Straight to Mecca
K S Sarkaria

May 30, 2013. It was 1953, and many in Washington felt that a mosque being built there was all wrong, for it was
pointing to the north of east, while Mecca is to the south of east. Luckily nothing was wrong, this mosque too—like
hundreds all over the world for hundreds of years!—was pointing straight to Mecca, i.e., precisely in the direction of the
great circle path which minimizes the distance to Mecca. A doubting diplomat was enabled to see this for himself by
running a thread tightly on a globe between two tacks placed at W and M. Besides, central projection onto the tangent
plane at the north pole gives, a map of the northern hemisphere in which great circle paths are straight line segments,
and we see that going straight from W to M entails going through northerly latitudes :-

Figure 1

This story suggests a problem : find an optimal path from W to M with latitude non-increasing. Now W and M are
any two points in above map with latitude(W) > latitude(M). To minimize distance, as another thread experiment
suggests, we should — Figure 1 — remain on the latitude of W till a point P = T such that PM does not meet this latitude in
another point, and then go straight to M. However, unless W =T, this path is far from straight, it has uncountably many
bends P. So one may prefer to interpret an ‘optimal path’ as one having the fewest bends, and in this context we'll now
show that, there are paths from W to M with latitude non-increasing and having finitely many bends.
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Figure 2

For any acute angle 6 define an anticlockwise broken-line spiral L(8) from W — Figure 2 — thus : remain on the
tangent line to the latitude of the initial point for the first 8 degrees of longitude; then turn to, and remain on, the



tangent line to the latitude of this point for the next 8 degrees of longitude; etc. If 6= 0, is big the first hit M, of this
spiral L; on the longitude of M will be to its south. On the other hand, if 8 = 6, is small enough, the spiral L, will initially
stay arbitrarily close to the latitude of W, and this first hit M, will be to the north of M. So, an angle 6 intermediate
between 8, and 0, gives us a spiral from W through M which is a path of the required kind. Indeed, at each bend the
next segment makes a right angle with the longitude, while for latitude non-increasing we only need that this angle be
not acute. However this improvement is minor : given a latitude non-increasing path, we can always push the last bend,
at which this angle is obtuse, southwards on the same longitude to make it right, etc. The number of bends in our spiral
path is the largest k such that k8 is less than the longitude of M, and it seems no latitude non-increasing path has fewer
bends if M is situated to the right of W in the lower half of the last picture.
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Anyway, the bend-distance to M, the least k(W) > 0 such that there is a latitude non-increasing path from W to M
with at most k bends, stratifies its northerly points as shown above. We can go straight to M iff the angle subtended on
NM is not acute, i.e., iff W is in the disk Dy with diameter NM. So {W: k(W) < 1} is the union of disks with diameters NP, P
€ Do, and more generally, {W: k(W) < k+1} is the union of disks with diameters NP, P € {W: k(W) < k}. The same union is
obtained if P runs only over the boundaries Cy of Dy and C, of P € {W: k(W) < k}, or even if ‘union of disks’ is replaced by
‘union of circles’. This shows that, the stratification is unchanged if we insist that each segment of our path be tangent
to the latitude at its initial point, for example, if we are in the interior of the disk Dy we can take this tangent in either
direction till we arrive at a point on the circle Cy from where we go straight to M. These envelopes C,.1, k = 2, of families
of circles have polar equations r = NM cos“(8/k), where 6 is the longitude from M, and though terminology varies a lot,
these “sinusoidal spirals” are sometimes called the “pedal curves” of the “cardioid” C;.

This heart-shaped region plays a key role in that masterly 1957 paper of Gleason’s when he proves the crucial and
very startling fact : if a frame function on the unit sphere—that is, a function f : S = R such that the sum of its values on
all orthonormal frames is the same—is non-negative, then it must be continuous. The job is to find, for each € > 0, a non-
empty open subset U of S in which the oscillation of f is less than e. For it is easy—cf. Note 5—that a point orthogonal to
a point of U has then a neighbourhood in which the oscillation of this frame function is less than 2€; and of course, given
any two directions, cross product gives us a third orthogonal to both.

We assume that the infimum of f is 0, and denote by w its weight, that is, the sum of its values on any orthonormal
frame. Take any N € S? as north pole, and let ¢ be a polar rotation by /2. Then g(x) = f(x) + f(ox) is a pointwise bigger



frame function of weight 2w which has constant value w — f(N) on the equator. On any other W, say in the northern
hemisphere, its value is at most 2f(N) more : choose an orthogonal W= on the equator, so g(W) + g(W') < 2w, that is,
g(W) < w + f(N). Indeed g(W) < g(P) + 2f(N) for any point P on the great circle through W and W* : for g(W) + w — f(N) =
g(P) + g(Q), where Q is a point on this great circle orthogonal to P, and the right hand side is at most g(P) + w + f(N). We
note that, the northern half of this circle is the tangent line at W to its latitude in our map of this hemisphere. Which
shows that, for any two points in this hemisphere with latitude(W) > latitude(M) we have g(W) < g(M) + 2(k+1)f(N),
where k denotes the bend-distance to M of W, because there is a path from W # N to M having at most k+1 segments,
each tangent to the latitude of its initial point. For instance g(W) < g(M) + 4f(N) if W is in the heart-shaped open set
bounded by the cardioid C,. So, if the value of g on M is within § of its infimum on more northerly points W # N, the
oscillation of g is less than 4f(N) + & in this nonempty open set. By the remarks made in the previous paragraph, it
follows that any point, in particular the north pole N, has a neighbourhood U in which the oscillation of g is less than four
times 4f(N) + 6. But g(N) = 2f(N), so g(x) — and therefore also f(x) — lies between 0 and 18f(N) + 46 for x e U. Which does
the job because we can choose N, M and 6 such that this number is less than the given €.

Figure 4

If a frame function g is 0 on the north pole and has a constant value w 2 0 on the equator, then for any two points
in the northern hemisphere with latitude(W) > latitude(M) we have g(W) < g(M). This is easier — only the first few lines
of this page are needed — but suffices for S* is startling : there is no function g : S* = {0,1} which is O exactly once on
each orthonormal frame. This because we cannot have g(W) = 1 within 45 degrees of an N with g(N) = 0 : for g(W") =1
would imply g(M) = 0 where M is orthogonal to both W and W> — see Figure 4, note M is at longitude 180 degrees from
W — but M is more southerly than W. Again there is an associated construction of finite startling subsets. Let k be the
bend-distance to M of W. We note, using Figure 3, that k increases from 2 to infinity as latitude(W) decreases to 45
degrees. Choose a path — in blue in Figure 4 which shows case k = 2 — from W to M having k+1 great circle arcs, each
tangent to the latitude of its initial point. Let F be the finite subset of S* consisting of N, W; the points W *, Py, Q; of the
first great circle, the points P, 1 P,, Q, of the second great circle, etc.; their poles M, P; x P, L ..;etc. Then the same
argument shows there is no g: F - {0,1} of the above kind, with g(N) = 0 and g(W) = 1. This extra condition on the truth
functions can be removed, just as in Startling Logic, by using a bigger but still finite subset.
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Notes

1. That mosque had made quite a stir in the U.S. capital then—see for example, You can’t build that mosque with
a compass, Washington Daily News, April 15, 1953—so Mackey and Gleason had probably heard of it, but | don’t know if
it actually inspired the latter to his solution of the problem posed by the former.

2. This problem appeared in print only after it had been solved, see page 51 of Mackey, Quantum mechanics and
Hilbert space, Amer. Math. Monthly 64 (1957) pp. 45-57. The footnote on this page suggests that Gleason first classified
only those frame functions f which have fourier expansions in spherical harmonics. So the idea of using great circle arcs
tangent to latitude at their initial points, on which his delicate proof of the automatic continuity of f hinges—and on
which alone we focus—probably came to him later. But even after he had these “E-W great circles” in hand, it seems
from lines 3-4 on the key page 889 of Gleason’s paper, that he first assumed that f attains its minimum, so proved that
S%is startling, before turning his attention to the technical finesse that obviated this assumption.

3. Piron’s beautiful reworking of these ideas brought the spirals L(0) to the fore, but his coup de grace — see page
79 of his Foundations of Quantum Physics (1976) — is the continuity almost everywhere of monotonic functions. Which
reminds me, the insight which had led Gleason to his previous work on Hilbert’s fifth problem was the differentiability
almost everywhere of monotonic function. Also it brings back those days of long ago when I'd first learnt of such things
about monotonic functions from that fantastic first chapter in F. Riesz and Sz-Nagy’s Functional Analysis.

4. Indeed | also got to see my first love again, i.e., the classic from which | had taught myself mathematics during
my teens, Goursat’s A Course in Mathematical Analysis. Pages 432-433 of its first volume (Dover 1959 edition) will tell
you a lot about envelopes of circles. See also Maschke, A geometrical problem connected with the continuation of a
power-series, Annals of Math. 7 (1906) pp. 61-64, for another but related application of sinusoidal spirals.

5. Preliminaries about frame functions: they take same value on antipodal points, are closed under addition and
composition with an isometry of S%, and the restriction of a frame function to any great circle is a frame function. To see
the assertion about oscillation, let q,v,p,u be four points in order on a great circle with g and v orthogonal to p and u
which are both in U. Then there is a neighbourhood V of v such that, if we continue on the great circle from g through
any point v’ of V, the orthogonal points p’ and u’ are in U. Since f(q) + f(p’) = f(v') + f(u’) and f(q) + f(p”’) = f(v"’) + f(u”’)
imply f(v') —f(v'’) = f(p’) — f(p”’) + f(u”’) — f(u’) we see that the oscillation of fin V is at most 2e.

6. The fact that Gleason’s proof has in it a construction of finite startling sets was made explicit by Gill and Keane,
A geometric proof of the Kochen-Specker no-go theorem, J. Phys. A : Math. Gen. 29 (1996) L289-291. Indeed, for each
whole number k > 2 it gives a configuration, concatenating which one can obtain finite startling sets. More precisely, if
the angle between N and W in Figure 4 is a < /4, then the bend-distance from W to M is the smallest k such that tan’(a)
< cos™!(r/(k+1)). For, when we view them in our map of the northern hemisphere, the points W and M of Figure 4 are
on opposite sides of N on the same straight line with NW = tan(a) and NM = cot(a), and the result follows from the polar
equations of the spirals of Figure 3. So the smallest Gleason configuration, the one with k = 2, requires that the angle
between N and W be at most that which satisfies tan*(a) = cos(n/3) = 1/8 i.e. tan(a) = 1/v8 i.e. a = sin™(1/3), that is,
precisely the bound which Kochen and Specker need to make their configuration! Not only that, the second smallest
Gleason configuration, the one with k = 3, requires that the angle be at most that which satisfies tan’(a) = cos*(/4) = %,
i.e. a = tan™(1/2), that is, precisely the bigger bound permissible for Bell’s slightly bigger configuration! And besides
these two, there is an infinity of steadily bigger Gleason configurations for k = 4, 5, ... Further, sin"(1/3) and tan™(1/2)
were tied to the platonic subdivisions of the 2-sphere, and the angles a such that tan*(a) = cos*Y(n/(k+1)) fork = 4, 5, ...
may be tied to regular subdivisions of closed surfaces of higher genus. (contd.)



