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A woodborer, freshly hatched at a random point within a slab of timber of unit thickness, 
wants to tunnel its way out by making at most two changes in its randomly chosen initial 
direction, in such a way that the worst case distance is minimized. What strategy does it 
adopt? We present the solution of this problem, also partial results about the analogous 
higher-dimensional problems. 

 

 

 

 



Tetrahedron ABCD of Width 1 with
Minimum AB + BC + CD

Karanbir S. Sarkaria

1. INTRODUCTION. It all began with Gunjeet Kaur, a calculus student, coming to
me with a problem—which she had seen on page 77 of [1], where it appears without
attribution—that I soon began to think about as an evolutionary fable.

Turtle Island. Forever and ever, mother turtles have laid eggs at random all over a
long strip of land of unit width, having water on both sides. For survival, the newly
hatched (and quite blind) baby turtles must reach water within a certain time. Eons ago,
they probably just kept on walking stubbornly in a fixed randomly chosen direction, till
they either found water or death. Much, much later, a mutant turtle appeared that was
not averse to making a single right turn in case it had not found water within a certain
distance. Natural selection favoured this mutation, so much so that today only these
one-turn turtles exist and they now have the uncanny habit of turning right through
precisely 120◦, after having travelled exactly 2 · 3−1/2 units in vain! Prove that these
choices are governed by the following:

Maxim. Minimize the worst-case distance you may have to travel.

Proof. As Figure 1 (which illustrates the three generic possibilities) shows, a 1-turn
path

−−→
ABC is congruent to one embedded within Turtle Island if and only if one of

the altitudes {A⊥, B⊥, C⊥} of the triangle ABC is less than 1 (this fact also justifies
the definition of width (ABC) that we will give presently). Indeed, this is true for the
altitude from the particular vertex with the property that the line through it and normal
to the parallel lines passes through the triangle. So any triangle ABC with

width (ABC) := min{A⊥, B⊥, C⊥} ≥ 1

and A in the interior of the strip would have B or C in the strip’s boundary or exterior,
i.e., the path

−−→
ABC would suffice to exit the island. Since a regular (that is, equilateral)

triangle with altitude 1 has all exterior angles equal to 120◦ and all sides of length
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2 · 3−1/2, we are reduced to demonstrating the proposition that a triangle ABC of width
1 with AB+ BC minimum is regular.

To prove this, note that if θ = � ABC, then AB = A⊥ csc θ and BC = C⊥ csc θ . As
we run over all triangles ABC with width at least 1 and a fixed � ABC, AB+ BC takes
its smallest value 2 csc θ when both the altitudes A⊥ and C⊥ are equal to 1. Then
AB = BC = csc θ and

B⊥ = csc θ · cos(θ/2) = 1/2 csc(θ/2) ≥ 1

gives θ ≤ 60◦, so the equilateral case θ = 60◦ gives the minimum value 4 · 3−1/2 of
AB+ BC.

Many questions arose as I discussed this problem with my calculus class—
especially with Dippy Aggarwal, Neha Behl, and Gunjeet. For example, in analogy
with the foregoing proposition, we inquired whether a tetrahedron ABCD of width 1
with minimum AB+ BC+ CD is regular? Our objective in this article is to present the
rhombic tetrahedron that we found, showing thereby that the answer to this question is
negative (section 2); and in section 3 we give partial results for the similar, but harder,
higher-dimensional problem.

At this point the class learned of (and enjoyed the information posted on) Finch’s
aptly named website “Lost in a Forest” [4]. Very briefly, Bellman proposed in a 1956
paper [3] the problem of finding paths that minimize worst case exit distance, as well
as the harder problem of finding those that minimize expected exit distance (realistic
evolutionary models also involve probabilistic considerations). For the strip, Bellman’s
first problem was solved by Zalgaller [6]. Since then, Zalgaller’s arch-shaped curve of
width 1 having least length has been independently rediscovered at least twice, in
particular by Adhikari and Pitman [2]. However Bellman’s second, harder problem
still defies complete solution, even for the case of a strip, though much is known (see
Zalgaller [7]). And, for most regions other than the strip, even Bellman’s first problem
remains open. For instance, it is still unsolved for an equilateral triangular forest!

At the end of [2], after raising the (still open) problem of finding the shortest width 1
curve in dimensions d ≥ 3, Adhikari and Pitman aver that, for d = 3, “presumably
the solution is shaped something like three connected sides of a regular tetrahedron of
altitude one inch, but we have no idea of what the exact shape must be” [2, p. 326].
Modulo an obvious error—the width (see section 2 for the definition) of a regular
tetrahedron equals the distance between its opposite edges (i.e., between any two edges
that don’t meet) which is less than its altitude—they clearly seem to be of the opinion
that a tetrahedron ABCD of width 1 with minimum AB + BC + CD is regular. We
show that this is false.

2. RHOMBIC TETRAHEDRA. We recall that the join of two objects in Euclidean
three-space is the union of all line segments having an endpoint in each of the objects.
In particular, note that a regular tetrahedron of width 1 is the join of nonparallel diag-
onals of opposite faces of a cube of side 1 (see Figure 2, which shows, more generally,
a tetrahedron ABCD as the join of the diagonals AD and BC of opposite faces of any
box, that is, any parallelepiped). So, any of its three pairs of opposite edges has the
properties: (i) the vectors determined by the two edges are orthogonal; (ii) the segment
joining their midpoints has length 1 and is perpendicular to both; and (iii) the squared
reciprocals of their lengths have sum 1 (this because a square with side 1 has both
diagonals equal to 21/2).
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A rhombic tetrahedron ABCD is one that enjoys properties (i)–(iii) for at least one
pair of opposite edges, say AD and BC. Using property (iii) (i.e., (AD)−2 + (BC)−2 =
1), we see that ABCD determines, and is determined by, a unique θ in (0, π/2) such
that AD = csc θ and BC = sec θ , so we will sometimes denote this rhombic tetrahe-
dron by Tθ . (Let [AD] and [BC] denote the faces of the box—see Figure 2 again—
having the edges AD and BC as diagonals. These are now congruent rhombi, and 2θ

is the angle of the rhombus [BC] opposite its diagonal BC.) Note that θ = π/4 gives
the regular tetrahedron. This 1-parameter deformation Tθ , 0 < θ < π/2, of the regular
tetrahedron has the following properties.

Theorem 1. Any pair of opposite edges of Tθ are at distance 1 from each other; how-
ever, the width of Tθ is 1 if and only if θ belongs to [π/6, π/3]. There is a unique θ in
(π/6, π/4) such that t = cos2 θ satisfies

(2t − 1)2
[
(1− t)−3 + 1

] = 2,

and the corresponding Tθ is, up to congruence, the unique tetrahedron ABCD of
width 1 for which AB+ BC + CD is minimal.

It is this minimizing Tθ that was called the rhombic tetrahedron in section 1. We lay
the groundwork for the proof of Theorem 1 in several lemmas.

We recall that the width of a tetrahedron is the minimum distance between pairs of
parallel planes containing it, which is the same as the smallest of the distances between
the seven pairs of parallel planes containing {edge, opposite edge} or {triangular face,
opposite vertex}. Using only the first three of these we define the edge width of a
tetrahedron to be the minimum distance between pairs of parallel planes containing
opposite edges.

In Lemmas 1–3, ABCD will denote an ordered tetrahedron with edge width at least
1 for which the edge sum AB+ BC + CD is minimal. That such a tetrahedron exists
follows by a compactness argument; our aim is to determine ABCD, and show that it
has width 1. The analysis will make use of the concomitant box [ABCD]—see Fig-
ure 2—formed by the three pairs of parallel planes containing opposite edges. We
begin by noting that AB and CD are nonparallel diagonals of parallel faces [AB] and
[CD] of this box, and, in case the face [BC] of the box is nonrectangular, BC must be
its shorter diagonal; otherwise BADC would have a smaller edge sum BA+ AD+ DC
than ABCD.
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Lemma 1. The top face [BC] of the box for which the minimum value AB+ BC+ CD
is attained is perpendicular to its adjacent faces and at distance 1 from the parallel
bottom face [AD].

Proof. Choose rectangular coordinates such that [BC] is on z = 0, [AD] lies below it
on z = −w, and one of the vertices of [BC] is the origin, with B = (m, 0, 0) on the
positive x-axis and C = (n, p, 0). Then, if A = (u, v,−w), the coordinates of the box
are as shown in Figure 3.

z

y

C(n,p,0)

B(m,0,0)

A(u,v,-w)

D(m+n+u,p+v,-w)

>

>

>

Figure 3.

We note that the length BC does not depend on the variables u, v, and w, while

AB+ CD = [
(m − u)2 + v2 + w2

]1/2 + [
(m + u)2 + v2 + w2

]1/2

≥ [
(m − u)2 + 1

]1/2 + [
(m + u)2 + 1

]1/2 ≥ 2(m2 + 1)1/2. (1)

The first inequality in (1) holds because v2 ≥ 0 and w ≥ 1. To justify the second
inequality, we note that for m fixed the middle term of (1) considered as a function of
u attains its minimal value at the point u = 0. Indeed, this is the only point where its
derivative is zero, and its second derivative is positive there.

Both inequalities in (1) become equalities only if u = v = 0 and w = 1. We assert
that these must be the values for our minimizing box [ABCD]. Otherwise, compare
the box with another one, namely, the straight (= rectangular) prism with the same
top face [BC] and height 1. It follows from the foregoing argument that the value of
AB+ CD for the second box is strictly smaller than for the initial one.

The second lemma describes the shape of the top face of the box associated with
the extremal tetrahedron of edge width at least 1.

Lemma 2. The top face [BC] is a rhombus with both altitudes 1.

Proof. The distance between any two opposite faces of [BC] is at least 1 because they
lie on parallel planes at distance at least 1 from each other. If [BC] were not a rhombus
with altitudes 1, we could shrink our box to make it one, say with a corner at B and
the other two sides tangent to the circle of radius 1 with B as centre, and this would
produce a tetrahedron with edge width 1 having a smaller AB+ BC + CD. To check
this, note that if one side of [BC] is longer, then shrinking it first to the length of the
other side—see Figure 4—gives BC′ < BC because the angle BC′C is obtuse: in fact
if 2θ is the acute angle of the parallelogram [BC], then � BC′C = π/2+ θ .
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Finally, we pin down the precise geometry of the top face in a third lemma.

Lemma 3. The acute angle 2θ of the rhombus (the top face of the box [ABCD]
for which AB + BC + CD is minimal) is uniquely determined by the condition
(2t − 1)2[(1 − t)−3 + 1] = 2, where t = cos2 θ . This angle lies between π/3 and
π/2.

C

B

sec θ

θ
2θ

cosec 2θ

1

1

Figure 5.

Proof. We compute

AB+ BC + CD = sec θ + 2(csc2 2θ + 1)1/2,

for the rhombus (Figure 5) has side csc 2θ and shorter diagonal sec θ . Minimality gives

d/dθ
[

sec θ + 2(csc2 2θ + 1)1/2
] = sec θ · tan θ − 4(csc2 2θ + 1)−1/2 · csc2 2θ · cot 2θ

= 0,

i.e.,

1/4(sec θ · tan θ · sin2 2θ) · (1+ sin2 2θ)1/2 = cos 2θ,

which translates to

sin3 θ · (1+ 4 sin2 θ · cos2 θ)1/2 = 2 cos2 θ − 1.
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Squaring and putting cos2 θ = t , sin2 θ = 1− t , we get (2t − 1)2[(1− t)−3 + 1] = 2.
Since θ is in (0, π/4], t lies in [1/2, 1). On this interval the expression (2t − 1)2 ·
[(1− t)−3 + 1] is strictly increasing—because its derivative is positive on (1/2, 1)—
from 0 to +∞, so there is a unique t in (1/2, 1) for which it equals 2. The con-
cluding assertion follows by noting that when θ = π/6, t = cos2 θ = 3/4, whence
(2t − 1)2[(1− t)−3 + 1] = 65/4 > 2.

Having done the necessary preparations we can now wrap up Theorem 1.

Proof of Theorem 1. For any θ in (0, π/2), the box of the tetrahedron Tθ = ABCD
has height 1, is straight, and has rhombi with altitudes 1 as its top and bottom faces,
with 2θ the angle of the top face opposite the (now not necessarily shorter) diago-
nal BC = sec θ . For the other diagonal, we have AD = csc θ . The reflections in the
vertical planes through AD and BC preserve this box, so A ↔ D and B ↔ C are sym-
metries of Tθ (that is, permutations of the ordered tetrahedron induced by isometries of
three-space). Also, there is the (non-order-preserving) congruence A ↔ B ′, B ↔ A′,
C ↔ D′, D ↔ C ′ between Tθ = ABCD and Tπ/2−θ = A′B ′C ′D′, so in our compu-
tation of the four altitudes—coordinates being as in Figure 6, view from above—we
may assume as before that θ belongs to (0, π/4].

>

> >

>

>

C(cosec 2θ - tan θ,1,0) D(2cosec 2θ - tan θ,1,-1)

B(cosec 2θ - tan θ,0,0)A(0,0,-1)

y

x

Figure 6.

We denote by A⊥ the distance from the vertex A to the plane containing the opposite
face BCD; B⊥, C⊥, and D⊥ are defined likewise. We have

A⊥ = D⊥ =
−→
AD · (−→AC ×−→AB)

|−→AC ×−→AB| ,

where

−→
AD = (2 csc 2θ − tan θ, 1, 0)

and

−→
AC ×−→AB = (csc 2θ − tan θ, 1, 1)× (csc 2θ, 0, 1) = (1, tan θ,− csc 2θ).

This gives

A⊥ = D⊥ = 2 csc 2θ · (sec2 θ + csc2 2θ)−1/2 = 2(1+ 4 sin2 θ)−1/2.
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These two altitudes thus remain no smaller than 1 for all θ in (0, π/4], with minimum
value 2(3)−1/2 at θ = π/4.

Similarly

C⊥ = B⊥ =
−→
AB · (−→AD × −→

AC)

|−→AD × −→
AC | ,

where
−→
AB = (csc 2θ, 0, 1). In this case

−→
AD × −→

AC = (2 csc 2θ − tan θ, 1, 0) × (csc 2θ − tan θ, 0, 1)

= (1, tan θ − 2 csc 2θ, − csc 2θ),

which gives

C⊥ = B⊥ = 2 csc 2θ · (− sec2 θ + 5 csc2 2θ)−1/2 = 2(1 + 4 cos2 θ)−1/2.

As θ grows from 0 to π/4, the last expression increases strictly from 2(5)−1/2 (< 1) to
2(3)−1/2 (> 1), taking the value 1 at θ = π/6. It follows that the width of Tθ is 1 if and
only if θ is in [π/6, π/3], which completes the proof because this interval contains the
minimizing value of θ given by Lemma 3.

Numerical values. A little work with a pocket calculator shows that, for the min-
imizing rhombic tetrahedron, t = cos2 θ lies between 0.64583 and 0.64584, and
thus θ � 36.521◦. So BC = sec θ � 1.24434, AD = csc θ � 1.68034, and the re-
maining four edges of the tetrahedon (AB, DB, AC, and DC) have the same length
(csc2 2θ + 1)1/2 � 1.44671. The minimum attained by AB + BC + CD is thus about
4.13776, which can be compared with the value 3

√
2 � 4.24264 for the regular tetra-

hedron of width 1. Regarding the angles, the three needed later are � ABC = � BCD �
64.5287◦ and � ACD � 71.0079◦; the remaining angles are easily computed by taking
advantage of the tetrahedron’s symmetries. We note that 4.1377 . . . is the minimum
length of a 3-link polygonal path of width 1, but can be easily beaten if the width 1
path is required only to be continuous. The best result so far in this direction is the
“L3” of Zalgaller [8] (see also [9]), which has length 3.92154 . . . , but most probably
the sought-for shortest width 1 space curve is shorter still.

The three-dimensional fable. This variation on our theme has a woodborer, freshly
hatched at a random point within a slab of timber of unit thickness and tunneling its
way out by making at most two changes in its initially chosen direction, in such a way
that the worst case distance is minimized. What strategy does it adopt?

The rhombic tetrahedron ABCD gives the solution. The borer continues in an ini-
tially chosen random direction up to a distance AB (unless of course it has exited before
this). Then it turns, with new direction making interior angle � ABC � 64.5289◦ with
the initial direction; note that there are infinitely many such choices making a half cone
around the initial direction as axis. It then persists in this direction up to (its exit or)
a distance of at most BC. At this point, it makes its second and last turn, into either
one of the half-spaces into which 3-space is separated by the plane of the path (con-
gruent to)

−−→
ABC already traversed, the exact direction being determined uniquely in

each case by the requirement that the internal angles it makes with BC and AC should
be � BCD � 64.5287◦ and � ACD � 71.0079◦, respectively. Continuing along this final
direction, the borer exits within a distance at most CD. Theorem 1 ensures that all other
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two-turn strategies (i.e., those corresponding to tetrahedra of width 1 not congruent to
ABCD) give a worst case path longer than AB+ BC + CD.

The woodborer thus has an O(2) worth of best strategies. Here O(n) denotes the
space of orthogonal n × n matrices, so O(2) is the union of two disjoint circles (the
matrices in O(2) with determinant 1 correspond to rotations of R

2, hence form a circle;
the other circle consists of determinant−1 matrices). In this context note that, even for
the two-dimensional fable, there is a twofold ambiguity (also, O(1) has only two mem-
bers): the turtles could equally well have made a single left turn. The well-documented
effect of the earth’s magnetic field on turtles—see, for example, Melton [5]—leads
us to suspect that, down under in the Southern Hemisphere, there is another equally
fabulous island, where turtles do exhibit such leftist tendencies!

Remark. Some other minimization problems can be solved by the same method. For
example, Theorem 1 generalizes as follows: for each p ≥ 1, there is up to congru-
ence a unique tetrahedron ABCD of width 1 for which ABp + BCp + CDp is minimal,
namely, the rhombic tetrahedron Tθ for which

(1+ sin2 θ)1−p/2 · 2p−1 · sin2+p θ = cos 2θ.

Furthermore, the minimizing value of θ , which lies in (π/6, π/4), is strictly increas-
ing as a function of p and approaches π/4 (regularity) as p becomes very large. An-
other example: the regular tetrahedron ABCD of width 1 is the unique one for which
AB+ BC + CD + D A is minimal. This can be proved by an argument quite similar
to, but even simpler than, that given earlier.

3. IN HIGHER DIMENSIONS. The results that follow were inspired by the re-
ported curious behaviour of some (turtle-like!) traflamadorians, which, we recall, are
ethereal beings inhabiting the space R

n of all n-tuples x = (x1, x2, . . . , xn) of real
numbers. Here n ≥ 4, so we human beings can hope to “see” these goings-on only as
word-pictures, and, for this, it is necessary to recall some terminology.

Preliminaries. The geometry (distance, perpendicularity, angles) of R
n is determined

in the usual way by its dot product

x · y = x1 y1 + · · · + xn yn.

Also, we will employ the standard terminology regarding linear and affine dependence
in R

n . A subset K of R
n is convex if all line segments joining pairs of points of K are

contained in K . The convex hull of (i.e., the smallest convex set containing) m + 1
affinely independent points (m ≤ n) of R

n is called an m-simplex of this space. The
m + 1 points are its vertices, a segment joining any two of these is an edge of the
simplex, and more generally a t-simplex (t ≤ m) determined by any cardinality t + 1
subset of vertices is a face (or facet, in case t = m − 1) of the simplex. A sequence of
directed edges, with initial vertex of each the same as the final vertex of the previous,
is an edge path of the simplex, and such a path is called Hamiltonian if it visits each
vertex once and only once. Note that the simplex can be recovered from such a path as
its convex hull.

Let σ be the set of vertices of an m-simplex in R
n . A {p, q}-partition of σ is a pair of

nonempty, disjoint subsets α and β of σ , of cardinality p and q, respectively, such that
p + q = m + 1, i.e., such that σ = α ∪ β. The geometrical simplex, the convex hull
of σ , is also typically denoted σ ; likewise α and β will do double duty, signifying both
sets of vertices and the faces (of dimensions p− 1 and q − 1, respectively) determined
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by them. Thus σ is the join α ∗ β of these complementary faces α and β. We next
recall something that is geometrically very charming: within the affine hull of (i.e.,
the affine subspace generated by) the simplex, each partition determines a unique pair
of parallel codimension one hyperplanes through the two complementary faces, viz.,
those generated by the union of each face with an intersecting translate of the other
face. We refer to the direction (unique up to sign) normal to these hyperplanes as
the direction determined by the partition. The shortest distance between the parallel
hyperplanes is denoted 〈α, β〉, or 〈A1 A2 . . . Ap, B1 B2 . . . Bq〉 in case the two sets in
the {p, q}-partition are specified by listing their vertices. For the case m = n this can
be computed as follows:

〈A1 A2 . . . Ap, B1 B2 . . . Bq〉 = |v·−−→Ai Bj |
|v|

(the result is independent of i and j), where v is a nonzero vector orthogonal to each of
the n − 1 vectors

−−−−→
Ai Ai+1 and

−−−−→
Bj A j+1. We call 〈α, β〉 a {p, q}-altitude of the simplex.

The minimal 〈α, β〉 as α and β range over all partitions of σ is called the width of σ ;
it is the same as the minimum distance between any pair of parallel codimension one
affine hyperplanes (of the affine hull of σ ) that enclose σ .

General problem. Determine the shortest Hamiltonian edge path in the collection of
n-simplexes of width 1. This problem remains open for n ≥ 4, but we will give some
partial results. In particular, we will show that, just as for n = 3, the answer is not the
regular simplex of width 1, the n-simplex of width 1 having all edges equal to each
other. We begin work by looking first at such simplexes.

The standard simplex Σn. We denote by �n the convex hull of the n + 1 unit vectors
e1, e2, . . . , en+1 in R

n+1, where ei has a 1 in its i th coordinate and 0s elsewhere. Note
that �n is regular with edge

√
2. If (α, β) is a {p, q}-partition of these n + 1 vertices,

the barycenter α̂ of α (recall that a subset {A1, . . . , At} of R
n has barycenter (1/t) ·∑t

i=1 Ai ) has p nonzero coordinates, all equal to 1/p; further, these coordinates are
zero for β̂, while the remaining coordinates of β̂ are all 1/q. Since α̂ and β̂ are the
nearest pair of points on the respective faces, one has

〈α, β〉 = (p/p2 + q/q2)1/2 = (1/p + 1/q)1/2,

i.e., the {p, q}-altitudes of �n are (1/p + 1/q)1/2. This achieves its minimum when
|p − q| is smallest, so the standard n-simplex has width (2/p)1/2 if n = 2p − 1 and
width ((2p + 1)/p(p + 1))1/2 if n = 2p. Scaling by the reciprocals of these numbers,
we obtain the regular simplex of width 1: (p/2)1/2 ·�2p−1 or (p(p + 1)/(2p + 1))1/2 ·
�2p, depending on the parity of n. Observe that it has edge length p1/2 if n = 2p − 1,
and (2p(p + 1)/(2p + 1))1/2 if n = 2p.

We note that these midaltitudes (meaning {p, p}-altitudes if n = 2p − 1 and
{p + 1, p}-altitudes if n = 2p) are strictly smaller than the other altitudes of �n.
So, when we deform �n slightly, these other altitudes will stay bigger than the mi-
daltitudes, i.e., the width will still be determined by the midaltitudes, and if we
could somehow maintain these at their standard value, it would remain constant. We
show in Theorem 2 that there does exist a beautiful deformation of this kind. The
definition that follows was suggested by the pretty coordinates B((sec θ)/2, 0, 0),
C(−(sec θ)/2, 0, 0), A(0, (csc θ)/2, 1), D(0,−(csc θ)/2, 1) for the rhombic tetrahe-
dron Tθ = ABCD of section 2.
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Rhombic simplexes. Let p ≥ q ≥ 2. Given a {p, q}-partition (α, β) of the vertices of
the regular n-simplex of width 1 and θ in (0, π/2), move each vertex A of α (respec-
tively, B of β) on the line joining it to the barycenter α̂ (respectively, β̂) to a position
whose distance is 2−1/2 sec θ (respectively, 2−1/2 csc θ) times its original (θ = π/4)
distance from this barycenter. These new positions of the vertices define an n-simplex
that we denote by T p,q

θ . Note that it is the simplex obtained by uniformly deform-
ing the squares A1 B1 A2 B2 of the regular simplex into rhombi of the same altitude; in
particular, one has T 2,2

θ = Tθ , the rhombic tetrahedron. Observe as well that the pair
of rhombic simplices T p,p

π/4±φ are congruent to each other. We show next that a partial
analogue of Theorem 1 is valid in dimension 5.

Theorem 2. For each θ in (0, π/2) the ten {3, 3}-altitudes of the rhombic 5-simplex
T 3,3

θ are all 1, and T 3,3
θ has width 1 if and only if cos−1(5/8)1/2 ≤ θ ≤ sin−1(5/8)1/2.

Furthermore, there is up to congruence a unique rhombic 5-simplex T 3,3
θ having a

Hamiltonian path of shortest length, namely, the simplex that corresponds to the θ in
the interval (cos−1(5/8)1/2, π/4) satisfying

23/2(sec2 θ + csc2 θ + 2)−1/2(csc2 θ tan θ − sec2 θ cot θ) = (3/2)1/2 sec θ tan θ

We do not know if, even amongst all 5-simplexes of width 1, T 3,3
θ is the one having

the shortest Hamiltonian path. We remark that, in order to cut down on messy details,
we have treated only dimension 5. Similar facts hold in higher odd dimensions.

Proof. If s = 2−1/2 sec θ , c = 2−1/2 csc θ , then the six points

A1 = (s, 0, 0, 0, 0), A2 = (−s/2,
√

3s/2, 0, 0, 0), A3 = (−s/2,−√3s/2, 0, 0, 0)

B1 = (0, 0, c, 0, 1), B2 = (0, 0,−c/2,
√

3c/2, 1), B3 = (0, 0,−c/2,−√3c/2, 1)

of R
5 span a T 3,3

θ (i.e., the six vertices of our simplex consist of the two copies of
the three roots of unity in the complex subplanes C× {0} × {0} and {0} × C× {1} of
C × C × R = R

5). Each AA-edge (joining two As) has length
√

3s, BB-edges have
length

√
3c, and AB-edges have length (s2 + c2 + 1)1/2. At θ = π/4 these are all

√
3,

the edge length of
√

3/2 ·�5, the regular 5-simplex of width 1.
Obviously 〈A1 A2 A3, B1 B2 B3〉 = 1. To check the same for 〈A1 A2 B1, A3 B2 B3〉 note

that the four vectors

−−−→
A1 A2 = (−3s/2,

√
3s/2, 0, 0, 0),

−−→
A2 B1 = (s/2,−√3s/2, c, 0, 1),

−−→
A3 B2 = (s/2,

√
3s/2,−c/2,

√
3c/2, 1),

−−→
B2 B3 = (0, 0, 0,−√3c, 0),

are all normal to v = (1,
√

3, 2s/c, 0,−s). Dividing v by its length and taking the dot
product of the resulting unit vector with

−−−→
A1 A3 = (−3s/2,−√3s/2, 0, 0, 0) show that

〈A1 A2 B1, A3 B2 B3〉 = 3s/(4+ 4s2/c2 + s2)1/2 = 3/(4/s2 + 4/c2 + 1)1/2

= 3/(4 · 2+ 1)1/2 = 1.

Note next that the symmetries Ai ↔ A j and Bi ↔ Bj imply that the remaining eight
{2, 2}-altitudes are of the same length 〈A1 A2 B1, A3 B2 B3〉, so these are also all equal
to 1.
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For θ in (0, π/4) one has s < 1 < c, which gives

√
3s < (s2 + c2 + 1)1/2 <

√
3c.

Accordingly, the shortest edge path must have at least one AA-edge. Being Hamilto-
nian, if it has two AA-edges it must also have a BB-edge. Now

2(s2 + c2 + 1)1/2 <
√

3c +√3s,

which is equivalent to

2s2c2 + 4 < 6sc,

holds if and only if 1 < sc = csc 2θ < 2. So, for θ in (π/12, π/4), a pair of AB-edges
is shorter than an AA/BB pair, and our path must use one AA-edge and four AB-edges;
e.g., B1 A1 A2 B2 A3 B3. This has total length 4(s2 + c2 + 1)1/2 +√3s. The derivative of
this expression with respect to θ is

23/2(sec2 θ + csc2 θ + 2)−1/2(sec2 θ tan θ − csc2 θ cot θ)+ (3/2)1/2 sec θ tan θ,

while the second derivative is clearly always positive. At θ = π/4 the derivative has
the positive value

√
3, whence total path length is an increasing function of θ near

θ = π/4. This shows already that, as θ falls slightly below π/4, the width remains 1,
whereas the shortest Hamiltonian path becomes smaller. A computation with a calcu-
lator indicates that the derivative is negative at θ = π/12.

When 0 < θ < π/12 the shortest path has two AA-edges, two AB-edges, and one
BB-edges (e.g., B1 A1 A2 A3 B2 B3), so has length 3(s2 + c2 + 1)1/2 + 2

√
3s. This ex-

pression behaves similarly to the earlier one: its derivative is negative at π/12, positive
at π/4, while its second derivative is always positive. Accordingly we know that the
shortest path is of the first kind and occurs for a unique value of θ that lies between
π/12 and π/4.

We now compute the {2, 4}-altitudes: these will determine the subinterval on which
the width is 1. For 〈B1 B2, A1 A2 A3 B3〉 observe that

−−→
B1 B2 = (0, 0,−3c/2,

√
3c/2, 0),

−−−→
A1 A2 = (−3s/2,

√
3s/2, 0, 0, 0),

−−−→
A2 A3 = (0,−√3s, 0, 0, 0),

−−→
A3 B3 = (s/2,

√
3s/2,−c/2,−√3c/2, 1),

are all normal to w = (0, 0, 1,
√

3, 2c); taking the dot product of w/|w| with
−−→
B1 B3 =

(0, 0,−3c/2,−√3c/2, 0) shows that

〈B1 B2, A1 A2 A3 B3〉 = 3c/2(1+ c2)1/2.

Next, for 〈A1 A2, B1 B2 B3 A3〉, note that Ai ↔ Bi simply switches c and s, so this
altitude equals 3s/2(1 + s2)1/2. Similar reasoning suggests that 〈A1 B2, A2 A3 B1 B3〉
should be a symmetric function of s and c; and sure enough, a computation gives for
it the constant value 3/23/2 > 1. The symmetries Ai ↔ A j and Bi ↔ Bj reveal that
the remaining {2, 4}-altitudes are also equal to one of these three values. We have
both 3c/2(1+ c2)1/2 ≥ 1 and 3s/2(1+ s2)1/2 ≥ 1 if and only if cos−1(5/8)1/2 ≤ θ ≤
sin−1(5/8)1/2.
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The {1, 5}-altitudes don’t affect the width. The vectors

−−−→
A2 A3 = (0,−√3s, 0, 0, 0),

−−→
A3 B1 = (s/2,

√
3s, c, 0, 1),

−−→
B1 B2 = (0, 0,−3c/2,

√
3c/2, 0),

−−→
B2 B3 = (0, 0, 0,−√3c, 0),

are normal to the unit vector (1, 0, 0, 0,−s/2)/(1 + s2/4)1/2, the absolute value of
whose dot product with

−−−→
A1 A2 = (−3s/2,−√3s/2, 0, 0, 0) yields

〈A1, A2 A3 B1 B2 B3〉 = 3s/(4+ s2)1/2 ≥ 1

because s2 ≥ 1/2 for all θ . By symmetry, any {1, 5}-altitude has either this same value
or the analogous value obtained by replacing s with c. Since c2 ≥ 1/2 is also true for
all θ , we see that all these altitudes are always at least 1.

To conclude, we note that cos−1(5/8)1/2 � 37.76124◦ lies in (π/12, π/4), and that
the unique minimum of 4(s2 + c2 + 1)1/2 +√3s must be in the still smaller interval
(cos−1(5/8)1/2, π/4), because its derivative (computed earlier) is negative even when
cos2 θ = 5/8.

Space of simplexes. We remark that we have been dealing mostly with ordered sim-
plexes (i.e., simplexes whose vertices are totally ordered in a specified way). Moreover,
we have considered them only up to congruence: two ordered simplexes are deemed to
be the same if, by some Euclidean motion (a composition of rotations, translations, or
reflections), we can map the vertices of the first in order onto those of the second (we
used symmetry to denote congruence of two ordered simplexes arising from the same
unordered simplex). The congruence classes of the n-simplexes in R

n can be organized
into a space homeomorphic to an open ball of dimension

(n+1
2

)
. To be more precise,

these congruence classes can be put into one-to-one correspondence with the set of all
n × n upper triangular real matrices with positive diagonal entries. To see this, note
that, by using appropriate Euclidean motions, we can put the first vertex of any given
simplex at the origin, the second on the positive half of the first axis, the third on the
plane determined by the first two axes in such a way that its second coordinate is pos-
itive, etc. (This space is thus the same as the coset space GL(n)/O(n).) Our problem
entails minimizing some quite simple functions on a (not quite so simple!) subspace
of this space of upper triangular matrices, viz., that of all simplexes of width 1. For
n = 3, the idea of a box gave us useful insight into the geometry of this topological
open 3-ball. For n ≥ 4, boxes are more intriguing.

Box of a simplex. We denote by box(σ ) the convex region enclosed by all hyper-
planes arising from midpartitions (α, β) of an n-simplex σ . (One can also consider
regions determined by other sets of partitions; e.g., if all partitions are used, then one
gets the simplex itself.) We warn the reader that, for n different from 1 or 3, box(σ )

is not an n-parallelepiped (which has a pair of facets normal to each of n given direc-
tions). For example, for n = 2p − 1 with p ≥ 3, box(σ ) has

(2p
p

)
facets, many more

than the 2n of an n-parallelepiped. Even so, the combinatorics of the box—which,
because of the affine nature of the definition, do not depend on the geometry of the
simplex—are quite pleasant, and easy enough to work out. For any n ≥ 3, the vertices
of box(σ ) are the vertices v of σ and their antipodes v, where v is the point on vσ̂

produced for which

(n + 1)σ̂ v = [
(n + 1)/2

]
vv.
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Here [x] denotes the greatest integer contained in x , so it is only for n odd that v and
v are exactly equidistant from σ̂ . The facet containing the mid-dimensional simplex
α is the join α ∗ ∂β with the antipode of the complementary face boundary, while all
the lower dimensional faces are simplexes. Thus, for n = 5 each facet boundary gets
triangulated as the join ∂α ∗ ∂β of two triangles (compare with the 3-dimensional Fig-
ure 2). The hope of course is that an analysis of the geometry of the box (a much harder
task!) will help in generalizing the results of section 2 fully to all n. However, we will
now wrap up the discussion by giving another, somewhat artificial, deformation that
demonstrates that the solution to our problem is never regular.

Theorem 3. For n ≥ 4 and ε > 0 sufficiently small, there exists a smooth 1-parameter
family of n-simplexes Fn

θ = A0 A1 · · · An in R
n, with θ in (π/4 − ε, π/4], such that

Fn
π/4 = �n, the width of Fn

θ is independent of θ , and A0 A1 + A2 A3 + · · · + An−1 An is
a strictly increasing function of θ .

The idea is simply to use the rhombic tetrahedral deformation A0 A1 A2 A3 = Tθ

on the first four vertices of �n, simultaneously taking care to push the remaining
vertices uniformly away, just far enough in the direction determined by the partition
{A0 A1 A2 A3, A4 A5 . . . An} so as to ensure constancy of width (a modicum of finesse is
necessary because of the fact that the {1, 3}-altitudes B⊥ = C⊥ of Tθ decrease when θ

falls below π/4. However the calculations are a little messy, so we present the details
for the 4-dimensional case only.

Proof for n = 4. The first four vertices of F4 = ABCDE will be

A = (c, 0, 0, 0), B = (0, s, 1, 0), C = (0,−s, 1, 0), D = (−c, 0, 0, 0),

where c = (csc θ)/2 and s = (sec θ)/2—so clearly ABCD = Tθ—and the fifth ver-
tex will be “above” the barycenter of ABCD at a distance x = x(θ) from it. Thus
E = (0, 0, 1/2, x) which, as we now show, is uniquely determined by the stated re-
quirements.

We must have x(π/4) = 51/2/2, for at θ = π/4 the edge-lengths 2s, 2c, (s2 + c2 +
1)1/2, (s2 + x2 + 1/4)1/2, and (c2 + x2 + 1/4)1/2 of ABCDE must all be equal to 21/2

(because we need F4
π/4 = �4). Now, when θ decreases below π/4, we want x(θ) to

increase just enough to ensure that the width stays put at the standard value (5/6)1/2.
Straightforward computations reveal that the length of any {2, 3}-altitude is one of

the following:

(
1+ 1

4
· x−2

)−1/2

, 2

(
1+ c−2 + 9

4
· x−2

)−1/2

, 2

(
1+ s−2 + 9

4
· x−2

)−1/2

. (2)

For instance, to compute 〈BE, ACD〉 note that
−→
BE = (0,−s,−1/2, x),

−→
AC =

(−c,−s, 1, 0), and
−→
CD = (−c, s,−1, 0) are all orthogonal to v = (0, 1, s, 3s/2x).

Taking the dot product of v/|v| with
−→
BC = (0,−2s, 0, 0) leads to

〈BE, ACD〉 = 2

(
1+ s−2 + 9

4
· x−2

)−1/2

.

We note that the altitude 〈CE, ABD〉 has the same value because of the symmetry
B ↔ C (for n > 4, vertices from the fifth onwards are interchangeable, which speeds
up calculations significantly).
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Just x(θ) ≥ x(π/4) suffices to make certain that neither of the first two expressions
in (2) will decrease below its value (5/6)1/2 at θ = π/4. So the width of F4

θ will remain
constant if and only if

2

(
1+ s−2 + 9

4
· x−2

)−1/2

=
(

5

6

)1/2

,

which gives

x(θ) = 1

2
· 3

(
4 sin2 θ − 1

5

)−1/2

.

For the last part it suffices to check that the derivative with respect to θ of the
function

AB+ BC + CD+ DE = 2(c2 + s2 + 1)1/2 + 2s +
(

c2 + 1

4
+ x2

)1/2

is positive at θ = π/4. (For n > 4 the expression is not much more complicated
because links from the fifth onwards have constant length 21/2.) The derivative of
AB + CD is easily seen to be 0 at θ = π/4. The derivative of BC + DE works out
to be

(csc2 θ + 1+ 4x2)−1/2

[
−1

2
csc2 θ cot θ − 450 cos θ sin θ(19− 20 cos2 θ)−2

]

+ sec θ tan θ,

which at θ = π/4 has the value 21/2 − (17/9) · 2−1/2 > 0.
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798 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 110



he has visited that Mecca of Mathematics, the I.H.E.S. at Bures-sur-Yvette, France, many times. He believes
that worthwhile teaching (at any level!) must invariably lead to new discovery, so gives no credence to the
existence of good teachers who do no research. Regarding his own work he says that, though it is scattered in
diverse fields, it is tied together by a single unifying principle: that the Discrete and the Continuous are the two
sides of the same coin! He finds that it is easiest to learn directly from original sources, and his favourite great
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A Curiosity in Measure Theory

I ran across the following curiosity when teaching a graduate course in real anal-
ysis several years ago. I submitted it as a problem to the American Mathematical
Monthly; the Problems Editor rejected it on the advice of both referees—one of
whom thought the problem unfairly difficult, the other thought it trivial! What
do you think?

As usual in this subject, we assume the axiom of choice, and say that a subset
of R is negligible if it is Lebesgue measurable with measure zero. A family of
subsets of some set X is said to be totally ordered if for every A, B in the family
either A ⊆ B or B ⊆ A.

Q: Suppose that F is a totally ordered family of negligible subsets of the unit
interval [0, 1]. Must ∪A∈F A be negligible?

A: No.

Proof. Assume that in fact ∪A∈F A is negligible for any such F . Then the family
of all negligible subsets of [0, 1] would satisfy the hypotheses of Zorn’s Lemma!
There would then be a maximal negligible subset. But this is absurd. Indeed,
suppose that S is a maximal negligible subset of [0, 1]. If there were x in [0, 1]
not contained in S, then S ∪ {x} would be a negligible subset of [0, 1] strictly
containing S. Hence there is no such x , and S = [0, 1]. But it is known that
[0, 1] is not negligible.

Remark. This proof is curiously nonconstructive even by the standards of the
subject. It is true that this could be remedied by working through the proof of
Zorn’s Lemma to “construct” an example of a totally ordered family F of neg-
ligible subsets of [0, 1] whose union, call it U , is not negligible. But this still
leaves the question of how “big” this U can be. For instance, can U be all of
[0, 1]? If we also assume the Continuum Hypothesis, the answer is yes: we can
then use a bijection of [0, 1] with the smallest uncountable ordinal to impose a
total order ≺ on [0, 1] such that Ix := {y ∈ [0, 1] : y ! x} is countable—and
thus negligible—for all x in [0, 1], and set F = {Ix : x ∈ [0, 1]}. Without the
CH assumption, I do not know the answer.
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