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(Lectures given in the Instructional Workshop on
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Introduction. A ubiquitous player in many arguments is the
humble SIMPLICIAL COMPLEX, i.e. a (usually finite) set K of finite
(nonempty) sets which is closed under inclusion. This homely object is
used most often to define and compute some (CO)HOMOLOGY which measures

the discrete ambiguity of the (continuous) phenomenon being studied.

My object in these talks is simply to bring out the combinatorial
beauty of this methodology. This I'll do by giving many off-beat, but
nevertheless elegant and natural, definitions of simplicial
(co)homologies, and results concerning their computation. Some of this
material - e.g. the cyclic cohomologies of §§ 1 and 7, the philosophy of

§§ 3-4, the cyclotomic homology of § 6, and the zeta function



computation of § 8 - is new. More details regarding these results will

be given in the lecture notes of my seminar of 1994-95.

I remark that while giving these examples I'll mostly pass over

their "standard variations" (dualizing, relativisation, localization,

changing coefficients, etc.) in silence, and it will be understood,

unless otherwise stated, that the coefficients are always taken from a

field ¥ of characteristic zero.

& 1. Partial skewsymmetry. _Let me begin by recalling how the

*
usual (= oriented) cohomology H () of a simplicial complex K is

defined. We consider the set of =11

& associative monomials (=
assoc

finite sequences) in the vertices which are supported on simplices of kK,

*
and define C (K) to consist of all functions f : K

4 — [ which are
assoc

totally skewsymmetric, 1.e. such that

n
fiv_v e W) = (—1) f < ..
21 “q vnﬁvnl an

for all m e S_,,. We then define & : c* o — c* a0 by

_ 31
(cS-F)(va1 e ¥ )] = Zk (-1 -F(vB s Vg e Vq+1)’

check &6 = @, and set H*(K) =

I1f we now drop the above skewsymmetry condition altogether, i.e.

[



*
consider the (much bigger ') graded vector space C (K ) of all

assoc
functions f : Kassoc —> [, and equip it with & defined just as above,
) * X i *+1 .
then this extended map & : C (K )y — G (K ) still clearly
ASS0C ASSOC
i . _ , , *
satisfies S5 = @. We’'ll dencte its cohomology by H (hassocL
*
. e - - . ,
What is H \hassoc) : More generclly, we can ask when partial

skewsymmetry, i.e. with respect to permutations n  belonging to some

*
subgroups G vields a cochain subcomplex of C (K ), and as

g+1 = Sq+1’ assoc

to what these cohomologies are ? An answer is given by the following.

Theorem 1. Partial skewsymmetry with respect to the seguence

*
r T of YTy - Y= = ‘o - o - : - : 2
'Bq+1 af permutation groups yields a sub cochairn complex of C (yassoc)
: LT -1 ¥ = {id> 272 = 3
for all K if and only /¢ Gq+1' 1id> or {2/2} (= reversals) or {Cq+li
{(= rotations) or D > (= reversals and rotations) or (S e The
g+1 q+1
. - . . - * d
cohomologies of these FSilve cochain complexes C (Kassoc)
* * . * *
c (K > (K . (K ) and C_ (K ) — are :
rev assoc CYC assoc dih ‘assoc alt Tassoc
H' (K = HY (K > HYL (K ) = H K,
assoc rev  assoc alt assoc
* <3
H K ) X e, H (K,
Cyc assoc =@
* . *—4 3
- <
Hdih(hassnc' = QJZB H )
Regarding the proof — for more details re all results of this
* * . .
talk see [151 — note that Calt(Kassoc) = € (K by definition, while

* *
H (Kassoc) = H (K) is a result of Eilenberg-Steenrod [2]. Using this it

A



follows easily that the spectral sequence of the (BR,b) double complex
degenerates at the first term, which gives the «cyclic cohomology
* , % ) . ..
~ .4 ). The computation of H, = (K ' i =imilar.
ZyC assoc dih assoc

Thus the generalized De Rham theorem cf {161, § 5, is equivalent

o saying that above combinatorially defined cohomclogies coincide with

the corresponding "De Rham” cohomologies defined there.

There are variants cf the above game — cf. § 7 — which apply
when there is some additional structure. For example if the vertices of
= are colored, then demanding rotational skewsymmetry only with respect

o vertices of the same color will give a sub cochain complex.

& 2. Partial normalization. Many homologies are detined by
using a total order on the set of vertices of K. For example using this

the set Kcomm of commutative monomials supported on =zimplices of K can

be identified with the subset of KaSSDC consisting of all increasing
< - [ ) <
ertex sequences Now C* kassoc s the vector space spanned by kassoc’
comes equipped with the boundary @ dual of &§. This is given by

) o _ 41 -

d(vmv1 - «q) ZiEB (—-1) " . g Yy - Vq ’
and so clearly @ maps the subspace C_(K ) into itself.

* ‘comm
As vyou know the homology H*(Kcomm) of (C_(K ) 48) is

* comm



Lsomorphic to the usual homology H*(K). However the game is just begun!

There are numerous other natural sub chain complexes of (C_ (K ) ,8)
*  assoc

to consider. For instance, for each r = 1, we have the sub chain

complex (C*(K ) ,8) spanned by all commutative monomials in which
comm,

=ach vertex occurs = r times. What are these homol ogies H*(K )y 2

comm,r
The answer is given by the following striking result of T.EBier [11].

Theorem 2. For r odd H_{E = H*(K) but for r even

4 ) =
* comm,r

~s

1

H (K ) = @ . H
* ‘comm,r vek  #-r|o|

(LkKa).
Here the tildes signal "reduced"” homologies, i.e. that the empty

et @ is being constdered as a simplex. 5o for r even one of the above

summands is H_(K) because LkFQ = kK. Regarding these links LkKa we
recall that they are defined as follows. We ididentify kK with the

zorresponding element of C*(V

*comm,l) and divide out completely by ¢ to

get K = o + R (so v does not divide R). Then @ =

LkKa.

Curiously it is only the r odd case of Th. 2 which requires some

work. Then the r even case follows easily — again see {151 for details

— by using the fact that, while calculating 4, we can pull out even

powers of vertices (like we pull out constants while differentiating).

Remark. The total order of the vertices

made K into a

comm
complete semi-simplicial complex with normalization (= non-—-degenarate
simplices) Kcnmm,l’ so one can call the above Kcomm,r s partial

normal izations of Kcomm' Note that these are semi-simplicial complexes,



sut in general the non—-degenerate simplices of a c.s.s.c. (e.g. those of

{QSSDC ) need not constitute a semi—simplicial complex.

& 3. Deleted joins. Many nomoiogies occur 1n  the following
cbvious way : one performs a natural combinatorial operation on K and
then calculates homology. This calculation can range +from ‘"easy" to

“hard" to "very hard".

For instance the join K.L of two disjoint simplicial complexes

inow @ is a simplex) consists of the unions {(¢,8) of all ordered pairs o

= kK, 8 € L. It is easy enough to compute its homology. One gets for

“.K, the join of two disjoint copies of kK, the formula

~

H_ (kK.kE) =
*

~

® _H KD eH ().
p+tg+l=% p q

On the other hand there 1s no nice formula known for the

nomology of the (maximal) deleted join K%k, i.e. the subcomplex of K.K

consisting of all (¢.,8) with ome = 9. In fact as I showed in [13]1 even

the case dimk = 1 is non—trivial and very interesting.

Remark. K#K is the maximal subcomplex of K.K on which the

27Z2—action (0,.8) —> (8,0) 15 jree. This is what makes kK#K very useful

— see e.g. [113 — [13] — for numerous questions re embeddings and

colorings of K. We note also that kK#*K has the Z/2-homotopy type of the

space |K.K| minus its diagonal, and that a nice formula (due to



Yichardson—-5Smith and i1nvolving homoiocgy operations) 15 knowrn for the

—

nomology with mod 2 coetficients of }H.K[ mod i1its diagonal.

We turn now to a smaller deleted join, viz. the subcomplex KekK

sf kK#kK consisting of all {(¢,8) with ouw8 < ¥, for which I got the

+ollowing formula (1t was also noted inaependently by A.Bidrner).

~~ ~
Th 3. X 1 = @ . < .
eorem H*(Pok) ek H%—jai(Lkﬁo)
This is of course remarkably like BHBier’'s theorem except that
there r was even and here r = 1 (however the combinatorial procof we have
is not nice enough to explain this similarity). In § S below we’'ll see

that above also follows easily bv using Goresky—Macpherson [413.

Recall next that # 15 called Cohen-Macaulay iff the local
homologies H*(Lkwa) vanish 1n dimensions less than dimK - |o]. This
concept, which 1s of great importance in combinatorics, has thus the

following interesting reformulation in terms of the above homology.

Corollary 4. A simplicral complex ts Cohen—-Macaulay tf and only

~
Lf H(KeK) vanishes in dimensions less than dimK.

Remark. In the above we only considered the case 6 = 2/2 but

one can analogously define various “"deleted G—joins"”, G being now any

discrete (or even continuous) group, and these tooc are useful for

embedding/coloring questions. We note also that the infinite join EG =

2/2~



Thus

a deleted G-join of the infinite simplex.

spaces"

of Milnor (23] 1is
"classifying

which Prof.

36G. ..
there is an aobvious tie—up between deleted joins,
G = EG/G, and the "configuration spaces” of Segal about

Burghelea has talked in this Workshop.

To understand KeK better {(and to

S 4. Assorted visualizations.
define some more “"simplicial" homologies !) we now move briefly to the
other side of the double-arrow DISCRETE «—b CONTINUOUS.

We begin by recalling how the usual realization |K| is defined.

each

. . N
dne thinks of the N vertices as the standard bases vectors of R
is replaced by its convex hull Convi{c), and one sets

subset ¢ of these

Convik) = UaeK Conv (k).

Ki{ =

that there 1is really

The point which I want to make now is
nothing so sacred about convex hulls '! It 1is in my opinion at least
2qually natural toc alsoc consider the following arffine, linear,
spherical, and projective realizations of K.

) = ) Li ) o= . Lindo)
Aff (K) U&EK Aff (o), Lin(K) Uaek Lin .
) (K) = . } (o) .

Proj (K) Uaek Proj

Spht) = U _  Spho),

Here of course Aff (o) denotes the affine hull of o in



likewise Linfo) is 1ts linear hull (= coordinate subspace), Sphi{c) its
spherical hull (= unit sphere of Lino), and Proj{¢o) its projective hull

{(= Lino divided out by the scalar multiplication of R).

We note that Aff (k) has the same homotopy type as Conv(K) and
that Lin(k) is contractible. However the latter has an interesting
singularity at the origin with link homeomorphic to Sphi(K). Note also
that Sph(K) contains a dense subspace homeomorphic to Aff(K), likewise

the projective realization FProj(k) is also a compactification of Aff({K).

Proposition 5. ek 1s a Z/2—-triangulation of Sph(K).

So the homology of Kek coincides with the singular homology of
Sph(kK), and the equivariant homology of Kkek gives that of Proi(k).
Further we see that k its Cohen—-Macaulay (ff the singulartty of Lin(K) at

the origin is homologically trivial itn dimensions less than dimk.

The above proposition follows easily by noting that KekK is a
union of the octahedral spheres ceo, ¢ € K, and we can use these to

triangulate the spheres Sphi(o) of Sph(k).

We note next that there are anaclogous wvisualizations Aff

F

FK only we need to

K,

LinF(K). etc. over other filelds [F {(for ConvFK and Sph

assume | ordered and normed respectively).

N
For example, SphC(K) c € is a union of (2dimo+1) —dimensional



. 1
spheres Sphc(o), with S acting freely on each of these odd spheres via
—omplex multiplication, so the guotient Sphc(K) — Prch(K) is sort of

like a "generalized Hopf fibration'.

A by—-product of all of the above 135 that we have now «

host of
new "simplicial”™ homologres to consider, viz. these visualizations’
stngular {(or even l—adic ') homologies. Many of these, e.g. H*(Sph K)

R

—an be computed most conveniently by using the topological methods of

2ither Goresky—Macpherson [4] or Ziegler—-Zivijalijevic [19] (rather than

an explicit triangulation iike that of SthK given above).

The most interesting of these computations — see §§ 7 and B

is undoubtedly that of H*(PrDJCK). We’'ll give in § 7 a small "cyclic™®

set which triangulates the free Sl—space SphCK, thus re—-interpreting

H*(PrDjCK) as a purely combinatorially defined "cyclic" homology.

Also in & 1@ we'll relate the above to the local cohomology of

the algebraic variety Lin(k) at the origin. This cohomology in fact

pertains to the commutative algebra #(K) of all polynomial functions on

Lin(K). Note that &(K) = {{C_(K Y, equipped with the obvious
* ‘comm

multiplication of commutative monomialsi.

It would be interesting to compute the Hochschild and cyclic

homologies of #(K), as well as that of the associative algebra

A (K), obtained by equipping C (K __ ) with the multiplication of

associative monomials. Since this remains to be done, I will now give

10



instead a known and very striking non—-commutative example.

& B. Non-abelian chains. In this section the coefficients are

from Z. So CK = C*(Kcomm) 15 the free Abelian group generated by Kcomm'

Ae now consider a definition due to Moore which makes sense even for the

i. . _ . ) A (i , -
Free Cnon—-dbelian> group FEK F*”(CDmm' generated by k
For this we note that the boundary of C_ (K ) equals
* ‘comm
a = aa — al + 02 — eee

, ‘ sms @, : : 1 ) i
where the jace homomorphisms di' C*(kcomm) — C*—l(Kcomm' are given by
Ya¥y -t Vq — Vp s VL vq . 5o @ maps the subgroup
ghoore ) = (kerd,) (kera.)
* ‘comm : v’ N 22 N---
into itself, and on it coincides with a@. The key observation of Moore

was that the titnclusiton of chain complexes (CMDDFE(K ) ,9,) ——
* comm a

, . ) , ~ , o oore ~ .
(C*(Kcomm),d) induces an tsomorphism in homology H: {(CK) = H*(k).

This is very interesting because <(unlike the bigger chain

complex) the non-Abelian analogue of this smaller chain complex, i.e.

(FioorE(KCDmm) = (kerd,) ( ker(d,) N ..., 9y, is still a chain complex,

whose homology will be denoted H,°% 2 (Fi) .

11



That @. is a differential of P °°7€ ) is clear from 9.8
@ * comm a3 a

il

amal, and to check that 1ts image is a normal subgroup one needs a small

verification which uses the usual relations between the @. 's and the

1
degeneracy homomorphisms s .: F

3 L ) .- —
«Feomm’ F*+1(kcomm ' Va¥i vq Vo

» e V.V «ee ¥V
3 q

Thus we can in fact define Moore homology HQDDrE(G.) for any
simplicial group B., i.e. a sequence Bn, n > @, of groups equipped with

face and degeneracy homomorphisms satisfying the usual relations.

With the definition made, there arose the usual question : what

vs HTOOT® by o

= : The striking answer was soon discovered by Milnor [10]3.

Theorem B. HZDDrE(Fh) > oq (L., i.e. the

w1 Moore homology

gitves the homotopy groups of the suspension of K.

We note that the above — see kKan {61 for more — gives a purely
combinatorial definition of these homotopy groups which 1s much more
satisfying than the obvious one (e.g. by using a huge "Kan extension” of
Kassnc) suggested by the simplicial approximation theorem. Also it
tends to show that, despite appearances, the homotopy groups are indeed

the natural "non-Abelian analogues” of the homology groups !

§ 6. Higher order boundaries. Let p 2 2 and let us assume that

the characteristic zero coefficients F contain the pth roots of unity.



We now equip C*(F

3 ) with the cyclotomic boundary defined by
assoc

a(vmv1 cee )= Er {w) (v@v1 cs Ve )
where w = exp(2mi/p), p = 2. This boundary also obviously preserves
the subspace C*(Kcomm) spanned by monomials which are increasing with
respect to a given total order of the vertices. Moreover an easy
. . 2 p—1 2P
calculation, using (1 + w + w + ... + W } = @ shows 8 = @.

So for each ordered pair (r,s) of positive integers with sum r +

= =

= = p we can define the cyclotomic homology groups

r
H (K ) _ ker (& )
*3r,5 Comm )

Theorem 7. The non—zero cyclotomic homology ts as follows

Hkp+r—1;r,s(hcomm = Hkp+5—1;5,r(hcomm) = Hyy (R)
. ) = : = .
kp~1;r,5(kc0mm' - Hkp—l;s,r(kcnmm) H2k—1(K)
For the proof see (15]. Over cyclotomic itntegers this

cohomology is more involved and not yet fully worked out.

I found the above definition — actually a more general one
using any non—trivial character w of any finite group — while going
aver the first Complément of Poincaré s Analysis Situs during my seminar

[14]1 of 1993-94. Thus this definition was inspired by the very first

13



combinatorial definition of homology !

Remark. I1f we use mod p coejficients, and replace -1 1in the

usual definition of @ by {the trivial character) i, then too we have 6p

= @. This Mayer homology [B8]1 was first computed by Spanier [171. The

results are similar to those given above. It seems that the game of § 1

zan also be generalized to group characters other than —1.

& 7. Cyclic deleted joins. We want to combinatorialize the

114

free Sl—space SphCK. For K = pt, SphC(K) Sl, and we’'ll use the

discrete circle of Connes, 1.e. the completion ¥ of the semi-simplicial
complex having one vertex @ and one edge {@@), together with a

rotational group structure = 2Z2/r+1 on the r+l1 r—simplices of & for each

-z 8. The definition of these "rotations” t should be clear from the

following — here B(28)0 sﬁsm(BG) etc. — which shows the case r = 3.

-

-
o = (@)@, tio) = B(BDIB, t° (o) = 00(BA), t~ (o) = OOOD.

]

For a general K we use a union of some joins of disjoint copies

(each augmented by ©) of & to define

hock = UUEK [ heo Sv ] :
* . ®+1 .
Now let & = C (KOCK) — C (KOCK) be the sum of the maps

i . - * *+1 2
induced by the coboundaries Ov : C \Sv) — C (Sv). One has & = 8@ and

* )
é preserves the subspace C (ke _K) of cochains f rotationally

pcycl C

14



skewsymmetric over each Sv , i.e. such that f{(o) only gets multiplied by

dim
{—1) when the part o, of o 15 "rotated" to t(ov). We 1l denote the
* 3 ) * ; 3
cohomology of (Cpcycl(hoch), &) by Hpcycl(hoch).
. * s g
Theorem 8. The partially cyclic cohomology HpcycltK.Ch) gilves

the singular cohomology of the projective realization as jfollows

He (Ke®_K) H* % (Praj _K)
pcycl T 1=0 reigh’-

1K
@

#* *
One also has H (KQCK) = H (5ph

CK)’ in fact the Milror
realization |KQCK' of Kek s a cell subdivision of SphCK which

"complexi fies” the triangulation Keék of Sphk as follows.

We put the vertex BV =33 Sv on the identity lv = Cv of the vth

coordinate axis of CN, and lay the edge (QB)V of Sv over the unit circle
1

Sv of CV . Then clearly the non—degenerate simplices of KOCK, i.e.
those with all parts equal to Bv or (mm)v, furnish wus with a cell
subdivision of SphCK. The intersection of this cell subdivision with RN

gives a triangulation = Kek of Sphk.

The proof of Theorem 8 is analogous to how cyclic cohomology

is interpreted as an equivariant st cohomology (see e.g. Loday [7]).

We use a bigger (but homotopically equivalent) realization HK.CKu. This

turns out to be Sph_.kK x E81 and on 1t the

c combinatorial rotations

15



transiate into the diagonal Si~action. So the required cohomology

interprets as the singular homology of the guotient PrDJEK K BSl.
The combinatorial chain compiex of Theorem 3 can probably be
used to give a new proof of the followinag Known result of

Ziegier—Zival jevic {and possibly GCoresky-MacFPherson and others).

, . REP
Theorem 9. H*APrDJCh) = QJZ@ H*_nj(h Y.

A3 .
Here K 77 is the ith co-skeleton of kK, i.e. the poset (under =)

af all simplices of ¥ having dimensions z 3, and H*(H\J)) denotes the

nomology of the order complex of this poset.

In fact the order complex is a key example of a Grothendieck
realization |..| . I+ is the reaiization HK(j)“ of the category
obtained from K(J by thinking of each £ as a morphism. (There are alsoc
J..)’s of functors, etc. According to Frofessor Burghelea this concept
is essentially due to Ehresmann. Many people have contributed to the

theory of these realizations, notably Segal and Bousfield—kan.)

Since the Ziegler—Zival jevic [19] proof of Theorem 7 also makes
a heavy use of these realizations, a couple of quick words re them seem
to be in order. Grothendieck s main idea was simply to use as simplices

some trains of morphisms, with faces defined 1in the cbvious way by

"erasing” one ocbject at a time. So e.g. the train

16



by
o
n

has as faces the four trains shown below.

o 2 .6 S, o ° ba L e S . e
® 2 > @ cb > @ [ J a > @ b4¢ [
Thus "Hochschild faces” arise naturally if we visualize

categories {(or functors, etc.) a la Grothendieck et al.

§ B. Zeta functions. In this section 1°11 use the finite field
ot g elements Fq {and 1ts finite extensions Fqn ). I'11 give a result

which has a well known "explanation” involving the (definition of the)

t~adic cohomology of PFDjF K.
q

Since this cohomology is isomorphic to

*
H (ProjcK), it is natural to wonder whether this "explanation" can also

be combinatorialized a4 la § 7 7

Riemann’s zeta function { (s) = n ———i——:é generalizes from 2 to
M 1 - p

any ring R with finite quotient fields R/M by replacing the p’s by the

cardinalities jRLM‘. For examrle R can be the coordinate ring £ of any

affine variety (e.g. Lin[F k) over F : now each |[R/AM| = q" for some n,
3 q

and M determines and is determined by a point of the variety over the

finite extension Fqn - So the definition generalizes still further to

17



all projective varieties (e.g. F'l"cn_)[F k) over F : use in place of M's
q

points over the finite extensions F n and in place of
q

zardinalities of the residue fields at these points.

Thanks to the fundamental theorem of arithmetic, Riemann’'s zeta

M

—

15 also given by [ (s) = ¥
nzl m

- Likewise, thanks to a unigue

factorization theorem for ideals, the aforementioned zeta function (F(s)

of F';--(:;_j{F (K) i1is also given by
q

-s. N

- _ . .y tg )

gK(s) = ehp[ T an(h) o ] s
n=1

where a = | Proj k|

Theorem 10 (with Anders Ejdorner:’. Let fi(K) denote the number

of i-simplices of kK. Then

Fas 3
"
Ii
=

K

e (K) ~’
L .
1z@ (1 - qu y
where e (K) = ¥ (-1 77 [?] fi(K) = EFuler characteristic of the order
3 i>j 3 .
complex of the jth co-skeleton of kK.
For this we substitute a_(K) = E f. () (9 - D' in the

iz@
formula for CK(S) and simplify. The identification of the numbers ej(K)

with the Euler characteristics e(K(J)) requlires some more work.

18



Alternatively, using Z,,(t), the function of t obtained from

I

CH(s) by replacing q_S by t, we can write the above formula as

P oty P () P (t) ...
1 3 3

' T PO PO
O 2 4

where Pi(t) is the following integral polynomial of degree equal to the

ith Betti number of PrDjCK H

-
b(k’.(B)) b (K(l)) b, (K(")
1

P = (1-t) (1-qt) "2 (1-q%t) 7

Grothendieck 's "explanation” of such factorizations runs thus :
The cohomology of the complexified variety can be computed |l-adically.
If | does not divide q then »x —» %% and 1ts iterates act on this l-adic

complex. Lefschetz s fixed point formula implies factorization.

We note that PrDJCK is singular — however its singularities
have codimension > 2, i.e. it is a pseudomant fold — and that the
functional equation and Riemann hypothesis do not hold for CK(S).
However these probably hold for a suitably modified zeta function based

on the homologies considered in the next section.

& 9. Other skeleta. Let n denote a total order (= permutation)
of Inl = (@, 1, ... s NJ. We define the ith n-skeleton of an

n—dimensional simplicial complex K by

19



i ) i
For example, Kid 1s the {usual) 1th skeleton Kl, while for the

oppostite total order ofid) = (n, n-1, ... , 1, @ one has Ki

o{id)
L (n—1) , .
H sy the (n—-i1)th co-skeleton of K

i+1

For each i the 1nclusion Kn — K induces a simplicial map 1in

the order complexes of these posets. Using this we define the ith

m-homology of kK by

HI GO = im H Y — Hoa2ths,
1 1 T 1 T

Note that Hid(K) identifies with the usual homology Hi(K), which

of course depends only on 1 and the underlying space of K. For m = id

only partial answers are known re the topological invariance of these

homologies H?(K).

Theorem 11. Let K be an n-dimensional pseudomanifold and let =

or tts opposite ol(n) be such that 1t ends with , n—1, n) and has

Just one local minimum. Then H?(K) depends only on n, i, and the
underlying space of K, and one has H?(H) = Hgiz)(h)‘

The above i1is due to Goresky—MacPherson [3]1 who call H?(K)'s of
the above kind the intersection homologies of K. (To correlate our

definition with their ‘s we note that each n of the above kind determines
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a "perversity" p under which our Ki becomes their "basic set” Q?.)

If K is an n—-mantfold, i.e. if for each o € K the trains of |K|

paving all elements = o determine a dual cell of dimensien n-dim(o),
of(id) ,, . . } ] n—-1, .

then Hn—i () is isomorphic to the usual cohomology H (k). Thus the

above result contains Poincaré’s duality theorem Hi(K) = H ™ ao. In

fact intersection homology was found in the course of trying to "better

understand” the cell/dual-cell proof of this theorem which Poincaré gave

in the first Complément of his Analysis Situs !

& 10. Algebras. The next example is that of "a cohomology with
local coefficients” (these go back to Eech and Steenrod). Let & = %(K)
be the algebra of all polynomial functions defined on Lin(K). For each
simplex o the coefficient ring.ﬂé will be zero unless ¢ € K when 1t will

consist of all rational functions defined on Lin(c).

Let c% 4 consist of all skew—symmetric functions X from vertex

sequences with values X(VBVI-.. v 1} 1in ﬂ& where o = {VB’ vl, ans 3 vq}.

* *¥+1 .
Let & : C (#) — C (%) be defined by

_ _ i -~
(GX)(val... vq) = Ei {(—1) ¢i(X(vm ee Vi e vq)),

where ¢i denotes the obvious map from the coefficient ring of the face
of o opposite Vi to the coefficient ring of . One has &.6 = @

kgré will be called, following Grothendieck, the local cohomology H*L#)
imd

and
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of Lin(K) at the origin (or of % at its irrelevant ideal).

X A
All nonzero elements of the type [v1 1 v N] = A=

N .
ey KN) € Z, constitute a vector space basis of.ﬂa. Using this we

. N .
get a finer Z -grading eV = o Cg(ﬂd and (2 = @ Hg(ﬂ), where

2 PN

summation is over all x < ZN with |i : ki # B = q+i. The following

result is due to Hochster (see Stanley [181).

Theorem 12. H?(ﬂk) can be nenzere only Uf all Ki <=0 and o =

v. 1 h. € — 1} € K tn which case HQ(.@K) ~ pa~1i-1e| (Lk o).

Using §§ 3—4 it follows that this algebraic 1local cohomaology,

though 1i1nfinite dimensional, 1s determined by the singular local

cohomology Hq(LinK, Link N {@3) of Lin(K) at {@3.

Note that Krull dimension dim< = dimK + 1, and that Hl(#) = @

for all g > dim#. If HY (o) = 0 also for all q < dim# then one says that

& is a Cohen—-Macaulay ring (there are various other equivalent
reformulations of this concept). So the above theorem implies the

following very useful result of Reisner.

Corollary 13. The ring #(K) is Cohen—-Macaulay i1f and only if

the simplicial complex K (s Cohen—-Macaulay in the sense of § 3.

*
We note that the defining cochain complex C (%) of local

*

cohomology is isomorphic to the limit of the cochain complexes CkL#), k
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= 1, where Ci(ﬂ) consists of all skew—symmetric functions X from length

*+ .
g+l vertex sequences to ﬂ& , and & : C:(ﬂW — Ck 1(%) is defined
(csomewhat 1like the "De Rham" & of {163, & 5> by

- ! ~
(6X)(vmv1... vq) z% (-1) (Vi) 'X(VB -. Vg oo vq).
*
The resulting Koszul cohomologies Hptﬂ), which are
*
finite—-dimensional approximations of the local cohomology H (£, are

also quite interesting combinatorially, e.g. Hochster showed that

H:(.«ﬂ() = e Ml A RO

where now o runs over all subsets of {v ces 3 V¥ and K\o denotes the

17 N2

subcomplex of K consisting of all 6 disjoint from o.

There are also associated to & — and likewise to the algebras
of the varieties Aff (k) and Proij(kK) — many octher {(co)homologies, €.g-
the algebraic De Rham cohomology, Hochschild homology, cyclic homology,
atc., and there are some (Or MmMany, depending on one’s viewpoint) results

scattered in the literature regarding their computations.
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