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Abstract. For any d (resp. for almost all d) we compute the least number l(d) of vertices which a
triangulation K of the 2-sphere (resp. any other orientable surface) must have in order that there
exists a degree d simplicial map from K to the 4-vertex 2-sphere.We also prove an analogous
result for uniquely 4-colourable Ks.
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There is an intimate connection between topology and combinatorics stemming from
the fact that many spaces are, at least upto homotopy type, realizations of (¢nite)
simplicial complexes. Though `¢nding small triangulations' of such spaces is a topic
of active current interest, analogous questions aboutmaps between them have, some-
what surprisingly, remained neglected. To mention just one, for any homotopy class
I of maps X ! Y � jL j, what is the least number lL(I) of vertices of K, as K runs
over all triangulations of X admitting a simplicial map K ! L contained in I (the
simplicial approximation theorem ensures that such Ks do exist)?

The question just posed seems most alluring for maps into the sphereY � Sn, from
any polyhedronX of dimension n. This because now a theorem ofHopf ^ see, e.g., Hu
[2], Chapter II, Section 8, for a very readable account ^ tells us that the homotopy
classes I are classi¢ed by the cohomology group Hn(X; Z). This correspondence
depends on the choice of an orientation of Sn, and is given by I$ f ��on�, where
on denotes the generator of Hn(Sn; Z) � Z determined by the orientation, and
f : X ! Sn is any member of I. So, if X is an oriented n-manifold, then homotopy
classes are classi¢ed by the integers Z, by assigning to each its degree d(I), de¢ned
by f ��on� � d�I� � onX . Equivalently, f��o X

n � � d�I� � on, where oXn and on denote
the dual generators of the nth homology groups, i.e. the fundamental cycles of
X and Sn, respectively, determined by their orientations. So, if f : K ! L is any
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simplicial map contained in I, then d(I) must be ^ only this simple de¢nition of
degree is used below ^ the algebraic number of n-simplices of K which map onto
any of the n-simplices of L.

There is clearly a degree d simplicial map from the double cone of a 3d-gon to that
of a 3-gon, however, as the following result shows, this uses too many vertices.
Indeed we compute all the numbers lL(I) = l(I) ^ which we can, by above, write
as l(d), where d denotes degree ^ for the case X � Y � S2, with L being the minimal
triangulation S2

4 � {proper faces of a tetrahedron ABCD} of the 2-sphere.

THEOREM 1. If jdjW 1, then l�d� � 4; if jdj � 2, then l�d� � 7; and if jdjX 3, then
l�d� � 2� 2 � jdj.

Proof. Case jdjW 1 follows because no triangulation of S2 has less than 4 vertices,
and a simplicial map S2

4 ! S2
4 has degree zero unless it permutes the vertices, and has

degree �1 or ÿ1, depending upon whether this permutation is even or odd. Since we
can compose with such a degree ÿ1 simplicial self-map of S2

4, it also follows that
from here on we can assume that dX 2.

We'll ¢rst check that l�d�Xmaxf7; 2� 2dg for dX 2. Let g : G! S2
4 be a

simplicial map of degree d, and let l, m and n be the number of vertices, edges
and triangles of G : we have 2m � 3n and lÿ m� n � 2 (Euler's formula). The
required inequality l�d�X 2� 2d is thus equivalent to nX 4d, which is obvious,
for indeed there are at least d triangles of G which are mapped positively by g onto
each of the triangles of S2

4. This follows because, by de¢nition of degree, the excess
over d of these numbers equals the numbers of triangles which are mapped negatively
(i.e. in an orientation reversing way) onto the four triangles of S2

4 . Further, we note
that two triangles of G sharing an edge can not map positively to the same triangle
of S2

4 , i.e. two triangles mapping positively to the same triangle of S2
4 can share

at most one vertex. This gives lX 7, for, if a vertex of S2
4 has at least two vertices

of G in its pre-image, then each of the other three vertices of S2
4 has at least

two vertices of G in its pre-image.
Conversely, seven vertices suf¢ce for degree d � 2. Let G7 be any 7-vertex

triangulation of S2, having a vertex 1 which is adjacent to all the others. The
orientation of S2 determines a cyclic ordering of the links of 1 in G and of D
in S2

4 ; let the latter be (CBA). Now image 1 to D, and image every third vertex
of the cyclically ordered hexagon Link (1) to C, B, and A respectively. This gives
a simplicial map g : G7! S2

4 of degree d � 2. Likewise one can de¢ne a degree
dX 3 simplicial map g from any analogous (3d � 1)-vertex triangulation of S2,
and at ¢rst sight it seems one can't do much better than this.

Actually, just 2d+2 vertices suf¢ce for degree dX 3. To de¢ne our G we will think
of S2 as R2 [ f1g and begin with a regular d-gon surrounding the origin 0 of
R2. On each edge of this d-gon we mount a triangle having a distinct new vertex.
When d is even we will embed these triangles in R2\{0} in such a way that the
new vertices are alternately in the exterior and the interior of the d-gon {Figure
1(b) shows case d � 8}. When d is odd, we will ¢rst place three consecutive triangles
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in the exterior of the d-gon, and then the remaining d-3 triangles alternately in the
interior and exterior (so for case d � 3, Figure 1(a), all three triangles are in the
exterior). Having embedded this complex consisting of d triangles and their faces
inR2\{0}, we now cone its inner boundary over the origin 0 to get a simplicial 2-cell
with 2d � 1 vertices. Next, coning the boundary of this 2-cell over f1g we obtain a
triangulation G2+2d of S2 having 2d � 2 vertices.

We'll assume that S2 � R2 [ f1g has been given the clockwise orientation. To
de¢ne the map g : G2�2d ! S2

4 we image both 0 and 1 to D, and the remaining
vertices will all go to (i.e. will be labeled or coloured with) A, B or C. For
d � 3, this will be done as in Figure 1(a), and for any odd d > 3, the 7 vertices
of `3 exterior triangles' on three consecutive edges of the d-gon will be labelled
similarly, with label A given to both the end points on the d-gon. For odd d > 3
the remaining d-9 vertices, and for dX 4 all the vertices other than 0 and 1, will
be coloured as in Figure 1(b), i.e. the vertices of the d-gon are alternately A and
C, and all the other vertices go to B. This g has degree d because exactly d triangles
(the shaded ones of Figures 1(a) and 1(b)) are imaging toABC, each in an orientation
preserving way. &

The four colour theorem, of Kempe, . . . , Appel and Haken [1], says that to the
vertices of any triangulation of S2 one can assign four colours {A, B, C, D} in such
a way that adjacent vertices are assigned different colours. We note that the maps
g : G2�2d ! S2

4 are induced by such four colourings. Moreover, the case d � 3 is par-
ticularly nice, for then g is, upto permutations of the colours, the unique four

Figure 1a. Figure 1b.
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colouring ofG8. The next result is the analogue of Theorem 1 if one is allowed only to
use these very special simplicial maps.

THEOREM 2. For each odd dX 1, one has a uniquely four colourable 2�2d vertex
triangulation H2+2d of the 2-sphere whose four colourings, considered as simplicial
maps H2�2d ! S2

4 , are of degree �d. Also, for each even dX 2, one has a uniquely
four colourable 3�2d vertex triangulation J3+2d of S

2 with four colourings of degree
�d, but one has no such triangulation with 2+2d vertices.

Proof. For d � 1 take H4 � S2
4. For odd d � 3, 5, 7, ... we start with a 2-cell, as in

Figure 2 above, made up of d black, and dÿ1
2 white, equilateral triangular tiles.

We now derive (i.e. stellarly subdivide) the white tiles at their barycenters (as
indicated by dots in Figure 2) and then cone the boundary of our 2-cell over 1.
This gives the required (2� 2d)-vertex triangulation H2+2d of S2 (see H8 � G8).

It is easily seen that H2+2d has a unique four colouring, under which the
barycenters get the same colour as 1, while the d black tiles all get the remaining
three colours, and are oriented concordantly by a cyclic ordering of these three
colours (the uniqueness being of course upto a permutation of the colours). We
remark that topologically our 4-colouringH2�2d ! S2

4 is a d-fold covering, branched
over the 4-vertices of S2

4, each of which has d�1
2 pre-images.

For any odd dX 3, we de¢ne J3�2�dÿ1� likeH2+2d except thatwe do not derive one of
the white tiles (note that J7 � G7). Again, it is easily seen that it has a unique four
colouring under which 1 and the barycentres get the same colour. Now, besides
the d black tiles, the underived white tile also gets the remaining 3 colours, but gets
oriented oppositely to the d black tiles, so degree is ��d ÿ 1).

For the last part we have no elementary argument, however it follows easily from
an old conjecture of Fiorini and Wilson, recently proved by Fowler ^ see [5],
pp. 857^858 ^ via an improvement on the computer assisted proof of the four colour
theorem: a triangulation U of S2 is uniquely four colourable iff it is obtainable from S2

4
by repeatedly deriving triangles. Since each such derivation changes the degree of the
associated four colouring by �1, we see that if the number of vertices of U is even,
this degree has to be odd. &

Figure 2.
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We turn now to the more general problem of computing l�I� � lL�I� when X is any
(closed, connected) surfaceM2, withY and L being again S2 and S2

4 . First, recall that
the least number of vertices required to triangulate M2, i.e. l�I� for the trivial
homotopy class M2! S2, is given by the map colour theorem of Heawood, . . .,
Youngs and Ringel [4]. Indeed, for a non-orientable M2, the map colour theorem
theorem settles the problem of computing l�I� for all homotopy classes
M2! S2. This follows because H2�M2;Z� � Z=2, so there are just two homotopy
classes, and, by labelling all the vertices D, except those of one triangle, which
are labelled A, B, C, one can de¢ne a cohomologically non-trivial simplicial
map from any triangulation of M2 to S2

4.
However, for an orientable surface M2, the problem of computng l(I) for all

homotopy classes M2 ! S2 is much deeper than the map colour theorem, but
the asymptotic part of theorem 1 can be generalized quite independently of the
map colour theorem.

THEOREM 3. For any orientable surface M2, and for almost all homotopy classes I
of maps M2! S2, one has l�I� � 2jd�I�j � 2ÿ 2g�M2� where g�M2� denotes the
genus of the surface M2.

Proof. As before, we can assume d > 0, and lX 2d � 2ÿ 2g follows because, by
Euler's formula, it is equivalent to the obvious inequality nX 4d. We want to show
that there exist a minimum Cg such that for all degrees dXCg one has
l � 2d � 2ÿ 2g. The case g � 0 has already been done and we know from Theorem
1 that C0 � 3. We'll now assume gX 1 and show below that Cg W 9�2gÿ 1�.

The equality l � 2d � 2ÿ 2g holds for d � 9�2gÿ 1�. To see this we recall that the
genus g surface can be obtained by identifying the opposite sides of a 4g-gon. As this
4g-gon we take a rectangle of size 1� �2gÿ 1) with perimeter subdivided into 4g
edges of length 1, two of these being sides of this rectangle. We ¢rst triangulate
M2 by subdividing the rectangle into 9 �2gÿ 1� squares of size 1/3 � 1/3 by lines
parallel to its sides, and then further into twice as many triangles by parallel 45�

lines (Figure 3(a) shows the case g � 2).
Next we assign three labels {A, B, C} to the vertices of this triangulated rectangle

in such a way that adjacent vertices have different labels (Figure 3(b) shows the
case g � 2). We note that this three colouring is unique upto permutations, and that
it assigns the same label to vertices of the perimeter which get identi¢ed when
we pass from the rectangle to M2. The cyclic order (ABC) assigns the counter clock-
wise orientation to half the triangles (shown shaded in Figure 3(b)). We derive the
remaining triangles (the new vertices are indicated by dots in Figure 3(b)) and assign
the labelD to these new vertices, to obtain the desired labelled triangulationK ofM2

having 1� 17�2gÿ 1) vertices, whose labelling determines a simplicial map K! S2
4

of degree 9�2gÿ 1�. This follows because precisely 9�2gÿ 1� triangles (the shaded
ones) map onto ABC, all positively.

The equality l � 2d � 2ÿ 2g holds also for all d bigger than 9�2gÿ 1�. We con-
struct, for each kX 1, a labelled triangulationKk ofM2 by modifyingK only within
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`two squares': for k � 1 this `local modi¢cation' is shown in Figure 4a; for even kX 2
we stretch a vertex into an edge on which we mount k shaded triangles facing alter-
nately up and down as in Figure 4(b); while for odd kX 3 the ¢rst three face
the same way and then the remaining ones alternate as in Figure 4(c) (all this is
just as in the proof of Theorem 1). As before, it is understood that the boundary
of the unshaded cell is to be coned over the `D' vertex inside it, while the other
vertices are labelled A, B, C, such that (ABC) assigns the anti-clockwise orientation
to each shaded triangle.

The required result now follows because Kk has 2k vertices more than K, and its
labelling determines a simplicial map Kk ! S2

4 of degree k more than that of
the map K! S2

4. &

The bound Cg W 9 �2gÿ 1� 8 gX 1 proved above is not the best possible, e.g. Figure
5(a) shows a 12 vertex degree 6 labelled triangulation of the torus. Using its
(2gÿ 1)-fold concatenation ^ Figure 5(b) depicts this for the orientable surface with
g � 2 ^ instead of K, the above proof gives the improved bound Cg W 6

Figure 3a.

Figure 3b.
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�2gÿ 1� 8 gX 1. For g � 1 it is easily checked that this is the best possible, i.e. that
C1 � 6; however for gX 2, there is room for further improvement.

It seems to us that the task of understanding all triangulations of a surface for
which l � 2d � 2ÿ 2g holds, and so of determining Cg for all g, is probably much
easier than that of computing l�I� for all homotopy classes M2 ! S2. This because
such triangulations are very special, e.g. they are precisely those which admit a
(necessarily unique upto permutations) `nice' four colouring, i.e. one in which all
the four vertices in the closed star of any edge have different colours. Also, the

Figure 4a.

Figure 4b. Figure 4c.
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valence of any vertex must be a multiple of 3, and the simplicial map to S2
4 given by

`nice' four colouring exhibits the surface as a d-fold covering of S2 branched only
at some verticies.

Such a branched covering f of S2 � Ĉ becomes complex analytic if we equip M2

with the pulled-back complex structure, i.e. if we use, as a local complex coordinate,
in the star of any vertex v of valence 3k, the kth roots of a local complex coordinate in
St� f �v�� � Ĉ. Thus the above simplicial maps are minimal triangulations (up to
homeomorphisms) of meromorphic functions, e.g. the 8-vertex 2-sphere G8 arises
like this from the degree 3 rational function f �z� � z2=2ÿ 1=z (these remarks respond
to questions which were posed to us by the referee). To see this note that f �z� is

Figure 5a.

Figure 5b.
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regular everywhere in Ĉ, except forÿ1;ÿo;ÿo2 and1, which are double points. At
these, and at 2; 2o; 2o2 and 0 respectively, it takes the values 3=2; 3o2=2; 3o=2 and
1. The 4 vertices of the triangulation S2

4 of Ĉ must be at these 4 singular values;
as its 6 edges we take the 3 edges of the triangle {3=2; 3o2=2; 3o=2} and the 3 rays
from the vertices of this triangle to1. The subdivision of Ĉ is given by the inverse
images of the simplices of S2

4 is preserved by rotation through 120� ^ because
f �oz� � o2f �z� ^ and is easily veri¢ed to be a G8. For example the triangle
{3=2; 3o2=2; 3o=2} of S2

4 pulls back to three curved triangles {2;ÿo;ÿo2},
{ÿ1; 2o;ÿo2} and {ÿ1;ÿo; 2o2} of G8, each of which contains one of the three
simple zeros 21=3; 21=3o and 21=3o2 of f �z�, while the ray {3/2, 1} pulls back to
the three straight edges {1;ÿ1}, {ÿ1; 0} and {2;1} of G8.

Regarding homotopy classes I of maps Sk ! Sk; k 6� 2, one obviously has
l�I� � maxf3; 3jd�fI�jg� for k � 1, but for kX 3 we only have some estimates
for these numbers l�I�. Likewise, we have only partial results for homotopy classes
of maps S3! S2, e.g. in [3] we showed that the Hopf map can be triangulated
by 12 vertices, and used this to give a new construction of KÏhnel's CP2

9.
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