If a/b is very large, then $x_0 = w/\sqrt{(a/b)^2 - 1}$ is close to zero, so the incorrect intuition that f is minimized at 0 becomes correct "in the limit."

It is interesting to note that when a > b the maximum of f occurs either at 0 or l: at 0 if $w \ge ((a^2 - b^2)/2ab)l$ and at l if $w \le ((a^2 - b^2)/2ab)l$.

-----o----

Taylor's Formula via Determinants

K. S. Sarkaria, Panjab University, Chandigarh 160014, India

For calculus students who know determinants one can, after doing Rolle's theorem, proceed to the following

Theorem. Let f(x), $f_1(x)$, ..., $f_{n+2}(x)$ be n+1 times continuously differentiable functions. Then

$$\begin{vmatrix} f(x) & f_{1}(x) & \dots & f_{n+2}(x) \\ f(0) & f_{1}(0) & \dots & f_{n+2}(0) \\ f'(0) & f'_{1}(0) & & f'_{n+2}(0) \\ & \dots & & & \\ f^{(n)}(0) & f_{1}^{(n)}(0) & \dots & f_{n+2}^{(n)}(0) \\ f^{(n+1)}(h) & f_{1}^{(n+1)}(h) & \dots & f_{n+2}^{(n+1)}(h) \end{vmatrix} = 0$$

$$(1)$$

for some h between 0 and x.

Proof. Consider x as constant and let $D^{(i)}(h)$ denote the function of h obtained by replacing the last row of the determinant with $f^{(i)}(h)$ $f_1^{(i)}(h)$... $f_{n+2}^{(i)}(h)$. Observe that for $i=0,1,\ldots,n$ the derivative of $D^{(i)}(h)$ with respect to h is $D^{(i+1)}(h)$ and the determinant in (1) is $D^{(n+1)}(h)$. Now $D^{(0)}(0)=0$ because the second and the last rows are the same; likewise, $D^{(0)}(x)=0$ because its first and last rows are the same. So, by Rolle's theorem, $D^{(1)}(h)=0$ for some h between 0 and h. Also, the last row of $D^{(1)}(0)$ is the same as its third. So, using Rolle's theorem again, $D^{(2)}(h)=0$ for some h between 0 and h. Continuing, we see that $D^{(n+1)}(h)=0$ for a suitable h between 0 and h. h determinant h determin

For example, (1) shows that for some h between 0 and x, we have

which is Taylor's formula because the determinant is

$$f(x) - f(0) - \frac{x}{1!}f'(0) - \frac{x^2}{2!}f''(0) - \dots - \frac{x^n}{n!}f^{(n)}(0) - \frac{x^{n+1}}{(n+1)!}f^{n+1}(h).$$