operator in C(Kcomm)'

So what we’ll do is, we’ll choose some total order o« on vert(K),
and transport to C(Kcomm) the boundary operator of the sub chain complex
of C(Kassoc) spanned by all non-decreasing vertex sequences supported on
the simplices of K. Thus the operator 8 = aa for C(Kcomm) depends on

the total order a of vert(K), however we’ll see now that the homology

H, (K ) of (C(X ),8 ) is independent of «.
mm comm’’ "«

>y

Theorem. « : C(K } — C(K ) induces an isomorphism
comm assoc

Hy(K ) = H(K ).

comm assoc

Proof. Exactly as in (a), with the same h. gq.e.d.

REMARK. Often it is useful (see Ch. 5) to think of C(Kcomm) as the
quotient of Z[vert(K)] by the ideal generated by monomials not supported

on K, and while so doing, to augment it and use reduced homology.

(c) Mayer’s homology.

We now turn to another definition (due to Mayer from the Annals of
1842), also starting from commutative monomials, which has the advantage
that the boundary operator does not depend on the choice of a total
order on vert(K), but which requires coefficients G of finite exponent,

i.e. there should exist a (least) p € N such that pG = 0.

The Mayer boundary is obtained by replacing all the -1's of the

above order-dependent 8 by just 1’s, thus it is given by

v )) = af N ar . ar .
172 e BVO av av U

a(f(vo,v
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This of course means renouncing 62 = 0, but we now use pG = 0 to see
(Exercise) that we have at least aP = 0, and thus, for each ordered pair

(r,s) of positive integers with sum r + s = p we can define

ker(a")

H*‘
im(8°)

(K;G)
:T, S

The following was observed by Spanier (Bull. A.M.S. of 1949) and
was probably the first public use of (2.17) (being Steenrod’s student,

Spanier was privy to the still unfinished ms. of the E-S book).

Theorem. For p prime the non-zero Mayer homology groups are :

H (K;G) = H

kp+r-1;r,s kp+s-1;s,r(K;G) & HZk(K;G)

H (K;G) = Hkp—

kp-1;r,s (K;G) = Hyy (K56

1;s8,r

Proof. Clearly it suffices to check, for each (r,s), r+s = p, and
0O =t <r, that the homology H*(K,L) of the chain complex (C*(K,L),d),

r S ar‘ aS

e}
prg L) & € (K L) e

0 «—— Ct(K,L) e—é—— C

is an E-S homology, which is non-trivial, and with coefficients G, only

if t = r-1.
All the E-S properties are obvious — e.g. use (2.5) for exactness
axiom and C(Kl)/C(Kl)nC(KZ) & C(K1UK2)/C(K2) for excision — save the

homotopy and dimension axioms.

Dimension axiom. When K = pt, then each Ci = G, and each Mayer

boundary is multiplication by some J, 0 =3 = p-1

2 3 1 0 1 2 3
0 « CO e-C1 e—-CZ R A Cp_2 & Cp_1 — Cp — Cp+1 — Cp+2 ..

Since p is a prime, multiplication by any nonzero j is an isomorphism of
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G. Using this we see that H*(pt) (the homology defined above) is

identically zero unless t ='r-1, when it reads G, 0, 0O,

We next give another argument which establishes a strong dimension
axiom, viz. that the homology H*(U) of any closed simplex is zero in all
nonzero dimensions (and this strong dimension axiom will then be used to

check the homotopy axiom).

To see this let u be the first vertex of o, and define the "cone
operator" h : Cq(a) — Cq+p—1(0) for g =z -1 {(now C_1 = G) by

h(vovlv2 ... ) = u VOV1V2 ..

_ = (e p-1
So [a,h](yovlv2 ... ) = (8h - ha)(vovlv2 .. ) = (p-1)(u TR ),

and thus a (p-1)-fold iteration of this calculation gives
tal .. [ala,hl] ..1 = (p-1)!(id)

Since p is a prime we have (p-1)! = -1 mod p. So the above formula
shows ker(8)" = im(a)s, i.e. that the reduced homology H*(U) is zero in

all dimensions.

Homotopy axiom. Assume inductively that we have already
constructed an h : C*(K\G) — C*+1(L), on K minus a top-dimensional
simplex ¢, such that (on C*(K\G)) it satisfies hd + dh = g - f, where
the chain morphisms f, g : C*(K) — C*(L) are induced by the two given
contiguous simplicial maps f and g. So —hd(o) + gl{do) - f(do) is a
d-cycle of the closed simplex f(o)ug(e) of L. Since H¥(f(0)ug(¢)) = 0
we can find a chain h(o) € C*(f(o)ug(o)) such that dec(o) = —hd(e) +

gldo) — f(do), and thus extend the chain homotopy h to all of K. gq.e.d.

We remark that the above iterative way of defining chain homotopies

is an example of the method of acyclic models.

Exercise. Verify the homotopy axiom directly by defining a degree
p-1 "prism operator" in C4(K) which satisfies a formula analogous to

that of the above "cone operator" of Culo).
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Exercise . Find a natural map at the chain level which induces the
above isomorphisms between Mayer and oriented homologies.
»*
Exercise . For p non-prime the homologies H*(K,L) defined in
course of the above proof do not satisy the dimension axiom, but do some

of them still satisfy the homotopy axiom ?

(d) Bier’s homology.

For each r =2 1, let C(KC r) denote the Abelian group generated

omm,
by all commutative monomials, in which the degree of each vertex is at

most r, and which are supported on the simplices of K.

Just as in (b) we use a total order on vert(K) to equip C(K )
comm, r

with a boundary operator 8, and we shall denote by H,(K ) the
comm, r
),8).
r

homology of (C*(Kcomm,
The following striking result of Bier (M.P.I. preprint 1992), which
is formulated in terms of reduced homology, shows that the groups

H, (K ) are again independent of the order chosen on vert (K).
comm, r

IR

Theorem. For r odd H,(K H,(K), but for r even one has

)
comm, r

H"‘(Kcomm,r‘) % %%k H*—PIU[(LKKG)'

(Here remember, since we are using reduced notations, that @ e K,

and so one of the summands on the right is H*(LkKe) = H,(K).)

Proof. The simple but key idea that we’ll use is that while
calculating 8 we can "pull out" even powers of vertices (just as one

"pulls out" constants while doing differentiation in calculus).

Note that each monomial of K can be written uniquely as
comm, r

r
x = (6)y, €K, ye (LkKo)comm,r—l ,
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because such a o has to consist precisely of all those vertices which

occur with degree r in x (this o may be empty).

If r is even, then (by "key idea") for each o e K, all such
monomials (U)Fy span a sub chain complex of C*(Kcomm r)’ which is chain
isomorphic, under "division" by (o)", with C*—r[o]((LkKo)comm o)

So in this case we have a direct sum decomposition of chain

complexes,

C"‘(Kcomm,r‘) F ek C*—r]ol((LkKG)comm,r~1) ’

which shows that case r even follows from the case r odd.

So by (2.17) it will suffice to check that for r odd H*(Kcomm r) is

an E-S homology. Once again only the homotopy axiom 1is non-trivial.
For this we employ the quotient of the h used in {a), i.e. from the
right side of that definition we omit all terms involving monomials in
which some vertex occurs with degree r+l. Since r+l is even the "key
idea" tells us that these omitted terms commute with 8, and so this

quotient h satisfies the required formula 8h - hd = g — f. g.e.d.

*
Exercise . Let r : vert(K) — N u {«} be any "Steinitz" monomial

on the vertices, and let C(KC r) be determined by =all commutative

vertex monomials dividing r and supported on K. With C(Kcomm r)

- d s 3 s 3 -
equlppea again with a similar 8 calculate H*(Kcomm,r)

*

Exercise . Calculate the homology of C,(K ), the subcomplex

assoc,r’’
of C*(Kassoc) determined by all vertex sequences in which no vertex

repeats more than r times. (Even the case r = 1 is unusual now. )

Exercise. Do Bier-type modifications of Mayer’s definition also.

(e) Cyélic cohomology.
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Note. The following homely example is .probably known to CONNES

(and others) but seems to have been totally ignored !

»*
We recall that oriented cochains ¢ € C (K )} are- those which
assoc

satisfy
'))

_ T
c(v"(l)vn(z) L)oo = (-1) c(v1v2 ..

for all permutations m of the sequence. We’ll now look at the bigger
*
subgroup C (Kcy 1) consisting of all c¢'s which satisfy the above

requirement just for all rotations m of the vertex sequence.

*
Theorem. The coboundary operator & maps C (Kcycl) into itself.

Proof. Let us say that a set of vertex sequences is an orbit if it
is generated by any one of its members by taking all its rotations, e.g.
{abc bca cab} is an orbit. Also, for any set S of vertex sequences,
we’ll denote by 3(S) the set of all vertex sequences having some member

of S as a codimension one face.

*
Note now that a cochain c belongs to C (Kcycl) iff it is constant,
upto the factor (—1)”, on each orbit. Thus the result follows from the

fact that if S is an orbit then 8(S) is a union of orbits, e.g.

vabc* vbca vcab
‘ _ avbe bvca cvab*
df{abc  bca  cab) = abvc bcva* cavb ’
abcv* bcav cabv
is the union of three orbits of which one is indicated by * . g.e.d.

We postpone (see Chapter 8) the computation of the cyclic

* *
cohomology Hcycl(K) of this cochain complex (C (Kcycl)’a) but note that
it certainly is not the ordinary cohomology : for example an easy

computation shows that Hgycl(pt) & Z for g even, and zero otherwise.



We have thus seen that the two sequences, (i) all permutations m of
the n+l1 vertices, and (ii) rotations w of the n+l vertices, both have
the property that if we only consider cochains of C*(Kassoc) which are
constant upto factor (—1)" when such a permutation is made, then one
gets a sub cochain complex. So a natural question is : are there other

such sequences of permutation groups ? Indeed there are :

Exercise. The sequences consisting of (iii} the reversals of the
n+l vertices and {(iv) rotations or reversals w of the n+l letters also
have the above property. Thus one can define (using these two sub

* *
cochain complexes respectively) cohomologies Hrev(K) and Hdih(K).

*#
Exercise . Show that the above four sequences of permutation
groups are the only such sequences. (See FIEDOROWICZ-LODAY, T.A.M.S.

1981, for a fancy generalization of this.)

»*
H (K). On the other hand the

R

#*
Exercise. Show that H (K)
rev 1k
dihedral cohomology is different : for a point Hdih(pt) 2 F with other
*
groups being zero. (A full computation of Hdih(K) is given later.)
. cycl . .
REMARK. The dual cyclic homology H, (K) is of course defined as
the homology of quotient chain complex (S*(Kcycl)’a) of (S*(Kas ),8)

S0oC

dual to the sub cochain complex (C (K ),8) of (C (X ),8).
cycl , assoc

=1e)
Likewise for dihedral homology of K.

(f) Cyclotomic homology.

Note. Somewhat amazingly the following natural definition was
apparently first considered only in our seminar of 1993-94 (see notes of
the first Complément where an even more general definition is given).
It gives a useful lifting of Mayer’s definition to characteristic zero
(however I learnt of Mayer’s paper, via the references on pp. 182-183 of

Eilenberg-Steenrod, only later, viz., while preparing for this talk}.
We will work with commutative monomials Kcomm and will pay the
usual price for this, i.e. we will use a total order o« on vert(K) to

define our boundary operator. (Alternatively one can dispense with a
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total order and work with K ). Now C,(K } will denote the free
assoc comm

module generated by these monomials over the ring Z[Up] of cyclotomic
integers, and we’ll equip it with the cyclotomic boundary 8 : C*(Kcomm)
— C*—l(Kcomm) defined by

6(v0v1 R Zr (w) (va1 RV

where w denotes the pth root of unity wp = exp(2ni/p), p =z 2. (In

other words we simply replace the -1's of the usual definition, which

corresponds to the case p = 2, by w's.)

Just as for the Mayer boundary, we again have

® = o.

Proof. Let 11 < 12 < ... < ip and consider the (p-1)! terms of
Bp(vov1 ) involving omission of vertices having these subscripts.
Each time the factor coming from the omission of the vertices indexed by
i, <1 < ... <i is the same. In case the vertex indexed i is

1 2 p-1 p
omitted first this factor gets multiplied by the ip th power of w ; in

case this gets omitted second, it gets multiplied by the (1p—1)th power
of w ; and so on. This gives us a factor (1 + w + w + ...+ wp—l)

which of course is zero. g.e.d.

So for each ordered pair (r,s) of positive integers with sumr + s

= p we can defiine the cyclotomic homology groups

ker(ar)

H K; Z[U =
“ir,s K p]) im(8°)

L4 »

Once again, as in (c), we have for each such (r,s) and 0 = t < r,
the homology H*(K,L) of the chain complex (C*(K,L),d),

r S af‘ 6S

0 P D <2 kL <P ¢ ki <2
t t+s t+p

Even for p prime this homology H* need not obey the dimension
axiom. For example for p = 3 the cyclotomic boundaries for K = pt (now

each Ci = R = Z[Up}) are given by
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14w 0 1 1+w 0] 1 1+w 0 1
0 « CO — C1 «— C2 e—-CB — C4 — C5 — C8 e———-C7 — C8 —

which shows (since R/(1+w)R = Z/2) that for (r,s,t) = (1,s,0) we have

H*(pt) = (R, 0, Z/2, 0, 0, Z/2, O, O, Z/2, O, O, Z/2, ... ).

However we see that the dimension axiom is satisfied (for any p )
mod torsion. Indeed cyclotomic  cohomology H*-r S(K;D[Up]) with

coefficients in the quotient field of cyclotomic numbers identifies with

usual homology as follows.

Theorem. For any p the cyclotomic homology with field coefficients
is given by : '

(K;Q[Uu_ 1) = H

Hkp+r—1;r,s P kp+s—1;s,r(K;®[Up]) = H2k(K;®[Up])

Hkp—l;r,S(K;G[Up}) x Hkp—l;S,P(K;Q[Up]) = H2k~1(K;®[Up])

Proof. As in (c¢) all the E-S properties of H*(K,L) are obvious
except the homotopy property which will follow once we have verified the

strong dimension axiom.

For this we again let u be the first vertex of simplex o and define

h: C (o) —C (o) for g =2 -1 (now C , = @[U 1) by
g q+p-1 - p

+ 1

h(vovlv2 ... ) = u AR
Then the following formula holds :

8P 'h + 8P %ha + 9P %he% & ...+ 8908”3 + 5naP 2 4 ngP ]

(1+ (1 +w(l+w+wd) ... (1+o+0+...+0P2) (id).
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To check this we define, intermediate between the above h = h

p—1
and hO = id, the deg;ee r homomorphisms hr : Cq(ﬁ) — Cq+r(c) by
h(vovlv2 ... ) = u AR Clearly

dh = o .ha + (1 + w+ .. + wr—l).h , 1 sr = p-1.
r r r-1
So on eliminating these intermediate hr’s — using the fact that the
elementary symmetric functions in the roots {w, wz, ce wp—z} of 1 + x
+ ... F xpn1 are all + 1 — we get the stated formula.
Each of the factors 1 + w + w2+ Lo F wr, 1 =r = p-2, on the right
side of our formula is nonzero. So kerar = imas, i.e. the reduced

homology H*(U) of the closed simplex o is identically zero. gq.e.d.

*
Exercise . Prove above result by constructing, for any two

contiguous maps f and g, an explicit degree p-1 "prism operator” h which
satisfies a formula analogous to that of the above "cone operator".

*

Exercise . Compute H*-r S(K;Z[Up]), or at least find all cases

>

when the homotopy axiom holds for the corresponding homology H*(K).

Exercise. Glive the precise sense in which cyclotomic homology is a

"lifting" of Mayer’s definition to characteristic zero.

Other examples. Later we’ll also meet (g) Cohomology with compact
supports (and, dually, homology with infinite chains) of infinite
simplicial complexes, (h) Equivariant homologies (see Ch. 4) of
simplicial complexes equipped with group actions, (i) Singular homology

H,(Proj(K)) (see Ch. 5) and many, many others ..

REMARK. Note that if we take any natural construction (within Gimp
or from it into Zop) and compose it with any of the above homologies (or
of 2.19) we get another homology ... e.g. (for the case of dimK = 1)
Lovasz once used the homology (of the sd) of the poset of all acyclic
subcomplexes of K ... . However despite this we feel that the E-S

theorem is only a begining, and large classes of non E-S simplicial
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homologies can also be characterized axiomatically.

Exercise. Show that the homology of the poset of all subcomplexes

of K is trivial.

(2.18) Other examples of homologies on 3op. So far we have

defined only the singular homology on Zop. Let us start with some

(a) Variants of singular homology.

1. Firstly we can define algebraical variations mimicking (2.19).
For example we can put a total order (!) on our space X and use only
commutative singular simplices i.e. those which restriced to the set of
vertices of the standard simplex are non-decreasing. Likewise it makes
sense, if one is working with coefficients mod p, to use a signless
boundary énd use Mayer singular homology. Or, wusing a primitive pth
root of unity use a cyclotomic singular homology, or define a cyclic
singular homology by going to the cyclic quotient, or use the oriented
or (Alexander-Veblen) Lefschetz singular homology by going to the

oriented quotient.

2. When X is a differentiable manifold we can use differentiable
singular simplices (of maximal rank) only with any of the above

variants, e.g. with the Lefschetz variant : cf. (1.4).

Exercise. Prove that this Poincaré singular homology of a

differentiable manifold coincides with its singular homology.

3. Another variant is obtained by replacing standard simplices by
standard cubes : this cubical singular homology was used by Serre in his
famous paper (4nnals of 1955) on the spectral sequence of a fibration.

More precisely the definition goes as under.
An n-dimensional singular cube of X is a continuous function
T(ul,uz,...,un) of n real variables 0 = ui < 1 which takes its values in

X. It has 2n (n-1)-dimensional singular cubes as its faces, viz. the n
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front faces FiT given by

(FiT)(ul’uZ""’un—l) = T(ul,..ui_l,O,ui,...,un),
and the n back faces BiT given by
(BiT)(ul’UZ""’un—l) = T(ul"'ui—l’l’ui”"’un)'

The obvious cubical boundary operator to use is of course
i
8T = Zi( 1) (FiT — BiT)’

and one has, as an easy calculation shows, 62 = 0. But now there is a

surprise in store for us : the non-normalized cubical singular homology

kerd/imd thus defined does not obey the dimension axiom.

More precisely for a point this homology is Z in all dimensions
this follows because the cubical singular homology of a point is Z in
all dimensions and the above boundary operator is identically =zero in

all dimensions.

Theorem. The non-normalized cubical singular homology obeys all

E-S axioms other than the dimension axiom.

Proof. We imitate the argument of 2.14. The proof of the homotopy
axiom is now in fact simpler since a cube times [0,1] is also a cube and
no subdivision is necessary to get the required chain homotopy h. Next

we note the following cubical subdivision of a cube times [0,1] which

can be iterated to makes cubes arbitrarily small

S
Vg

51



Using this the same argument as before shows again that this
homology does not change if we use only U-small singular cubes (Y being
any given open covering of X) and the excision property follows at once

from this fact. gqg.e.d.

*
Exercise . Compute the above generalized E-S homology. What is

its "spectrum" ?

The cubical singular homology which Serre used was obtained by
quotienting out the above complex by the subcomplex generated by the
degenerate singular cubes i.e. those which factor through a projection

of the standard cube to one of its proper faces.

Corollary. This (normalized) cubical singular homology coincides

with the singular homology.

Proof. The dimension axiom follows because the positive
dimensional singular cubical simplices of a point are degenerate. The

remaining axioms follow from the above result. gq.e.d.

Exercise. Since we appealed to the E-S Theorem (2.17) the above
"coincidence" has been shown only on triangulable spaces. Show that in

fact it holds for all topological spaces.

*
Exercise . Show that any closed 3-manifold has a cubation, i.e.

can be subdivided into cubes intersecting in common faces only.
Likewise show that it also admits a dodecation, a subdivis®on into

non-overlapping dodecahedra which meet in common pentagonal faces.

The aforementioned suggests that a variant of singular homology

using dodecahedra might be useful in dimensions 3 and 4 ?
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(b) Cech cohomology.

It was Eilenberg who resurrected singular homology by showing its
convenience (see Ch. 4) when dealing with homotopy-theoretic questions.
In the 1930’s however the emphasis was on trying to find generalizations
of Alexander duality to subsets of the sphere which are not triangulable
{(e.g. the solenoids of 2.8). From this point of view singular homology
is not the right homology to use, as becomes clear from the following

simple example of Alexandrov.

- ——
—QJ’.R( é: S‘\n\; hece

Exercise. Show that the first singular homology group of the above
one-dimensional compact space is trivial even though its complement in

the plane has two path components.

The "correct” definition from the above point of view was given by
Cech. We give below this definition noting that we are just giving the
mainstream : one again has various algebraical variations defined using

the ideas of (2.19).

We begin by noting that the set of all open coverings U of our
space X is a directed poset under refinement, 1i.e. any two open
coverings have a common finer open covering. We now associate to each U
a simplicial complex Kﬂ called its nerve : 1its simplices are all those
finite subsets of U which have a nonempty common intersection. (We note
that here we are using infinite simplicial complexes.) We can take say

the oriented simplicial (co)homology of these simplicial complexes.
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Now note that if ¥V is finer than U then there 1is an obvious
simplicial map Kﬂ — KV' So we can take the inverse limit -of these
simplicial homologies, or the direct 1limit of these . Simplicial

cohomologies : these are the required Cech groups of X.

Theorem. Cech cohomology obeys the E-S axioms, however, for

non-compact spaces X, Cech homology may not obey the exactness axiom.

Proof. We leave this as a challenging Exercise (cf.
Eilenberg-Steenrod) contenting ourselves by pointing out that the
peculiarity regarding Axiom 4 arises because exactness commutes with
direct limits but not necessarily with inverse limits. For compact
spaces one can limit oneself to finite coverings and, wusing this, it

turns out that now even this axiom is true. g.e.d.

Thus for (finite) simplicial complexes the Cech approach also gives
the usual homology and cohomology groups, the difference (from singular

homology) is for non-triangulable spaces.
Exercise. Calculate the Cech (colhomology groups of Alexandrov’'s
example {see above).
»*
Exercise . Calculate the Cech (co)homology of the solenoids of

(2.14).

(c) Alexander-Kolmogorov homology.
etc., etc.
(2.20) Acyclic models theorem. We have already used the method of
proof called "the acyclic models method” in (2.19). Here we’ll first
formulate the general theorem of Eilenberg and Maclane (Amer. Jour.

Math. of 1953) pertaining to this, and then show how it connects to the
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ideas of resolutions and derived functors which were developed later in

the mid-1955’s in Cartan-Eilenberg, etc.

The main point here is the definition of a representable functor.

Informally
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7 Chapter 3
POINCARE : 3-MaNniFoLps & DeE RHAM THEORY

(3.1) On "rattling”. Before I start I would like to share with
you the following quotation of THURSTON (from p.165 of “On proof and
progress in mathematics”, Bull. A.M.S. 30 (1994), 161-177)

" Personally, I put a 1lot of effort into "listening" to my
intuitions and associations, and building them into metaphors and
connections. This involves a kind of simultaneous quieting and focusing
of my mind. Words, logic and detailed pictures rattling around can

inhibit intuitions and associations."

To reduce "rattling" I have, and will, continue to minimize or even
drop indices, tildes, etc. ... this of course carries some danger of
ambiguity and over-simplification, but a willingness to run this risk

seems necessary 1f one wants to see the big picture ....

(I would like to emphasize that '"rattle-free thinking" and a
fondness for "doing sums” don’t contradict each other : Thurston is one

of the great problem-solvers of this century.)

(3.2) The birth of Homotopy Theory, 1i.e. the part of topology
concerned mostly with homotopy groups ni(X), also arose from Poincaré’s
“Analysis Situs" in whose § 12 is defined the fundamental group nl(X).
Starting from this, the higher homotopy groups were later defined
inductively by HUREWICZ in 1935 as follows :

ni+1(X) = ni(QX),

where QX denotes the loop space of the space X (Of course this
induction can start from one step lower — nO(X) being the set of path
components of X — but then the group structure is not clear.)

Poincare’s first definition of n is based on looking at a gsystem
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of linear partial differential equations of the type

=F Ax,, ..., L yA).

Here x runs over a domain D of n-space, and y runs over all of A-space.
So one can imagine the right sides as n slopes of an n-dimensional plane
field on D x RA transverse to the fibers of the projection D x RA — D,
and solving the above differential equations amounts to partitioning, or
foliating, all of D x RA into n-dimensional smooth leaves which are, at

each point, tangent to the plane field at that point.

There are obvious integrability conditions, stemming from

2 2
o) ya B a ya

8x.8x . 9x.9x.’
i3 J 1

which the slopes ?a i of our plane field must obviously satisfy, for the
differential equations to have a solution. It was known to Poincaré
(this is now called Frobenius’ Theorem but actually goes way back to

Deahna ) that these integrability conditions are also sufficient.

At this point Poincaré apparently confines himself to the case when
the leaves of our foliation cover the base space D evenly. Using this
he now "follows" any solution as its projection describes a loop on D.
This yilelds a group of substitutions of RA, which nowadays is called the

monodromy of the above integrable system of differential equations.

Poincaré notes that this group has the property that the
substitution corresponding to any lacet, i.e. a very narrow loop, is the
identity substitution. He now defines the fundamental group of D to be
the monodromy of any system of differential equations ¥ for which the
converse is also true, i.e. we should obtain the identity substitutfon
only if the loop is a concatenation of lacets, i.e. only if, in today’s

language, the loop is homotopically trivial.

REMARK. Poincaré omits to prove that such an integrable system #

of PDEs exists. Much later, Sullivan, had need for a Poincaré-like
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definition of = and he pointed out that such an ¥ certainly exists, at

1"
least i{ A ls infinite, and Lhen we can ensure also that each of our
. A
substitutions is a linear substitution of the Hilbert space R°. Note on
the other hand, that there are closed manifolds having fundamental

groups which do not sit inside any GL(A,R) for A < o .

We note however that Poincaré (and Schwarz etc.) had shown the
existence (for the case of surfaces) of a universal cover, so the above
existence question did not seem much in doubt. And, anyway, Poincaré
was interested in calculating his groups, and for this purpose he
switched to the following, which also simultaneously inaugurated (as
TIETZE, who analyzed Poincaré’s def}pition very closely thereafter

showed) the combinatorial theory of groups.

The second definition of mn, which Poincaré gave was couched as

1
follows. He set each lacet C equal to zero thus : C 0. Then he

defined (in analogy with his earlier notion of an homology)} an
equivalence to be any expression of the type A = B (where A and B are
linear combinations of loops) obtainable from these by working "just as
if these were equations" with the sole difference that we don’t demand

commutativity.

Clearly this second definition is equivalent to the one found in
text books nowadays : L is the group, under concatenation, of homotopy
classes of loops at the given base point. (Poincaré was very clear

about the importance of base point vis-a-vis this definition.)

,Noticing that one obtains all one-dimensional homologies of the
(connected) manifold from its equivalences if one allows commutativity,
Poincaré also saw that H1 is L made Abelian.

REMARK. While Poincaré’s "second definition" of m is topological,
we'll see in (3.6) that his "first definition” was essentially de
Rham-theoretic. For the case of CW complexes obtained by pairwise
identifications of facets of a 3-polyhedron Poincaré also gave a “third
definition" (see the "cyclic equivalences” of 3.3 below) which is purely
combinatorial . We note that purely combinatorial definitions of the

higher homotopy groups are somewhat harder (because of the
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infinite-dimensionality of the loop space : a fact which also makes

these Abelian groups much harder to compute than the possibly

non—-Abelian nl).

(3.3) The birth of 3-manifold theory. We’ll now go back in time

"and do some sums" with Poincaré ....

All closed 2-manifolds were "known" at that time, so it was natural

to turn to the next dimension and look at closed 3-manifolds.

For 2-manifolds, the starting point for the classification had been
their triangulability (those days surfaces were always complex analytic
and then this followed e.g. from Poincaré’s work on Fuchsian groups) or
equivalently (Exercise) the fact that they could be built from some

2k-gon by a pairwise identification of sides.

Likewise, the triangulability of a closed 3-manifold (this was
established much, much later by Moise) is equivalent to saying that it
is obtainable by pairwise identification of the facets of a

3~dimensional polyhedron.

So Poincaré turned to one of the simplest polyhedrons one can think
of, viz. the cube, and examined what happens when we identify opposite
facets of the cube. (But note also, since any 3-polyhedron is a
subdivided cube, that the undivided cube is an obvious starting point

for a search of all 3-manifolds !)

. Poincare’s smoothness criterion. Unlike the case of polygons, the
(in today’s language) CW COMPLEX one gets by pairwise facet
identification of a polyhedron has some singularities. However Poincaré
noted that these singularities are very mild : the only doubtful points
are the finitely many vertices of this CW complex, and each of these
will be non-singular iff the Euler characteristic of its 1link is 2.

This follows of course by using the classification theorem of surfaces.

Later (see p. 216 of the 1935 text book of Seifert-Threlfall : I
know of no earlier reference) it was observed that Poincaré’s criterion

could be reformulated much more elegantly as follows (clearly one does
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not have a similar elegant version in higher dimensions).

Theorem. A pairwise identification of all the facets of a
3-dimensional polyhedron yields a closed 3-manifold if and only if the

Euler characteristic of the resulting CW complex is zero. .-

(However, to work out the topology in the singular case, there is,

in general, no getting around examining, as Poincaré does, the

vertex—~links one by one 1)

Proof. "Only if" is trivial by Poincaré duality. For "if" we can,
without loss of generality, replace the CW complex by a simplicial

subdivision K. Using Poincaré’s criterion (see above) we see thus the

inequality

2f0 = Zv e(Lka) = 2f1 — 3f2 + 4f3 ,

with equality holding iff K is a 3-manifold; the result follows because

(by virtue of 4f3 = 2f2) the above is same as saying e(K) = O. (Note
also that one always has the equality EV(Z - e(Lka)) = e(K).) q.e.d.
Cyclic equivalences for LI Note that each edge of the CW complex

arises as the result of a cyclic sequence of identifications of the sort

AB=CD=DE = ...

where {A, A} = 4 are the identified facet-pairs (so A = A), and AB etc.

denotes the intersection of the facets A and B.

Theorem. The fundamental group of the CW complex is isomorphic to

the group generated by the facet pairs subject to the cyclic relations

BDE ... 4 = 1,
one for each edge of the CW complex.

(See last year’s Seminar notes to & 13 of Analysis Situs.)
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Poincaré now has all the weapons to do ‘"sums” : the fundamental
group of the CW complex and thus its Abelianization, the first homology
group, can be calculated using these cyclic equivalences. Then, in case
the smoothness criterion has certified the CW complex to be an
orientable manifold, duality gives the rest of the homology. (Even in
the singular case using "duality" gives something meaningful, namely the

intersection homology of these orientable 3-pseudomanifolds !)

(In the second Complément Poincaré’ gave another calculation using

the incidence matrices of these CW complexes : see 1.4)

Theorem. Pairwise identifications of the opposite facels of a cube

yields exactly seven orientable 3-manifolds.

Proof (with Keerti Vardhan). Lets orient the bouhdary of our cube,
and denote by A, B, and C the oriented facets incident to some chosen
vertex v. We want the resulting CW complex P to be orientable i.e. we
want the boundary of its sole 3-cell to be zerc: so we must identify A
to A (etc.) with the opposite orientation, i.e. we must rotate A through
eian/z’ where a € {0,1,2,3}, and then identify with A by a translation.

Accordingly we’ll denote P by abc, 0 = a,b,c = 3.

So a priori there are 43 = B4 possibilities. But the symmetries
involving interchanges of the 3 edges incident to v show that abec is
homeomorphic to the complex denoted by any permutation of its symbols:
this cuts down the possibilities to 20 (the number of degree 3 monomials
in 4 variables). These possibilities reduce further to 13 because the
antipodal symmetry (v «— v etc.) of the cube shows that the complex
(abc) is always homeomorphic to (a—lb_lc_l).

For each of these 13 CW complexes we calculated the number of cells
and thus their Euler characteristic. It turned out that e = 0 only in

seven cases, and then a fundamental group calculation showed that these

3-manifolds are all topologically distinct from each other.
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All this information (and more) is shown in the following table :

CW Number of First homology Geometrical
cells Fundamental (One has H_, =
Complex . 2
and e(P) rou b description
p TN group z°1 ) P
0 1
000 1 -3 0 73 7° RS /7°
001 1 3 0 | gh= hg,
K lok = nt, Ze 1/2 R>/(0,0,1/2)
kK 'hk = g
002 1 3 0 | gh= hg,
kK ek = g7t Zo012/201/2 | R2/(0,0,1)
kK 'hk = nh!
011 1 1 2
012 1 2 1
013 1 1 2
2
0 =
22 2 4 0 g2 L 7/2 © 1/2 ?
h® = 1.
111 2 4 0 |Hamilton’s /2 o 1/2 s3/<i, 5, k>
order 8 group.
112 1 2
113 2
122 S -
g4 ’ /2 ® 1/4 :
ht =1
123 1
222 4 7/2 772 3/t 1> =
RPS .

Some sample calculations for 022 ( the remaining

left as Exercises for the tireless reader ! ):

CW complex P being
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(X =) ABCD = A’B’C’D’ (= X)
(Y =) BAA’B’= D’C’CD (=Y)
(2 =) CBB'C’= A’D’DA (= 2)

we obtain four edges, viz.,

AB = A'B" =CD=C'D" , BC=DRBC =DA=DA |,
and the two vertices

So e(P) = fO - fl + f2 — f3 =2 -4+ 3 —-1=0. Further since the

edge identifications can be written cyclically as

YK = XY =YX =XY , Z2X=X%X2=2X= X2,

Z2Y = YZ , YZ=2Y,

we see that (in multiplicative notation) the fundamental group is

generated by X, Y, and Z, subject to the four relations

xyxy = 1 o oxzxz = 1,

YZ=1 , 2Y =1

i.e. it is the (infinite non-Abelian) group generated by the 2 elements

g =2 =Y and h = XY subject to the sole relations g2 =1 = h2. g.e.d.

Exercise. Complete the calculations for all the 13 CW complexes
listed. (It seems that either all 13 or at least 12 of them are
pairwise non-homeomorphic.) Also do some homology calculations via the
chain complex of the CW complex. In case of singularities calculate

also the genus of the link of each singularity.
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With the above examples Poincaré started 3-manifold theory, but he

went much, much, further.

For example, he saw that three of the above manifolds, to wit 000,
001, and 002, belong to an infinite series -— +the so-called twisted
3-tori 00T, T € SL(2,Z) — which he classified by means of a remarkable
"rigidity theorem" (see § 14 of Analysis Situs : this result is

analogous to the later "rigidity theorems" of Bieberbach and Mostow).

Note that each of these 00T’s can be made into a Riemannian
manifold whose metric 1is locally the left-invariant metric of a
three-dimensional solvable Lie group. It is known ({see Fried-Gelds ,
Advances, 1983) that these and their finite covers are the only closed
3-manifolds having such geometries. We note also that these geometries
are three of the eight geometries of Thurston (Lectures, Princeton,
1980). Thurston has conjectured (and proved under one additional
condition) that any closed "irreducible" (we omit the definition) admits
one of these eight "geometries". It is known that this conjecture would
quickly lead to a classification of all closed 3-manifolds. (This is
analogous to how the classification of closed 2-manifolds follows from

the uniformization theorem of Klein, Poincaré, and Kdbe.)

Exercise*. Show that 022 and 122 also belong to an infinite series
T22 of closed 3-manifolds. Classify these manifolds (these may be
called "projective"” lens spaces since they can be obtained by a
construction similar to that of 3.4 but starting from projective 3-space
minus a disk) and give a number theoretical ‘"enumeration" of this
infinite series analogous to the one we gave (see p.113‘of last year’'s
notes, first ed.) for Poincaré’s series O00T. (Hint: equip these
manifolds with a hyperbolic geometry.)
* .
Exercise . Given T, U, V € SL(2,Z), one can define a CW complex
TUV by identifying the three opposite face-pairs of the cube after
"twisting” one member of each pair by these matrices respectively. Find
necessary and sufficient conditions that TUV has no singularities.

*
Exercise . Starting from the (undivided) n-cube find a formula for
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M(n) the number of orientable closed n-manifolds that can be obtained by

identifying its opposite facets.

.+ Poincaré’s most enchanting contribution to 3-manifold theory is
undoubtedly the ubiquitous Poincare’s Manifold (i.e. the main character
of his long Cinquiéme Complément !) We note that this EXOTIC HOMOLOGY
SPHERE lies at the next level of complexity compared to the seven
manifolds of the table above : it is a 3-manifold obtainable by suitably
identifying opposite facets of a dodechedron, that is to say (see 1.2) a

very simple subdivided cube.

Lastly Pecincaré left to us the celebrated Pecincare’ Conjecture (or
problem ) — viz. that 83 is the only HOMOTOPY SPHERE amongst closed
3-manifolds — which is still (?) open. We note in this context that
Analysis Situs does not contain any' example of non-homeomorphic
3-manifolds having isomorphic fundamental groups. These (see below)
were found a little later in 1908 by TIETZE who was one of the first

mathematicians to have read Analysis Situs thoroughly.

(3.4) Linsenrdumen. To define these start with the lens (see
below) obtained by "fattening" a p-gon, and consider the CW complex
obtained by rotating its top facet by 2n/q (p and g are relatively prime
to each other) and then identifying with the bottom facet.

Clearly this complex is orientable and has fo = fl = f2 = f3 = 1
and so its Euler characteristic is =zero. Thus it is an orientable
3-manifold, called the 1lens space L(p,q). Using Poincaré’s (sole)
cyclic equivalence we see that its fundamental group is Z/p. However

in 1919 Alexander showed (this was conjectured by Tietze) that for
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different values of q these lens spaces need not be homeomorphic to each
other, and subsequently in 1935, Reidemeister, using a new invariant
called torsion (we will look at this, and its off-spring, Algebraic
K-Theory, later) was able to give a complete homeomorphism

classification of the lens spaces.

It turns out that (unlike the case of 3-manifolds whose universal
cover is contractible) even the homotopy type of the lens spaces is not
determined by its fundamental group : the classification of lens spaces
upto homotopy type (which is not the same as upto homeomorphism) was

given in 1950 by Whitehead.

Exercise. Triangulate the top and the bottom facets of the lens
above by coning their boundary over two new vertices N and S. Let now p
= 2k, so the bounding simplicial 2-sphere has an antipodal simplicial
involution v. We now identify each triangle o of the top facet of the
lens with v(o) rotated through 2n/3. Find all possible 3-manifolds of
this type. Also give classifications of all these 3-complexes upto

homeomorphism and homotopy type.

Exercise. Show that L(p,q) is homeomorphic to the quotient space

of the unit sphere 53 C CZ obtained by dividing out by the free Z/p -
. 2ni/p 2niq/p
action (21, 22) —> (e 2y, 22).

Note that this again shows, since 53 is simply connected, that the
fundamental group of L(p,q) is Z/p. We recall, from last year’s
seminar, that Poincaré was aware of, and frequently used this method -—
of finding a universal cover — to calculate fundamental groups. For

example‘he knew that 111 (of the table in 3.4) is 53 mod the order eight
group generated by the quaternions i, j and k, and that 222 = RPB.

(3.5) On the combinatorics of the 2-sphere. This section is
somewhat of an aside in which I want to emphasize the fact that
Poincaré’s conjecture — or even the classification problem of
3-manifolds — can be reformulated entirely within &imp and indeed are
questions pertaining to the combinatorics of the ordinary commonplace

simplicial 2-sphere !
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Simplicial 2-sphere. This means a connected simplicial complex K

having e(K) = 2 for which each vertex—link Lka is a polygon.

The above purely combinatorial definition 1is valid because, by
virtue of the classification theorem of surfaces, |Kl is homeomorphic to

a 2-sphere iff K is as above. (Exercise. Is "connected"” necessary in

the above 7?)

To indicate how challenging such K’s can be let me remind you of
the following of which a somewhat controversial proof was found 15 years

ago by Appell-Haken (a conceptual proof is still lacking).

Four Colour Theorem. For any simplicial 2-sphere K we can find a

function £ : vertK — F, with f(v) # f(w) for all edges {v,w} € K.

4
Our choice of the field F4 as "colouring box" was dictated by the
elegance of the following argument (which seems -— to use Erdds’s
favourite phrase — to come right out from "The Book" of proofs).

Tait’s Theorem. The above theorem is equivalent to saying that the
edges of K can be assigned three colors in such a way that each triangle

of K has all its edges colored differently.

Proof (M. Brown). Consider any f of the above kind as a 0O-cochain

of K with values in F4. Then its coboundary z = 8f is a l-cocycle with
*

values in F4 . Now note, on the one hand, that saying it is a cocycle
is same as saying that for any triangle {u,v,w} of K we have z(v,w) +
z(u,w) + z(u,v) = 0; and, on the other hand, that sum of any three
elements of F4* is zero iff they are distinct. So z gives us the
required edge coloring. Conversely any such edge coloring amounts to an
F4—valued 1-cocycle z of K with values in F4* Since Hl(K;F4) = 0 we
have z = &f and this f gives the required vertex coloring. gq.e.d.

Now start from a 3-ball with center c¢, bounded by a simplicial

2-sphere K, and let v be any pairwise identification of its (necessarily
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even number of) triangleé. The resulting CW complex c.X/v is (Exercise)

homeomorphic to the simplicial complex sd(c.K/v).

Theorem. Upto homeomorphism any closed 3-manifold is a sd(c.K/v),
e(sd(c.K/v)) = 0O, where K is some simplicial 2-sphere equipped with a

pairwise identification v of its triangles.

Proof. This follows from the preliminary remarks of (3.3), the
essential points being Moise’s theorem, and that for such identification

spaces e = 0 ensures absence of singularities. gq.e.d.

Thus the classification theorem of 3-manifolds can be reformulated
as the purely combinatorial question, of classifying all objeéts of Gimp
of the above type, under the equivalence relation generated by
elementary stellar subdivisions (here of course we are making use of the

basic theorem of M.H.A.Newman).

Turning now to the cyclic equivalences of c.K/v (see 3.3) we note
that their definition was purely combinatorial in terms of (K,v), and
saying that the fundamental group is trivial is the purely combinatorial
assertion that, in the equivalence relation generated by the Tietze
transformations, the equivalence class of these relations is that of the

empty set.

Poincaré’s conjecture is thus the purely combinatorial assertion
that this combinatorial hypothesis implies the combinatorial conclusion
that, in the equivalence relation generated by elementary stellar

subdivisions, sd(c.K/v) is equivalent to the boundary of a 4-simplex.

Note however that the remarks of (3.4) show that there is no chance
of always "lifting" the Tietze relation step-by-step to the Newman
relation. Thus the above reformulations do not, as such, tell us how to
solve these recalcitrant problems. However it would be of course very
fascinating if there were to exist some non-trivial connection between

3-manifold theory and say the 4CT 77?7

(3.8) The birth of '"de Rham" theory. We’ll first outline a

familiar situation in (a) and then show how Poincaré generalized it in
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{(b). 1In (c) we see the birth of the de Rham homotopy theory.

(a) If f(z) is analytic in a domain D of the complex plane, then
its indefinite integral Jf(z)dz does not depend just on the initial and
final points, but also on the path between them over which integration
is done : indeed the ambiguity of the generic indefinite integral over D

measures the homology of D.

By this we mean that, for each f analytic on D, one can find some
complex numbers — called the residues or periods of f -— and the
aforementioned ambiguity is an integral linear combination of these
periods; moreover these periods are given by integration over paths
going just once around Jjust one "hole" of D, and so their number is
bounded by the first Betti number of D; finally this bound is the best
possible in the sense that one can construct an f analytic over D having

precisely bl(D) distinct residues over D.

(b) The above was known to Riemann, and indeed had been his
motivation in defining the "connectivity" of closed surfaces, and Betti
had generalized all of the above to higher dimensional manifolds, but

only for one-dimensional or codimension one indefinite integrals.

Exercise. Check thal analyticity of {(z), i.e. the Cauchy-Riemann
equations, is equivalent to demanding that the real and imaginary parts

of the C-valued 1-form f(z)dz are closed {in the sense defined below).

In § 7 of Analysis Situs, Poincaré extended this to indefinite
integrals of all dimensions on a manifold. Before we go further it
needs to be pbinted out that the differential forms of today are

essentially synonymous with the indefinite integrals of yore.

REMARK. . Imitating Abhyankar who starts with a polynomial a, + a,z
+a, + ... + anzn and then erases the last part to "define" power series

2
a +taz+a, + ... , one can likewise start with an indefinite

0 1 2

integral, say [Jf(x,y)dxdy, and then erase the integration sign to
"define"” the differential form f(x,yldxdy. The anticommutativity dxdy =
— dydx follows as a consequence of this definition because the

corresponmding indefinite integralds are same.
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In the aforementioned § 7 of A4dnalysis Situs the manifold in
question is in some n-space and D denotes a neighbourhood of it. One
works with indefinite integrals Jw which are (in place of being
analytic) now closed in the modern sense, i1.e. the exterior derivative
dw of the differential form w is zero throughout D. Only in Poincare’s
paper the equation dw = 0 is written in a curious cyclic notation (see

7.2 of last year’s seminar notes)!

REMARK. Though de Rham cohomology 1is & priori homology via
calculus we remark that this cyclic viewpoint of d has led now, in the
hands of Connes, to a complete combinatorialization of de Rham
cohomology called cyclic cohomology (a more obvious kind of

combinatorialization had been done before by Thom).

Poincaré notes that the ambiguity of the indefinite integral Jw
over M is again given by an integral linear combination of at most
blw (M) periods obtained by integrating over so many homologically
independent closed sub varieties of M, ands with the assertion that this

bound is the best possible.

Theorem. This assertion of Poincaré is equivalent to de Rham’s

*
theorem, i.e. that H (M;R) is isomorphic to (kerd)/(imd).

Proof. Integration lets wus identify each closed form as a
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Chapter 4.
MinMaL COMPLEXES

(4.1) Eilenberg-Stéenrod properties of m, . The higher homotopy
groups nq , g = 2, were first studied by HUREWICZ in 1834, who defined

them in terms of POINCARE’'s fundamental group n by
n (%% = w8 x), ),
q 1

where Qq_l(X) is the {g-1)th iterated loop space of X at the base point

* of X (with the constant loop * considered as its base point).

So as a set (a) w (X,*) consists of homotopy classes {a]l of 1loops
of the iterated loop space (Qq_l(X),*). Since a loop is a map of the
unit interval I which images 81 to *, we can reformulate this as saying

that (b) nq(X,*) consists of homotopy classes [f] of maps
£ (19,81% — (X,%)

from the pair (g-cube, its bdry)} into (X,*), and this in turn amounts to

saying that (¢) w _(X,*) consists of homotopy classes [g] of maps
g+ (s4%) — (x,%),
from a g-sphere with base point into (X,*).
Egercise. Carefully carry out these reformulations (b) and (c).

The base point is (as Poincaré emphasized) very important : it is
because we consider only loops based at a point that concatenation
supplies the quotient set of their homotopy classes with a group
structure. It is easy to interpret this structure directly in the above

reformulations, e.g. if we use g-cubes, 0 = Xiv - ,xq = 1, then [f] +

[g] is the homotopy class of the map f+g defined by

(f+g)(x1, X ., xq) = f(2x1,x2, ,xq) if X, = 1/2, and

2)

71



= g(2x1—1,x ,xq) if X, =1/2.

2)
Here we have preferred additive notation (which incidentally
Poincaré used also for the non-Abelian L2 1) because of the following.

Theorem. For all q = 2 the groups nq(X,*) are Abelian.

In this context we remark that the higher homotopy groups had in
fact been defined earlier by CECH {(he used {(c) : see ICM ZGrich 1832,
vol. 2, p.203) who mentions that even DEHN had been aware of this
definition (around 1910) ! However the study of these groups was not
pursued because of the above "discouraging" property : it was generally
felt that, like m,, one should really be looking for an interesting

non-Abelian generalization of the homology groups Hq‘for q =z 2.

(Later work of MOORE and KAN will show that, in a certain sense,

the homotopy groups m,’'s, despite being Abelian, are nevertheless the

i
natural "non-Abelian analogues" of the homology groups Hi )

Proof (1 found this argument in 1969 during my first encounter with

ni’s). Choose two disjoint arcs in the (g+l1)-cube from a point with X4

< 1/2 (resp. x, > 1/2) in the bottom to a point with x, > 1/2 (resp. x

1 1 1
< 1/2) in the top, and "fatten" these (see fig.) 1into disjoint tubes

having these portions of the bottom and top as their ends.

The required homotopy from f+g to g+f can now be defined by mapping
each horizantal section of these two tubes as per f and g respectively,

and by mapping the complement of these tubes to the base point. g.e.d.

It is usual also to denote the set of path components of X by
nO(X,*), with the path component of * to be denoted by O. Next we
“relativize" all these definitions.
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Relative homotopy groups. Given a pair (X,A) of nonempty spaces
with a base point * specified in A we consider rel homotopy classes of
maps of the g-cube 14 into X, which image its boundary a14 into A, with

all of 919 put possibly the front face x, = O being mapped into *. The

1
group operation is defined again by concatenation (i.e. by the equations
above). These groups nq(X,A,*) can be checked to be Abelian for q =z 3,
for q = 2 they may be non-Abelian, and for q = 1 we only have a set with

a distinguished element 0, we don’t define them for q = 0.

Exercise. Show that L2 of a topological group is Abelian. Hint.

Look at the following picture.

5-3

Exercise. Show that n (X,A) too can be defined as a fundamental
group, viz. of the {(g-2)th 1terated loop space of Q(X,A), the space of

all paths of X starting from * and ending at some point of A.

Eilenberg-Steenrod properties. Axioms 1 and 2 are obvious : each
map ¢ of spaces which preserves their base points gives rise to the
induced map ¢, , [g] +— [¢ogl, and clearly one has (id), = id and (¢€),
= ¢x€x . Again if the connecting map 3 : mw (X,A) — nq_l(A) is
defined by imaging each [gl, where g : (Iq,alq) — (X,A,*) to [g|an],
then Axiom 3 also holds. There is also the following analogue of the

Axiom 4 which too we leave as another straightforward Exercise.

Theorem (EXACTNESS). To each (X,A.*) is associated a functorial

long exact homotopy sequence
—> w (A) — 1 (X) — 7 (X, A) ——é—a T (A) —
q q q q-1
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Note here that exactness makes sense for any sequence of maps of
sets with distinguished elements which preserve these elements : the
subset imaging to the next distinguished element should coincide with

the image of the preceding map.

Thus if we interpret E&zact as above Axioms 1-4 together amount to
saying that we have a functor from the category of pairs of spaces with

base points to Ezact.

Continuing his Exercise the reader will have no problem in checking
easily that the homotopy Axiom 5 is also true -Sg only the excision
property remains, for which of course everythlng hinges on what we’d
like to call "excisions". If we adopt (for the new category of pointed
pairs of topological spaces in which we are working now) a definition

close to that in Yop or Gimp then Axiom 6 will not be true.

Example. We’ll see below that Ty (52 *) = Z. But (SZ,*) has the
homotopy type of (S 52 *) where S2 denotes the hemlsphere with center
*  Now if we "excise out” a small open dlsk of S not containing * then
we'll be left with the homotopy type of (D 6D ) The circle 6D has
higher homotopy groups trivial (Why ?) whlle the disk D2 is

contractible, so by above exact sequence T, (D BD ,*¥) = 0.

REMARK. Despite being Abelian, the higher homotopy groups are much
more difficult to compute than T a difficuly which stems no doubt from
the infinite dimensionality of the loop spaces used in their

definitions, and results in a failure of the "usual" excision property.

Exercise*. Find conditions necessary and sufficient for an open
subset U of 3-space to be such that any identically nonzero continuous
vector field P’ on U can be expressed as the vector product E’ x ﬁa of
two other such vector fields on U. (This problem was communicated to me
in 1969 by Prof. N.E. Steenrod, while solving it I made my own personal

rediscovery of the following important concept. )

As "excisions" for our category we’ll now use fibrations, vVviz.
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(E,F,*)
maps l having the covering homotopy property : i.e. any homotopy ft
(B, *,*)

into (B, *,*) for which fO is liftable into (E.F,*)} should be 1liftable
into (E.F,*) (with "lifting" having the obvious meaning). For such maps

the required Axiom 6 is verified easily.

Theorem ("EXCISION"). If (E.F,*) —— (B,*,*¥) has the covering

homotopy property then it induces an isomorphism in homotopy groups.
Corollary. We have the following exact sequence of fibration
— a (F) — n (E) —> n (B) — n_ (F) — ...
q q q g-1

This follows immediately if we replace the nq(E,F)’s in the exact

sequence of the pair (E,F) by their isomorphs nq(B).

Exercise. Consider 83 as the unit sphere of Cz and 82 as the
projective space CPl of all one-dimensional complex vector subspaces of
@2. Show that the restriction 33 — 52 of the projection map @2 —>

GPl, (21,22) — [z ], has the covering homotopy property and each

z
172
fiber is homeomorphic to S°. Use the exact homotopy sequence of this

Hopf fibration (and nB(SB) 2 7 to see that nB(SZ) = 7.

REMARK. The above simple yet remarkable example of Hopf, 13830,
probably motivated Hurewicz to start studying the higher homotopy groups
in 1934 : clearly one had a new phenomena, unlike homology these groups
could be nonzero in dimensions bigger than that of the space ! Inspired
in turn by Hurewicz’s work Hopf later studied higher dimensional
analogues of his example and formulated his famous "Hopf invariant one”
problem. We remark that all these examples have played a vital roble

(cf. Milnor's exotic spheres) in later developements in topology.

Exercise. Let Tlsz, the unit sphere bundle of the 2-sphere, be the
space consisting of all orthonormal pairs (Ea,ﬁa) of vectors of R3.

Show that the map T182 —> S2 given by projecting onto the first
coordinate has the covering homotopy property (this is the point

required in an exercise given above).
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Exercise. Show that S3 is a double cover of Tlsz and that the
latter space is homeomorphic to RP3 (i.e. Poincaré’'s Example 5 or 222 of
3.4) or to the continuous group SO(3) of all 3x3 orthogonal matrices
having determinant 1. One can also think of S3 as the group of all unit

3
quaternions and then T152 identifies with the coset space S /{*1}.

Only Axiom 7 is now left and that of course holds because in fact
nq(pt) = 0 for all q (this is more like saying that the homology of the
empty space is trivial, rather than that that of a point is trivial in

all positive dimensions).

Thus the homotopy "groups"” nq give anvexample of an E~-S homology
theory in the sense of (2.3). Here the quotes are meant to remind us
that for small values of ¢ our gr‘oups.nq are not Abelian and for the

lowest values indeed just sets-with-distinguished-elements.

Action of fundamental groupoid on homotopy groups. Given any path

o from x to y there is an induced isomorphism

@, : n, (X, y) — m, (X, %)

obtained by "dragging back" the defining maps via «.

Exercise. Make this "dragging back" precise. (Hint. Use the fact
that qu{O} U {*}x[0,1] is a deformation retract of qu[O,l].)

Clearly «, depends only on the homotopy class of the path, and

#
concatenation of paths results in a composition of these isomorphisms.
So we see that the fundamental group nl(X,*) acts on all the homotopy

groups nq(X,*) via "drag back".

The action of m, on itself is conjugation, so will be trivial iff

T, is Abelian. However even in this case its action on the higher
homotopy groups need not be trivial. One says that the space X is

simple iff this action is trivial.

Note. Without always mentioning it we will often assume our spaces

simple and nl’s Abelian : the changes required to generalize the
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formulae obtained are almost always very straightforward.

REMARK. The homotopy groups of a space are probably best
considered as the natural coefficient groups of the space. To each
point x there are associated these groups mn,(X,x) and if we let x vary
we get a space which covers X : thus each space X comes with Iits

canonical covering space or coefficient sheaf My

An analogy. This coefficient sheaf is analogous to the structure
* *
sheaf OV of a variety V. Just like H (V;Ov) the cohomology H (X;nx) of

X with coefficients in m, is very important but hard to compute (e.g.

the zeroth cohomology ofXa simple space is its homotopy groups). So one
uses a spectral sequence, this time provided by the Eilenberg filtration
of (4.3) below — for varieties one has the Dolbeaut filtration — to
get some partial information (results of Serre, Cartan, etc.) about

these hard-to-compute "cohomology" groups.

(4.2) Milnor’s Uniqueness Theorem. We saw in (4.1) that the nq’s
give us an example of another E-S homology (in the sense of 2.3 slightly
generalized). So in analogy with (2.17) it is natural to enquire (this
question was posed by Eilenberg-Steenrod in their book) whether it is
the only such E-S homology ? The answer was given by MILNOR in the
Annals of 18956.

Theorem. Any functor from the category of pairs of pointed spaces
to sequences of sets with distinguished elements which satisfies Axlioms

1 -7 of {(4.1) must be isomorphic to the functor m, of (4.1).

Moreover Milnor shows that there are exactly two ways of making
these sets into groups (for all but the least values of g and in such a
way that the distinguished elements become the identity elements and all
induced maps and connecting maps become homomorphisms) the second

structure being of course the opposite of the group structure of (4.1)}.

Proof. Assume inductively that we have already identified the

lesser dimensional given sets with the nq’s in a natural way.

Now consider the Serre fibration,
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X —> PX ——g—e X,

whose total space PX consists of all paths starting from the base point,
and the projection f maps each path to its end point. So the total
space is contractible, and the fiber is the loop space QX of X. Now use
the exact sequence of the fibration (an immediate consequence of Axioms
4 and 6) to identify the given qth set with distinguished element of X
with the (g-1)th set of QX which by the inductive hypothesis we already
know is nq_l(QX) i.e. nq(X).v

Now let o0 be any any natural group multiplication in the sets
nl(X,*). When X is a bouquet of ltwo circles we know that the wusual
group structure makes this nl(X,*) into a free group with two generators
a and b. Let the new product aob equal the reduced word w(a,b), then

(because new operation also makes the set into a group) we have
wia,1l) =1 = w(1,b) and wl(w(a,b),c) = wia,wib,c).

Exercise. The only words of <a>*<b> having the above properties

are w(a,b) = ab and w(a,b) = ba.

Using this and the naturality of o it now follows that for any X
the product of any two loop classes [a] and [B] is either [aB] or [Bal
(i.e. concatenation in the usual or opposite order. The assertion re
the multiplications of the higher groups follows because of the

isomorphism between the qth group of X and the (q-1)th of QX. gq.e.d.

The above argument seems to suggest that the group structure of the
nq’s is perhaps not too important. We remark also that even the local
family x +— m, (X,x) (i.e. the groups together with the action of the

fundamental groupoid) can be characterized axiomatically.

Exercise*. Note that Milnor’s uniqueness theorem was proved quite
differently and more simply than the Eilenberg-Steenrod uniqueness
theorem of (2.17). Still, there is even now (same definition as in
2.16) an Atiyah-Hirzebruch spectral sequence for n, f{one needs only

Axioms 1-4 for its definition so it is defined also for a ‘"generalized
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homotopy theory") : what can one say about its second term E2 ?

(4.3) Obstructions. In the second of his two paper in the Annals
of 1940 (see also a 1938 paper in Fund. Math. motivated by Hopf’'s
classification of maps of an n-complex into the n-sphere) Eilenberg
introduced the very fruitful idea of obstruction cocycles. We recall

some basic facts re these here.

First lets start with the two homotopy addition theorems. Here U

will denote a g-sphere with holes i.e. an s? minus disjoint disks Dl’

D2, cee Dt‘ Our g-sphere’s base point will be in U, and we’ll assume
it Jjoined in U by some paths Wpr Ooy vy O to the base points of the
bounding (g-1)-spheres Sl’ 82, e, St of the disjoint disks.

Theorem. (i) If f be any map from the above q-sphere with holes

(U, *) into (X,*), then we have in nq_l(X,*)
¥ (fai)# [fISi] = 0.

(ii) If f and g be two maps from (Sr,*) to (X,*) which coincide on

U, then we have in nq(X,*)
[gl —[f] = Y (fai)# [g‘Di - f[Di].

Here by g|Di - f]D1 we mean the map defined on the r-sphere
obtained by identifying two copies of Di by using g on the copy having

the right orientation and f on the other copy.

Proof. The result is intuitively obvious, and we’ll leave as an

Exercise the straightforward job of formalizing this intuition. g.e.d.

To reduce "rattling” (see 3.1) we will often simplify (cf. Note

above) such addition formulae to just Z [fISi] = 0 and [g] - [f] =
Zi[g|Di - lei] respectively.

Instead of strait-jacketing Eilenberg's iterative method of
obstructions into formalized statements we’ll illustrate it by looking

at some important cases.
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EXTENSION PROBLEMS. Suppose a map f is given, from the n-skeleton
K" of a simplicial complex K, to a space X (which we’ll assume simple to
cut down on notation !) and we want to extend f to the (n+1)-skeleton

K1 oe k.

We now define an (n+1)-cochain o of K with values in nn(X) by ofle)
= [f]a«] : clearly the map f extends iff this cochain o 1is (trivial.
Note that 8o = 0 i.e. that o is a cocycle : this follows because given
any (n+2)-simplex 6 the map f is given on its n-skeleton U, so by using
the above homotopy addition lemma (i) it follows that o(88) = O.
Because of these properties we’ll refer to o as the obstruction cocycle

defined by f : K" — X.

We now look at the obstruction class o = [0] € Hn+1(K;nn(X)). We
defined it using the map f : k' — nn(X). But suppose we change f on
Just one n-simplex . Clearly this only adds the elementary coboundary
8 to o. Thus we see that the obstruction class is unaffected if we
change f only on the n-simplices of K. So the vanishing o = 0 of the
obstruction class is equivalent to saying that f can be extended

possibly after altering it on some n-somplices of K.

FINDING A HOMOTOPY. We are given two maps f and g from a
simplicial complex K to a (still simple !) space X, and we know of a
homotopy F defined on the n-skeleton of K, between these two maps. We

want to extend it to the (n+l)-skeleton of K.

Take any (n+l)-simplex o and look at o x [0,1]. The map F is given
alreédy on the Dboundary of this (n+2)-cell. Thus we have an
(n+l)-dimensional cochain d of K with values in nn+1(X), viz. d(e) =
[F|8(ox[0,1]] and clearly the homotopy extends iff this cochain is zero.
Note also that in case F is identity on K" (we can obviously always
reduce to this case) then d(v) = [g|o — f]o] and we therefore refer to

it as the difference cochain defined by f and g.
FINDING A SECTION. Let p : E —» K be a fibration and suppose we
already know a section (i.e. a right inverse) f of p defined over the

n-skeleton and we want to extend f to the (n+1)-skeleton of K.
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Using f the boundary of each (n+l1)-simplex (a contractible thing
over which E is just o x F, where F is the fiber of p) is getting mapped
to the fiber. Thus we have an (n+l)-cochain o of K with values in
nn(F). Clearly the section extends iff o is zero. And as above we can
easily verify that o is a cocycle, that changing the section only on the
n-simplices only adds coboundaries to it. Thus the characteristic class
o = [o] is independent of the section upto such changes and one has o =
O iff after possibly changing o on the n-simplices of K we can extend to

a section of p defined over the (n+1)-skeleton of K.

(4.4) Eilenberg’s filtration and Hurewicz’s theorem. Singular
homology theory goes back to Poincaré, or as Eilenberg puts it in his
Annals 1944 paper it 1is "as old as topology itself". As we mentioned in
(2.19) this method was neglected in the 1920s and 1930s because then the
focus was on generalizing the duality theorems of Poincaré for which the

dual method of Cech was more appropriate.

The revival of singular homology theory began in 1940 with the
following striking observation of EILENBERG (the proof however appeared
later in the above cited paper of 1944).

Theorem. For q = 2 the group nq(X) is naturally isomorphic to the
qth homology of the sub chain complex of the singular complex determined
by all singular simplices which are such that their faces of dimensions

less than g are constant = * , the chosen base point of X.

‘Proof. Let Sq(X,*) denote the set of all singular simplices of the
indicated kind. Interpreting each of these as a map of the g-cell into
X which images its boundary to * we get a group homomorphism from the
group C (Sq(X,*)) of all integral combinations of such simplices onto
nq(X,*). Further from the very definition of the group operation in
nq(X,*) it is clear that the subgroup of boundaries Bq(Sq(X,*)) is
contained in the kernel of this homomorphism. Thus we have a surjective

homomorphism H (S (X,*)) — n (X, *).
q g q
We now construct an inverse map nq(X,*) — Hq(Sq(X,*)). For this
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we note that each homotopy class [g] of maps from the g-sphere s? to X
induces a chain map class S(SY) — S(X). since s is (g—1)-connected we

can chain homotope this into Sq(X). This gives a homomorphism of Z =

Hq(Sq) into Hq(Sq(X), and the image of 1 under this map is defined to be
the image of [gl. g¢g.e.d.

Eilenberg’s spectral sequence. By this we’ll mean the spectral

sequence of the following decreasing filtration

= 2 ... 2 2 X) 2 ..
S(X) Sl(X) Sq(X) Sq+1( )
of the singular chain complex, the Sq(X) being as defined in the above
proof. We note that though the filtration is infinite, it is a first
quadrant sequence, so at each point (p,q) the groups will stabilize
after finitely many times. So, in this sense, it converges to the

singular homology of the space X.

o\q_{&%cl

A Sieodion
Usually (as before) p+q will denote the dimension, but note that in
case ( denotes the dimension, this spectral sequence becomes confined to
the upper half of the first quadrant (see above fig.) : Sq(X) has only
the constant simplices in dimensions less than q, and so H*(Sq/Sq+1) is
zero in all these dimensions. As an example of the use of this spectral
sequence let us now give Eilenberg’'s 1944 proof (couched in the later

spectral sequence language) of a 1935 theorem of HUREWICZ.

Theorem. If q is bigger than 1 and nq(X) is the first nonzero

homotopy group of X then it is isomorphic to Hq(X).

Proof. From the hypothesis it follows that for i = g~1 each Si(X)

can be deformation retracted onto Si+1(X)' So the first g~1 columns of
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the first term of our spectral sequence are zero. Thus the gth homology
(which corresponds to the lattice points (i,Jj) with i+j = q) comes only
from the (qg,q) point of the final term of the spectral. But this point
stablizes at the first term, and, by above result, the group here is

n (X). .e.d.
q q

Here we remark that the later results of Serre, Cartan, etc. re
calculations of homotopy groups all use (the spectral sequence of) the

Eilenberg filtration, or else the dual sequence of Postnikov fibrations

— S/Sq — S/Sq+1 — ...

REMARK. There is also a relative Hurewicz theorem, also a relative
version of the Eilenberg filtration. Now we are given a subspace A of X
and a singular simplex is deemed to be of filtration =z n iff its
(n-1)-skeleton is imaged into A. The proof of the relative Hurewicz
theorem now follows as above by using this new spectral sequence. In
this context we remark also that closely related to the relative
Hurewicz theorem is a theorem of WHITEHEAD which say that a map between
two triangulable spaces 1induces an isomorphism in homology iff it
induces an isomorphism of the homotopy groups. The relation is brought
about by the important trick of the mapping cylinder of a map f: X —> Y
i.e. the identification space Mf obtained from the disjoint union of X x
[0,1] and Y by identifying (xl,l) and (x2,1) iff f(xl) = f(xz). This
construction converts statements about the map into corresponding
statements about the inclusion X = Xx{0} € M e.g. f 1is a homotopy

f

equivalence iff X < Mf is a deformation and f induces an isomorphism in

homology iff H*(Mf,X) = 0, etc.

(4.5) Gemisimp. The 1850 Annals paper of EILENBERG-ZILBER
introduced the notion (cf. 2.18) of a semi-simplicial complex as a set
of objects called simplices o, each assigned a dimension q =z 0, and (for
g > 0) g+l (g-1)-dimensional simplices a(i), 0 = 1 = q, called the

principal faces of ¢, such that

SNEPNEP RN EPING D
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(1)

whenever i1 is less than j. (We’'ll also write o = 81(0).)
SOME EXAMPLES OF SEMI-SIMPLICIAL COMPLEXES

(A) Singular complexes. The motivating example for
Eilenberg-Zilber was of course the set of singular simplices (see 2.14)
of a space X : we’ll denote this singular complex by Xsing or S(X).
Then we have various subcomplexes of it which we have already considered

e.g. the Eilenberg subcomplexes of (4.4) above.

Theorem. Any semi-simplicial complexes is a subcomplex of some

singular complex.

Proof. To see this one can form the Giever realization of K as
follows. For each simplex o of K take a disjoint standard simplex AG of
the same dimension as oo. In the disjoint union of spaces Uk AU
identify the ith face 61(A0) of the standard simplex with the standard

simplex Aa (o) attached to the 1ith face of o. This gives us a
. .
topological space 'KI. Corresponding to each oo we have the singular
simplex A < u A — [Kl and thus K identifies with a subcomplex of
o ek o

the singular complex S(|K|). g.e.d.

Exercise. Check that for a finite simplicial complex (with vertkK

totally ordered) the Giever realization is homeomorphic to that of 2.11.

Exercise. In this context note that we could have defined |K| as
in (2.11) even for an infinite K by wusing the canonical basis of a
Hilbert space as our vertices. Show that if a vertex of K has
infinitely many neighbours then this metric space is not homeomorphic to

the Giever realization defined above.

REMARK. Thinking of a semi-simplicial complex visually (via the
above Giever realization or else, when it is complete, via the more
economical Milnor realization which we will consider below) renders many
ponderous constructions very vivid, so we will be frequently resorting

Lo 1L as motlvation or short-cut for many definitions.
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(B) . Finitistic examples. These are essentially simple
generalizations of 2.18 but definition (d) is new {(of course =all these

too can be viewed as suitable singular subcomplexes).

(a) Simplicial complexes (possibly infinite) : to make an s.cC.
into an s.s.c. put a total order on vert(K) and define the ith principal

face of any o to be that obtained by omitting its ith vertex.

Exercise. Show that a semi-simplicial complex is of this kind iff
each simplex is uniquely determined by the set of its principal faces
iff given any two distinct simplices we can find a vertex which Iis

incident to one of them but not the other.

(b) Complexes of simplicial type. By this we’ll mean any
semi-simplicial complex consisting of some (finite) vertex sequences
without repetitions, the ith face being the subsequence obtained by

omitting the ith member (the vertices come out from some specified set).

For example all vertex sequences without repetitions which are
supported on a given simplicial complex K (i.e. KaSSOC 1 in the notation
of 2.18) are of this kind (but there are other examples too since we

need not take all vertex sequences of the supporting simplices).

Exercise. Show that an s.s.c. is of this kind iff the principal
faces of any simplex are distinct and their sequence determines the

simplex uniquely.

(c) Associative complexes. By this we’ll mean any s.s.cC.
consisting of some (finite) vertex sequences (possibly with repetitions)
with ith principal face again defined by omission of ith vertex (e.g.

the K of 2.18).
assoc

Exercise. Show that an s.s.c. is of this kind iff each simplex Iis

uniquely determined by the sequence of its principal faces.
REMARK. A combinatorial description of the face vectors (fO, fl,
), fi = number of i-dimensional simplices, of the class of all

associative complexes on N vertices, 1is apparently unknown. A theorem
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of MACAULAY gives such a characterization for the face vectors of the
smaller class having simplices which are non-decreasing with respect to
a fixed total order on the vertices (these we’ll also call commutative
complexes or order ideals of monomials); further a theoren of
KRUSKAL-KATONA similarly characterizes the face vectors belonging to the
still smaller subclass whose simplices ape.strictly increasing, i.e. the
class of all simplicial complexes on NV vertices. (This face vector

problem makes sense for many other classes of s.s.c.’s also.)

(d) Hyperassociative complexes and bicomplexes. Now the
r-simplices o will be functions not from Just [r] = {0,1, ... ,r}, but
from Z[P], the set of all subsets of [r] = {0,1, ... ,r} (the values of

the functions can be in any set of vertices, or in the bigger set of all

finite vertex sequences, or say the values can be in a group).

The “skip i” monotonic injection i : [r-1] —— [r] induces the
injection i, : plr=11 . ,lr) i,(A) = i(A), and we define the
principal ith face of the first kind Ugl) to be the composite UOil. if

our set of simplices o is closed with respect to such principal faces we
shall say that we have an hyperassociative complex of the first kind.

lr=11 | ,lr]

»

The "skip i" map i also induces the injection 12 :

i (a) (A)u{1}, and we define the principal ith face of the second

= i
2 .
kind Uél) to be the composite 0012. If our set of simplices o is closed
with respect to such principal faces we shall say that we have an

hyperassociative complex of the second kind.

In case the set of simplices o is closed with respect to both kinds

of principal faces then we’ll call it a hyperassociative bicomplex.

Note. We’ll see later that some minimal complexes (4.7) are
hyperassociative complexes (4.8) of the first kind and using these
K(w,n)’s we’1ll work out the general structure of any minimal complex
(4.10). However since this corresponds to only the ‘“columns" of the
Eilenberg bigrading (of the minimal complex) it might be useful to
consider also the above combinatorial bicomplex, i.e. to consider also

the notion of faces of the second kind.
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REMARK. The above immediately brings to mind the work (being
still) done by GELFAND and others (see e.g. the paper  of
Gelfand-Macpherson in the Advances of i982) re the combinatorics of the
Pontr jagin characteristic classes of a smooth manifold : they wuse

hypersimplices A; , i.e. the convex hull of the barycentres of the

p-dimensional faces, 0 = p = r-1, of an r-simplex. Except in the

extreme cases p = 0 or r-1, this r-dimensional convex polytope has
. -1

2(r+1) facets, of which r+1 are affinely isomorphic to A; (of the

first kind) and the remaining r+l1 are affinely isomorphic to A;_l (of

the second). Thus what we are suggesting (see Exercises below) is that
hypersimplices may also give a combinatorial definition of homotopy

groups and of the Eilenberg-—-Maclane-Postnikov characteristic classes ?

¥*
Exercise . Let K be the bicomplex whose r-simplices are
Ir] hyperassoc
functions from 2 (to vertex sequences) whose images are supported on
simplices of a given simplicial complex K. Equip Khyperassoc with the
sum of the boundary operators (see 4.6) of its two semi-simplicial
structures. Identify this with a subcomplex of the singular complex of

|K| and show that it has the same homology over Z[%J coefficients.

*
Exercise . Say that a function from z[r] is of filtration = p if

it vanishes on all subsets of cardinality p+1 or more. Show that this
gives a subcomplex of Khyperassoc . Compute the spectral sequence of
this Eilenberg filtration, in particular the (n,n) term, i.e. "“the nth

homotopy group”.

(4.6) Completion. Let us say that a singular subcomplex of S(X)
is complete iff it is closed under composition with any non-decreasing
map [j] — [k]. We saw above that any semi-simplicial complex is a
singular subcomplex, so we can always complete it by adding singular

simplices obtained by doing all these compositions.
Exercise. Formulate the above completion process combinatorially.

REMARK. The notion of completeness is also from the
Eilenberg-Zilber paper in the Annals of 1950. Note that an s.s.c. is a
contravariant functor from the category of order preserving inJjections

amongst sets [r] = {0,1, ... ,r}, while a c.s.s.c. — also called a
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SIMPLICIAL OBJECT — is a contravariant functor from the bigger category
Nat of all order preserving maps amongst such sets [r]. Still more
generally (after Connes’ work) these days one also uses CYCLIC OBJECTS
which are contravariant functors from the yet bigger .cétegory of all

functions between such sets [r].

For example Kassoc is complete (and even a cyclic object) while

Kassoc 1 is not. Note also that in a c.s.s.c. one has the notion of a
degenerate simplex, i.e. those lying in the image of map induced by some

"repeat t" surjection s (j+1} — [Jj], 0=t = . So note that a

t :

non-degenerate simplex of K need not be in K they comprise
assoc a

ssoc, 1
of all vertex sequences of Kassoc for which no two neighbouring vertices
repeat. Note also that a face of a degenerate (resp. non-degenerate)
simplex can be non-degenerate (resp, degenerate), so neither degenerate

nor non-degenerate simplices may form a subcomplex.

CARTESIAN PRODUCT OF TWO SEMI-SIMPLICIAL COMPLEXES. As remarked in
(2.13) the Eilenberg-Steenrod subdivision of the product of two
simplicial complexes might have been a motivation for introducing
complete semi-simplicial complexes : product K x L of any two s.s.c.’s
is the s.s.c. whose r-simplices are all pairs (0,8), where o 1is an
r-simplex of K and 8 of L, with the ith face (U,B)(i) being the pair
(U(i),e(i)). In case we take K and L. to be just ordered simplicial
complexes K x L does not triangulate the cartesian product |K|x|L]|.

However if we look at Kc % LCO then 1its Milnor realization (see

omm mm
below) is precisely the cartesian product we want.

In this context see also the Eilenberg-Zilber Theorem. We remark
also that in (2.10) below we’ll also use a “twisted cartesian product”

(or "fiber bundle")} of two s.s.c.’s.

Milnor realization of a complete semi-simplicial complex K is
defined thus. We start with the disjoint union u(Axc), where A is any
standard simplex and o € K, and for any non-decreasing map ¢ we make the
identification ¢, Axo = Ax¢*0. Thus we now also use the degeneracies
(i.e. non-injections ¢) to make more identifications, so we get a much
smaller |K| (having however the same homotopy type as the Giever

realization). In fact it can be checked that the ensuing thing is a CW
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complex (see below) whose cells are in one-one correspondence with the
non-degenerate simplices of K. So in particular, as asserted above, the
Milnor realization of KC x L is the E-S subdivision of the

omm comnm
cartesian product that we considered in (2.13).

Exercise. Show that |K ocl has the same homotopy type as |K|.

ass
Also formulate, for cyclic objects, another definition of realization

involving further identifications corresponding to permutations. With
this new notion the realization will have still fewer cells, in

particular that of K will be precisely |K|,
assoc
Very briefly now we’ll digress to give some facts about

CW COMPLEXES. These are cell complexes which, in the finite case,
are essentialy those called "of the third kind" in Poincare’’s Analysis
Situs. More precisely a space K partitioned into open cells in such a
way that the boundary of each cell is contained in (may not equal, this
is the only difference from Poincaré} a union of lower—-dimensional
cells, and closure of each cell is continuous image of the closed cell
of that dimension. In his B.A4.M.S. 1948 paper, Whitehead gave the
“right" (see Exercises below for Jjustification) conditions which one
should put in case K is infinite : (C) we demand that it 1is closure
finite, i.e. that the closure of each cell is contained in a finite
union of cells, and (W) we demand the weak topology on K, 1i.e. a set
should be open iff its intersection with all cells is open. Cell

complexes satisfying (C) and (W) are CW complexes.

Exercise. Assume (C) and the condition (L) : that K 1is locally
finite, i.e. that each cell has a neighbourhood covered by finitely many

cells. Show that then K is a CW complex.

Exercise. In the following examples check which of the conditions
(C), (L), and (W), holds, and which fails :

(i) R partitioned into its points (so only zero cells).

{ii) The boundary of a triangle partitioned into its points.

(iii1) The triangle partitioned into its interior (open 2-cell) and
points (O-cells) of the boundary.

(iv) A metric realization (using canonical basis of a Hilbert space
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as vertices) of an infinite simplicial complex.

*
Exercise . Show that the cartesian product of two CW complexes
need not be a CW complex, but that in case one of them is locally finite

then this product is a CW complex.

Exercise. Show that if the CW complex L is a subcomplex of the CW
complex K, then L € K is a cofibration (i.e. that the pair (X,L) has the

homotopy extension property of 4.1).

Exercise. Show that any continuous map between CW complexes can be
homotoped to a cellular map, i.e. one which maps cells into cells.
Likewise show that any homotopy between two cellular maps 1is homotopic

rel its "ends" to a cellular homotopy.

Exercise* (Whitehead’s first theorem). Show that if a map between
CW complexes is a weak homotopy equivalence, i.e. if it induces an
isomorphism in all homotopy groups, then it 1is in fact a homotopy
equivalence. (In other words one gets an induced isomorphism of the
entire Eilenberg E1 term — 1i.e. the ‘“homotopy type" or ‘“minimal
complex" of the spaces — as soon as one gets such an induced

isomorphism on the x-axis.)

Exercise. Show that two CW complexes can have all homotopy groups
isomorphic without being of the same homotopy type. (Thus we can not

dispense with "a map" in the above theorem.)

Exercise (Whitehead’s second theorem)*. Show that if a map between
two'simply connected CW complexes induces an isomorphism in all singular
homology groups then it is a homotopy equivalence. (Hint. Use the
"mapping cylinder" construction, and the relative Hurewicz theorem of
4.1, to check that this is a weak homotopy equivalence. The best
reference for all these "Exercises” is still the 1949 paper of Whitehead

even though now most text books — e.g. Spanier’s — also cover these. )
(Co)homology of semi-simplicial complexes. The definition of the
homology of an s.s.c. is the obvious one. We define Cr(K) to be the

free Abelian group generated by the r-simplices of K and the boundary
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operator 8 : CP(K) — Cr—l(K) is then defined by

8(e) = 5, (-1 o
Because of the defining property of a s.s.c. (this was the motivation
for it of course !) we have 62 = 0 and so we define H,(K) = kerd/imd as

before. The definition of cohomology is dual of this.

We’ll also need cohomology with local coefficients, so lets define
this now (the motivation of this comes from the homotopy groups m,(X,x)
of a space). We are now given for each edge of the s.s.c. a group
isomorphism from a group attached to the second vertex of the edge to a
group attached to the first vertex of the edge. (Note the two vertices,
or maybe even all the vertices of the s.s.c., may coincide : then of
course the groups attached to the vertices coincide but these group

isomorphisms need not be the identity automorphism.)

Each cochain will now assign to a simplex coefficients from the
group attached to its first vertex. Now the wusual definition of
coboundary does’nt quite make sense : on omitting the first vertex we
get a principal face whose first vertex can be different. So what one
does is one changes the definition of 8 slightly : one drags 'back the

coefficient of this principal face to the original first vertex also.

Note. These local coefficients become necessary to take into
account the action of the fundamental group. On the first time around

it is wise to just ignore this finesse and assume all spaces simple.

'REMARK. Note that we did not wuse degeneracies in the above
definitions of (co)homology and indeed for purposes of computing
homology completeness is somewhat of a luxury because even though
degenerate simplices of K do not form a subcomplex of X, the cochains
vanishing on them do form a sub cochain complex of C*(K), and this has
the same cohomology. Even though it would be quite easy to give a proof
of this here (Exercise !) we’ll postpone this normalization theorem of
Eilenberg-Zilber to (4.14), because we want to look at it in conjunction
with a later analogous result of Moore. In contrast to homology, if we

want to compute homotopy (i.e. initial terms of the Eilenberg sequence)
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then we’ll see that completeness is necessary (that some such notion
must intervene is clear e.g. from the fact that homotopy groups can be

nonzero for dimensions higher than that of the simplicial complex]).

REMARK. The various homologies considered in (2.18) make sense for
arbitrary semi-simplicial complexes, thus one can talk e.g. of the Bier
or Mayer homology of a singular complex. One can thus define some

topological invariants which are not invariants of the homotopy type.

(4.7) Minimal complexes. The same 1950 paper of Eilenberg-Zilber

also introduced this very important idea.

Given a path connected space X and a point * of X by a minimal
subcomplex M(X,*) of S(X) is meant a sub semi-simplicial complex
containing all constant = *{singular simplices, which is such that if
any singular simplex o has all its faces in M(X,*), then M(X,*) contains

a unique singular simplex 8 homotopic to ¢ rel boundary.

Theorem. Any path connected space X has upto a semi~-simplicial

isomorphism a unique minimal complexes M(X).

Proof. The existence is straightforward, because we can
inductively build up the skeletons by choosing from each homotopy class
of dimension q simplices having all their faces in M(X) choose any one

representative.

We assert that any other minimal subcomplexes at * must be
sémi—simplicially isomorphic to M(X)}. To see this construct (cf. the
prism operators of 2.14) a deformation retraction of S(X) onto M(X).
Restricted to the second minimal complex this will furnish (Exercise)

the required isomorphism with M(X).

The dependence of M(X,x) on the base point x can easily (Exercise)
be seen to be like those of the homotopy groups : 1i.e. eaéh homotopy
class of paths « from x to y will induce a "drag-back" isomorphism oy
M(X,y) — M(X,x) with concatenation corresponding to composition of

these isomorphisms (in particular the fundamental group at * acts on the
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minimal complex at * via these isomorphisms). g.e.d.

Theorem. If X is homotopy equivalent to Y then M(X) is isomorphic

with M(Y). The converse is also true for triangulable spaces.

Proof.

The importance of the minimal complex 1is now clear : it 1is a
combinatorial model of the homotopy type of X ! It follows that all the
homotopy invariants should be "readable" from M(X). For this we need to
understand the structure of the minimal complex (see §§ 4.8-4.9 below),

for starters the following are obvious.

o M(X) is built up from some bunches of |nq(X)l comparable

q-simplices, q = 0, where comparable means having the same faces.

o If all homotopy groups are trivial then M(X) contains only the

constant simplices.

Exercise. Show that the Alexandrov space (see 2.20) 1is not

contractible even though all its homotopy groups are trivial.

This shows that the converse assertion of the last theorem Iis not

true for arbitrary topological spaces.

(4.8) Eilenberg-Maclane Complexes, Hopf’s Theorem. We turn now to

another paper, also from the Annals of 1850, by EILENBERG-MACLANE.

DEFINITION OF X(m,n). This will denote the semi-simplicial complex
whose r-simplices are all functions ¢, from the set g of all
cardinality (n+1)-subsets of [r] = {0,1, ... ,r], to m; the faces being
defined by composing ¢ with the r+1 injections [r;l] — [i] induced by

the r+1 strictly increasing injections [r-1] — [r].

DEFINITION OF K(m,n). Now suppose further that =n is a group.

Thinking of each function ¢ : [;] —> 7 as an n-cochain of the standard
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simplex [r] with coefficients n, it has a coboundary &8¢ : [nil] —> T
(This & should not be confused with the coboundary of the
semi-simplicial complex X(u,n) ‘which of course runs C (X(m,n)) —

CP+1(K(n,n)).) We will denote by K(m,n) the sub semi-simplicial complex

of K(m,n) consisting of all ¢ such that 8¢ = O.

These 1950 papers had been inspired by an older result of HOPF
(inspired in turn by a 1935-36 result of HUREWICZ, viz. that if all the
higher homotopy groups are trivial, then the homotopy type depends only

on the fundamental group) which now can be reformulated as follows.

(We noté that this same result of Hurewicz also inspired WHITEHEAD
to showing that if any map between triangulable spaces induces an
isomorphism of all their homotopy groups then it is a homotopy

equivalence. )

Theorem. Let M(X) — K(nl(X),l) be the semi-simplicial map which

associales lo any singular r-simplex o of the minimal complex the

function ¢¢ : [;] — nl(X) determined by the l-skeleton oy of o. Then
the kernel of this map is the Eilenberg subcomplex MZ(X) of M(X), while

its image is K(nl(X),lL
So, if all higher homotopy groups are trivial, one has M(X) =
K(nl(X),l), i.e. one has a complete combinatorial description of the

homotopy type of X in terms only of the fundamental group nl(X).

Proof. 1If o is in M2(X) it is constant = * on each 1-simplex of
the standard simplex [r], so ¢0 = 0. Conversely if ¢c = 0 then the
restriction of o to each 1-simplex of [r] is homotopically trivial, and
so, by the minimality of M(X), this restriction must be constant = *,

If r =22, and {i,j,k}, i < j < k, is any 2-simplex of [rl], then
¢G(J,k).¢0(i,k)_1.¢0(i,J) =1ce€ nl(X) follows because the concatenation
ik Ulki Glij , i.e. the restriction of o to the boundary of this
2-simplex, is homotopically trivial. Conversely if ¢ : [: —> nl(X) is
given such that ¢(j,k).¢(i,k)—1.¢(i,j) =1, i < j < k, then by replacing

each class ¢(1i, j) by the 1-simplex of M(X) contained in it , we are

o]

given a continuous map from the 1l-skelton of [r] (this has the homotopy
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type of a bouquet of 1-spheres) into X which is homotopically trivial.
So it extends to a continuous map of [r] into X. By minimality of M(X)

this extension can be chosen to be an r-simplex o of M(X). gq.e.d.

Theorem. If X has only one nonzero homotopy group, say nn(X), then
its minimal complex M(X) is isomorphic to K(nn(X).n); and, somewhat more
generally, if nn(X) is the only nonzero homotopy group in dimensions

less than j, then the j-skeleton of M(X) is isomorphic to that of
K{n (X),n).
n

Proof. An obvious generalization of the above argument. gqg.e.d.

REMARK. For an X as above the homology groups in dimensions less
than j thus depend only on the group nn(X). Hopf raised the question
whether the next, i.e. the Jjth, homology group of X depended only on
nn(X) and HJ(X) ? We’'ll see in (4.10) that the answer is "no" and that
to determine this homology group, one needs to know, besides these two

homotopy groups, a certain characteritic class {(a "k-invariant") of X.

(4.9) Equivariant homology. Even though we have explicit
complexes K(G,n) to calculate the (co)homology of spaces having only one
nonzero homotopy group, the actual computation is not that easy, so (for

the moment) we’ll only make some remarks about

The case n = 1. (Later we’ll take up the case n = 2, and also
tie-up the cohomology of the K(m,n)’s with cohomology operations.)
Consider the (possibly infinite dimensional) closed simplex G whose
verticeé are all the group elements of G. Thus the words (i.e. finite

sequences of elements) of G identify with the semi-simplicial complex

Gassoc’ Note now that the left translations Lg of the group G are

simplicial maps of the simpicial complex G. We’ll say that a chain c of

Cx (G ) is left-invariant if (L ),(c) = c V g € G. We’ll denote the
assoc g G

sub chain complex of left-invariant chains by C*(Gassoc)'

Theorem. Co(G ) = C,(K(G,1)).

assoc

Proof. Each class of left equivalent words of length r+1 has a
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unique representative of the type 1g1g2...gr. We associate to it the
function ¢ : m —> G which obeys ¢(i-1,1) = g, and 8¢ = 1. Note that
such a function is uniquely determined because of the latter condition
which reads ¢(a1,a2)(¢(a0,a2))—1¢(a0,a1) = 1 i.e. ¢(a0,a2)
¢(a0,a1) ¢(a1,a2) for all O = ay < a, <a, sr, and obviously any such
function is associated to such a word. It is easy to check that it also

commutes with the boundary maps. q.e.d.

On setting Qij = ¢(i,J) we can identify K(G,1) with the matric
complex of G (this is the original 1943 definition of Eilenberg-Maclane)
i.e. the semi-simplicial complex whose r-simplices are rxr matrices @
over G obeying Qij®jk = Qik’ with the sth face being the (r-1)x(r-1)
matrix obtained by deleting the sth row and column. On the other hand
the complex on the left side of the above theorem 1is called the

homogenous complex of G.

The bijection used in the above proof shows also that this complex
is isomorphic to the non-homogenous complex of G, 1i.e. one whose
r-simplices are all words 885 - -8, of length r (not r+l1) of G, with the
r+1 faces of such an r-simplex being 8o - -8 (glgz)gB...gF,
,gl..(gigi+1)..gr, TR - SRS - ST -0 and 8 8.y

REMARK. As we’ll see in Chapter 5 these Hochschild faces arise
naturally when one considers the semi~simplicial complex of a category.
Also we’ll check that for any associative algebra its Hochschild
homology, and so in particular the homology of the group G (i.e. the
homology of any of the above complexes), can be interpreted as a derived
functor (2.20). This yields many computational tricks (see e.g. the

book by K.S.BROWN), however here we want to go in another direction.

Exercise. Give the non-homogenous description of the cochain
complex of K(m, 1) with local coefficients (in some Abelian group G).
*
Exercise . Give a non-homogenous description of K(w,n), n = 2, by
considering as r-simplices all functions from n-simplices of Tr to Gj

with Tr being now a suitable sequence of n-trees Tr on r+l vertices.
We now consider the obvious generalization of the homogenous
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complex to any simplicial complex K equipped  with any G-action : we

define its equivariant homology to be that of the subcomplex C*(Kassoc)

€ C,(K____ ) of chains c such that g,(c) =c V g e G.

asso

Furthermore we’ll also sometimes consider equivariance  with

respect to a non-trivial representation of G on the coefficients. For
example in the simple case of G = Z/2 and coefficients Z, one should
+ .
consider both the subcomplexes C (K ) of  C,(X ) defined
assoc assoc

respectively by g.(c) = * ¢ ¥V g € G, and thus consider not one but two

+
equivariant homologies H_(K).

If we assume further that this Z/2-action is free, i.e. that v = 1
implies v(o) # o V o € K, then clearly id ¥ v, are surjections of C(K)
onto Ci(K)’ and so we have the two short exact sequences of chain

complexes,
0 — C,(K) — C(K) — C.(K) — 0,

whose long exact sequences are called the two Smith-Richardson sequences
of K. We’ll now use these to prove the following, which was conjectured

by ULAM, and proved by Eilenberg’s teacher, BORSUK, in 1933.

Borsuk—Ulam Theorem. There exists no continuous map from a sphere
to a lower dimensional sphere which commutes with their antipodal

actions.

Proof. Concatenating alternately the connecting homomorphisms of
the two Smith-Richardson sequences of a free Z/2-space (defined just as
for a Z/2-complex) one gets its characteristic classes 0, one 1in each

dimension.

If there were a continuous Z/2-map from Sn to Sm, then the nth

characteristic class of S" must pull back to the nth characteristic
class of S™. But if m is smaller than n the former class is zero, and
so can not possibly image onto the latter which (because of the
vanishing of the groups H*(Sn) occuring in the Smith Richardson sequence

of s" } is nonzero. gq.e.d.
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The above proof illustrates that, just as some results of ordinary
(G = 1) homotopy theory (e.g. * the Brouwer fixed point theorem) are
proved using ordinary homology theory, likewise, equivariant homology

theory serves as a tool in equivariant homotopy theory (4.11).

Exercise. Interpret the "characteristic classes” occuring in the

above argument as characteristic classes (see 4.3) of the Z/2-covering

space X — X/ /2.

The Borsuk-Ulam Theorem was probably the first really striking and
basic fact of which there is (apparently !} no hint in Poincaré’s magnum
opus, Analysis Situs. This result innaugurated equivariant homotopy
theory, which supplies wus with many delicate invariants of the
homeomorphism type (as against homotopy type) of the space; also it has
numerous applications to many diverse parts of mathematics (see 4.11).
Like all basic theorems, the Borsuk-Ulam Theorem comes in numerous

guises, e.g. the ones given in the next two exercises.

Exercise. Show that the Borsuk-Ulam Theorem is equuivalent to
saying that, given any continuous map f from Sn to Rn, there must exist

an antipodal pair * x of points of s" such that f(x) = f(-x).

Exercise. Another reformulation : "Given any covering of Sn by n+1
open subsets Ui there must be an antipodal pair * x which is contained

in the same Ui"'

The next exercise shows that for many existence and classification
questions, there is no loss of generality in considering (as we’ll do in

4.11)'on1y free actions.

Exercise. Show that there is a 1-1 correspondence between the
G-homotopy classes of G-maps X — Y and G-homotopy classes of G-maps X x

G — Y x G. Here the products are assumed equipped with the diagonal

action g(p,h) = (gp, gh).

Exercise. Show that for any free Z/2-complex K there is a natural
spectral sequence going from the direct sum of the two equivariant

homologies, to the ordinary homology of K, and that this spectral
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sequence is equivalent to the two S-R sequences of K. (The spectral

sequence degenerates if one takes field coefficients with characteristic

p®2.)

Exercise*. Is there a natural spectral sequence (at least for
finite G), with an initial term given by suitably fitting together all
{(as one runs over all representations) equivariant homologies, and
converging to the ordinary homology of K ? (lLooking at Brauer Theory

literature should help.)

We turn now back to the unfinished task of getting a structure

theorem for M(X) in full generality.

(4.10) Self-obstruction classes, Postnikov’s theorem. In general
homotopy type is not determined just by the homotopy groups even if one

takes into account the action of n1 on them.

We saw e.g. in (4.9) that if the only nonzero homotopy groups are
n, and nj, i < Jj, then all homology upto dimension j-1 is determined by

Just ni; however the jth homology is not determined by "i and nj .

Example (EILENBERG-MACLANE, T.A.M.S. ).

Continuing the study of this case in their 1850 Annals paper
ETILENBERG-MACLANE showed that the jth homology is determined by m and
n. and a certain characteristic class. In fact they almost worked out
{see § 4 of their paper) the entire combinatorial structure of the
minimal complex (and so the homotopy type of X} for the case of two

non-trivial homotopy groups.

Working to a large extent independently of them, POSTNIKOV soon
(announcement 1951, paper 1955 = A.M.S.Translations, no. 7, 1957)
thereafter obtained the full structuré theorem of the minimal complex in
terms of the homotopy groups (together with the action of m, on them)
and some characteristic classes of the same type. (This same result was
also obtained by ZILBER, unpublished.) Before stating his result we

need some definitions.
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POSTNIKOV QUOTIENTS Pn(X). These are nothing but the quotients of
M(X) by the Eilenberg subcomplexes Mn(X), i.e. the r-simplices of Pn(X)
= M(X)/Mn(X) are obtained by identifying r-simplices ¢ and 6 of M(X)
whenever their (n-1)-skeletons o1 and Gn_1 coincide. We note that
below dimension n the simplices of Pn(X) are the same as that of M(X)

{so knowing M(X) is equivalent to knowing Pn(X) for all n).

More formally the quotient map p : M(X) — Pn(X) sets up a
simplicial isomorphism of the (n-1)-skeleton of M(X) with that of Pn(X).
Inverting this, and further choosing, above each n-simplex of Pn(X) an
n-simplex of M(X), we get a partial section s of p above the n-skeleton

of Pn(X) (i.e. pes = id on the n-skeleton of Pn(X)).

The required characteristic classes measure the obstruction (cf.

4.3) to extending s to a section of p over the (n+l)-skeleton of Pn(X).

DEFINITION OF SELF-OBSTRUCTION CLASSES. Consider the (n+1)-cochain
of Pn(X) with local coefficients nn(X) which associates to each
(n+1)-simplex po of Pn(X), the element of nn(X) determined by the map
from the boundary of the standard simplex [n+1} into X, corresponding to

the section s((pe)n) of the n-skeleton of p8.

This cochain kn+1 € Cn+1(Pn(X),nn(X)) Is a cocycle and its
cohomology class Is independent of the partial section s of the map p
+
M(X) — Pn(X) used in its definition. Its cohomology class K" 1

+
y" 1(Pn(X),nn(X))iS zero iff after modifying s on the n-simplices we can

extend to a section of the (n+l)-skeleton on Pn(X).

We omit the verification of the above since it is entirely similar

to the arguments of (4.3).

We now turn to showing how these Eilenberg-Maclane Postnikov
characteristic classes (together with the homotopy groups, and the
action of m, on these groups) give the complete structure of M(X) and
thus characterize the homotopy type. The key point is the following

generalization of Hopf’s Theorem (4.8).
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Theorem. Let k € Cn+1(Pn(X),nn(X)) be the obstruction to extending
a chosen section s of p : M(X) — Pn(X) defined on the n-skeleton of
Pn(X) to the (n+l)-skeleton of Pn(X). Then the kernel of the map M(X)
— Pn(X) X K(nn(X),n) defined by

o — (po , [Un— s(pv)n])

is Mn+1(X)’ while its image consists of all pairs (po,¢) such that for
= [ i
any a {ao, e, an+1} < {0, 1, ... , dimo}, one has

k(po-)a + 6p0¢(a) = 0.

Here the notation "8pd" (instead of just 8 as in 4.8) means that
nn(X) are local coefficients assigned to the vertices i of the standard
simplex [r], with these coefficients being "dragged-back" along each

directed edge {i, j}, as per the action of [p0|ij] € nl(X) on nn(X).

Proof. The verification that the kernel is Mn+1 is again trivial

{cf. 4.8).

Turning next to the image of any (n+l)-simplex o, we note that
k(po) added to the value of [Un— s(pv)n] on the n-skeleton of [n+1] must
be zero because [s(pd)n] + [Un— s(po)n] = [on], i.e. the homotopy class
determined by restricting ¢ to the boundary of [n+l]. Likewise the

required condition holds for images of o’s of dimension z n+2.

Conversely let ¢ : ;] — nn(X) satisfy the given condition 6pv¢ =
0 with respect to some r-simplex po € Pn(X). Just as in 4.8 we replace
each class occuring in the image of ¢ by the n-simplex of M(X) contained
in it, to get a a continuous map from the n-skeleton of ([r] (this has
the homotopy type of a bouguet of n-spheres) into X. The required
condition now says that if we add to it the map corresponding to the
section s(pa)n of the n-skeleton of po, then we get a homotopically
trivial map of this n-skeleton into X. We extend this trivial map to a
map of the entire standard simplex I[r] into X, and further, by
minimality, ensure that this extension is in M(X). Then (po,¢) is the

image of this r-simplex of M(X). gq.e.d.
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TWISTED CARTESIAN PRODUCT (cf. the "augmentations" of Postnikov, p.
70). The subsemi-simplicial complex of Pn(X) X K(nn(X),n) determined by
the condition of the above theorem will be denoted by Pn(X) Xy
K(nn(X),n). This nqtation is Jjustified by the following.

Exercise. Show that upto semi-simplicial isomorphism this is
independent of the cocycle k used, i.e. that it depends only on L the
action of m,oonm, and the characteristic class k.

REMARK. Considered as a continuous map the projection Pn(X) X
K(nn(X),n) — Pn(X) onto the first factor is a fibration with fiber
K(nn(X),n) having only the nth homotopy group nonzero. Thus above
theorem says that the constant map X — * has a Postnikov factorization
into a sequence of such simple fibrations. Recall also that if the
fiber has only the nth homotopy group nonzero then the fibration is
characterized by an (n+1)-dimensional cohomology class of the base with

coefficients in this group : these are precisely the classes k.

COMBINATORIAL STRUCTURE OF THE MINIMAL COMPLEX. This now follows

at once as an immediate corollary of the above result.

M(X) = K(mn (X),1) x K(n, (X),2) x K(n,(X),3) x
1 ks 2 k4 3 ks

That is, M(X) is the product of the Eilenberg-Maclane complexes of its
homotopy groups LIy with products twisted as per the action of T, on the

ni’s, and the self-obstruction classes k.

REMARK. For the case which Eilenberg-Maclane considered in their
1950 paper M(X) is thus the twisted product of two Eilenberg-Maclane
complexes. The groups "E" which occur in their computation of the

homology of such spaces form the E_ term of the Serre spectral sequence

2
of this twisted product. We remark also that the minimal complex is
essentially kerd0 where dO: EO —> EO is the zeroth differential of the

Eilenberg spectral sequence (4.4) determined by the chosen base point.

(4.11) Equivariant homotopy. Given a (unless otherwise specified,

finite) group G consider the category of spaces (or complexes etc.)
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equipped with a free G-action and all maps between them which commute
with their actions. The usual notions (e.g. homotopy)} have now their
G-counterparts, and one can pose the G-analogues of the usual (i.e. G =
1) problems, say one can ask for a definition of the minimal G-complex

of a G-space and questions re its structure ...

The object of this section is to emphasize that these are not idle

generalizations and lead to very powerful topological invariants.

The point is that ordinary homology and homotopy only provide us
with invariants of the homotopy type of a space, so even to distinguish
between say Rz and R3 and Y and a pt (which are all contractible spaces)
one has to resort to some more or less ad hoc tricks (e.g. we can
distinguish between the homotopy types of RZ \ pt and R3 N\ pt and this
obviously implies that RZ cannot be homeomorphic to Rg). {(Actually this
particular "trick", of using say local (co)homology, gives some very

general results also : see Chapter 5.)

What we clearly need is a method for defining lots (enough
hopefully to eventually characterize the p.1. type of K analogously to
the characterization in 4.10 of its homotopy type) of finer, and if
possible, computable topological invariants. It was shown by WU that

equivariant homotopy theory gives such a method.

EXAMPLE. To understand Wu's general result (see  below) we'll
first look at a perfectly trivial problem, viz. that the letter Y does
not embed in R, but deliberately do it in the following non-trivial, but

perfectly general — that’s the point ! — way :

(1) If there were a continuous one-one map from Y into R then
there would be one from YxY \ diag to RxR \ diag which commutes with the
switching action (x,y} —> (y,x) of Z/2 on these spaces. (2) Next we

note that RxR \ diag has the Z/2-homotopy type of SO.

Exercise. More generally show that R™R™ N\ diag has the

Z/2-homotopy type of the antopodal (n-1)-sphere.
(3) Triangulate Y using four vertices and three edges. Consider
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now the deleted product of this simplicial complex K, 1i.e. the
subcomplex K, of KxK consisting of all cells ox8 with o and 6 disjoint
simplices of K. A straightforward computation (see fig. below) shows

that (Y), is a 12-vertex polygon equipped with the antipodal action.

(4) We can now obtain the desired contradiction because (by
Borsuk-Ulam, no less !) there is no Z/2-map from S1 {the above polygon)

to SO. So Y does not embed in R.

Now it seems that we were "lucky” (!) in finding Jjust the right
thing, viz. the small and computable Ky in the much bigger space
YxY\diag. However the fact is that K, and its big brother |K|x|K|\diag

must always sink or swim together by virtue of the following.

Wu’s Theorem. For any simplicial complex K the Z/2-homotopy type
of its deleted product Ky 1s the same as that of the Z/2-space
|K|x|K|\diag.

We'll give a very elegant argument for this later, for the moment

the reader should at least check the following.

Exercise. Let K be the 4-vertex triangulation of Y, then there is

a deformation retraction of YxY\diag onto K.

Corollary. The Z/2-homotopy type of K, Is a topological invariant
of K.
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However, as the contractible Y shows, this Z/2-homotopy type is not
a homotopy invariant of K. Thus we have found a general way of defining
computable and finer topological invariants. Moreover this method
generalizes to all finite groups G (we leave to the reader the task of
formulating the definition of G-fold deleted products of K and
formulating analogues of the above theorem). Thus we have a whole host
of topological invariants of K, so many in fact that it may be that they

suffice to characterize the p.l.type of K ?

As our second example of the above methodology we’ll now prove

something more substantial than the non-embeddability of Y in R.

Van Kampen-Flores Theorem. The n-skeleton of a (2n+2)-dimensional

simplex does not embed in (2n)-dimensional space.

We remark that VAN KAMPEN (see Abhand. Math. Sem. of 1932} proved
this result before Borsuk’s paper, and in fact the Borsuk-Ulam theorenm
follows easily from the methods of Van Kampen’s paper. (Indeed the
argument which we gave in 4.3 can be considered a modern slick version
of this, Borsuk’s proof was different.) On the other hand the proof
given below {of FLORES, Abhand. 1933) uses Bursuk’s theorem.

Proof. For this we consider the deleted join K# of a simplicial
complex K, i.e. the largest subcomplex of the join K.K of two disjoint

copies of K on which the switching Z/2-action is free.

Now let K = 0ﬁn+2’ the n-skeleton of a (2n+2)-simplex o. We leave
it as an Exercise (see picture below for the case n = 0) that K#
consists of the faces of conv(euo) ¢ R2n+2, where o is a geometrically

symmetric (2n+2)-simplex, and o its reflection throught its centroid,

and that the switching action now coincides with the antipodal action.




If a K embeds in Rzn, then by taking the join of the embedding with

itself it follows that there will be a Z/2-map from K# to the

Z/2-subspace Rznﬁmzn\diag (here "diagonal" means all points %.x + %.x, X

€ K) which can be easily checked (cf. a similar Exercise above for
deleted products) to be the antipodal 2n-sphere. So by Borsuk-Ulam

02n+2 can not embed in RZn‘ g.e.d.

REMARK. More generally one can ask for optimal conditions onr, s,
t, ana p, which guarantee that all maps of Ug in Rt have a p-tuple
point: for some such results see my paper in the Proc. A.M.S. of 1991.
Most of the properties of the deleted product (e.g. Wu's theorem) carry
over to deleted joins, and from the combinatorial viewpoint the K#’s are
more natural (while from the topological viewpoint the K,’s are more

convenient). We’ll see later in this chapter that the K's for which K#
is a sphere (e.g. the skeleton ain+2 considered above) are of great
importance in equivariant homotopy theory. Similarly in Chapters 5 and

6 we’ll make use of some "deleted functors".

(4.12) Pigeon-hole theorems. The following result was conjectured

by M.KNESER in 1955 and proved by LOVASZ in 1978.

Theorem. If n > m + 2s then any coloring of the s-dimensional
faces of an n-simplex by m+l colors must result in two disjoint s-faces

getting the same color.
Proof {(from my paper in Jour.Combin.Theory (B) of 1990). Let
f :{s-faces « of o — o™

be such that f(al) # f(az) whenever alnaz = @. Then we have the

Z/2-monotone (not simplicial) map

£, : (o)

m
¥ e (Qm)# , where

f#(A,u) = {({colors of all a's in A},{colors of all «’s in u}).
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We note that f#(h,u) is nonempty iff (A,p) belongs to the
n n n . .
- i
Z/2-subposet (on)# \ (oé—l)# of (Un)#. So applying the subdivision
functor we get a Z/2-simplicial map sd(f#) from the Z/2-simplicial

n n - m
complex sd((wn)# \ (05_1)#) to the Z/2-simplicial complex sd((em)#).

Since sd((og)#) is contained in the join of sd((ag)# AN (02_1)#) and
sd((wg_l)#) we can thus obtain, by taking the join of sd(f#) with the
identity map of sd((vg_l)#), a Z/2-simplicial map from Sd((dg)#), the
derived of the n-dimensional octahedral sphere, to the Join
of (eﬁ)# and sd((agnl)#). This latter Z/2-complex is at most
(m+2s)-dimensional. So, by working symmetrically up its skeletons, we
can find a Z/2-map from it to the antipodal (m+2s)-sphere.

R '

Thus, starting from our coloring f, we have NOW got a

Z/2-continuous map from the antipodal n-sphere to the " antipodal

(m+2s)-sphere. So, by Borsuk-Ulam, we must have n = m+2s. gq.e.d.
Exercise. Show that the above bound is the best possible.

REMARK. Note that for s = 0 the above result gives us the
well-known pigeon hole principle (of the great DIRICHLET, no less !),
viz. that if N (= n+1) pigeons must live in M (= m+1) holes, where N >
M, then some two pigeons must share the same hole. (I am grateful to
Oged Schramm for pointing out that we have thus obtained a proof of this
deep result of Dirichlet by only using the Borsuk-Ulam theorem 1) We
remark that Lovasz’s proof of the above theorem also used Borsuk-Ulam
but was much more complicated. For some other applications of the above
methodology (including a more involved pigeon-hole conjecture of ERDOS)
see my paper cited above. Also see my paper in the Illinois J. of 1988,
for a generalization for colorings of s-simplices of any simplicial

complex k° which is non-embeddable in a given Euclidean space.

By a circuit of a simplicial complex K is meant a simplex o &
vert(K) which is itself not in K, but all of whose proper faces are 1in
K. This notion is very useful for the case when K is a matroid, 1i.e.

when, for each S & vert(K), the subcomplex K_. consisting of all

S
simplices of K contained in S, is dimensionally homogenous.
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Exercise. Show that if m+1 colors are assigned to the circuits
of a matroid on N vertices in such a way that no two disjoint circuits

have the same color then we must have N-1 = dim(K#)+m+1.

We now turn to a quite different (inasmuch as 1t 1is essentially
infinitistic) generalization of the pigeon-hole principle. This was
found in 1935 by RAMSEY (and since then has been re-discovered
repeatedly, e.g. by yours truly : see 5.1.1 of my paper in the T.A.M.S.
of 1983). (The 1980 book by GRAHAM-ROTHSCHILD-SPENCER is a good

introduction to the subject spawned by Ramsey’s discovery.)

Theorem. For any coloring of the s~faces of an infinite simplex by

m+l colors there is an infinite face whose s~faces have the same color.

Proof (cf. G-R-S, p.147). This time we’ll use induction on s, the
case s = 0 being obvious (infinitistic pigeon-hole principle). For the

inductive step we’ll associate, to our coloring
f :{s-faces « of N} —> 8"

the coloring

fﬂ :{(s-1)-faces « of N} —> 8",
uniquely determined by the requirement that the set of all s-faces 6
which contain an (s-1)-face ¢ and have color fu(o) belongs to a (chosen)

non-trivial ultrafilter U on the set of all s-faces of N.

(We recall that a filter U on a set is a class of nonempty subsets
closed with respect to intersections and supersets. It 1is called an
ultrafilter if given any subset, either it or its complement (but not
both) is in U. If further no finite subset is in U then it is called
non-trivial. These definitions were invented by H.CARTAN for wuse in
BOURBAKI's general topology text. Exercise. Show that the Axiom of

Choice implies the existence of a principal ultrafilter U on any set.)

We now use the inductive hypothesis that there is a face A in U

such that for all (s-1)-faces o ¢ A one has the same fu(o) = a say. Now
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let B € A consist of all vertices v such that f(o.v) = a for all
{(s-1)-faces on vertices less than v. Then B is in U and such that for

all s-faces 6 < B one has f(8) = a. q.e.d.

Addendum. For each r we can find, within each sufficiently big

finite subset of N, an r-face all of whose s-faces have the same color.

This corollary can be obtained by a compactness argument (cf. pp.

13-15 of G~R~S) akin to that which you might use to do the following.

Exercise. Deduce, from the four color theorem (for finite planar

graphs) the four color theorem for infinite planar graphs.

REMARK. It should be borne in mind that the above is only a neat
reformulation, using topological language, of the original inductive
arguments of RAMSEY (G-R-S, pp.18-20, 18, 7-9). However this
reformulation suggests that it has probably even something in common
with the Borsuk-Ulam argument we used for the Lovasz-Kneser theorem 7
Indeed later, while analyzing minimal Z/2-complexes in (4.18), we’ll use
the notion of a self-dual simplicial complex, which is somewhat like

that of (the class of sets not lying in) an ultrafilter.

Exercise (from 1994 Hong Kong Math Olympiad). Find a set A of
numbers such that in any infinite set S of primes, one can find for some
k = 2, k primes whose product is in A, and k other primes whose product

is not in A.

Optional exercises : do also the other five 1994 IMO questions !
(I won’t let modesty get in the way of my telling you that I got them
all, though admittedly at somewhat less than gold-medal-winning speed.)

To see the relation of the exercise stated above to what we have
been doing it is best to regard N as a semi-simplicial complex : namely,
using the fundamental theorem of arithmetic, I’1ll identify N with Kcomm’
where K = P, the (infinite) simplicial complex whose simplices are all
finite nonempty sets of distinct primes. (It 1is possible that this
construction — e.g. the homologies of some subcomplexes of K -— might

be of independent number-theoretical interest ?)

108



Reformulation of above IMO exercise. There exists a 2-coloring of
P, i.e. of all the finite subsets of P, such that any infinite set S <€ P
contains two simplices of the same size having different colors. (So

the IMO problem roughly says that Ramsey’s theorem is "best possible”.)

AN AMUSING STORY (and what led to this lecture of 21.11.94). Two
weeks ago, when I wrote down this IMO problem for Dharam Bir (at that
time I had not connected it with Ramsey theory, and so had no idea that
it is on p. 1682 of the G-R-S book) I inadvertently replaced "for some k
= 2" by "for all k =z 2"! I noticed this slip only yesterday when Dharam
Bir asked me to show him my solution. Still, even the ‘“"new problem"
(i.e. whether there was an A having this stronger property) appeared
interesting : and sure it was, because I realized, after reformulating
it on P, that I had once again, and somewhat serendipitiously this time,

rediscovered Ramsey’s theorem !

REMARK. Starting with RAMSEY himself, the most striking
applications of Ramsey theory are probably in logic (i.e. the branch of
mathematics inspired by the form of mathematical arguments). For
example, PARIS and HARRINGTON found a statement (see p.150 of G-R-S) in
Arithmetic (the formal language of PEANO et al. 1in which all number
theoretical proofs can be formalized) which is a corollary of Ramsey’s
theorem (this proof can be formalized in "Set Theory") and thus true,
but which cannot be proved formally within Arithmetic. (The previous

examples of GODEL are not the kind which one meets in street maths.)

Equally, the fact that Ramsey’s theorem is "best possible" is very
important in logic. A set P for which there is no 2-coloring of the
kind mentioned in the reformulated IMO exercise is called an inaccesible
set. The name is well-deserved, because no known construction can
produce such a set, but on the other hand logicians hope to show one day
(all power to them !) that the existence of inaccesible sets can be
neither proved nor disproved within Set Theory (the bigger formal
language of VON NEUMANN et al. in which apparently all of what Iis

commonly called mathematics can be formally written).
REMARK. To a topologist Godel’s theorem brings to mind the picture
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of a space "Arithmetic", whose topology reflects somehow the permissible
formal deductions of the language, with the theorem in question being

this space "Arithmetic” is disconnected, 1.e. that nO(Arith) is not
trivial. Working with this in mind I defined one such natural topology

(see the Zeit. f. Math. Logik of 1984) and showed using it that

v
-

ni(Arith) =0 Vi

Here the logical interpretation of nl(Arith) = 0 is of course that
“all formal proofs of an assertion are equivalent” (in the homotopy
theoretical sense chosen). It seems that a homology and homotopy theory
of languages should be very interesting and useful (e.g. the homology of
a language mod a sub-language can be non-trivial). However, to the best
of my knowledge, no contribution other than the one just mentioned, has

so far been made in this direction.

(4.13) Extension. Given any (simplicial, semi-simplicial, or
complete semi-simplicial) complex K it 1is natural to refer to the
homotopy groups of its (either Giever or Milnor) realization as the

homotopy groups of K. This definition is topological, so

Question. How can we define these homotopy groups directly in

terms of the combinatorics of K 7?7

An obvious way of doing this (and in fact of even combinatorially
defining the entire "homotopy type" = minimal complex of [K]|) is
indicated at once by the simplicial approximation theorem (2.15). It

tells us that we don’t really need all of the singular complex S(|K]|),

it is'enough to consider the sub c.s.s.c. Kpl consisting of all
piecewise linear singular simplices'Aq| — |K|], 1i.e. realizations of
simplicial maps sdn(Aq) —> K, nz 0. Thanks to this approximation

theorem we can now (after having chosen a base vertex *) construct (just
as before) the minimal semi-~simplicial complex M(K) of K within this
purely combinatorial object Kpl' (More details of the required
definitions, esp. that of "homotopic simplices", are given later.)

Néte, in the context of the above, that K consists of all
assoc

simplicial maps a9 —> K, g =z 0, and, when vertK is equipped with a total
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order, K consists of all order-preserving simplicial maps A9 — K, g
= 0, and K itself can be identified with all order-preserving injective

< S(|K]).

simplicial maps. Thus we have K ¢ K cKk
c pl

omm “ Kassoc

The singular complex Kpl is obviously the smallest complex
containing K and having the property that it is closed with respect to
composition with continuous maps A" A" which are realizations of
simplicial maps sa” (A™) —5 sd®(a™) for some r and s (these form a
category Npl). It is clear how we can similarly enlarge any
semi-simplicial complex K to the smallest complex Kpl satisfying the

analogous closure property (i.e. a contravariant functor from Npl).

Exercise. Carefully write down the details of the above purely
combinatorial subdivision process K +— Kp1

" We have thus a combinatorial method K +— Kpl (as against the
topological way K +— S(|K|)) of enlarging (without changing the
homotopy type of the realization) any s.s.c. K to one which is extended
in the sense of Kan, Proc.Nat.Acad.U.S.A., 1955 : i.e. that if we have
g+1 singular g-simplices which fit compatibly (see fig. below) to give a
map from the boundary minus one g-simplex of a standard (g+l)-simplex,

then this map can be extended to a singular (g+l)-simplex.

Q.5 =35 3,60 = D072,

Kan showed (see definitions below) how to define homotopy groups of
any K obeying his extension condition. (Initially he used the cubical
analogues of s.s.c.’s; it was Moore who first translated his work into
s.s.c.’s, we will only sketch these definitions below.) In case K is
not extended we will replace it by 1its combinatorially defined
enlargement Kpl’ which obeys this condition. {(For an explicit

description of Kext’ a smallest subcomplex of Kpl containing K and

obeying the extension condition, see Kan, Amer. J., 1957.)
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*
Exercise . Define a subcategory Next of Nbl such that extended

complexes can be identified with contravariant functors Néxt — Yetla.

Before giving the Kan-Moore definitions (which won’t be mysterious
at all) we want to first look at a non-obvious example of an extended
complex. (However note from above figure that any extended complex is

sort of "group like"; so this example is not totally unexpected. )

By a simplicial group we mean a contravariant functor ¥ — Groups,
i.e. it is a c.s.s.c. with, for each q =2 0, a specified group structure
on the set of all g-simplices, and such that all face and degeneracy

operalors are group homomorphism.

For example let G be a topological group and let K be a sub
c.s.s.c. of the singular complex S(G) which is closed with respect to
.

the obvious group operations induced on the sets of all g-simplices, gq =z

O; then clearly K is a simplicial group.

Conversely if K is a simplicial group its Milnor realization |K| is
usually (a slightly technical condition is required to ensure that ]KxKI
is homeomorphic to |K[x|K|) a topological group. Thus the example we

have given is in fact typical : all simplicial groups are such
Theorem. Any simplicial group is extended.

This was observed by Moore in the Sém. Cartan of 1955. Since all
formal proofs of this (see e.g. May pp. 67-68) tend to be (easy but)
non-intuitive, we prefer an informal but vivid argument which is

remniscent of how one checks that L2 of a topological group is Abelian.

Proof. By remarks above it 1is enough to consider a singular
subcomplex K of a topological group which is closed under the induced

group operations on g-simplices for all q = 0.

1

113



Suppose we are given two (see above figure) 1-simplices o and 6
with o(0,1) = 6(1,0) (the "“compatibility" condition). Now define a

singular 2-simplex F {on the shaded standard 2-simplex) by
F(r,s,t) = 0(r,t+s).¢(0,1)_1.9(t+r,s)

An easy verification shows that F extends the map defined on two
arms of our triangle by o and 6. Similar explicit formulae can be given
{(Exercise) to check Kan’s condition for compatible length g+l sequences

of g-simplices for all q =z 2 also. gq.e.d.

REMARK. In T.A.M.S. of 1991, Loday-Fiedorowicz 1look at a
generalization of the notion of a simplicial group, called a crossed
simplicial group. For any such K too the realization |K| is a
topological group. It turns out that, upto a small and classifiable
ambiguity, crossed simplicial groups are essentially simplicial groups.
However this "small ambiguity” is Jjust the thing which is responsible
for the cyclic, and some other similar, (co)homologies which have sprung

up ever since the famous 1983 I.H.E.S. paper of Connes.
We now give (toujours informally !) the aforementioned detailed

DEFINITIONS. To define ni(K) we just mimic the geometric way (cf.
4.1) of defining homotopy groups of a space. The key definition is that
of homotopic simplices. For the singular case this meant (see 4.5) that
our g-simplices o and 6 have all faces same and are homotopic rel

bouﬁdary. To mimic this identify each ol € K with the simplicial map

from the c.s.s.cC. (Aq)Comm = [[g]] of all increasing sequences in {0,1,
, q} to X, which takes the sequence 01...q to o. (The realization
of this o : [[q]] — K is the associated singular simplex o ad

[K|.) Then od ~ 8% will mean that there is a simplicial map w : [[q]] x

f[1)] — K which "does’nt move bdry" and on the "ends" equals o and 8.

To make this more combinatorial-looking we now use the following

figure, where the domains of o and 6 are the last two g-faces of a
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standard (q+1)-simplex, and degenerate singular g-simplices are defined
on the other g-1 g-faces in the indicated way (these are constant on the
hatched lines). What we want is that this map of the boundary should
extend to a singular (g+1)-simplex w. Then we’ll say that w is a
homotopy from o to 8, and write w : o = 8. (Exercise. Show that this

is equivalent to the definition of the last para. Cf. May, § 5.)

The above did not use that K is extended. We use this now (cf.
May, pp. 5-6) to check that this = is indeed a transitive (and so an
equivalence) relation. ' Once again we’ll be content with a suggestive

picture proof leaving the writing of a formal proof as an Exercise :

WZQ,QS?T%7W:?

Now by a base point * we’ll understand the subcomplex generated by
some chosen vertex of K. And, as expected, we’ll denote by nq(K) the set
of homotopy classes [o] of g-simplices o having all faces in * . (Using

other subcomplexes one can likewise define nq(K,L).)

The combinatorial definition of the group operation (cf. May, p.9)
on this set is suggested by the homotopy addition theorem. Map all the
g-faces of the standard (g+1)-simplex on * , excepting the last one
which is mapped as per 0, and the third last which is mapped as per o.
By the extension condition this map extends to a singular (g+1)-simplex,

whose value on the second last g-face is deemed to determine [c¢].[8].
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Theorem. For any extended complex K the above purely
combinatorially defined groups nq(K) coincide with the homotopy groups

of the realization of K.

Proof. Using realization we can view K as a singular subcomplex.
The fact that K is extended now implies that if a singular simplex of
Kpl has all its faces in K, then we can find a homotopic simplex which
is in K. So by the simplicial approximation theorem each element of any
homotopy group of |K| can be represented by a singular simplex of K
having all its faces at the base point. The rest is obvious because the

definitions above mimicked the topological ones. g.e.d.

We note that one also has a combinatorial Milnor uniqueness theorem
for "ES" functors on the category of extended complexes. The seven
properties of (4.1) and others follow from above result or can be

directly checked combinatorially (see book of May).

REMARK. For spaces we also had given a homological way of defining

homotopy groups via the Eilenberg filtration determined by the chosen

R

pbase point (see 4.4). This theorem of Eilenberg, i.e. that Ep (K}
np(K) for p =2 2 (for p = 1 one gets only the Abelianization of nl) is
still true for any Kan complex. Following Moore, Kan, and Milnor, we'll
now give in the next two sections a different but related homological
way which yields another, and much more striking, combinatorial

definition of homotopy groups (see 4.15). From the computational
viewpoint however there is as yet no truly efficient definition For
example it is known that there is an algorithm for computing LA (S ) for
all 1 =z 3, and also that all these groups are non-trivial, however no

one has a clue as to their actual computation.

(4.14) Moore homology. In all of the following K will be a
complete semi-simplicial complex. So far while defining any of the
homologies our starting point has been always the free Abelian groups
C (K) generated by the g-simplices of K. Even though the induced face
and degeneracy operators make C, into an Abelian simplicial group, for
defining our homologies we have always used only a part of this rich

structure. For example the ordinary H,(C) 1is the homology of the
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associated chain complex (C*,B) where 8 is the alternating sum 8 of the
face operators. However, on account of the degeneracles, we can

normalize our defining chain complex, i.e. make it much smaller.

Theorem. The homology of the chain complex (C,,8) coincides with
that of the chain complex whose qth group is an(kerao)n...n(keraq_l)

and whose boundary maps 8 are induced by the last face operators 6q

We remark that sometimes it is more convenient to replace this
Moore chain complex with the isomorphic (Exercise : check this !} chain
complex whose qth group is an(keral)n...n(keraq)and whose boundary maps

8 are induced by the first face operators 60 .

Proof (cf. May, pp. 94-95). For each p = 0 let (CE , 8) be the sub
chain complex of (C, , 8) consisting of all x such that ai(x) = 0
whenever 0 = i < min(p,dimx). The Moore chain complex is clearly
isomorphic (upto signs * for 8) to the intersection np CE of this
decreasing filtration.

So it suffices to check that each inclusion C£+1 € CS induces an
isomorphism in homology. This follows because the chain map P . CE —
C5+1 , which maps x to x unless dimx = p+1 when x is mapped to x -
s 8 x, is a right inverse, and furthermore, we have Id — fp = 8t + td

where t takes x to O unless dimx =z p when it goes to (—1)pspx. qg.e.d.

REMARK. The above proof shows that the E1 term of the filtered
chain complex (CE , 8) is zero off the x-axis, and that the Moore chain
complex is nothing but the basic chain complex (E;,O , dl) of this
filtration. As remarked before another way of normalizing was given in
the initial 1950 Annals paper of Eilenberg-Zilber, and consists simply
of modding out linear combinations of degenerate simpiices {these form a
sub chain cbmplex even though degenerate simplices méy not form a sub
semi-simplicial complex). Are the two normalizations related 7 Yes,
indeed : the Moore chain complex complements the sub chain complex of
(C, , 8) generated by the degenerate simplices. In fact if we denote by
F the iterated composition of the chain projections £P used in the above
proof then it is easy to see that C, is the direct sum of the sub chain

complexes (imF,8) and (kerF,d) : the former is the Moore subcomplex and
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the latter that generated by the degenerate simplices.

DEFINITION (Moore, Sém. Cartan, 1854-55). The merit of Moore’s
normalization is that his chain complex makes sense even for non-Abelian
simplicial groups F, !t To see this we have to check that in it each
imd is a normal subgroup of the next kerd. We leave this verification
(it uses completeness, i.e. degeneracy operators) as an easy Exercise
{cf. May, p. 69). Thus there are defined the Moore homology groups

(kerd)/(imd) of F, which we will denote by H.°°Te(F).

We know from the above theorem that for any Abelian simplicial
group C, Moore homology coincides with the homology of the associated
chain complex C, . (Warning : the homology of C, 1i.e. of the chain
complex C,(C), is bigger : cf. May, p. 97.} "We now turn to the
computation of the Moore homology of an arbitrary simplicial group F.

What could HL°°T®(F) be ? Dare we hope that it is related to the
homotopy groups mn,(F) (which are defined since, being a simplicial
group, F is extended) ? Magic happens : the two are the same !!

Theorem. For any simplicial group F we have H?oore(p) =2 m, (F).

Proof (cf. May, pp. 68-68). Here of course the right side makes
sense because we saw in 4.13 that F is extended. The base point * will

be the subcomplex consisting of the identity elements.

We note that Moore g-cycles x of F are precisely the same thing as
singular g-simplices x of F with all faces in * . We can define a
surjection n (F) — Hgoore(F) by [x] > <x> because if z : x ~y then
6q+1(sqx—1z) = xhly. To see that this is a group homomorphism it
suffices to check [x]ly] = [xy] which follows because all the faces of
the (g+1)-simplex (Sq—1X)(qu) are on * excepting the last three which
are, respectively, x, xy, and y. Finally this map is injective because
8q+12 = X implies z : 1 = x. gq.e.d.

REMARK. Thus Mocore is giving a homological definition of homotopy
groups, but so did Eilenberg in his foundational Annals 1944 paper (see

4.4) ! Are these two definition related ? We’ll see below that indeed
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they are, which of course is very satisfying, even though it does dim
the above "magic" a bit ! However it is not clear if Moore himself was
aware of this conﬁection. His immediate inspiration was rather Thom,
who had guessed (as always correctly !) that the ith homotopy group of
the infinite symmetric product S,(X) is isomorphic to the 1ith homology
group of X {the proof appeared in his joint Annals 1958 paper with
Dold). Note that the algebraical version of the Dold-Thom theorem, i.e.
ni(C(K)) S Hi(K)’ follows at once from the two theorems given above. We
remark that Dold-Thom proved their topological version by wusing the
Eilenberg-Steenrod uniqueness theorem (2.17) and the fact that the

functor S, converts excisions into quasi-fibrations.

Moore’s filtration. We can filter the chain complex C,(F} of any

simplicial group (cf. the proof of the first theorem) thus : ... . We
now check easily that Hfoone(F) is the x-axis of the E1 term of the

spectral sequence associated to this filtration. On the other hand in
4.4 we had used the Eilenberg filtration of C,(F) which is coarser being
defined thus : ... . We saw in 4.4 that the homotopy groups correspond
also to the x-axis of the El term of the spectral sequence of this
filtration too. Thus the above theorem amounts to saying that the
inclusion map induces an isomorphism on the x-axes of the E1 terms of

these two spectral sequences. In fact it 1is probable that the two

spectral sequences have exactly the same spectral sequence from El on.

(4.15) The free group of a simplicial complex. We now have the
tool, 1.e. Moore homology, to make a basic change in our homology
defining strategy : we will start, instead of the groups Cq(K), with the
free non-Abelian group Fq(K) generated by the q-simplices of K !

In the following we’ll abbreviate Hfoore(FK) to Hfoore(K); likewise
given a subcomplex L of K, the relative Moore homology (obvious

definition) HLC°T®(FK,FL) will be abbreviated to H.°°T®(x,L).

The following result was proved by Milnor in a very popular 1956

paper which he did’nt publish ! (It is fortunately now available in

Adam’s, A student’s guide.)
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Theorem. For any c.s.s.c. K one has Hgoore(K,pt) = nq+1(SK) where

SK denotes the suspension of K.

Proof. . g.e.d.

REMARK. Thus we are now going beyond Kassoc (words in vertk
supported on K) and looking at all words in vertK and vertK (the inverse
vertices) which are supported on the simplices of K. Since the lower
central series of a free group as the free Lie ring as graded group the
connection which we’1ll uncover below with the Poincaré-Birkhoff-Witt

theorem is to be expected.

Then we’ll end by giving the closely related simplicial group GK of
Kan which yields the following pleasant definition of homotopy groups :
geoTe (k) = (K]
REMARK. The lower central series of FK and GK play a big réle in
homotopy theory, e.g. (excluding some initial terms) the Adam’s spectral

sequence (which converges towards the homotopy groups and which is one

of the principal tools for computing them) arises from this filtration.
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Chapter 5.
REALIZATIONS

(5.1) Function algebra R[K]. As in (2.11) we’ll think of each
vertex v as the function Rvert(K) (= RN) — R defined by v(f) = f(v),
and we denote by RivertK] the graded algebra of all functions obtained
from these, and the constant functions R, by pointwise addition and

multiplication. Note that an f € R[vertK] can be written uniquely as

o
f= Z:oévertK fo'v ’

where v’ denotes the product of functions N {v € o}, and fa e R.

We’ll denote by I(K) the ideal of RI[vertK] consisting of all
functions for which the coefficients f@ are zero whenever o is in K and
by R[K] the quotient algebra obtained by dividing R[vertK] out by I(K).
(Alternatively one can think of RI[K] as the graded vector space

C*(Kc mm) equipped with a multiplication.)

o
Note that the zero set Lin(K) of I(K) in RN contains ]K| and even

Aff(K) : it is the cone of Aff(K) over the origin. On the other hand
the zero set of I(K) in RPN_l (lines of RN through the origin) is the
space Proj(K) considered in (2.11). It is these and such-like spaces
(e.g. one can replace R by € or consider the complement of say Aff(K) in

RN etc.) which we want to consider further in this chapter.

Note that in each case the space in question occurs as the union
(in case of complements, the intersection) of some spaces which are
functorially attached to the simplices of K. For example |K| arises
from the functor o +— Conv(e) while Aff(K) is associated to the functor
o > Aff(o). We’ll use this functorial nature of these spaces to

calculate their singular homology (or singular local homology).
Since these spaces originated from a purely combinatorial object K,

it makes sense to seek purely combinatorial defining chain complexes for

these homologies (e.g. for IK] the oriented chain complex, i.e. the

121



normalized chain complex of K gives a neat solution of this

comm’
problem.) One way of answering this question is to make use of the

multiplication of R[K], i.e. by exploiting the finer algebraic geometric
structure of these spaces. This gives (a priori) finer invariants of K
since they depend on this structure; besides, these algebraic
definitions usually work over any field F or its closure F, rather than
just R or €. Another way is to simply give functorial subdivisions of

the spaces Sph(K), Proj(K), etc. We’ll illustrate both these methods.

(5.2) Vigualizing categories and functors. We have already used
realizations of simplicial complexes, of posets (via their order
complexes), and of semi-simplicial complexes (= contravariant functors ¥
—> Yets). A general way of visualizing any small category, or a
functor defined on it, was given by GROTHENDIECK in 1859, but became
popular only after SEGAL's beautiful paper (which makes modestly enough
"no great claim to originality") in the Pub. I.H.E.S of 1968.

The basic idea is to think of any (always small) category & as the
semi-simplicial complex whose n-simplices are all trains of morphisms
(¢1, RN ¢n) of length n — i.e. ¢1 maps into domain of ¢2 which maps
into domain of ¢3 etc. — with the n+l1 faces defined a la Hochschild
i.e. the first one by dropping the first morphism, the next n-1 by
replacing any two successive morphisms by their composition, and the
(n+1)th by dropping the last morphism. The degeneracies are defined by
insertions of identity morphisms. We define |€| to be the realization
of this semi-simplicial complex. This notion becomes clear once one has

a look at the following case.

Example. Consider the elements of a poset P as the objects of a

category with Mor(a a2) empty unless a, = a, in which case it will

1’ 1 2
consist of just one morphism. We defined Kcomm’ where K = sd(P), as the
semi-simplicial complex whose n-simplices are increasing sequences (ao,

al, cee an) of length n+1 in P, with the n+l faces obtained by
omissions. Consider now the corresponding train (¢1, ¢2, R ,¢n) of

morphisms ¢i — a, . It is clear that the n+l1 faces of our

a
i-1
simplex correspond to the n+1 Hochschild faces of this train. Thus the
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semi-simplicial complex defined above is isomorphic to Kcomm'

Exercise. Work out |#| where, as usual, ¥ denotes the category of

non-decreasing maps between the finite sets [n], n = 0.

*
Exercise . Let €yc be the category of all maps between the finite
sets [n], n = 0. What is [Eyc| ? (This category will be important

later.)

To visualize a covariant functor D : € —» Sets we consider the

semi-simplicial complex whose n-simplices are all pairs (tr,x), where tr

= (¢1, cee ¢n) is a train of ¢, and x € D(Dom¢1). The first face
ao(tr,xx will be the pair (aotr,(D¢1)x), while for the other faces the
second coordinate is just a passenger, i.e. 6i(tr,x) = (aitr,x) (cf.
definition -of homology with local coefficients). Likewise the

degeneracies are merely insertions of the identity morphisms 1in the
first coordinate. We define |D| to be the realization of this
semi-simplicial complex. (The definition for D contravariant is

similar, or else one can just replace § by its opposite category.)

Exercise. Check that for the case of a éontravariant functor D : ¥
— Peto the above definition gives the usual Milnor realization ]D| of

the semi-simplicial complex D.

For functors D : € — ¥paces (e.g. the functors o +— Lin(o) etc.
of 5.1) the above definition gives a contravariant functor ¥ — ¥paces,
i.e. a semi-simplicial space, and it will be wunderstood, that while
defining |D|, we use the topology of the second factor of each (standard
n—siﬁplex) x (space of n-simplices), before making the identifications
stipulated by the face and degeneracy operators. {(Covariant functors
from small categories to ¥paces are frequently called diagrams, in fact

that’s why we used the letter D.)

Exercise. let £ : X — Y be any continuous map. Consider a poset
P, with Jjust two elements a = b, as a category as in Ex. 1, and let F
P —> ¥paceo be the functor which takes the morphism a = b to f. Then
|F| is the mapping cylinder (see 4. ) of f.
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Exercise. With f as above now let the poset P have three elements
with relations a <= b and a = ¢, and let the functor F take a = b to f,
and & < ¢ to a constant map X —> {pt}. Check that now [F| 1is the

so-called mapping cone of f.

(5.3) Local singular homology of Lin(K) at the origin. We now
proceed to a GORESKY-MACPHERSON type formula (see the last chapter of
their 1988 book on Stratifed Morse Theory) for the local (= relative)
singular homology H,(X,X\0) at O of this contractible space X = Lin(K).

Theorem. The ith local singular homology of Lin(K) at the origin

is isomorphic to o H, .. (Lk,o) (where o = @ is allowed).
ek i-dimo K

The following argument exemplifies a general methodology, due to
Z1EGLER-ZIVALJEVIC, Math. Ann., 1993, which can be used to study many

other such spaces (e.g. all those of 5.1)

Proof. We denote by Sph(c¢) the unit sphere at the origin in Lin(o)
and by Sph(K) the union of these spheres. Thus Sph(K} is the 1link of
Lin(k) (no pun intended !) at the origin and Hi(X,X\O) = ﬁi_l(Sph(K)).

Step 1. To compare the Grothendieck realization ‘Sph[, of the
functor Sph :K — ¥paces, with the space Sph(K) = UUGK Sph{(o), we note
that the latter is the realization of the trivial functor {pt} —
¥pacea, {pt} +— Sph(K). The constant map K — {pt} and the 1inclusions
Sph(o) € Sph(K) give a morphism m from Sph to this trivial functor, and
so a surjection m : |Sph| — Sph(K). It can be checked (Exercise) that

this has contractible fibers and "so" is a homotopy equivalence.

(The "so" requires some work — cf. Segal, 4.1, and 2-Z, op cit. —
and the assertion is not true in general, e.g. Alexandrov’s example
(2.19) is not homotopy equivalent to its x-projection even though the
fibers are clearly contractible. However here we are dealing with CW

complexes for which an upward induction on the skeletons will work.)
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j N
Step 2. We’ll identify RJ, for j s N, with the subspace of R

obtained by setting the last N-j coordinates zero. It would be nice now
if we could deform our diagram Sph continuously to the associated flag

diagram Sph K — ¥paces, 1i.e. the functor which maps all

flag . .
+1
gsimplices of the same dimension i to the same unit sphere st ¢ R , and
dimé
which maps each proper inclusion 6 ¢ ¢ to the constant map 1: S tm
Sdlmg, i.e. with constant value 1 = (1, 0, ... , 0).

However since we merely want to deform the space ’Sphl to
‘Sphflagl’ it turns out (cf. Segal, 2.1, and Z2-2) that it suffices to
show that there is a natural t?ansformation H: Sph — Sphflag such
that each H(o) : Sph(o) —> Sdlmv, o € K, is a homotopy equivalence.

This H can be defined thus : Choose in the non-singular part of
Sph(o) a small disk. To define H(o) map the centre of this disk to the
point 1, stretch the rest of the interior of the disk bijectively over
Sdimg\l, and map its complement to 1. Clearly H(e) 1is a homotopy
equivalence, and since its restriction to any smaller dimensional Sph(8)

is the constant map 1, clearly H is a natural transformation.

Step 3. Finally we compute lSphflagl' For this note that the set
of trains of the poset K starting from o identifies with LkKa, and that
our functor assigns to the domain of any such train the space Sdima—l‘
Also remember that each inclusion 8 ¢ o becomes a constant map under the
functor. So (cf. Z—Z for more d?tails) lSphflagl has the homotopy type
of the wedge V (LkK(a).sd““"”l), which implies the result by

oeK 0
repeatedly using H,(A) = H, ,(A.S7). gq.e.d.

*+1

Corollary. A simplicial complex K is Cohen-Macaulay over R iff the
local singular homology of Lin(K) at O with coefficients R is zero in

all dimensions s dimK.
Here, by saying that K is Cohen-Macaulay over [, we mean that the

reduced homology over F of each link LkKa lives only in the top most

dimension dimK — o — 1.
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REMARK. Note from its definition and from above corollary that
Cohen-Macaulayness of K is a statement about the "smoothness" of (the
affine variety Lin(K) attached to) K. Also note that it 1is a purely
topological property of K, but that the ground field F 1Is important.
For example, a triangulation of RPZ is not Cohen-Macaulay over Fz, but
is Cohen—-Macaulay over R. Later on we’ll look at equivalent algebraic
and algebro-geometric reformulations of this notion. This will at once

yield important information about the combinatorics of such K’s.

Exercise. We know that Aff(K) = |K|. Verify this again using the
2-2 method, and also check that the analogously defined space AffC(K) C
CN is contractible. (Hint. NeeK Affc(o) is nonempty, e.g. by HILBERT's

Nullstellensatz, which applies because C is algebraically closed.)

Exercise. Show that the ith reduced cohomology of the complement
. N . = .
of Aff(K) in R is ® ek HN—i—Z—dima (LkKU) where now o # @. (Hint. By

Alexander duality the problem reduces to computing the (N-i-1)th

homology of the one point compactification Aff(K) c SN ).
Theorem. The ith homology of Projm(K) C CPN_l is isomorphic to
o.  H. . (9, where x'9) denotes the jth co-skeleton of K (i.e. the
Jz0 "i-2j

sub poset consisting of all simplices of dimensions = j). On the other

: . o (J),
hand H,_ (Proj.(K); 2/2) = © 0 Hi_j(K . 2/2).

Proof (following Z2-Z). We can again check that Proj(K) has the
sape homotopy type as the realization lProJflagl of the flag diagram
associated to the functor Proj : K — Spaces. This flag diagram is
defined just as before, only now, to each inclusion 6 ¢ ¢, we have to
associate the homotopically non~trivial inclusion Pdime C Pdimc of

(complex or real) projective spaces.
The proof of Proj{K) = lProjflagl is same as before, except that

now H is a natural transformation only "upto homotopies”; however it

turns out that this suffices for Step 2.
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More generally the above holds even if K is replaced by any of the

sub posets K(t), t = 0. Further a downward induction on t shows that
t
the homology of the corresponding flag diagram is Hi(K(t)) ® Hi—Z(K( ))
(t) (J) :
® ... ® Hi—2t(K )} e (®j>t Hi—Zj(K IBR The required result

corresponds to the case t = 0 of this. (Cf. Z2-Z prop 2.15, and proof of

prop. 2.12, which however both contain some misprints.) gq.e.d.

*
Exercise . Relate the above computations to the Serre spectral
sequence of the quotient map Sth(K) —> ProjE(K), a locally trivial

fibration with S1 as fiber which generalizes the Hopf fibration.

REMARK. The cited paper of Ziegler and Zival jevic also gives some
other such examples; however they don’t give cohomology of the
complement of Projm(K) in CPN—l, for this see Goresky-Macpherson. Note
also that the above answers do, a posteriori, give combinatorial chain
complexes which give the homology in question, but the second question
we had posed in {(5.1) was to get functorial definitions of such
complexes. Lastly we remark that Z-Z and G-M work in more generality,
and in fact do not even mention the examples Lin(K), Aff(K), Proj(X),

Sph(K), etc.; however these pretty spaces are in fact the universal

examples for the kinds of problems considered by them.

REMARK. Since the irrelevant ideal (= all polynomials with
constant term zero) and the defining ideal I(K) respectively determine O
and Lin(K) it is reasonable to hope that an algebraic computation of the
local homology at O of the affine variety Lin(K) can be made by using
~these : we’ll see in (5.5) that this is indeed the case. Likewise we’ll
give a way of algebraically computing Proj(K} using 1its defining
homogenous ideal I(X). This algebraical method of calculating homology
also brings to light finer invariants of K and it is to the definition

of these that the next section is devoted.

(5.4) Sheaf cohomology. The "finer invariants" we just mentioned
are some cohomologies with coefficients in a sheaf 0, i.e. a space which

comes equipped with a surjective local homeomorphism O — X. Moreover 0
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is called a sheaf of groups, rings, etc., iff each stalk (= fiber) Ox is

a group, etc., with operations continuous in an obvious sense.

REMARK. The above simple definition of LAZARD made its appearance
first in the Seminaire Cartan of 1950-51, also it 1is the definition
which SERRE adopts in Faisceaux Algeébriques Cohérents, the landmark
Annals 1955 paper which we are now following. The notion of a sheaf was
invented (in a P.O.W. camp !) by LERAY, and its first use was the
following clean definition of a smooth manifold X of dimension n : it is
a sheaf €°(X) — X locally isomorphic to £°(RY) — R™ , the sheaf of
germs of smooth functions on R™. This made it evident that other "model
sheaves" could be used analogously to define other structures on X.

Let F be any field. We equip FN (resp. (FN—l \ {0})/ F* = FPN—l)
with the Zariski topology, i.e. a subset will be deemed closed 1ff it is
an affine (resp. projective variety), 1.e. the =zero set of some
polynomials (resp. homogenous) polynomials in N variables. The algebra
(resp. graded algebra) of all (resp. homogenous) polynomials in N

variables will be denoted R (resp. S).

For any subset U of FN (resp. FPN~1) we will denote by O(U) (resp.
Om(U)) —_ the sheaf of germs of all (resp. homogenous of degree m)
rational functions on U. So R (resp. S) consists of all the sections of
O(FN) (resp. @mOm(FPN~1)). More generally we’ll also consider coherent
sheaves ¥ : these are modules (resp. graded modules) over these sheaves
O (resp. b = @mOm) of algebras (resp. graded algebras), and coherent
means that the sections of ¥ form an R-module M (resp. graded S-module M

=‘@mMm) which is of finite type.

Lemma. For any affine variety X over an algebraically closed field

F and any coherent sheaf ¥ over X one has Hq(X,g) =0 for all q = 1.

We omit the proof of this (see F.A.C., P. 239) but the reader
should compare this with an Exercise re Affc(K) in (5.3) : the
Nullstellensatz is used in a similar way here. Also note that here, and

below, we use Cech cohomology (see 2.19).
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REMARK. Before F.A.C. sheaf cohomology had been defined a la Leray
for analytic varieties. These definitions can’t work now for ou;'Y
Zariski spaces because they need partitions of unity. Serre observed
that the right thing was to go back to Cech’s nerves. Very soon Serre’s
definitions itself were superseeded to some extent by those of
Grothendieck who interpreted sheaf cohomology as derived functors. The

analytic analogue of the above lemma is called the CARTAN-OKA theorem.

So cohomology (not local cohomology) of affine varieties is
uninteresting over an algebraically closed F. We now move on to

projective varieties.

*
Koszul complexes. We denote by (Ck(M),é) the cochain complex,
where CE(M) = all alternating maps from length g+1 sequences of {1, 2,

, N} to S , and the coboundary & is defined as follows

k(qg+1)

. _ PR, k . "
(Gm)(lo, e, 1q+1) = Ej (-1) (XiJ) m(10, A 1j N iq+1)

Theorem. For any projective variety X over an algebraically closed
field F and any coherent sheaf ¥ on X the sheaf cohomology H4(x,9) is
isomorphic to the direct limit, as k approaches infinity, of the qth

cohomology of the Koszul complexes defined above.

This is one of the principal results of F.A.C. and the following is
merely intended to delineate the main lines of Serre’s argument. (See
especially no. 64 of F.A.C.)

Proof. There is no loss of generality in assuming X = FPN—I. This
is so because we can always extend ¥ to all of FPN—l by defining it to

be zero outside the closed set X, clearly this does’nt change M.

Now let U = {Ui} be the open covering by the N open sets X5 = 0.
Consider a g-dimensional alternating Cech cochain of U : it assigns to

each (i i )} a section of the sheaf § over U n ... n U,
+1 m i i

o v g . .

Multiplying it by a suitable, say kth, power of X, X3 -..%; , one gets a
0] 1 q
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section of ¥ which extends to all of X, i.e. one gets an element
m+k(g+1) ;

. q s
of Mm+k(q+1)' Thus we have a cochain of Ck(Mm) for all k big.
Conversely a cochain Cg(Mm) gives such a Cech cochain. It can be seen
that the Koszul coboundary becomes Cech coboundary under this. So we

have the isomorphism of cochain complexes :

* *
C (UL,¥F) = lim Ck(M)
—

* *
This gives H (U, ¥) = lim Hk(M). Since each Ui is a copy of the
____) *
affine (N-1)-space, we know by the Lemma that each H (Ui’g) is zero in

positive dimensions. So using the standard acyclic model (or Léray
* *
nerve) type of argument we also have H (X,¥) = H (U,%). This gives the

required result. gq.e.d.

*

" .
Corollary. H (X,%) = lim Ext_ (J, ,M) where Jk denotes the graded
—3

S Tk’
ideal of S generated by the kth powers of the variables Xpr o XN

*
Proof (cf. F.A.C. no. 68). To see this check that Ck(M) equals
HomS( ,M) applied to a resolution of Jk. g.e.d.

REMARK. The computation of the local sheaf cohomology at 0 of
affine varieties is similar to the one above (see remark to no. 69 of

¥*
F.A.C.). It seems likely that an interpretations of lim TorS(M,Jk) in
—>

terms of some sheaf homology is also known ?

(5.5) Two computations of Hochster. We now go back to the special
varieties Proj(XK) and Lin(K) and compute the above Ext’s and Tor’s. We
will see that we get the same results as those in (5.3) for singular
homology. This will give us the alternative algebraic computation of

these homologies that we were seeking.

(to be written)

(5.68) Cohen—-Macaulayness via deleted functors. For any simplicial
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complex K we’ll denote by KeK the subcomplex, of the join of K and a
disjoint copy of K, consisting of all simplices (¢,6) where o € K and 6
€ K are disjoint with ous € K. Thus if we omit the very last condition

we get the bigger deleted join K#K 2 KeK of 4.11.
Theorem. KeK is a Z/2-triangulation of Sth(K).

Here of course the Z/2-action on Sth(K) (i.e. the intersection of
Lin(K) and the unit sphere) is the antipodal action and that of KeK is

the switching action (¢,8) «— (6,0).

Proof. Place each negative vertex (i.e. of the second copy of K)
at unit distance from the origin on each negative axis. It is easily
seen that Sph(K) is homeomorphic to the boundary of the convex hull of
the 2N positive or negative vertices. Thus KeK = Uo_EK Ty » where Oy is
the octahedral sphere of dimension dimo determined by the vertices of o
and their negatives (= the deleted join of the closed simplex ¢) is a

Z/2~triangulation of Uce Sph(o) = Sph(K). gqg.e.d.

K

It follows that the local singular homology H*(LinK,OC) can be
computed by using the chain complex of KeK and that the homology
H*(PPOJRK) can be computed by using the equivariant chain complex (see

4.8) of this free Z/2-complex KeK.

Corollary. For any simplicial complex K we have

H, (KeK) = (K)

®rek M*-dimo—1

So K is Cohen-Macaulay iff the reduced homology of KeK is zero in all

dimensions less than dimkK.
Proof. Follows at once by using the computation of (5.3). gq.e.d.
REMARK. We note that the above purely combinatorial formula can

also be checked directly. For example one can use a spectral sequence
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arising from the filtration (indexed by K !) defined by stipulating that
a chain is of filtration = o iff it is a linear combination of simplices
(x,B) € KeK with « € ¢. One can check (Exercise) that this spectral

sequence degenerates at E, = the right side of the formula. We note

1
also the close affinity of the above formula with Bier’s homology

(2.18). Maybe this points to some relationship between Sph(K) = |KeK|
and the geometrical realizations 'Kcomm,rl ?

REMARK. As remarked in Chapter 4 one can also 1likewise define
deleted functors over groups G other than Z/2. For example we can
define KOGK to consist of all functions ¢ from G to K such that the
simplices ¢(g), g € G, are disjoint, and their union is also a simplex
of K. We note that this is simplicial complex has the same dimension as
K though of course for G infinite it will be an infinite simplicial
complex. In case G is a topological group, we’ll equip the set of all

g-simplices of Ke K with the topology induced by that of G, thus turning

G
it into a simplicial space.

Of particular interest in the context of the above is the
simplicial space Kole whose realization can be checked to be
homeomorphic to SphC(K). Thus we can compute the homology of Sphm(K)
from its chain complex, likewise the associated Sl—equivariant chain

complex Ke_1K computes the homology of ProjC(K). Note that this is only

S
a partial combinatorialization of this computation, however in Chapter 6
we’ll improve this (using Connes’ cyclic model of Sl) to obtain a

completely combinatorial functorial way of computing H*(ProjcK).

Interest focusses most on the smooth (= all proper links Cohen-
Macaulay) case because then the homology of KeK is essentially that of K
and so we are roughly able to equip the latter with an Sl—structure

which gives Interesting information about the combinatorics of K.
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Chapter 6. *
OPERATOR ALGEBRAS

(6.1) Quantization. The "classical" picture of C*(Kcomm) as an
algebra of some functions on an explicit space is no longer available to
us for the non-commutative but associative graded algebra C*(Kassoc)'
So this time we’ll assign to each vertex v a (linear first order partial
differential) generic operator Xv {acting on all polynomial functions in
N variables) and thus will think of C*(Kassoc) as a quotient of the

algebra generated by such operators.

The usefulness of this "quantization" stems from a famous theorem
of POINCARE, 1899 — see Oeuvres, vol. 3, p.172 -— now called the
Poincaré~Birkhoff-Witt or PBW theorem, which gives the structure of this
operator algebra : it consists of an anticommutative or LIE part, with
the rest being obtained from this via a commutative extension. This
fact ties wup C*(Kassoc) with the de Rham complex (of piecewise
polynomial forms of K) of THOM, yields a new proof of de Rham’s theorem,
as well as a computation of the cyclic homology of (2.18), and finally
pulls back the rational homotopy type of SULLIVAN to this associative
complex, thus relaping this construction to KALAI's shifting.

REMARK. The idea of genericity was much favoured by Poincaré : as
mentioned in Ch.3 he had, in his A4nalysis Situs of 1895, stated de
Rham’s theorem in these terms, and had also defined the fundamental
group in a similar way. (It might even be that Poincaré suspected a

connection between PBW and de Rham : the date 18393, and the cyclic

notation he used for d in 1885, do leave open this possibility !)

However before having a look back at this 1899 paper we’ll quickly
review in the next section (mainly from SERRE’S, Lie Algebras and Lie
Groups) a very small part of the amazingly vast present-day

ramifications of the PBW theorem.

(6.2) Enveloping Lie Algebra. We recall that an algebra A is a
module (over some commutative ring F which will usually be a field of

characteristic zero) together with a bilinear map A x A —> A. In case



this bilnear map is anticommutative and obeys the Jacobi identity
(ab)c + (bcla + (ca)b = 0,

then A is called a Lie algebra.

We’ll generally denote a Lie algebra by g and its bilinear map will
be denoted [a,bl. It is easy to see (Exercise) that g-éan be enveloped
(i.e. embedded) in an associative algebra Ug with identity such that
[a,b] = ab — ba in Ug; furthermore, if we assume (as we’ll always do)
that Ug is universal (i.e. biggest) with respect to this property, then

(Exercise) Ug is unique in the obvious sense.

Example 1. Recall that a tangent vector field X of a manifold M is
a derivation of algebra A = c®(M) of its smooth functions. (This means
X: A —> A is R-linear and obeys the product rule X(fg) = X(flg +
fX(g).) Clearly [X,Y] = XY -~ ¥YX is also a derivation. In case the
manifold is a Lie group G (i.e. a differentiable manifold equipped with
a group structure for which (g,h) +— gh”1 is differentiable) then we’ll
denote by g the (finite-dimensional) Lie subalgebra of all
left-invariant vector fields of G. Now Ug consists of all linear
left-invariant differential operators acting on the ring of smooth

functions of G.

Example 2. A very different kind of Lie algebra (over Z) is
provided by the graded group g = @p (Gp/Gp+1) of the lower central

series ... 2 Gp 2 Gp+1 2 ... of any (discrete) group G, with the bracket
[a,b] now defined as the coset of a—1b~1ab. This time Ug can be seen to

be isomorphic to Z[G], the group ring of G.

Being a quotient of Tg there is an obvious increasing filtration of

Ug and a general version of PBW is the following (F a field here).

Theorem. The graded algebra determined by the above filtration of

Ug is isomorphic to the polynomial algebra Sg over g.

We note that commutativity of this graded algebra is clear because
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the "error" ab — ba resulting from any transposition 1is of lesser
degree, equally it is easy to see that the obvious map Sg — gr(Ug) Iis

surjective; the job is to show that it is injective.

Example 3 (POINCARE, 18399). Let Lv be . the free Lie algebra

generated by a cardinality N set V : i’e. mod out the free

non-associative algebra Av {= all linear combinations of non-associative
words of V) by the ideal generated by all expressions ab + ba and (ab)c
+ (bc)a + {ca)b. Then its envelope ULv = the free associative algebra
AssV generated by V (the quotient of Av by 1ideal generated by all
expressions (ab)c — a(bc)) and its graded algebra is isomorphic to the

symmetric or polynomial algebra SLv over Lv .

REMARK. The free Lie algebra LV is interesting number

theoretically because its dimension function is given by

R n_ 1 n/m
d1mLX = — Zm|n p(m) N , where

1 _ pin)
c(s) -~ L s
{(s) being the famous zeta function of RIEMANN ! It 1s interesting

combinatorially because enumeration of words is often facilitated (see
e.g. GARSIA in Analysis, Etcetera) by using the known graded bases —
Hall basis, Lyndon basis, etc. — of LV . For group theory Iits
importance rests on the fact (see Example 2) that it is the Lie algebra

arising from the lower central series of the free group Fv on the set V.

REMARK. There is a group homomorphism  of Fv into the
multiplicative semigroup of formal associative series over V (i.e.

completion Ass,, of Assv) defined by v +— 1 + v, V x € V. The nth

\
dimension subgroup consists of elements whose series have non-constant
terms of degree =z n. In this free case (but not 1in general !} this

subgroup coincides with the nth term of the lower central series.
REMARK. Note that the usual exp and log series set up a one-one

correspondence between all formal power series with no constant terms

and ones starting with 1. In his 1898 paper Poincaré uses PBW to check
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that there is a formal power series z € L{x v} such that z =
loglexp{x)exp(y)). (This result had been proved before by CAMPBELL, and

the explicit expression for z, which starts
z(x,y) =x +y + %-[X,y] + I%—[x,[x,y]] + (quite hard to guess !),

is called the Campbell-Hausdorff-Baker-Dynkin formula.)} Note that this

series obeys the "group-like" rules :
z(x,0) = x, z(0,y) =y, z(z(w,x),y) = z(w, z(x,y)).

(We met these formulae once before while doing a proof in (4.2). This
notion of BOCHNER, now called formal group, crops up in many places in
topology !) Using now some differential equation theory Poincaré
integrates z{x,y) obtaining, thanks to above rules, a chunk near
identity of a Lie group G having‘a pre—assigned Lie algebra g, and so by
analytic continuation, the entire Lie group G. This result, called
Lie’s third theorem, is the main object of Poincaré’s paper, with PBW
only taking up & 3 of this classic. (The modern proofs of Lie’s theorem

— see e.g. Serre — also run on these same lines.)

(6.3) Poincare’s proof. There are now numerous proofs of PBW (see
e.g. the books of SERRE, CARTAN-EILENBERG, JACOBSON, MAGNUS,
VARADARAJAN, and the paper of GARSIA, and references given there);

however Poincaré’s exposition still remains one of the best.

By composing and adding his N generic elementary operators (say X =
¥ Xi —%;— with all Xi’s algebraically independent) Poincaré forms
: i
non-commutative symbolic polynomials. These are called regular iff each
monomial occurs together with all its re-arrangements, and two symbolic
polynomials are called equivalent iff they are obtainable from each

other by using the relations
XY - ¥YX = [X,Y].

Any symbolic operator 1is equivalent to a regular one.
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Proof. Make polynomial regular by adding all missing
re—arrangements. What we have added is equivalent to a lower degree
operator {(use fact that in above relations the right side has lesser

degree)} and so we are through by induction. g.e.d.

Now Poincaré asks (a "homological" question !) : is this reduction
unique or, put another way, should a regular sum of trinomial products,

P(XY - YX — [X,Y])Q, be necessarily null ?

To answer that it must be, Poincaré first looks in it at the sum of

the highest degree binomial products
P(XY - YX)Q

contributed by its trinomials. By degree considerations this part is
surely null, which implies that all these terms can be rearranged as a

sum of circuits, where a circuit means a cyclic sequence
, P(XY - YX)Q, Q(YX ~ XY)R,

Using this the question boils down to showing that any circuit
occurs thus as all the highest degree terms of some null regular sum of
lrinomial products (again note "homological” flavour !) and once this,

the main step in the proof, is done, he is through by an induction.

We omit how Poincaré does this “main step" and instead just mention

an example which he gives at the very outset.

Example.

(6.4) De Rham theory of Lie groups. The T.A.M.S. 1948 paper of
CHEVALLEY-EILENBERG (which begins modestly enough with a disclaimer to
any "deep originality" !) is a very good entré into de Rham theory, the

reason being that this becomes easy and very beautiful for Lie groups,

and this case also illuminates the general case vividly.

For example, for a general closed M, it is not a priori obvious why
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the infinite dimensional (over R} de Rham complex should even have a
finite dimensional homology ! However for the Lie group case there is a

ready explanation ... but before we get into that lets recall the basic

DEFINITIONS. By a degree r form of a manifold M 1is meant any
multilinear skew-symmetric A-linear (here A = Cm(M), as in Example 1 of
6.2) map v : Der(A) x ... x Der(A) —— A. We’ll denote by O (A) the
A-module of all these r-forms, and the direct sum Q = ®PZOQP(A) will be
considered in the usual way as an exterior algebra of the A-module of

1-forms.

For any f € A let df € Ql(A) be the 1-form given by df(X) = Xf (so

in local coordinates df = 9£~.dx + ...+ éi—.dx ). Note that Ql(A) is
axl 1 Ix m
m

the A-module generated by the symbols df, £ € A, subject to the
relations d(fg) = df.g + f.dg. (This point shows how to extend these
definitions to any commutative algebra A.) More generally the exterior

derivative d : 9 (A) —> @ "1(A) is defined by

fO.df'l Ao A dfn — dfo A df1 A ... A dfn .
*
Thus (2 (A),d) becomes a graded-commutative graded differential algebra
(DGA). (Here superfixes are used because the construction is

contravariant in M, note that it is covariant in A.)

The cohomology algebra of (Q*(A),d) is called de Rham cohomology
and is denoted H;R(M) or H;R(A) . It will be considered as a functor bZ
associating to each smooth function f : M —» N the algebra morphism f

c®(N) — Cc®(M), g +— gof, which extends to a DGA morphism £ )
—> Q(M).

With these definitions out of the way now lets look at the case M =
G of a Lie group. We have now, within Q(A), the DGA (Q(g),d) of all
left-invariant forms of G. Since this is clearly finite-dimensional (it
can be identified with the exterior algebra of the tangent space at 1 €

*
G) the finite-dimensionality of HDR(G) is explained by the following.

Theorem. For any closed and connected Lie group G the inclusion
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Q(g) — Q(G) induces an algebra isomorphism in cohomology.

Proof. The point is that G (assumed oriented) has a unique
bi-invariant Haar measure (in fact a smooth degree r form) vol(G) with
integral IG vol(G) = 1. Also note (because of connectedness) that each
left translation Lg is homotopic to identity. Using these it follows
that within any de Rham cohomology class [w] we have the left-invariant
closed form IG Lg*(w).vol(G). Finally note that if there is any form 6
with d6 equal to a left-invariant form w, then we’ll also have d@ = 0,
where once again ® 1is the “averaged" (and so left-invariant) form

*
fGLg (6).vol(G). gq.e.d.
We next sharpen this to the following beaufiful

*
Theorem. HDR(G) is isomorphic to the subalgebra of Q consisting of

all bi-invariant forms (i.e. both left and right invariant).

Proof. For this consider the action of GxG on G given by (g,h).k =
gkh. Forms invariant under it are precisely the bi-invariant forms of
G. So we can argue just as above using averaging over this action. To
check that each bi-invariant form is closed use the formula [d,LV] = Lv
(see 6.4) and the fact (immediate from definition of Lv) that a

left-invariant form is right invariant iff va =0Vveg gqg.e.d.

REMARK. In case G is semi-simple, i.e. has a finite fundamental
group, it admits a bi-invariant Riemannian metric < , >, The
bi-invariant forms are precisely those which are harmonic with respect
to it, i.e. those which satisfy the generalized Laplace equation dd* +
d"d = 0, where the adjoint differential operator d : o —s o is
defined by IG<dw,9>.vol = fG<w,69>.vol. A theorem of HODGE says that
for any Riemannian manifold M the vector space of all harmonic forms has
the same dimension as H;R(M)’ but note that in general (unlike this case

M = G) the exterior product of harmonic forms need not be harmonic.
As the proof above shows it is useful to consider actions of G on

manifolds M other than G also. Another point is to also consider (cf.

4.9} forms Q(M;V) with coefficients in any G-vector space V. Defining d
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Q(M; V) — Q(M;V) in the expected way one now has a .cohomology
H;R(M;V). This time one has the distinguished subcomplex of equivariant
forms, i.e. those which transform under the left action Lg of Gon M as
per the given action Pg of G on V. However, foi non-trivial
representations V, the equivariant de Rham cohomology HDR(M;V,G) thus

»*
defined can be much smaller than HDR(M;V).

Theorem. If V is an irreducible non-trivial representation of G

*
then HDR(M;V,G) is zero.

Proof. Let [w] be any equivariant de Rham class and z any smooth
singular cycle. By de Rham’s theorem (see Chapter 3 and 6.5 below) it

suffices to check fzw = 0 which follows from the given hypotheses on V

because

i
e
=

oQ
*
€

]
[

€

I
oy

€

Pg(fzw) = IZ Pgw

where the last step again uses Lg ~ id. gq.e.d.

Corollary. For any representation V, the equivariant de Rham
*
cohomology HDR(M;V,G) consists of as many copies of the homology of the

Lie group, as the number of copies of the trivial representation R in V.

Thus, thanks to de Rham’s theorem (which was conjectured by
E.CARTAN for just this purpose !} the calculation of the real cohomology
of a Lie group G (even with non-trivial coefficients V) has now been
reduced to a problem of linear algebra, viz. of finding all the
bi-invariant forms of G, a problem which we’ll re-formulate still more

explicitly in the next section.

REMARK. However the homology of the classical Lie groups was first
calculated by the young (and already blind) PONTRJAGIN by using an
explicit and elegant cell subdivision (shortly after he had attended,
with his mofher as interpreter for him, a talk which E.Cartan had given
in Moscow). Likewise, HOPF had proved that the real homology of a Lie
group Iis that of a product of some odd dimensional spheres, without

using any de Rham theory.
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(6.5) De Rham theory of Lie algebras. Let Q(g;V) be the forms on G
equivariant in the sense of (6.3) with respect to the left action Lg of
G on G, and the action Pg € Aut(V) of G on V. We’ll denote by p, €
End(V) the action of g on V obtained by differentiating the action Pg.

+ .
Theorem. The exterior derivative 4 : QP(Q;V) —s o 1(g;V) is
given by
i+1 -
(dw)(vy, ooy v ) = L (-1 pviw(vl, s Vi v Vegq) *
_ i+j+1 ~ ~
Zi<j (-1) .w([vi,vj], Vis cr s Vi e VJ, e, vr+1L

Proof. Despite its forbidding appearance this formula is not very
hard. For example, for trivial coefficients V = R, only the second term
on the right remains, and is easily seen to be (like d) a derivation of
2 of degree +1. So it will suffice to do the caser = 1, called the
Maurer-Cartan formula, which follows (Exercise) by a short local

computation. gq.e.d.

Note that each v € g determines a tangent vector at 1 € G which in
turn determines a right invariant vector field of G. We’ll denote the
derivative with respect to this flow by Lv ; clearly this Lie derivative
is a derivation of Q of degree 0. Also one has for each v € g the
derivation of degree -1, called interior product with v, which takes any

1-form w to the number w(v).

Exercise. Work out the following closed formulae for these

derivations :

(va)(vl, Cee vr) = Zi w (Vl’ ce [v,vi], s v

wlv,, .. v v

(i w) (v ; cwlv, (-1’

1’ s Vi+1, PR

Exercise. Show that, amongst the derivations LV , Lv and d of
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graded-commutative Q, one has the following (signed) bracketing rules :

(d,d]

1]
o

[¢c , ¢ ] =0, fL , L1=1L
v W v

1]
[t

- = d .
[LV > Lw] L[V,w]’ [LV b3 d] 0; [l-'v) ] v
(Hint. Check equality on generators of Q.)

REMARK. These derivations Ly, o LV (and of course d) all make sense
for the algebra Q(M) of any manifold M and for any vector field v of M.
All the above bracket formulae are valid, and one has similar closed
formulae for the three derivations, with vector fields being now
~arbitrary. For instance, the closed formula for d is exactly as given
in above theorem, with V = C®(M) now, and action pvf = v(f). Thus
(think this one out !) an arbitrary smooth form on M can be
heuristically considered as an equivariant form on Diff(M) (a "Lie
group” whose "Lie algebra" consists of all vector fields on M ') with
coefficients in C(M). (It is this heuristic analogy — thinking of any
M as a homogenous space of the "Lie group" Diff(M) — which makes
looking at the case of Lie groups so instructive for understanding de

Rham theory of any M.)

To save time we don’t want to enter into the details of Elie
Cartan’s programme (e.g. the explicit computation of the bi-invariant
forms of a semi-simple g), but we note that, thanks to the above formula
for d, it now makes sense to talk of the cohomology H(g,V) of any Lie

algebra g with coefficients in any representation V of g.

Theorem. For any g we have Hq(g,Ug) = 0 for all q =z 1 provided Ug

is equipped with the g~action a +—> vea ¥V v € g.

Proof. Identifying skew-symmetric maps g x ... x g — Ug with
Ug®Ag we see that the assertion is equivalent to the the acyclicity of
(UgeAg, d,) where d, is defined by

i+1

d, (a; VA e A vr) = Zi(—l) (vi.a; ViAo AV A Vr)
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+ L

1y itd L. ‘
i< (-1) (a; [Vi’vj]’ Vis e Vi oo 3

To check this we filter (UgeAg, d,) by total degree. By the PBW
theorem, the (Eo,do) of the resulting spectral sequence is SgeAg
equipped with the Koszul differential, which we know {see Chapter 5} is

acyclic. So E1 and thus EOo is trivial. gq.e.d.

%*
Exercise . Is the above vanishing theorem equivalent to the

Poincaré-Birkhoff-Witt theorem ? (If so, one can deduce the PBW theorem
as a consequence of De Rham’s theorem, for the case when g 1is the Lie
algebra of a compact Lie group, by noting that the above representation

Ug does not contain the trivial representation. )

Given any representation V of the Lie algebra g we’ll consider it
as a Ug-module under the unique associative algebra homomorphism Ug —
End(V) which extends the given Lie algebra homomorphism g —— End(V).
Now, since the above proof tells us that, in the category of Ug-modules,

(UgeAg, d,) is a resolution of F, we obtain the following.
*
Corollary. H (g,V) = ExtUQ(F,V).

Thanks to this result of KOSZUL and CARTAN-EILENBERG (see Ch. XIII
of their book — this is now Henri Cartan, Elie’s son), we can apply to
Lie algebra cohomology all the standard tricks of homological algebra
(i.e. the subject dealing with derived functors, 1i.e. the subject

created by this 1856 C-E book and GROTHENDIECK's 1857 Tohuku paper).

Now let us turn to Ugad, the representation of g on Ug defined by a

—> voea — aov (as against a +— vea above) for all v € g.

Theorem. The Lie algebra cohomology Hq(g,Ugad) is Isomorphic to
the Hochschild cohomology HHq(Ug) of the associative algebra Ug.

Proof. Any Ug-linear map U+3 X ... X U+g —> Ugad gives by
restriction a multi-linear map g x ... x § —> Ug, and conversely any
such map, extends uniqueiy to a Ug-multi linear map U+g X ... X U+g —>

Ug (here U+g denotes operators having no constant terms).
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* d
This allows us to identify the defining cochain complex C (g,Uga )
. .
for H (g,Ugad) as the skew-symmetric subcomplex of the defining
*
normalized Hochschild complex C (U+g,Ug) for HHq(Ug). (This wuses the

fact that Ug carry the adjoint representation ad.)

Exercise. Check that Ly, and Lv also extend in a natural way to all
Ug-multi linear maps U+g X ... X U+g —> Ug (i.e. all .left-invariant
covariant tensors of degree =z 1 of G ) and that now one has Lv.5 + 6.Lv

= Lv where 8 = Hochschild coboundary (cf. C-E, p. 278.)

Further, this inclusion C*(Q,Ugad) — C*(U+3,Ug) induces an
isomorphism in cohomology. This is checked (see LODAY, pp. 97-98) by a
spectral sequence argument analogous to that of the last theorem. One
filters by total degree, and notes that now, for the left side, one has
(Eo,do) = (Sg®Ag, zero), while for the right side one has (Eo,do) =
normalized Hochschlid complex for the polynomial algebra Sg. Now one
uses the fact that the Hochschild homology of a polynomial algebra is
isomorphic to the algebra of its differential forms to obtain an

isomorphism of the E,, and thus the E00 terms. gqg.e.d.

17

Likewise (cf. LODAY) we can see that the Hochschild cohomology of
Ug with coefficients in any bi-module M coincides with the Lie algebra
cohomology of g with coefficients in the representation Mad of g given

by restricting to g the difference of the left and right actions of Ug.

Since in particular the trivial Ug-bimodule R gives the trivial

representation R of g, we obtain the following striking result.

Corollary. The real cohomology of a compact Lie group G coincides
with the Hochschild cohomology with coefficients R of the algebra of all

left-invariant differential operators of G.

REMARK. More generally CONNES saw that the real cohomology of any
closed manifold M can be calculated directly (via the cyclic quotient of
its Hochschild complex) from a suitable operator algebra, e.g. (a

closure of) the algebra of smoothing operators of M. The exciting thing
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is that this algebra generalizes (one has to take a little care
vis-a~-vis holonomy) from this "one-leaf case" to any foliation (but now
need not be stably equivalent to any commutative algebra) and it turns
out that this cyclic cohomology still gives topologically meaningful

results whereas classical theory does not.

(6.8} De Rham theorem. The 1933 proof of DE RHAM had used a c”
triangulation of M (an assumption which was shown to be justified only
later). So WEIL had reformulated the argument in terms of open
coverings instead of triangulations. This in turn was later
reformulated in the language of sheaves as follows (cf. HIRZEBRUCH,
Topological methods in Algebraic Geometry, 1956, pp. 36-37).

We note that the vector space Q"(M) of all smooth r-forms of smooth
manifold M consists of all the sections of the sheaf ?;h(M) of germs of
all smooth r-forms on M. Thus the De Rham complex (§ {M),d) is obtained
by applying the functor "section" to the complex (Q:h(M),d) of sheaves.

E ]
Theorem (Poincaré’s Lemma). The complex (Qsh(M),d) is exact.

*
Proof. Clearly this amounts to saying that HDR(Rm) = 0 in all

positive dimensions. For m = 1 this is just a homological reformulation
of the fundamental theorem of calculus viz. that the derivative of an
indefinite integral equals its integrand. An induction which we’ll omit
(Exercise, also cf. Poincaré 1882) starting from this case m = 1 now

establishes it for all m =z 2. g.e.d.

Passing now from Euclidean spaces to an arbitrary M we know already
that the real singular cohomology coincides with its Cech cohomology
(with trivial coefficients R). Using the above lemma we will now check
the same for De Rham cohomology.

Theorem. De Rham cohomology coincides with Cech cohomology.

Proof. We first note (use partition of identity) that each of the

sheaves Q;h(M) is fine : this means that given any locally finite open
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cover U of M, we can find endomorphisms of the sheaf supported on the

members of U, which add up to the identity morphism of the sheaf.

Composing local sections with these endomorphisms and adding (cf.

Hirzebruch, p.34) one can define a chain contraction of the Cech cochain
* .

complex C (M;Q;h(M)). So it follows that the Cech cohomology of each of

the sheaves Q;h(M) is trivial.

The remaining argument uses only this and 1is purely homological

(cf. 2.20 or Hirzebruch, p. 38). gqg.e.d.

REMARK. The above proof is also very close to the main ideas of
GROTHENDIECK’s 1957 Tohuku paper. He showed that in the category of all
sheaves on any space M, one can find, for each object S, an exact
sequencé.S -—3 SO —> S1 —> ... where each sheaf Si is an injective
object of this Abelian category. Also he showed that, for a paracompact
space M, Cech cohomology of H*(M,S) coincides with the derived functors
of the section functor : i.e. it is the cohomology of the cochain
complex obtained by applying the section functor to the above exact
sequence of injective sheaves SO — 81 — ... {so for arbitrary spaces
the right way of defining sheaf cohomology is as these derived
functors). To see this one notes that Grothendieck’s cohomology is
unaffected if we merely assume that these Si's are such that these
derived functors are trivial for them, and then one uses the
paracompactness of M to define such Si’s for which one recovers the Cech

cochain complex.

REMARK. Thus Poincaré’s Lemma serves to show that De Rham
cohomology is a derived functor, just as the PBW theorem served to show
that (the intimately related) Lie algebra cohomology is a derived
functor. Also we have indicated in (6.4) how in one case PBW probably
follows from De Rham’s theorem, and as mentioned in (6.1) will also show
that conversely PBW implies a De Rham theorem. To get to that stage we
have to make the definition of De Rham cohomology more combinatorial and

so we now take the first step in this direction.

(6.7) Differential forms on simplicial complexes. In his 1957

146



lectures at the University of Chicago, THOM showed how to compute the
real cohomology of any simplicial complex K by means of forms. (Much of

this was also anticipated in WHITNEY's 1856 book.)

REMARK. An account of Thom’s work was published only much later by
SWAN (see Topology of 1975) who pointed out that Thom’s proof works over
0 also. In the meanwhile SULLIVAN rediscovered Thom’s complex, and used
this explicit solution of the "commutative cochain problem” (see below :
this had been solved in a more abstract way by QUILLEN who too was

unaware of Thom’s work) to build up his De Rham Homotopy Theory.

The key point which Thom noted was that one should not use Just
smooth forms (i.e. restrictions to |K] of smooth forms of an ambient
Fuclidean space) but piecewise smooth forms. Here a piecewise shodth.
r-form w on K is one which associates to each simplex o of K a smooth
r-form W of Aff(c¢), in such a way that whenever 6 £ ¢, then under the
map of forms induced by the inclusion Aff(8) ¢ Aff(o), the form @
should image to w_. Obviously if w = {wa} is piecewise smooth, then so

3]
is dw := {dw }.
o

Note that the complex of piecewise smooth forms is bigger than that
of smooth forms : e.g. if K is n-dimensional a piecewise smooth form is

obtained by assigning to each o € K any n-form w_ on Aff (o).

Note also that it is meaningful to ask that the coefficients of
each W be in the rational polynomial ring @lvertK]; if this holds then

we’'ll say that we have a piecewise polynomial form w over Q.

Theorem. For any simplicial complex K the cohomolbgy algebra of
the De Rham complex C (K) of all piecewise polynomial forms of K over @

is functorially 1somorphlc to the rational cohomology algebra H (K;@).

Since furthermore this DGA C (K) over @ is graded commutative
and such that any inclusion L € K 1nduces a surjection C (K) —> C;h(L)
follows that CTh is a solution of the "commutative cochain problem"
(i.e. the problem of finding a functor from simplicial complexes to

DGA’s over @ having all the stated properties).
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Proof. We’ll follow Thom and use the Eilenberg-Steenrod axioms.

qg.e.d.

REMARK. One can regard the above as a combinatorialization of the
De Rham complex analogous in some sense to the combinatorialization Kpl
of the singular complex of K. Later we’ll consider another more
striking solution of the commutative cochain problem, due to CONNES,
which is akin to the combinatorialization Kkan of the singular complex

considered in Chapter 4.

Exercise. Show that the commutative cochain problem over Z has no

solution. (Hint. Take any K with non trivial Steenrod squares. )

(6.8) Cyclic vector spaces. In his search for an analogue of De
Rham cohomology for a certain non-commutative algebra (namely the
convolution algebra of smoothing operators along .the leaves of a
foliation) CONNES discovered cyclic cohomology. To understand the
homological algebraic aspects (= Connes’ C.R. note of 1883, also see
LODAY’s book) of this construction we will begin by working out as an

example a {co)homology that we had defined in (2.18).

Note. The reader should keep in mind that the argument given below
is absolutely general in the sense that it applies to any "cyclic vector
space” (a notion that we’ll define below) excepting the very last step

which is particular for this example.

Theorem. Over rational coefficients one has

cycl o
H, (Kassoc) 2 H, (K)o H*—Z(K) ® H*_4(K) ® ..
Proof. The set of rational vector spaces C = C (K )
q q assoc
constitute a (complete semi-) simplicial vector space with face and
degeneracy operators 8. : C — C and s, : C —> C bein the
v oP i q q-1 J q q+1 &
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linear maps defined on vertex sequences by omissions and repetitions.

Moreover for each q we define linear map tq :'Cq —> Cq by

t (v.v

_ _4194
q o 1...vq) = (-1) .(qu Y ).

0 g-1

It is easily checked (Exercise) that this turns this simplicial
vector space into a cyclic vector space i.e. that the following
relations hold (cf. Loday, p.75, a categorical reformulation of this

definition will be given later)

o+l = n a3 L2
t,yo=id , 84t = (1) ., syt = (-1)".t  ..s , and
8ty = 41921 0 Sity T T tpeqSyoq forl=i=n

It follows in a straightforward way from these (Exercise or see
Loday, pp.76, 52-53) that the following diagram is a bicomplex, i.e. the
horizantals 8 (= id - T or N) and verticals aver (= 8 or - 38)

hor
obey the relations :

6hor‘ahor‘ =0, ahor'aver' * ahor*aver‘ = ' veraver =
3 |-8’ 3 |-8’ 8
id-t v N id-t v N id-t
id- id- id-
C C2 C2 ¢ C2 C2 ¢
-8’ -3’
id-t N id-t N id-t
C C1 C1 € C1 ¢ C1
8 -8’ 8 -8’ 8
d d
id-t N id-t N id-t
CO ¢ CO Co CO CO ¢

Here 0 denotes the wusual alternating sum J, (—1)16i of face
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operators, while 8’ denotes a similar alternating sum of all except the
last of the face operators ; on the other hand t denotes tq's and N

denotes the sum id + t + t 2 + ... + t q .
q q q

The "rows-first"” spectral sequence. Since we are working over the
rationals the rows (note that the qth row is the periodic resolutions of
the Z/q+1 - vector space Cq) are acyclic. So the first term of this‘
spectral sequence is zero except for the first column which becomes

cycl

(c;7° (k ),8) := (C,(K

} /im(id-t) , 4).
assoc assoc

So this spectral sequence’s second term is final and equals the
left-hand side H:yC1(Kassoc) of the desired formula. Of course this
final term is also equal to the total homology of the bicomplex, i.e.
the homology of the corresponding singly-graded complex (with grading
constant on lines x+y = const. of above picture) under the the
differential 8 = g + 8 . Now we turn to the other spectral

tot hor ver
sequence of this bicomplex, which also of course converges to this same

total homology.

The "columns-first" spectral sequence. The odd columns of the
first term of this sequence now consist, by definition, of the homology
groups H,(C) = H*(Kassoc)' On the other hand the even columns become
zero : this follows because the last degenaracies s supply us (Exercise

or Loday, pp. 77, 47) with a chain contraction : s8’ + 8’s = id.

The second term of this spectral sequence is thus as follows :
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\\\

HZ(C) o H (c) 0 H2(C) o H (€)

g

Hl(C) 0 H (C) 0 Hl(C) 0 H (C)

NN

HO(C) 0 H (C) 0 HO(C) 0 H (C)

/ .

i

To proceed further we will use the fact (: see Loday, pp. 77-78)
that d2 is induced by the Connes’ boundary map B : Cq —> Cq+1 ,  which
is defined by B = (—1)q+1(id—tq+1)sN . (We emphasize that upto here the

argument works for any cyclic vector space.)

Now we use the fact that skew-symmetrization C*(Kassoc) —>
Cilt(K }) = Ci(K) (= oriented chain complex of K) induces an
assoc
isomorphism in homology. (This we had proved in 2.18 by using the

Eilenberg-Steenrod uniqueness theorem.) So it follows firstly that the
odd columns of the above picture comprise of the wusual simplicial
homology H,(K), and secondly, since the action of B on any vertex
sequence results in vertex sequences with repeating vertices (which die
under skew—symmetrization) that the dz’s are all zero. So the above

second term is indeed the final term. Summing along the lines xty =

constant we obtain the right side of the desired formula. gq.e.d.

. , dih
Exercise . Show that H, (K
assoc

().

R
@
jant

*

k=0 2K

REMARK. We note that K = Kg was an %-object i.e. a

assoc
contravariant functor from the category ¥ of all set maps [p] — I[ql.
This category happened to contain five "nice” subcategories
containing # (that of increasing maps) and this had given us the five

cochain complexes :
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* * * *

2
¢ (Kassoc) 2 Crev(Kassoc)’ Ccyc(Kassoc - Cdih(Kassoc

i

* * *

(K

=2
Crev(Kassoc) n Ccyc(Kassoc) - calt assoc

More generally for any group G we have the category &, of all
maps [pl, — [ql, between deleted joins (see 4.12) of the standard

simplices {p] {for G = 1 one gets ¥, = ¥) and one can likewise associate

to any simplicial complex K an ¥, - object Kg . One can work out
*

completely (see  FIEDOROWICZ-LODAY, op. cit.) all the "nice"

subcategories of ¥, (it turns out that only the case G = Z/2, viz. of

octahedral spheres [pl], , needs to be worked out by hand). For each of
these one gets a (colhomology of the simplicial complex K : thus one
gets a whole slew of (co)homologies of K which includes the equivariant

cohomologies and many more whose computation seems a natural problem.

To see what all this has to do with the De Rham cohomology of K

(see 6.7) we need to look at a different cyclic vector space :

For this we'll use the commutative algebra A = AK of all polynomial
functions with rational coefficients on |K| (or Aff(K)). We now put
Cq(AK) = (g+1)-fold tensor product of A {(over the base field Q). The
face operators are define a la Hochschild i.e. one composes with the
element cyclically in front. The degeneracies are defined by insertions

y

of 1, and rotations with signs -0t give the tn S.

The ordinary homology of this cyclic vector space (i.e. of the odd
columns of the bicomplex) is called the Hochschild homology of K (or of
the algebra AK) and will be denoted HH,(K) (or HH,(AK)) while the cyclic
homology (the final first column of the "rows-first" spectral sequence
of the bicomplex) will be called the Connes’ homology and denoted HC,(K)
(or HC,(AK)). It connects with 6.7 as follows.

Theorem. If all the proper links of a simplicial complex K are

Cohen—-Macaulay over Q then its cyclic homology over Q is given by
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So, in conjunction with Thom’s de Rham theorem (6.7) we obtain, for

all such simplicial complexes K (e.g. for simplicial manifolds)

HC_(K) = H (K)o 200 o %K) o ...,

CyC(K )

which coincides, except for the first summand, with H .
r assoc

Proof. The main point is that under the given hypothesis on K the
commutative algebra A = AK is a smooth algebra in the sense of Loday, p.
101. Thus § 3.4 of Loday applies and computes the “columns-first"

spectral sequence of the bicomplex as follows.

We have the Hochschild-Kostant—-Rosenberg theorem which says HH,(A)
*
= 0 (A) for such smooth algebras. So now the second term of this

spectral sequence reads :

/

) o 92 o 0% (A)

%

oty o Nalw o Netww al(a)

%
AL

In the above we have put d for d2 because it turns out that the

latter, i.e. the map induced by the Connes’ boundary operator B now

coincides with the De Rham derivative d !!

Thus the third term of our spectral sequence coincides with the
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stated right side of our formula. The result follows because an easy

argument shows (cf. Loday) that this must be the final term. gq.e.d.

REMARK. Note that though De Rham cohomology is a contravariant
functor from simplicial complexes K it is a covariant functor from their
polynomial algebras AK. This explains the at first sight curious

admixture of homology and cohomology in the above proof'.

The most striking point in the above was : the Connes’ boundary map
B is a lifting to C,(AK) of the De Rham derivative d of Q(AK). As Loday
points out in his book this fact had actually been observed by Rinehart
in a 1963 paper. We would like to point out that this was apparently
known even to Poincaré as long ago as 1895 !!- for this we will, in the
next section, look carefully at a formula given in § 7 of the Analysis

Situs, and then compare it with the B defined above.

(6.9) Non-commutative differential forms. In this section we’ll
define these, over any simplicial complex K, and using the P-B-W
theorem, give a non-commutative version of De Rham’s theorem, the usual
one being its skew-symmetrization. By skew symmetrizing partially, i.e.
only over rotations, we’ll also define a cyclic De Rham cohomology which
is related to the ordinary one just like Hiyc(Kassoc) was related to
H,(K). We’ll also look at the relation between it and the cyclic

homology of the algebra of polynomial functions on K.

(To be written.)

(6.10) Shifting. We now give a construction of KALAI which
associates, to any simplicial complex K, a combinatorially simpler
simplicial complex AK, having, in each dimension, the same number of

simplices, and the same Betti numbers {over a chosen field F) as K.
Here, by "combinatorially much simpler”, we mean that the new

complex A is shifted, i.e. that (with respect to some total order of its

vertices) if it contains o, and the equi-dimensional set 6 of vertices
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has respective vertices = those of o, then A will also contain 0.

For the construction we'll think of C*(K), i.e. the vector space of
alternating functions from verthté F which wvanish on sequences of
vertices not supported on K, as the obvious quotient algebra of the free
exterior algebra A generated by the vertices over [. We’'ll later use

»* *
the following formula for & : C.(X) —»C +1(K) which obviously holds :
Sw = (sum of all vertices) A w.

We will also use a graded algebra automorphism X : A — A. Note

that it is determined by its restriction to the vertices {vl, v2, .. ,

vN} __ this order will be important in the following) — 1i.e. by the
NxN matrix [cij] over F defined by X(Vi) = Zj cij vj . Given any subset
o of {1, 2, ... , N} we’ll denote by Vo the wedge, taken in order of

increasing indices, of the vertices vi, i € o. We'll denote X(vc) also

by xU . go it is the analogous wedge of the xi’s with i € o.

Under the vector space projection A — C*(K) this Dbasis *{XU}
projects to a graded spanning set of the graded vector space C (K).
From it we seive out all elements which depend linearly on the lexico~
graphically preceding elements. Thus we obtain a basis of C (K) which

will be our AK. We now look at its salient properties.
b In each dimension AK has as many simplices as K. Obvious.

> Like K this set of simplices AK is also a simplicial complex.
This follows because wedging 2 lexicographic dependency with a fixed

exterior monomial X gives another lexicographic dependency.

> If X is generic then AK is shifted. Here Dby generic we mean
that the Galois group (of all field automorphisms of F, we’ll extend
each of these to an FO— algebra automorphism of A in the obvious way)
contains the group of all permutations of {xi}. From now on X will

always be assumed generic.

The above assertion follows because if we apply, to a g-dimensional
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lexicographic dependency, a (q, N-q) shuffle, then we still get a

lexicographic dependency.

> The qth Betti number of AK equals the number of its
g-simplices o not containing Xy for which Xp- 0 ¢ AK. To see this note
that the sphere a(xl.a) € A, and this sphere does not bound, for
otherwise we’ll have Xl.U'E A. Also these cycles X0 are easily seen
to be independent. In fact AK has the homotopy type of this bouquet of
spheres V(r (xl.u). (The shifted nature of AK likewise immensely

facilitates the verification of many assertions, so we’ll generally be

leaving these as simple Exercises from now on. )

*
Thus the homology of € (AK) (considered again as an exterior

algebra) equals ker(x A)/im(xlA). We now check that same is true for K.

1

> The homology of C*(K) equals ker(xlA)/im(xlA). To see this
consider the algebra automorphism of A which multiplies each vertex vy
with the ith element of the first row of the matrix [Cij]' Clearly this
diagonal automorphism preserves the defining ideal of the quotient
exterior algebra C*(K). The result follows now from the coboundary
formula given above because under this automorphism of C*(K) the sum of

the N vertices becomes xl.

REMARK. This key property is quite similar to that used by WITTEN

in his paper on Morse theory, we’ll look at this point more later.

> AK has the same Betti numbers as K. Since it has the same face
numbers clearly all that is needed is to check (because of the last two
properties) that in each of them im(xlA) has the same dimensions. This
follows easily because this equals the number of simplices of AK which
contain the first vertex Xl'
*
REMARK. It follows that there exists a cochain isomorphism C (X)
—> C*(AK). Sometimes it is useful (see below) to have an explicit
cochain isomorphism : one such is given in my paper in the Res. Bull.

P.U., 18993.
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As a typical combinatorial application of shifting one has the

following result of BJORNER-KALAI.

Theorem. For any K there exists a simplicial complex E such that
the number of i-simplics of E is Ki + Bi of which precisely Bi are

maximal i-simplices.

Here Bi is the ith reduced Betti number of K and Ky is the
alternating sum (fi - Bi) - (fi+1 —-Bi+1) + ... (so Ky s the usual
Euler characteristic). The enumerative significance of the statement
"there exists an s.c" of course stems from the Kruskal-Katona theorem

which we mentioned previously in (4.6).

Proof. Take E = AK \ Stxl. An easy computation shows that this

has the required properties. gq.e.d.

REMARK. Bjorner-Kalai also showed conversely that the conditions
given by the K~K theorem, the above result, and the Euler-Poincaré
formula, characterize all pairs of sequences (f,B8) which arise from a
simplicial complex as (face sequence, Betti sequence). Starting from

this a combinatorial analysis then enables them to work out the maximum

value of B for a fixed f. This last result — the maximum occurs at the
compressed complexes, i.e. those closed with respect to
anti-lexicographic order — had been found previously by me in the Jour.

Combin. Theory of 1988.
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Problems :
0 22T series etc, geometric interpns, enumeration ?
0 Z/2-minimal complex, Z/2-homology, finding Kuratowski obs there ?

0 A metric-dependent definition of homology of a Banach space which for

case C(X) will give homology of X ? (cf. see Eilenberg, Annals 1942.)

0 Connecting Z2-Z computations with Hochster, FAC computations, singular

Dolbeaut degenerates ?

PRy

0  Representation of Kassoc by generic differential operators,

definition of minimal model out of this ? connection with shifting ?
0 Proof of de Rham via PBW 7

0 Computation of Dyson homology ? Connection with any other, e.g.

Poincaré’s homology of a lattice ?
O PBW formulable as a homology vanishing theorem ?

o Can H,(K) = H,(AK) be "explained" by first identifying it with a

derived functor ?°



MEMO. Lectures 31/8, 2/9 (Po); 7/9, 9/9, 14/9, 16/9 (E-S): 21,9, 23/9
(Po) (first handout upto here); 27/9, 28/9, 3/10, 5/10, 10/10, 12/10
(E-Z/M/Z/Hu); 26710, 28/10, 2/11, 9/11 (E; E-Z; E-M; P), 11/11 (z/2)
(second handout approx. till here), 16/11 (Po+Kan/Moore), 18/11 (hol),
23711 (May~- 18711 was hol), 29711 (on Tue none on 25/11 D.S: May contd),
2/12 (realiz, Segal), 9/12 (7/12 was hol: Olym, Ramsey, realiz contd),
14712 (vizualizing functors, Zieg-Ziv pf of Gor-Mac, CM, Hoch), 16/12
Ext’s depth etc, FAC), 21/12 (Kassoc’ PBW, Serre, new pf of de Rham 7,
Dyson, UBC from old), 23/12 (Ch-Ei, C-E thm using PBW, de Rham sheaf,
Thom’s) (Total # 28). '

Eilenberg’s other ﬁ%rks: a p Borsuk-Ulam theorem, L-S category of groups
with Ganea, a fixed point theorem for multivalued functions with
Montogomery, and a fundamental theorem of algebra for quaternions with

Niven, etc.

Posnikov pts : p.10 "wild blossoming"”, n-types, “strongly connected",
local coeff vs. "over a 1-cocycle" (multiplicative cohomology sets), why

second derived needed.

Brown’s 4CT ref., Wan (Thurst. BAMS) for finite field combin/ Weil,
Abe's paper re non-Abelian nq, Whitehead’s exposition of duality (star

or locally finite — closure finite)

Other BU applications : Zivjalj on Sierksma, Matousek, Tverberg. To

complete :

(4.18) Z/2 - minimal complexes

(4.17) Kuratowski obstructions

t4.18) A combinatorial classification theorem
(4.18) Van Kampen - Wu — Shapiro theorem
(4.12) Embedding 2-complex in 4-space



