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Topology., as we know it mdu;y started with Poinear o’ ‘Analysiz Sifis” M(}i and ity fve
Compléments [61, 62,66, 47, 69]. My wbjmmmwiagdvm vibe ¢ Emmmyizifmi SE}L:WLM%M*«,
together with gome remurks relating !hcm £ urihw e ;w? l;mmm '
S we will Dot go o %?l 'da s of P
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’% M 8 h«:ﬁ s, P@mmm wweui f Em oi mmmd in [ha, papcm weitioned dbmr* fn
the light of this, it seems dlmost incredibl le that this was really only ¢ Emall part of the
fugge canvas o which e was w mkmq durin this tinte, In @ series of imw papers starting
from 1880 he had cré e the quafitative theory of ordinary diff ﬁ{m‘mf e*{gmw‘mm Then,
impetiod with the desise 1o solye > linedr differential cqzmts(m\lm ing algebraic coefficients,
he had created and wwiew,-ai et another theory, %Em{ of Fuchsion and Kleinian groups.
Hard on the heels of this had corfie im_\_p% mumxm 1890 mp(‘.x_'_{"i 31 onthe 3-body prob-
lem, which was now being elaborated further in bis {bm'a whii‘m '!Mrm’w on celestial me-
charics iiﬁ‘i.'}f;‘,\ﬁ:éaé 1 this d_ﬁ:m;s"is of courses ic[wucd in Jimmi U;i.‘i y isammzm hle area of
thearetical ;71’?\'.\#"('&' and we are lefl ‘axpmg a‘ﬁ ‘the very idea that he had m\ g foftl 1o
create and develop vet anothor very original mathemarical theory!

Darboux tells us that Poincare’s “answe camg with the mp;{ﬁsw of an arrow” and thas
“when fie wrote & memoin, he deafied it at one go, B;rmizfzc* Wimsell 10 Just some crossings
out, withowt comiag back to what he had wiitien”. Bespite this, Porncard’s writings are
charucterived by great lucidity of thonght, an infuitve ability of gettiog at once to the heart
of the muatier, ,m(i clarity of exposition.

Al Mittag-Leffars request Podneard wrore in 1901 an analysis of his own work [63].
Of these hundred odd pages only four, pps 100103, deal with “Aualysis Shus” and ity
first two Complements, Here he recalls (s loe ocowrs in the Introduction of “AR as
welly that “geomerry Is the orr of reasoring well with badly made figures, Yes, withowt
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Sov all these reasons thay Fdevored to Bhis scie
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dowbt, but with one condition, The properdons of the fgures might be grosséy aliered,
but thetr clements most not be merchanged and must conserve thelr relative siteation.
In orher terms, one dees not worery showt quaniitaiive propertics. bt ane must respect
the gualitaiive proparties. thae is fo soy precisely thave whick are the concern of Anelvsis
Sines” Thus his hope was that topology would render i higher disnensions mach the same
service which these “hadly made™ fipures give o ordinary gaomeiy, After mentioning the
previaus work of Ricmann zod Betti in this direction he continues as follows,

“As for me, all the diverse paths on which [waes suceessively engoped have led me o
Analysis Sisns. § had need of the Tdeas of this science fo pursie mey snadies on curves defined
by differential equarions and for extending these vo higher order differentiol eguanions cnd
i pariiontar io those of the three body problem. § had need of it for the study of mudti-
valued firnctions of 2 variables. el noed of it for the soudy of periods of multiple integrals
aviel for the application of this siudy to the development of the pertnrbation function. Finally
{ glimpsed in Analysiv Sttus o means of attacking an dmportant problem in the theory of
gronpy, the search for discrete or findte growps contained in a givens corfinuous grouwp 11 iy
e e featrly fomeg work” '

Indeed Potnoard’s other works probubly congain just as much ideresting “opology”™
in the wide sense of the word - as “Aaoabysis Bitus”™ and is fve Compléments!
ple, bis memoirs on the goalitative {"}ma}ry of ditfferential equations contain the Polncard
fndex formula giving the Buler churnciorisiic of a surface as the sum of the focal degrees
of a generic vector ficld at its isolated singulerities: this way gcmmhmd fater (o higher
dimensions by Hopf [27] And, of course, the study of peniods of maltiple integrals is
“de Rham-Hodge theary™, and of invarient integrals, which Te nteoduced while doing
celesiial mechanics, that of “syoplectic ransformations”™ and the work on perturbation
Functions of astronomy the “small divisers problem™, (A semtnac vun by A, Chenciner
has recently been analysing Poincard’s treatise on celestial mechanicos. ) The last geomel-
rie thearens | 70) which Birkhoff {51 resolved shortly after Pomeasd’s prematore death, is
also equally “wpology™. 1 says that i a volume preserving diffeomorphism of the aunuius
meves s two bounding cireles in opposite directtous than it must have fwa fixed poinds
{A recent paper of Gold and Holl £24] shows that the existence of a fixed point does follow
by shightly modifying Poincacé’s orlginal stiempt.)}

However, we shall confine ourselves in the following o “Analysis Bims” and iis five
“Cormpiéments”™. Section | is g supumary of “Analysis Situs”, Section 2 containg woies on
this sumenary, infended mostly to connect Poincard’s contribntions with future develop-
ments. For the “Compléments” (these contain more material than A8 wselly we have
surnmarized and annotated i tandemn fn Section 3. We shadl pavse for just o fow rermarks
before we embark on this sk, We Bave not besitated to use moders notations, and cven
ideas, whenever this seemed to help i understanding Poincaré’s mathematics. For exam-
ple, Riemann's conpectivigy of o surface was L more than &y, so Poincard defined his Bend
nabers to be | more than the miodern ones: we bave lowered theos by 1, Agabn, we have
discarded Poincard’s congruences, and just used dw == ¢ (o denote a boundary, O the other
hand, for homotopy between Joops, we Tiked Polncard’s eguiialencey A = B, and have, like
him, combined these vsing adoftive, rather than the reodern multiphicative notation. Lastly,
Pomeard s grade oot class potwithstanding — see Darbous [15, p, KIX] for the surprising
answer! - i s clear o anvbody who reads bim that be thought via figures: so we have
added some, bot we remark that, of those given beltow, five are his ow,
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Shbus”

Lo A summary of “Aralysis

Faproduction. The branch of Geometry called Awerbvnis Sirey describes the relative situation
belween somme poinls, Hines, and surfaces, withowt bothering sbout their sizes. There is a
stmilar Analysis Situs in more than three dimensions as has been demoastated by Riemaon
and Betti (and which we shell develop forther in this papert, We expect it will have many
appications, a.g., the following three.

“The classification of algebrare cirves by means of thetr genus 18 based, following Rie-
manit, on the classifeation of closed real surfaces, made from the viewpoint of Aualysis
Sis, Animemediate mduction pow tells us that the classification of algebraie smmw st
ihe theory of their birations! transformations ts intimately fed to the classification of closed
real {hypenisarfuces i S-space from the viewpoint of A;fza,lv Sire, W Pieard, inoa work
wihich has been hadled by the Académie des Sciences. has dready stressed s point”

“Besides, in g sevies of meraoirs published in the Jowrsal de Liowyille and enlitied "Sur
les courbes définig par les dguarions différenticlles”, T have wsed ordinary 3-diroensional
Analysis Suus to study (second order) differential equations. The sarme researches have
also been puvsued by M. Walther Diyek, One sees easily shat a gendralized Analysis Si-
s would permit as to simblarky treat bigher order equationd, and o porticalar those of
Ceiestinl Mechanics”

M. Jordan has aralytcally determined the groups of finite ovder which are contained in
ihe Hinear group of & vackaldes, M, Blein had proviously, by a geomerrical method of rare
eleganer, solved the same problem for the Hnear group of two variables, Could net one
extend the method of M. Klein to a group of » variables, or even ex arbirary conbinuons
group? T have not been sble to do this so far, bot D hsve thought loag on this question, and
it appears o me tal the sobution should depend on a problem of Analyely Siney and that
the generalization of the celebrated thearem of Bxder should play a role in this”

§ L. Premigre définition des varidnis, Aonomemprty subset V of r-sprce defined by p equa-
fioms F (g, ..., Xpd == 0 and g Inegualities ¢alxy, .. b o 4 where the functions F
and o are cosdinuously differentiable, will be called a variery of dimension n — p il the
rank of the matris [0 F, /ox] 1s equal to poat all poings V.

When a variety Is defined only by meauabides. Le, whes p o= 0, ther It s calied a do-
main, Furthermore, varieties widch are one-dimensional, respectively, nod one-dimensional
bt having codinmension one, are called curves, respectively, thyper) surfaces. A variety
will be called bounded (finie) if the distance of all s points from the ovigin is less than
soame constant.

We will only consider conmected (cortinne) varieties, regarding olthers we onky remark
that they can be deo ompzw it 8 (mm, op infinite nuarber of connected varietigs. For
example. the plase cuwrve x5 4 vf o b i:* A4 b s € is the digjoint unicn of the two con-
nectad curvies a>hmmcd Erg «s(i oining o m defining cguation either the meguality xp < Gor
else vy = O (See Fig.

By the conyplers !mwf{é{;r\f{ Tortigre mmn}mu of a wmw ¥owe will mean the set of
atf points of n-space satisfying {8, = O, L o <0 po g = 00 ¢y o ¢ Sl
for some § 50 B < g, However, muuﬁnm wi shall him aai‘. the fargest {(n - p ~ -
dimensionsl variety contained in ihis sot as the true boundary {we shall denote this by 837
of V. A boundaryless (miedy vartety will be one which has empty true boundary; if
furthermore i 15 comnected and bounded we shall call ¥ closed (fermée).
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A
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Flg Loxy - x f e dig 1 0,

8 2 Homéomorphisme,  Consider the “group” formed by all miaps between open subsets
of nespace for which the funelionnt determinan is always noneerac the science whoses
obiect is the stedy of this and some other avalogous “groups” s called dnadyely Siruy.

By a diffecmorphism (homéomorphisme) bebween two vavieties of n-space we shali
mean a hijection between them which extends to a differentizble bijection between open
Luclidean sets oblained by veplacing their defining equalities #, = by some negualities
. A stmilar definition can be given for more complicated figures, made up
of mrary varieties, of u-space,

e g;-& o

§ 3, Preuxieme définition des varidids,  Consider first m-dimensional varisties v of n-space
satisfying a system of £ equisons xp o= &0, oo v with rapki28; /0y, ] = m, and some
inequatities Wiy, ..., vt = 13

For example, the system of three eguations x5 = (K 4+ remsydeosy, a3 = (R4
Foas v st vy and oy = rosin vy defines o rones. (See Fig, Ih

Indeed ia the following definition we may only use those v’y which, unlike that of the
above sxample, have a one-one 9, Furthermore, we can sssume these fusctions (o be (real)
analytiz: this follows became we can slways replace # by an arbitranily close real apa-
Iytie &7,

Given two such vaneties v and " we shall say that they ave eeelvic continvations of
ench other U1 their intersection v M v is also an me-dimensional variety of the above type,
As per our new definition a “varfety” - or somerimes, to use a different word, a menifold
— will mean any connecied network {réseau conting) M of varieties v related 1o each other
by analytic cominnation (.. a graph whose vertices are varietles of the above type, with
twees wertices contiguous i the graph #{ they are analviic continnanons of each other),

We shall see later that such an M need oot be definsble by equations of the type given
in & 1; however, as shown below anv variety V oof § 1 is also g variety as per ihix second
definition.
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Tar see this we s imil wse the well-knows vesadt that o the roreal analytic squations v =
£y, ..., xy) are such that their Tunclionad determinani 13 nonzero at x, then they L
real aralytic sototiors xy == (v, .. ) valid i some seighbonrhood of Filo)

Noww et # be any poiot of V. del :md asin § 1 b I ugummv Fotay, oo k) = Dum
somme nequalities ¢ Ovg, o x) » O0 3 clearly sutfices (o find an (n — pr-dimensions
variety 11p of the abhove type such that £ € vp & V. To see this choose any # - p ad

ditional m‘ne‘tﬁwéc fupetions Fuyt. ..., &y of n varables, which vanish at P, and 2re socl
that the functionsd defermimng ui al the n functions Fr is nonzera of . 5o we can solv
the m equations s = Filyg, oo ) 0 real apalyiie solutions 3y = Oiluy, ..y

in some neighbourhood of F(P) = O specified by some ineguakities Mg, . i) > {
By making this nerghbouchood smaller, if need be, we will aswarne also thaf these in
equalities imply the defindng inequalities ¢, .. ) = O af ¥, Thus the » equation
wp o= L L Ve e p) andd the inegualities AGL . O, ¥i,ooo, ¥popd > Gar
setisfied by P oand imply the defining p eguations Fuloy, o, g = 4 and inequalitie
i, ., an = Bof V,and so give a vp such that P € ve © V.

§ 4, Varidtés opposédes.  We will assume that if we interchange two of the detfining equ
tions of a4 ¥ as in § 1 then we no longer ge:t V. but the opposite variery —V . Mot

generally, siven any nonsingular mairin Agy of functions, the exdered set of equation
¥ Mg P = O gives V, respectively, -V, T det(Ayp) is positive, respectively, negi
five.

Likewise, for o v as in § 3, we shall assume that interchanging any two of the m parame
(ers vi wo fonger gives v, buf the opposite variety -1, and more generally, if the paraimetes
wilergo o eransformation ¥i. ..o Y b D1 .., T WE shall assurne that the resuliin
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variety is v or —v, depending on whether the ransformation’s functonal determinant is
positive or tegative,

The two concepts will be tled to each other by stipulating that if vp © V oasin § 3,
thren vp has the correet orientation 151 the p % a fanctional determinant mentioned there s
positive,

Also the order of the defining cquations of an (n — p — 13-cimensional nonsingutiar
variety ocowrring in the true boundary of Vowill be degmed to be that fn which one firgt
writes the equations of ¥ and then puts the new equation ¢ == U g thevery end,

§ 8, Homalogies,  Suppose Vi s subvariety of a maifold M whose oviented boundary
e andd 55 coples of the vagety e for

covmists of & coples of the variety v for
o b, Then we shall write

kyvy 4o Ry s b o b Spite,

and refer to this relation as a homoelogy ol M. These “homaelogios can he combined with
each other just [ike ordinary equations” (Le. the sum of any two homologies will also he
deemed 1o be a homology. and we can take any term o the other side provided we change
Fis gign, and so o).

Iys case A bas o bouvndary, the notation hywy - - 3 kyvg =2 e will indicate that the sum
of the varieties on the left s homologous (0 & sum of vartetioy comtained in this boundary,

§ O Nombrexs de Berd. The cardinality of a masimal linearly independent set — 12, one
for which there is po nomrivial bomology between its menmbers — of closed r-dimensional
snbvarieties of M will be called the rethr Berd mwnber b (M) of M. {'E‘ﬂ the paper it is
B (A - 1 owhich is called the r-th Betn nureber and iy dencted by £,

Lt us make these definitions c‘h‘::ﬁ'c“ by an example. Let D be o mmu‘m of d-space

hounded by a disjoint surfaces 5. Fhen ti, Bettd numbers are 5y {V) = (1/2) 3, h(8)
and ba (V) w1, where each M(‘?) Fis necessarily odd, being the connectivity of §

as defined by Riemann,

§ 7. Emploi dex inidgrales. The integral

’ s . Wty . o
f ? (IR & S P S5 ¥ £ & SRR LA S /g A
Ay

or briefly [ w, over any r-dimenstonal variety V {which is equipped with an orientation
a5 1 § 43 of mespoace, will be defised o be

wnrt
"

Tl i 5
>; ! Eﬂt‘rﬂ;(w”ﬁ?, oy, oo, xg) det{Bug, /8y ) dyr -0 dyy,

where ¥ = ¥ v, and for each », the multiple integral is evaluated, using the equations
s vy, o vy of vobebween the Timits of v prescribed by the ineguabitios of v,
About the functions wy, e — 00 wfa, . 01 - being ntegrated o will be assumed
thaat they merely change sign when any two of the indices ¢ are interchanged. The resnft
hetow is from pacagraph 2, entitled “Conditions J iniégrabilivd”, of Polncand [54), 1887



130 K5 Sarkaria

The integrols f"/ w are zeso for all closed varieries Voof n-space Jff{,}:i(j [B/“.ﬁ'f'jf' if ihe ”
& Ty . i ; Y et
("_)?t',‘fi(" S

N T o, :
} =08 g, {(u(a.v,- e s Wty G, ooy @t )],
LT & e

ave fdenticadly were.

The proof given there shows also that if these { 7 f} coditions hold in the vicmity of
a given mi-dimensionat submanifold & of sespace. then the abiove mtegrals are sill zoro
ovir closed subvarieties Voof M in fact, for this, fust {j:"l} analogous conditiony suf-
fice. ,

For gy functions w saosfyving these conditions, one can find 2t most b (M) numbers
such that the ntegral f‘ e 0f @ over any closed rovariety Voof M s a linear integral
combination of these numbers (we omit the prool given). bn other words, the indefinite
fntegrat [, of any finctions w satisfving the conditiony of integrabifity near M, has a
arst b AM Y periods. Forther, i can be shown that this bovad s the best possible, Le. there
exist such fusctions o having exactly by (M) pertods. Forr = 1, m -~ 1, this toterpretation
of the mabers B (A} was given by Hetti himself, '

§ 8 Yridids undlareres er bifatéres, A mamifold M Gas defined in § 3 will be called hoo-
vided (bilatere) iff we can assign an onentation (as in § 43 fo each of the varieties v of
s connected network, W such & way that the m oo s determinant det{i, / r"ﬁjjf‘}) is positive

whenever v js contiguous o v/,

vherwise M will be calied one-vided (unilatire) and deetned equal W ds own oppo-
site - M, This hagprens Y either, Be nerwark contalng a contiguons pair {», '} with the
determinant not of the swme sign it all the coraponents of v 7 v, orelse, has a one-sided
cirendl vy vy 3, e one for which making the determinant between v and vy posi-
tive for &< F € g - 1amakes the determinant between vy and w negative,

However, to justily these definitions {Le. (o see that one- or fwo-sidedness is a property
of the space M) one also must check Owe omif the proof givens that the same alternative
continues L hold i a vew local parametrization v" Is added to the connectad nepwork,

Everyoene koows of the one-sided surface which one obtains by folding a paper reciangie
ABCE and then gluing the edpes AR and O insuch s oway that A s gloedio Cand 8w £,
(See Fig, 30

Fxamples of pwo-sided nanifolds are pasier to give: Tor example, in w-space, any do-
main, of any curve. oF any closed (o~ -dineasions! surtace, are st twoesided. Indeed
muel more is truer the varieties Voof § Fare all wecessorily swo-sided {we ot the proot
pivenl.

This shows that “varidté
of the type given i § 1

s defined n § 3 (e, manifolds) do not ol satisfy eqoations



The topaiogical waork of Heari Poincars £3]

§ 9. Fmtersection c‘j(-*‘;‘ dewy varidtés,  Olven two points v and x' of n-space lving in orienied
varieties v and v of dimensions p dn(i s pwedenote by S0, vV e [ 10, 21 the sign
of the n % a1 determinamnt

Bx; /iy |

S ? ke f "\ 1%, i "v A S - 7.

[TV R U
iy,

and wsng 1 deem the algebraic number of betersections of » and v 1o be M{v, v
2o480e &y s 1" More generally one Rkewise (we amit the details given) connts the
atgebraic number of intersections of fwe erlented complomentary dimensional subrani-
folds of any orlented r-mumufold M {imitively one counts an interseetion x as -+ 1L i the
orientation of v at x followed by that of v agrees with that of M),

We note that A, 07 chenges sign ¥ the oriertation of any one of the three manifolds
182, v, v'} is reversed, and thag

N“)’q ”‘) _ { I }diii’l wodir {'J"V(T.-’»_ Le!\}

i closed {n — pY-dimensional varieties Vi < M are a‘m‘h that there sxists o p-dimen-
sigaad cut O of M fueving infevsection mmber A N(C, Vi nonzere then we cannoi
e 3k Vi o (O and comversely, if this /mm‘oinm deres not hold, thes such o cur O can
be /wmef’ dere, by s cut (eoupure) of M we mean cither any closed subvariety, or else one
whose houndary is contained in the bonpdary of 3. '

For case p == 1 and M closed (we omit ih:: proaf given for the case A7 o4 ) the direct
part foltows becapse i 3W = Vi <.« V), then the oriented closed curve O must go as
many dmes from the g.{)rxai.;if;‘"zmzat. of W mm W, as I goes from W oinio its complement.
Conversely the given condifions enswre (we omil details givend that thore B8 no nomtrivial
homaotogy amongst these Vs So the complement W of ¥ U - UV, In M roust be
connected, Tor otherwise the boundary of any component of this complement will furmish
a nontrivial homology between some of these Vs, Now we can oblain the required closed
curve € by joining the extreraities v and 2, of 2 sl are yxz cutting ¥y at x, to gach other
in W. (Regarding the sketched generalization see the First Complement.,)

i follows that, jor o closed M, the Hﬂm mu'rt.f‘w"s' eguidistant from the two ends are
equeat, L2 that by U8y == by (M) For O <0 p s “This theorem has not been, § belipve,

ever been siafed; it 18, however, known 1o Hi;m};\ who have even Tound some applications
of i’
Tey see this choose in M masimad sers of lnearly independent p- and {n - pi-dimensional
closed oriented varieties |Cy. .., Oy and (Vo0 V) whare & = bp Ay and o=
By pt ). B the mnber 2 u-i .h.zmm' sOuations }r 1(2\/ € Vid == 4 was less than the
mmber i of anknowns x;, they would have 2 sontsivial solution x; = & Then (by the
direct part of the previous respit) we would have 3 LN V) = O for all closed ¢
dimensional C's. So {by the converse part of thet resud0) we wonld have 3 4V = O
iy M Sinee this is oot so we must have A 2o Likewise g 2 4.

Let us now comsider the middle Betti number (M) for the case o oeven: §f
Zanod A then by (M) iy even.

To see this choose b o= Dyt M) Hnearly independent closed (n/23-dimensional sub-
varieties ¥y, Vo, .. of M, and consider the b < & determinamt N = [N (¥, V)1, where
by NV, V) we mean N{V, V) fir g suitable V0 o VL Sinee n/2 is odd (s determi-
mant is skewsymmeivic, and so. 38 b were odd, it would be zero. So we would be able to
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find k;'s not afl zero such that ) ANV Vi) == O 5o as i Jast argument we would
have 3k NIC, Vb == O for all m,f2\ varieties C, which implies 2ok Oin M. a
cemtradiction.

This is no bouger trae i 4 givides r.ooorif M i o -side
of examples,

toas we shall see lates by means

§ 10, Beprésenintion géomdirigue. “There in a way of de
rieties sitated in four space which facilitates sheir study o
tope(s) P having an even nunber of facets, with the s tdentfied in pairs,

For a two-sided va ety these comjugate Tacots F o= Fare such that i we wall on 2
along @2 keeping £ to our Jeft, then the corresponding walk on P along AF should
keep 7 o our sight,

Lt me recall sonnething similar from ordinary space. viz, culting a toros aloag a merid-
fanr anct & pacallel, we can desoribe Boas a sguare ABDC with identifications A8 =
Con, AL = BE, of its sides, Likewise wo can identifv pairs of Facots of 2 cube ln, for
example, (e following fve ways., which all satisly the sbove criterfon for reo-sidedness.
(b the paper, the fifih example, Lo, BPY s defined by the antipodal conjugation of the
facets of an ootabedron instead of the cubey (See Fig. 4.}

Nevertheless, not all of the above facet conjugations of the cube can cceur: we shall sec
betow that Bxamples 1, 3.4 and 5 are adnsssibie but ?‘*‘nz»m':pl s 215 not.

Fivst note that — in complete an.si:m* with the forreation of oyeles i the theory of Foch-
wi;‘m groups - the preseribed facet conjugations partition off the sets of edges and vextices

into cveles consisting of edges or vertice s whmh gt identificd to each oth 3., for Fx-
anple 7 ihese are Al w D e O = = A0 = LY, AA = DO = B'H
(78 w08, Ae B =0 =D zmd . ¢!
For each cyole o of vertices et fy =
of T

ibing thice-dimensional va-
arkably™, viz., as some poby-

umhm% iy, e == hadd the sum of the mumber
s incldent 1o each member of o, and vy = number of cveles of edges incident to

5
//‘/,f“""\_\%lm
S & -~ T o
B // ’
e -
| N
e ;3‘\ j c
‘MR‘\ -~ d
. b o
A

Fig. 4. Sguare and cube.
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vertices of g, taldag care o count cach such edge oyele twice i both vertices of an edge
are i o, We asser! that for a conjugation of facets o be admissible, 1t is necessary and

sufficien, the one hos vy ~ ey 4 fo = 2 for ali o,

T sew thiv note that the subdivision, of the portion of the variety consisting of all points
al o distimee < & fron any vertex e, s diffeomorphic 1o & sfar {aster), Le. o fgure formed
by some solid angles arrunged arcund a single vertex in such s way that each point of space
hetangs to ome and ondy one of them. Sioce vy, 2o and fy ave the nmber of rays, faces
and solid angles of this star, the vequired condition follows by nsing Buler’s formula,

The above condition holds (we omir the compiaiions given) for all our exarmples ¢u-
cepiing the sceond, for which 1y - ey -+ Jo = V.

& 11, Béprésontation par wn groupe disconsin. T soalogy with the theory of Fuchsian
SEONNS OAS IHAY SOMCHMSS descripe a three-dimensional variety via o properly disconiin-
pous group of substitudons § of ordinary space.

Erdeed, constder any fundamental domais £ of sroup., Subdivide tts boundary o
surfaces & which it xi"z“uw wah neighbouring translates SO, with F7 denoting the surface
spaved by P oand 81D Then the vaviety can be obtained, fust as In the fast article,
fresery 13, by ghring all {ts conjugate paies of facets F, F7 fo cach other,

FaMpLE &, Comsider the group O p of tronsformations of B-space generated by

vow,zder (x4 1,

(vov, 2 b {ox 4

O PO T N B S S S I S V7174
W, v By g b

where o, #, v, and & are four chosen imtegers with ad — fBv = 1, Le. sach that
i Ly g S o
(a ﬁ g BLALZ
¥4
discontinuous, with the unit cube P as o fondamendal domsin, 5o we obiain g variety M
by conjugating pairs of facets of 4 subdivided cabe Pr.

L Ohie can check {we omit the proof grvend that this group s
i 2 . b

. : P ‘ _
The simplest case is when 7 o= [ 0o j nosy Py PLoand one recovers Exmbple 1
N e 3 o )
For T o= _— conee apain P P bot now the conjugations are that of Exanple &,
— 1o . - . ; e .
When T o= a 10 then 7 has a nonteiviad subdivision Py, which with s facet conju-

gations ts shown in Fig. 5. More generaify, any Pr hus the sawe (onsubdivided) vertical
facets gs 1, but the number of ity top and bottom cells will increuse with the size of the
enivies of the matrix 7

§ 12, Groupe fordamentaf,  Suppose given o syster JF of multiple-valued Inca Ev‘ defined
sontinuous fonctions Fyoon the vardety V., which return to thejr indtial values IF we {ace
smail loops on the varietv, We will denote by go the group of all permutations of the
branches which ensue 1 we follow them over all closed loops starting and ending at a
given base point b of the variety. ‘

Ter be specilic we may consider solutions £, of an equation

Hoilxp, oo Fyy oo Buodag,
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ANC = BEE D
ABR AT = CDDY Y
ey

= BATTY

where the ni coctlicients X, ; are given fanctions of xp and F;, single valued and con-
tinuaus, Wogether with their derivaiives, in a neighbourhood of ¥, and m}:i&i‘ymg there the
canditions of integrability

[

(Ux“, }m\ t}‘(ﬁ P

We note that if we trace a lacet O, Lo, go along any path from b o o, Tollowed by a
simall Joop at ¢, and then retam 1o b d}nn;, the ermm.sl path, then we only get the identity
substitution 5S¢ & g, Also for the loop (s, e O foliowed by {4y, one has Sy, 0, =
Sery ey

Motivated by this we shatl set © = O for all lacets, and € + O = O A general
eqpuivalence

ki Oy A kalCo o m ki O A haCp 40

will be betwesy integral combinations of loops based at b, One adds them just Hia;c ho-
mologies bul the order of the wrms cannob be nterchanged, So, e.g, A = Band {0 = D
implies 4 + C s 84 D but pot O - 4 = 8 4 00 Adso note that from 24 = O one dum
net have the Mght o conciade A = (, /%xmrhe{ difference from homologies is that a base
point & is involved in their definition,

{The above careful disgnction between equivalences and bomologies notwithstanding a
one point i i erroneously written that the boundary of a two dimensional variety of V is
equivaient o zero; also see [66, p. 3901 analogousty on p. 293 of 61} O = 0 should be
' 22 0 This surprising error is rectified in [691 see ¢ pp- 4514525

For any gz, we obviousty have (1) O = Oy + o= S o= 0, Sep and () O = 0 o=
Soo= . We shall denote by & tlmﬁmdmm ntal group G of substitutions Se .ml.m ving (1}

and the stronger (20 O = 0 @ 8¢ s kL There is thus an epimorphism from G ondo
any ga. This can be one—-one. but is in general not so, because some loop €. whieh s not
decomposable into Jacets, may sill give the idenity substitution in gz
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§ 13 Eguivalences Jondamentates.  One can alwavs fod some fundamenial loops
Oy o Cp sush that any foop s equivalent o a combination of these. The relations sub-
aisting between them. which deteroine the form of the group G, will be called fundamenial
eguivilences.

For o variety deseribed as dn & 10, using just se polytope P, each pair of conjugate
Facets [F, F') gives a éumhzmmmi loop &7 proceed along a saight line from the base
point b ¢ P o a point € FLoand then along saother straight Hne from the conjugale
paint x & F back 10 b, Denoting each odge of P as the ps‘wduc‘a of its. two incident facets
any eyele of edges is of the type if - E,J ¢ Bach of (hese gives us a
fundamental equivalence £ 4+ On r»% ~} ii T (}.

Tgnoring the order of the terwy in these Tundwmental eguivalences. one obtains the

Sundmnental homologies between these loops, These give by (M), which for these three-

dimensional varietios M, also aguats B8
Por Bxample 3 of § 10 {computations are also given for Examples 1, 4 and 5 this method
gives fundamental equivalonces 20 & -2 = 205, 40 = G, which show that £ is
isemorphic (o the hypercuhic order eighe group o0 §, &), and that by (0 == Do (M) == O
For Example 6 of § L1 the fundamental group is evidently isomorphic to &y, Denoting
{the loops inducing) the three defining substitutions of this group, respectively, by €, 2,
and -, we see that

Cy -4 {'T‘} s+, Ok O Oy ol byl and
Co b Cyoms Oy b By - 800,

These are fundamental eguivalences, becase using them, any member of & can be
written maCz 4+ Oy b meaCy, which can be checked 1o be the identity substitution 31
iy s oy omm oy == G0 The fupdamental horsologios ave thos (o — D04+ w20 O and
B (8 = 130 2 O These homologies are trivieb 87 T = £ Ly this, and only this, case
does one have by = by = 3. For T' % [, the ahove homelogies are: proportiomal iff the

. lo— 1 v C e o .
deterinant | g 5 ' | pvanishes, Le (60 = o b & == 2 5o in this case, and only
iy this case, the Beftl nwmbers are &y == b = 20 In all other cases the homologies are

nontrivial and nonpropoertional, and so we ave by = 2 = 1L

i4. Conditions de homeomorphisme.  One koaows thal olosed Z-swanifolds are diffeo-
morphic {f their Betti numbers are same. This follows, for example, from the study of the
perinds of Abelian functions. I any Nis*;'nmr' w surface £ with ¢ as vanable, ope can intro-
chrce a new complex vartabde £, such that s o Fuchsian function of ¢ and that ¢ considered
as function of 2, has wo singelar point on the surface B The Fuchsizn group is obviously
nothing else but the funduwmental group & of K. This rales out the possibality that some
cyeie of vertives of the Fuchsian pelygon, Ry or Ro b KL, bas angle sum 2o /o withn = 1,
for then we would get a nonidentity substhngion as we describe g Jacet atoand this point of
the variety, The possibility of a oon simply connected Fuchsian potygon Ry -+ Ry, is ruled
ouf because then a nonirivial foop € of this polveon would vield the identity substitution
of the Fuchsian group. Thus only Fachsiun groups of the Arst kind with angle sums 2
ab all eyeles of vertices can ocour. All of these groups which are of the same penus are
isomorphic, and it s for this reason that all closed two-dinensional manifolds having the
same Bett number are diffecmorphic,
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Howewver, in dimenstons > 2 (he questions of Amalysis Yy become much mote oo
plicated and, as wo shall see, # i no longer the case that closed varteties baving (he sarme
Bett ninmbers must be diffeomorphic.

Lt us return to our sixih example (8% 11 and 131, We shall say thet our T & SL{2, 70 is
hyperbolic, purabolic, or eltiptic. according as s two ¢ ge,n\/aiues are real distinet, equal,
oy maginary, i (;}.-, Gy then a pair of clements of Gy can correspand o the el
eInents é‘? and 7 o of Gy only if they are commuting but Mneacly ndependent. So et
a0y b £y b (o and By b B Oy A BeCy be any two elements of Gy osuch thar no

nogrers mitkiphe of sither eguals o maltiple of the other, For T hyperbolic these elements
commuic iff as = Qand by == § and for T elliptic or T s — this happens iff = Omod v
il by s Qmod v, wheee v > 1 iy such thot 79 = T {we omit the prool given).

Cine can say move: the grouprs G and G are isomarphle BEE s In the same {'rmjw»w*v
clasy as T To cheok this {we omit the very long details) we choose generatoers Oy, Os,
01 €7, sueh dat O m:%{ 5 are comrmiting but linearly independient and soeh thar C-- €

O b T forall O e (O, Os) The idea of the wtmi i that, in mma veldations
replaced by the sémitor Cransformde ) matix U717 Fif we veplace by 800 We give
various cqses, sequences of such slementary moves by means of which we fiitadl yreplace
by T in these relations.

The number of these coniugacy classes is fnfinite because similar matrices nust bave the
samne frace; however conversely, just like nonc coagruent guadyatic forms can have the same
determyinant, two Hnear snbstitations can be nonsitndar even if they hove the same frace

Thus there ace infinitely many nosdiffeomorphic My s Since, on the other hand, Elwn“
Bexth namher by o by concbe ondy 1, 2, or 3, i follows that, for twe clased varieties 1o e
diffecmarphic, it does nor suffice ffmi the Bettl wiambers be ihe same. Hm lwiinw. eoually
because, for oy third example F was of order 8, for the fifth (= My of ovder 2, and for
the unii sphere of despace it is of order b.oyer for all of these by = In = O So it seoms
natural that only thase vavieties should be called simply connecied for which & s nuil,

e wentd e interesting o know which fondamental c:quiv;-\ie'nccw e antnally arse, and
how one can construct these varieties, and whether two varieties having the same O must
be diffeomorphic? Such guestions need & difficult and tong stady. so L will not pursue these
Tresver,

However, T deo want 1o draw attention o one point, Riemann had studied atgebrae curves
as two-dimensional varieties, likewise algebrai s are four-dimensional varietios.
M. Preard has showsn that for all bt some very special alpebraic surfaces one always
haw By = Q. This paeadoxical looking result appears less so now the group G can be
auite complex and vet the Bettl numbers can be very small,

8 15, Awpres modes de géndration,  One wmay give other definitions of varimies which
are, se 1o speak, intermedise between the two given before, g i the equations of § 1
depended or ¢ pararmeters, then the dimension of our variety would increase by ¢, or, if
the parameters of § 3 werg subject o 4 equations, the dimenston would decrease by A

Also, given a variety W, and 4 group (7 which preserves I, one oy consiruct o vari-
gty ¥, to each point of which corresponds one and only one orbir (systbme de poipsyof W
This varety wifl be two-sided #Y the fumctional determinants of the sebstitutions of & are
positive with respect 1o compratible purametrizations of the two-sided variety W,
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ExampLr 7, Let ¥V be the sphere 1y -+ \f‘,: - yf;; = | of ordinary space and ot & be
I C Y L R T P Ay 10 1 !mﬂ .8

EWR I 0 5 PR SRk R PRI I 5

5. This two-dimensional vavisty ¥V of
wrical substipation (b, @y (b 4+, 7 —H) &

the x's will not change 18 the v's change
dimensional space is ome-sided because the spt
F has functional determianant .

EuampLe 8 Let W be the (2¢g ~3 - %{Tﬂf‘ﬁ‘ai(%ihl} vmweg W ot 2e-dimensionel space given

by the egustions wf R & and z —§~ st L'i'é = 10 its paints correspond to ordered

pairs {68, ) ol points of the hymmpmw yiboe ry; = 1, The gy +33/2 combinations

Vi i MG, Yizp b Ipy.

give us p == g {g- --‘%‘1 JLnevevariables vy, vo, ... %y whivch do oot cliange il we i;zier{‘hmme
the v's ,m(} the 7%, Lo a vagtely V w?mm pmmx correspond o unordered padrs {0, QYo
points of the hypersphere 597 &

Few ¢ = 2 this ¥V iz not cloged, however, for g 3 it does Bave an empty bound-
ary 8V furthermore ¥ s ope-sided for g even and two-sided for ¢ odd (we omin the
proots glven)

The nonzero Bertd numbers of W oare bol WY == bag 2 (W) = L and by .y = 2. By duality
it suffices w compute b, <0 g — 1. Any subvariety of dimension bess thas g — 1 can be
deformed inie the ball W (W U L5, where Uy, respectively, Uz denotes all (02, @7

hthat @ = Qp, respectively, ¢ = Qo o dimension g —~ 1, &y and &5 ave Hnearly
independent: for, # J is the nsual vohume element of 597 in yphedicat cdordinates, then
fUF A Ady) satisfies the conditons of 1o wmahmiy of § 7, and, for A ireattonal, its periods
over £y and £f are mtegrally independent. Lastly {we omdt the prool given) any closed
i — D3-dimensional variety v n‘i W 1% mﬂmiwwam some mlly A nlls,

O the ﬂt?'wr hand, for ¢ = 3, the nomzere Betd aimbers of Voare botV) = by =
B o VY 2= | (we omit the mxutmm) This shows, as announced i § 9, that :hue um{
one-sided, m\,m‘mv ely, two-stded, varietios of dimensions &k - 2, respectively, 44, having
ricddie Bedi namber add,

§ 16 Théordme o Fuder This wells we thad 15 8, 4 and F are, respectively, the number
of vertices {,\5()2’1‘1!1‘1{‘("\}) edges (arftest and faces of & convex mivhs,dum then one must
have & - A - F == 2, This theorera bas been gene E.dilfé;-d by M, Vamiral de Joaguidres
10 ponconves poly liwcfrz-; One now has & - A4 4 F — By owhere &y denotes the Betgd
number of the boanding surface. The fact thue the faces are planar 1s of no importance, snd
the same result {8 tree for any subdivision of a closed surfece nto cellular (simplentent
CORNENE) fogions,

We shall gencratize this result o an arbitrary closed variety ¥ of dimension p. This
witl be subdivided into some varieties v, of dimension p which are not cosed, and the
boundarvies of these v, will be made up of some varieties v, which are pot closed,
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Firg, 6. Devivedt edrabedeon,

and so o G some points vy, I the regions v’ are all cellular, then we shall call such
subdivided V o pefvhedron, We propose o caloulate the number

L TN I SR cp s

e o, denotes the pawber of the vy 's i the polyhedren, :

Two polvhedra atsing fronn the sune Vowill be called congroens, Further, i the regiong
of the first are contmined in those of the second, then the Brst will be said o be a derived of
the second, e.g., we can derive a tefrabedeon into 24 eiangles as shown o Fig, 4.

We shail '\Emw that The number N ois the same for any iwo congrient pw!\'hrfr!m, Sinee

two congraent polvhedes ave o common devived i1 suffices 1o show NPTy =0 NOPY for

any derived PP ot Poifa v i -2, 18 Inetdent W exacthy 2 vy s we shadl say that vy bs
o singadar vegion of the polvhedron. Wu allow these becanse then we can go {we ot the
argument given) from P o }"‘ s ¢ nanber of steps, done mduz of increasing diunension.
each involving erasing a v having exactly bwo incident vy s, followed by an annexation
of thise three regions, Cleardy N s unchanged Mw; £ h of !! 056 SIS,

However, this argument s open 1o objections, e.g., durng the gbove operations the re-
grons may nof remain cellular? Before modifving our pm(;i 50 a8 L0 overcoms these objec-
tions, kel us compute some N5,

For the bowndory Vo of any {p 4 reell one hos N o= 28 piseven and N = G if p
is odd, By the above we can use, ¢.g.. the boundary of 2 ge muﬁwa‘ tetrahedion (we ot
this caleulation). or a generadized umc =1 xp 4, < p 4 b for the latter
oy = 2PN s (1 P g b k=1 - N e f\« = b (=1

e vigorous procf of the tnvariance of N will be by induction on p. The regions 1y, >
g. incident o & given v, © P will be said o constitute the sir m%u}o vy, The induction
Iryperthesis, and the shove computation, imply that, for the star of any iy, &f F ome has

Vp = Vo by = L (=P (A)

where s denotes the monber of vs in the star.

Mext, fet us take a guudrilloge, Lo 2 cubleal sobdivision of k-space by » pencils of
nonzecuulating Gyperplanes paratiel to the coordinate ;"Jh;es'xc:m xpommoarig, b1 R o
Then, if the mesh of this guadrillage is small, the indersection of each of 5 (n — D-cubes
D with ¥ dx a (p - f-vell vy, and fs'ww cells give us o polvhedrm (§ covering V. Lat
# he a polvhedron which (s a derived of P and of (7,

fo see NPT = WP we go from P o P by erasing the hyperplanes 1 s . one by
one. Let 8, denote the number of g-cells of P’ on this plane. éj{’; the ruwsber contiguous
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to it on the (o <0 aj-side of the plane, and b{, the number conliguous to it on the other
side. Since 8 = ;-1 == 8 {with also 8) = U = & and 8 = O). the suppression of this
hyperplane decreases each oy by 8, 8,4, and since the alternating sum vver g of these
nunbers is zero, N oremains same.

T see N{IMy s NOOY we con assume (by making the mesh small) that the interior ¢
of each cell of @ intersects ondy one least dimensional cell vy of 2 thos the cells of
P intersecting ¢ are precisely those that have vy, on their bowadary. We now go from £ to
(3 by evasing all cells of P7owhich wre in peeells o of @ but which have lesser dimension
than p. S0 in each o we are erasing the least dimensional v, and, foreach p = 1 > 4. ¥
incident cells of dimension £. Moreover, the mumber of p-cells within ¢ was y, before and
1 afier. Thus the ol decrease it W s 1 by - 1y - oo by & 8, which by the
resilt above 1 zero, Mexrwe erase ali cells of P which are o (p ~ Di-celis of ¢ but which
have lessor dimension twan p - 1oand so o The same verification shows that & remains
saine at eachl step.

§ V7 Coy i poest mpain. For aoy polvhedron P (subdividing Voas in § 16} we shall
derote by B, the sum, over dll vy, of the number of v, s which are incident to 1y, Mote
that B, == oy and f,, = F.0.

If the dimseusion poof Vi even, the oumber & depends on the Beitl sumders of ¥ (see
§ 18y bot i p s odd, then o closed variety Voalways has W o= 3. To see this consider the
foltowing tablean :

ﬁ,‘!.gw-l = Bppezr /':f[ﬂ.p oo ﬁ;ﬂ.p e A
,{.J(:j!?mg!f,)\.@g . ﬂr;‘,u&;”,',._..g e fﬁé,; bppemd
ot Bt ety

The swn of the first vow is the st of the &' of the bounding (p — Di-spheres of the
e, progils of P oso it equals 2oy, Likewise that of second row s zero and that of third is
Luxpy o, ete, Thus the sums of the tableau i@ twice py 4y -0 On the other hand the

sunis of the colunms are oy, O, 2ap., G0 o0 hy B oA) of 8 16, Thus the swm of the
tableaw is also twice e,y & o5 b - - Bguating the two values one gets N == 0,

§ 18, Begxdome démonstration.  This proof will tell us how N depends on Beti numbers.
Iwil] fiest give an exposition of i for the Cose p = 2, ie. an ordinary polyhedion & with
ey vertices, oy edges and o faces, and show that &V = 2 — .

Agsign to sach of the o vertices any nunther, and 1o cach of ity oriented oy edges the dif-
fevence & of the numbers of its two vergees, These o sambers § depend on the an numbers,
and conversely defermine them up 1o an additive constant, so there are dn all ay — oy 4+ 1
linear relmtions bevween the &'y, These hinear refations are given by selting equal s rero,
the algebraie sum of the 87s. of some cyele & of edges. Firstly, each of the oriented o faces
furpishies a cyele, viz, i perimeter £ Secondly, from avy chosen by homologousty inde-
pendent eycles € of V, we construct eveles €7 of edges as follows - see Fig. 7,

Whe assert that any relation betweew the 87y is g lincar combination of the oy -+8 relations
gven by the ST and the O To see this, fet K be any cycle of edges. Adding 2 suiiable
linear combination of the C7s to Hwe get £, which is homologous to zero. Being a cycle

et
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Fig. 7.

of edges of P, this £, must be the boundary of 2 sum of faces of £ and so a sum of thelr
perimesers I7. Also, the sum of all the oriemied perimeters is zero, but no partied sim of the
77 15 rero. Thus owr new count shows ey -+ &y - 1 Hoearly independent relations between
the &'s, Bguating this with oy ~ ap 4 L gives the veguired Tormuia,

For any subdivision ¥ of o closed p-dimensional vartery V. oone has

(= Wpof F Oy vz by by + by

This follows by o generalization (we ont the proot which s written out for the Cage p =
3 ondyy of the above argumest. Since the Bettl numbers equidistunt from the extremes ane
equal the above formude again shows that & = O when the dimenston g is pdd.

2. Motes

With reference to the fniroduction of A8

NOTE b Starting with his disseration {731, 1851, Riemann had visoalized the graph of a
mukti-valued analyile funciion - eg.. the fimetton v of x defined by a polynomial equation
Fle, v = 0 in two variables - as 2 surface obtained by glung some complex “sheets” ©
each other along some “cats”, and in [74] he showed that the conuectivity of this surface
characierizes o noosingular algebraic curve up 1o biratonal equivalence. This connectiv-
ity is defined omope HE of [73), and in {75] he left some ideas about a similar notion in
hipher dunensions; these higher connectivitics were defined by Betti (41 In 1880, Ficad
finched an analogous programvme for polysomial equations f{x, v, 2) = {in three vari-
ables, eading eventually 1o the famous treatise 149 on algebraie surfaces which he wrote
with Simarl.

More 2. Polncard developed Wis gualitative theory of differentinl equations o the three
part memoir {511, The index formula for generic vector felds is proved for all surfaces
an pp. 121125 of he second part -~ ihe 2-spheve case is theee even in bis OB, woie [50]
of 1880~ while pp. 192197 of the third part deal with the case of sll n-spheves, 1 2 3. P
Dhvek's work on Analysis Stus sce (191 We note also that Poincars’s “A57 was preceded
by two Compres Roodas notes [56, 381
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NomTe 3, The sssertion that the {oext to fmpossible} problem of classifying the finite sub-
srowps of GLOL T had bean solved s of course wrong, however, Jordan (33 had given
{moedudn two groups of order 168 and 169 which he missed) the classification of all finite
sathgroups of GLEL O The case n == 2 had been done previousty by Kiein {33], The clas-
sification is now known for all w <0 7 for veferences, and other information on this subject,
see Diwon [171

With reference jo § 1 of AS.

MNOTE 4. FPolncard s uses of the word “variery™ love ai least four modern conpoiationy,
Foy instance a “closed variety” V. or rather s closise, con be thought of as a closed psei-
domanidld, .o, forg 22 4, Polncard’s eighth example (8 15) only gives pseudormunifolds,
The “vagiery” M defined ia § 3 as a “rescanx connexe” is more or less today's abstract
closed manifold, while the special kind of “vasieties” v used in s definition are the Tocal
pavametrizations of A In § 4 “vadeties” are oviented, and then in 88 5 and & Poincard
considers irtegrad or rational linear combinations of the ariented varieties of an M de-
fire #s homologies and Betd mumberss by thas contest it 18 best to think of Bis "varjeiles”
as siooth chains of A,

With reference to § 2 of 4.5

Mari 5. This definkion of Analysis Sins s io hermony with Klein's famous Erfangen
Progean [341 of 1872, even though now the “group” in guestion is really oy 2 pyen-
dogroup or o groupoeid.

With reference 1o § 3 of A

NotE 6. The reader will note that Poincard’s “andytic continuation” works egually well
with CF or €7 chagts, 2nd 18 just the way one would nowadays define an absteact man.
ilodd &, topether with an immersion In sespecs, Polncard’s Foous will abwvays be on the
abstract 47, e never enters Into questions related to the immersion, and only exploits the
convenience of p-space 1o present without fuss some important jdeas whose simplicity s
obscured i one fpsigts - the book of Milnor [45] belng s beawtilul excoption — on g totally
ttrinsic reatment,

The idea of an abstract mazifold goes back 1o Riemann, bat becsme popuiar only moch
fater afier Wey! [88], 1918,

With reference o0 % 5 of ALK

NerE 7. Interpreting @ s the oviented boundary of smooth oriented chains Polngand’s
homologies are the same as those of Filenberg [22]. B was probably becsuse of this tat
Eilenbery remarks, o p, 408 of his {942 paper {211 on singwiar howelagy, that the sin-
gutar method of defining homology “is gy old as ropelogy itself”.

MR 8 At this stage Poincant™s “ust like equations” ks confusing, Tor if 18 not clear that
he allows division by sonzers integers, Lo, whether he wants (o use inlegral or rational
coefficients? However, this point gets clarified in the first "Complément”
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With reference o % G of AN

NoTE % As Poincard pointed ot in [60], the numibers defined by Betti [4] himsell were
aot the same as these! in irm{mu terms Bettd had considered the pumber of elements re-
guired o genprele FEAM 20, rather than the renk of the free part of this group: see the
First Connprlerment,

With reference fa § T of ALS

NoTe 10, Polncaré’s indefinite integrals are uniguely dewrmined by their skewsym-
metvic integrands or differeniial forms . This section of “Analysiy Sins” nspired
B, Cartaz {12, 13]. Following him, the exterior dﬁ'hmiw doy, of an r-torm e of o tobdar

neighhourhood & of g manifold M < B s the (4 D-Torm defined by

{deYle, . ) = } {— ri iy, Em(m, o éx.q.)jé,

Ume hag d od =+ 0, Lo, these d'ﬂ'ﬁ'wmmmi"cs'r'r;}.«; constiiuie a cochain complex (S2(0, ).
Now Poincard’s “conditions ¢ intégrabilité” read deo = G, and the result, nowadays catlod
Pwm' A % Emmxm wmh b agzmtew froun his mzim mpe xayx Uml H (W‘”’ ot van-

alw grmx, i a(idmu Zronp hcmmmmp S H, (f} i N ~,~-} ¢ #k@.\m.ﬁm ff,-{ii;f; §2) e
(€2, ) i ooe uses complex valued forms) whose imdge is called the period growp of o,
Peoiscars checks that ths free Shelian group has rank < B (W), and assexrts withous prool
that this bound is the best possible. For simple cases - ke, eg. I = 0\ {some points)
when one can wse Cawchy's infegral formula, slso see Poincard’s use of the volume form /
in $ 15 . ome can check this by giving explich closed r-forrs having &, (M) pecicds. The
assertion s e io general, snd equivalent to a gereralization of the Polncard lemma pro-
posed by Cartan 113], which scon became de Rhiony’s theorsen [ 72], viz., the cohomelogy
M8y, dy defined via diffevential forms is isomorphic o 5700 I,

NoTE §1. As observed in Serkeris {76], dropping the requirement thal the compo-
neits of o be skewsymmeiric with respect to the indices gives a bigger cochain
compler (§25uact U0, Y with 4 defined exactly ag above, and furthermore, fatermedi-
ate between S2U) and Qawaclll) one has vel another, (uail/ ) dh consisting of
all ew’s skewsyiometric with respect Yo rotations of their ndices. The cobomology of
($eene (01, d¥ 15 also MM, but the oyvelic cohomology s somoewhat different. be-
i

H {5”}w~,(!f . ) SR ANEIY Y

Cyelic subcompleses were first observed by Connes {147, however, the ovelic man-
ner in which Pomeard displayed his “conditions o intdgrabilitd” cowld fuve sugpesisd
(£2epc (8N, oy evep o Cartan?

With reference o & 8 of 4.5,

NoTE 12 f}i f{’!ii’;:ﬁu!;r\f fs non sufficient to ensure that g monifold car be defined s in § 1.
Sucha ¥ has a trivial normal bundle, so all its characieristic classes must vanish.
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: . o 4) . . R .
For example, since py (0 P2y 5 0, the complex projective plase, Le. for g = 3, Polnourd’s
eighth example. cannot be 8o (it.l"ﬁl‘ltid

With refererce to § 9 of A5

NoTE 13, Here safional coefficients (m necessary, o.g., the double of 2 nonbounding 1-
eyele ¥ of Poincard's fifth example co & 1 bounds, so MOV = O Tor all two
eyetes O With retional coelficients 015 troe %h:;ié a{n— preyele & nonbdonding U1 inter
section number with some p-dimensional cat is nonzero. The proot which Poincaré gives
of this assertion for the case p = 1 is okay, however, for p 2 2 the sketched generalization
is flawed: see the First Conmpriement.

WOTE 14 *‘icu;'{i had us 'scez‘l b; e !?'a m mm' Hon %ia;*i’;tc“tw E‘iwdc es ﬁ”ﬁ‘h’u“u‘é eﬁmﬂiw i 2
{

Ié’f’;(ffﬁf’“ rf;mz’m b b,;, p(m( M} = hp M 31% M) k;r mwmzci mcmm)kh w;u hcmm‘idty
Ware generally, one has by p (M | A) == f?,,(fé/f AYiF My A ds an orientable p-manifold,
e one has Alexonder dirality between the Betti numbers of a closed 4 < 5% and s
complement, This generalized Jordan curve theorem shows. e.g.. that the Bett sunbers
of the example of § 6, Le. of 57 {sonw bouguets of circles}, are indeed those given by
Poincard.

Mers 15, Recall fhat two integral » % n matrices A and 8 are called congruenniti A =
PEP forsome P& Glin B3 The snimodular intersection matrky MV V) of size
By (M) whicht Poincasd considers is welt defined up to congruence, and | mgnuﬁu%lv
important for n = 4k when it Is symmetric, For example, Whitehead iﬂ}} ] a%;cww ¢ that the
homotopy type of a closed simply connected 4-mantiold 13 defermined by the congruence
chass of this matrix, and o thearem of Donaldson (181 says that, 1f definfte, such a matriy
st be copgraent 1o i

Combining this with FPreedman [23) it follows, e.g., that there are about a 100 miltion
distinet simply connected closed Jour-dirmensional éammh}egszml mamifelds with by = 37,
vl having bstersection matrix — pow of course defined via onp products - posifive or negs
ative definite, yet only two of these manifolds can carry a smooth structure! Zopaiogical
manifolds, or for thal matter all of point set fopology, came long after “Analysis Siius™
unless expliciity stated otherwise, these notes also are about smooth manifolds and poly-
hedss.

With reference 1o § 10 of A8

NOTE 16. The assumption that mantfolds are obainable from polytope(s) by facet conju-
gations is equivalent to their triangulability. I § 16 Pomeard suggests a cell subdivisi
via “guadrillages”, and in the first “Complément”™ (§ X1) he gives vet a m'i}er with more
detaifs, For proofs of siasgulability of smooth manilolds see Catrns 110, 11}, and bW hite-
hezd 1891, Por iopological manifolds, wianguiebility is 2 much more i.i&;‘it_dl.{f guestion. e.g.,
Casson has shown that some such closed Lananilolds {related to Polncard’s homaolog
sphere) are not homeomorphic t aay simphcial complex: see Aldmlut and McCarthy |1,
prowvil




144 K& Sarkaric

ere ave i all seven orienioble closed S-manifolds obrainable by corjugal-
ing (:f;.?g.m,s‘ft frncets of a cube, these are listed in Serkarin 1771 We note also that msfead
of Poincard’s star eriterion one may simply check that the J-complex resubiing from the
facet conjn u(tmms has Buler characteristic zoro, the it will astomatically - see Seifert and
Threlfudl {78, p. 216] -~ be a manifold. For opelogical sriengilations stars can be fumy,
e.g., Bdwards (207 gives 2 simplicial subdivision of 5%, in which one of the edges has as
hm. the 3 -~nmm§<;§¢i of Poincard™s “Clnguibne Complément”

Move 17 Th

With refereuce to § TUof AN

i Y . = .
NOTE bR Podnoard's sixth exam ?iL amot mf» wo identifying the T ends of T »x {0, 1} using
the diffecmiorphism of the forus “defined by Foe SLOZ, 2. Starthsg instead
with twa copies of a solid toruy, and identifving therr bourding torl using 7, one obtains

the lens spaces Ly of Tigize [87] Por ¥ = r ;’ ? % this toral diffeomorphlsm commmtes

with the projecticns of the twe solid tori onto the Z-disk, so vielding all the vircle bundles
ot
. and

Lot

By e S9of, Steenpod |B4] A against this, Poincaré’s Mg are T “handles over §
in the “Troisizme Complément’ he will also consider other surface bundles over 51

NoTE P One can check that fiae' top and the bottom sqmws of Py are each made up of
excreity bl b B -l 8 = T faeets.

With refererice 10§ 12 0f AL

NoTE 20, Poincard gives four approaches to bis groups g and G Firstly, as all deck trans-
formations of a coverbng space over M, viz that whose projection map 1s the imverse of
the snuliiple valved function F, (one should allow the vurmber of values to be infinite also).
Secondly, his differential equations definition — which plays & major rOle in Suliivan [83]
~gives g ax the hodonory group of a “curvature zero” or integrable connection on a vee-
tor bundle over M (for nonintegrable connections holonomy groups need not be quotients
of o ). Thirdly, his definition using “loops”. “equivalences™ and “lacets” amounts
that which ope usually finds in most text books, Lastly, in § 13, for any 3 obtained from a
polviope by facet conjugations, Poincard defines sy (4} via some simple and elegant (vet
intriguing) cyclic relations.

Much later Hurewioz [31], 1935, defined his hiﬂfﬂw hometopy groups as fundamental
grouns of Herated boopr s s (MY = (5 'i‘F'm‘ (8% is nomtrivial was seen

P

by using the Mopf map 1297, 1e. the projection ‘Z,‘g‘ - 87 (ser Nete 18) for case T o

Wlih reference 1o § 13 of AN

NOTE 21, It fooks curious o a modern reader !imi Poineard speaks of the “fundamern-
tal wroup™ but never of the (first) “homelogy grewp”, and this even though he speaks of
“fundamental egoivalences™ in tandern with unm;m,m ai homologies™! This is because
—of, 164, n. 4307~ at that tme. the word “growp” was need 18 2 more resinicted sense:
one spoke of groups of frangformationy (= substifufions == permuiaions e} but not of




Jinite an!c:f.s vowhich can ooy are [, 20, 3,

Fhe topofogival werk of Fenri Poincard {45

groups of potars. Por example, B equipped with addition was seldom called o group, bt
one spoke of the group of ransiations of 8. For squivalevces, Poincard bad given such an
interpietation via sabstiiutions induced by monodroms, ‘ém homotogies he had not This
unddefinable distinetion betweea transformations and poinis was dw,d ded Jater, llewise
function and path spaces entered 1opelogy,

With reference to § 14 of ALY

Nors 22, The theory of Fochsian proups was created and ﬁm~=e$npéa‘5 by Podneard: see,
e, ESELL Bxamples (of all three kinds of these discontinuous groups of wmottons of the
non-Fuckideowr plane will ocour later in course of the argumenis of the third. fourth and fifth
Complements. {This last alse contiins o more opokegical argumment - via Morse theary!
— for the classifieation of surfaces.) Poieard also started work on the harder theory of
discontipuons groaps of motion of the ron-Bueclidem space - see, e |, zlao see {68,
. =681 for bis popudar accoun of a nen-Euchidean world - and robab ly gol imerested
firat i S-manifolds while examining Fondamental domaing of these groups, The recen
work of Thurston [86] shows that golng back to these geometnic “roots” may lead o a
classification of Aranifold

MOTE 230 As observed i Barkarin {77] the main resuls of this section needs 10 be cor
rected shightly: the groups é’.}-g- wwf Goe give isomorphic if T or T is B the same confr-
gercy olass, in GLEY 2, ax 170 This is also then casily seen o be necessary and suffictent
for the xsmm%nl&a My and Myoto be diffeororphic o each other
Stooe 812, 2y /o) s somorphic 1o a free product of 2/2 and 272, 1 follows (hat the
3,04 or 6. There is just one conpugaoy class of
SLZ 7y comesponding to sach of these v7s, viz. those of

N3 {i —1 ‘ [i} ~‘%

L

respactively, The conjugacy classes of parabolic elementy arg alan easy and are given by
Poincand: representatives are

Lok o el
andc . ; T
\40 I.J it i o EJ e

However, it s not casy to make Poincasd’s classification of the My’s more expliciy, becauss
o complele ermmeraiion of the conjugaey clnsses of GLAL, 2 is unknows, but one does
knoww that the momber of hyperbolic cmziuﬁgm\f classes ?'uwf'm' a fixed trace r oequals -
sez 177 — the olass pember of the real ;Lutdml;n, feld O - HYL For a different
comnection betweai the fopology of Poincard’s &y s sod number s.m.m‘j_,a resd Harzebruch-

Zagler |26, pp. dx-xii].

NOTE 24, One of the guestions asked by Foincard in § 14 can be anywered by wsing the
anclegons manifolds f {:ww Moie 183 for which an explicit classification was found by
Keidemelster {71], 1935 Ly h(mzummmpi icto Lo, Uy = v’ and either & = 8 mod v
ar 88" = 1 mod . Here f{;(.:{,_;} = 2/, Bo one obtains nonbomeomorphic closed 3-
manifolds having the same fundamental group, Indeed, by Whitehead [90), one also has
nonhomevmorplic Ly 's having the same homotopy type,
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With reference to § 15 of A8

Mot 250 The image of the map of Example 7 18 actiily contained in a A-sphere - this
follows becase xy b o 4+ aq =0 1 oand .\:;2 - 1: + ;!:1% 4 %‘*; 4 f-'i;\;:; 4&2 wr o thiees
showing that A7 embeds in the 4-sphere; more generally by Whitney [92] ary closed M”
etmbedy in %}" W note alse that Kuiper 1381 has cheoked that the i.m.:ﬁlgwe: 433’ the analogous
map (v, ¥2, ¥3) b (Y109, Y2, Ya¥a, ¥aFs b Yaya. ¥3 ¥y b Vayn ¥yen oo From the

09 g0 R, I8 equal 1o u d-sphere, thus showing that £t §3md complex

RIS }hcm &
comjupation is 8%, See also Massey [43].

Mot ’?()" for g
[ “, s for g ¥
viz., DR More 'ﬁumaii‘» s £a1ff:'mirrr; phic b the space of all unordeved n-fuples r})"
poits of the 2-sphere - see Shalfarevicl [79, w4027 - and hikewise the symmetris
s-th power of any Zomanifold is o de-dinwnsiopal manifold, For g == 2, Vs the Mdhius
sirip. a3 is shover by fhe simplicial identifications made befow. (See Big, 8

/\ddmu the shaded triangle to the Mbius strip ;m,tww the minimal rianguliation '5.%?&-"{2;
w7, Asmlogously, the minimal trizngolation x.,,f“q af CPY o see Kithoet and Bane
choff [371 - is close to the reanlt of Kuiper and bassey mz..,\fﬂmmci in the last note.

3 the fink of the diagonal points of the V of Bxample 8 s 8977
4,V iz only g pseudomanifold. For ¢ = % one gets a xnmmi‘nid

&8

Witk referonce o § 106 of A5

NoTe 27, The reference for the cited work of Admiral de Jonguidres is [32] Incidentally
[ do pot koow of any higher-ranking topologist!

NoTE 28, Though in § 14 Poincard gave the now current definition of stooply consected,
mostly he ased it - see p, 273 of this section, or p. 297 of the fiest “Complément” ~ io meas
a cell ov, sometimes. 168 bownding spherer g, while asking, on p. 498 of 1691, the famous
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Fig. 9.

question which ix new misiakenly called the Poinearé conjecture. The Boler-Pomcaré for-
mula is of course false if one only demands that the regions be simply connected in the
mexdern sense of the phiase.

MNorg 28, The figure shove (Fig. 90 here P 15 usn unsubdivided triacgle) shows that
Poincard’s “erasing/annexing afﬂﬂ)slihm may stop belore reaching F.
Trsilismd o ' "
1 ;

Ty it nlel v ooy 3 SFIoe ambiatit Py o e
ARGECO AR 8D DG Ve O DOSINVE answal 1o a prd

&

the best of my Imm l«*e e, b5 sl apam,‘ Viz, iy theve a combingiorial charae xm& arion of the
set of all simpliciol compleses realizable us gecmelrie subdivisions of g piven simplicial
complex tof, Hudson (30 p. 1417 However, a fundamental thesrem of MLILA. Mew-
man {48} doos 1dentily the equivalence relavion genersied by “HAVE @ OO B2omet-
i subdivision” with that generated by “have a common stellar subdiviston™. The invari-
ance of N foliows becanse clearly elementary stollay moves proserve it This argument
is close mospirit fo the one being wied by Polneard in his second attompt in tus sec-
o

With reference fo § V7 of ALY

More 30, For %mw!wm& mmms*w Othese mude thelr appeartance iy the firss Comple-

nenty B, = o ( i} or all < A, 50 then unwml sipmmation of Polncard’™s “tablean™
f

gives the Dehn-Sonmerville wwam»m Lt

!). o g} ¢ ]} > (ﬁ' ‘; :}‘} 3 -1
oy - e B O B L )
’”(;: 1 4 ;!\ﬁ 4 1 et YOEEY b }e

which, for o smplicial sphere, are equivalent o saving that the polynomial $(2) =

tpi? L Hpp 2P ooz b mast ooy the functional equeion [y = 00— o)
A complete characterization of these polynomials is now known: see Slanjey 183,

With reference o § 15 of A8

MNOTE 31 This attenpt — the twe first “Compléments” will push It further - at the invari-
ance of N is the one which alfected futire developments the wmwst, 10 gives {plicitdy)
a new definition of Berrd sumbers which nses u cell subdivision P of M and Poincard is
trying to show - with ideas which clearly foreshadow shangplicis &ummmimmﬁm - thet
these cotneide with those of § 6, This pmgmnunc i which Brouwwer « see, e.g. |91 -
played a blg rBle, culminated in Alexander {21 1915, which consains an wiev;mm prood U[t
FLAP Y 2 ML (M0 After this Hromains only (o cheek, as Poinearé does, that the allernating
s of the face numbers o equats the alternating sum of the Betti mumbers by of &, This
temma campe to fraition with Hop? 28] and Lefschetz [41].
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. Complemernds
31 Fhe Firss Complement

The Pirst Cotuplenent opens with a reference o the “trds remsarguable” work of Hee-
gaavd {2531, 1898, who had deemed the daality By = By, of "4 wshysis Situs” mexact
and the proof of it ghven there without any value. Belore exanuning Heegaoard's spe-
cifin objections Poincard polnts out that BettPs numbers {4] were quite different from
those of “ALS.7. For Barti homologies were between distines varieties together fovming the
bowndary of some V., while Foinceré had considered arbitrary 0V s, At this point Poincard
stirtes fhat 3t ks converrient o even allow division by nonzero integers (see NMote 8). What
an example given by Heegaard. o for this matter Example 5 of "AS87 itself, showed (see
Motz 13} 15 only that the zllszﬁ,{y ix fudse for Besri's mimbers, oncthe other band the duality
i vory much pree for Betti sumbers (as defined in “A57) and the main object of this
paper is to give a now proot of this using the po Ivhedra P ol § {6 of "‘*Erm?y s S,

As for the previous proal (5 9 of “A mh sis Sl alter showing Tor o = | that 2 homel
ogonsty nontrivial codimension ¢ eyele V raé an oriended Iuwik wanifold M adits 2 o
dimansional fransversal O which interseets Hosontrivially, Polncard hud hurrledly sketched
that fhe general case could be done by Bading an 4 of one dimension wore which con-
faing ¥, then using ease ¢ = | 10 got 2 ope-dimensional transversal cut C7 in M7, and
finally entarging € to a complementary dimensional eyl € which intersects M7 in 7
Heeg medﬂmhgm‘ﬂmmmihmm,u tw: how can one fnd M0, or even if one can, kow can
e endarge O oo oyele O of the regquived kind? Polncwrd sdemity the validity of af least
the second of these olyjections.

Given a polyhedron P its mrﬂwmaa L how 1F Bs butlt up from the »;7s, is detormined by
its incidence rumbers: one has &7 = = (i the joth (odented) (g — Dy-cell 15 not incident o
the £-th {; w“% angd == 11 otherwise, sign depending on whether or not the orfentation of
the Lo -~ Picedl aprees with the boundary orientation (3 4 of "AS") of the g-cell, Poincasd
observes {im all-imporian necessary condilion

e9p e (0 (e o i O,

bust points oot that tis is not all, one has, e.g.. the star condition of "AS7, § 10, Poincard
poses the problem of characterizing schenas of mandfolds {Newman’s I%zumm. Mote 29,
answess this partially),

MNext, given o coll subdivision P of our manifold, we can consider the reduoced Betli
pamibers b (P <0 by, defined as the maximum number of linearly lndependent collular
cyeles. Mote that here “Hnearly independent” is st in the sense of § 6 of "AS, Le. the
homologies are not required 1o be cellular, However, Poincard asserts that alf homologies
are penerdicd by the coflplar ones, and an joricste peoof ﬂf this -~ only for the case of
nmmf fds - is given in Bection V1. (As remarked in Note 31 a full proof, using Brouwer's
simplicial approximation, was giver much later by Alexander.)

However, before this he “%u“m« in Section (1 how the sbove assertion baplies (his is
along lines already sketched in § 18 0 “4.57) the Beoler-Polneard formla for ihe reduced
Beuti numbers,

Ucus{{ ) gy --”-fm} fooonn f}”,{f’} f}m f{f I SR
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U dim == 3 (- 1Y dim H; for any chain complex .- -

(i.e. he checks that 3 ,“ by

£ = L5 = - over

In moden parlance, Section TV checks that, by imaging each g-cell of P 1o the sum of ail
the smaller compatibly oelented g-cells of & subdivision #7, ane gets the chala suldivision
gy (P e CPN

In Section ¥ he proves {(sgain using the assertion that cellular homologies sufliee that
the veduced Betth mmnbers wre subdivision tnvariants. For this he deforms each g-cyele
of P over b-cells of . in order of decreasing fe, Ul finally i is contained in the ¢ -sheleron
of 2, Then the coefficients of alt smaller colls belonging to the same g-cell of P being the
same, chain subdivision identifies it with a g-cycie of P. 8o by (P) does not depend on £,

Anthe end of Section V. Poincard asserts that given any closed {sinooth) cycle one can
always subdivide P so that the cyele beeomes celindar in this subdivision. Using this &ri
angulabiiity assertion it folows {l at the reduced Betll numbers cotneide with those {»E{'

Te

“Analysis Bitag”, § 6.1

the “guadsiiloges” of § 16, 7ALT amumii?mrc i an interestit demnmﬁww Joiny of si
picial complevesy and aiec, ares af the end that “on est ainsi débarassd des dermeyr doutes”
about triangnlabifity. (We note that the “simple wiangulation method” of Cairns [HH is al-
most the same as Poincaré’s previous method of § 16, "AST, viz imersecting W w ith a
sufficiently fine “guadriilage™)

I Section VH Poincweé puts a vertex & ineach o € P, and subdivides inductively by
coning the already subdividad i‘?mmciaﬂ'y of o over o Thisgives a shoplicial complex.
viz. the baryeentric derived £ of P one tansfers the incidence relation amongst the
cells of P to thelr baryeentres, one sees that the simsplices of £7 have as vertices all totally
orderable sets of barycentres. and that a cell o of P consists of all simplices of P/ having
Righest veriox &

Poincard now defines his doal cells o™ by induct‘iwiyﬁmmw cver F fhe already detined
dual cells of the higher dimensional cells fncident to o (Tt o™ is indeed a celd foilows by
the slar criterion of "A57, § 103, So o consises of all sioplices of P7 whoye lowest vertex
s 5.

The dual cells o constiute the pelyidee réciprogue 7 {(Polncard doad cell comples):
pote that # and 2 have common subdivision 27, so just the subdivision tnvariance of Beti
nimbers gives B (P = Byl (PYY We shall orlent the dual cells so that, under the incidence
reversing correspoiidence o« o between the schema of Fand P, one Liss

3

@ a1 e p,g‘f”ﬁg‘;‘r*? ) 1;“; ’M»( hnﬂ b4

LN 2 .;\n«

H;.}( P f; ; “m}
(L& the boundary # of £ becomes the coboundary § of P°thus piving a2 once the modem
Ho (P) = HP (P
Using this duality of incidences Poincard obtains his duahity by (P} == by, (P") by
showing. i the course of Section VL thay the reduced Bettd nuy ﬂxum can be compuied
from the schema by wsing

Byl By =gy (Y (';f’:" (F 's') o (?ﬁ.’q hp i
whers #(4) denctes the sank of the matrix A, (For the sake of simplicity Poincard prefers

o write all details, stating with the definitiou of 27, only for J-manifolds: however, the
general versions can be found in §§ 1 and 3. of the Second Complemeint.)
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Section VI actally gives an algorithm which computes the Bettl numbers of a
schemna. Por this be sets up his tableavs

‘ff.zf(, o ‘[
AT

amd then wsing elementary row and columa operations, wiangularizes the top right and
hatiom left comers, Working over Z, instead of hich sutfices for fide Beto numbers,
enables him to show in Section X that by, colncides with Beitl s g-th member iff the greatest
conmmon divisor of the laveest sized nonzero minars of the (g -+ D-th incidence matrix s 1.

Section IX also contains a cellular version of a result of § 9 of "Analysis Sites”, viz. that
it i ,mmar})fﬂ to find o proyele Vi in Fosuch that NV Vo) o nongero 3 and only §f the
(i — pl-cyele ¥a af P* iy not !xwm!{wnw to zerp over £3. This 18 easy algebra because
o and o have itersection mumber Vo, o™} = 1. Then, wsing triangulability, Poincard
again clalms the previous resuits of § 9, “A87, in full,

3.2, The Second Complement

The & '*c:a‘m(i Complement i ondy, says Poincard, o simplify and clarily resuhis already in
hasd. He begins by precising that, wath dual cells o zmm:ci as above, one has

N{o,a®) = (~1)7¥ Y2 where g == dim(e).
Iy the previous paper Polncard had only trisngularized the comers of his “tableawx”
becunse he was unaware of Smuth (813, 1861, where &t had been shown that o rank v
inteper matrix can be reduced, by elemeniary (rj';s’r‘c'rtir'rzz vewer Lo a wnigue matrix of the
ppe, dagidy, do, /LD O diids L el D anaware of Smith’s work, he now
re-dizcovers, and gives o nice proof of tis result in § 2,

Ii terms of these Inportan wew torsion uwarmmﬁa ei,; of the schema 2 he then works out
in § 3 that Beti™s y-th pumber exceeds b, hy the number of nverisnts of 4 bigper
tham 1, and tha the product of these invarians gives the numbes of “distinet” cycles whose
multiples bound {i.e. the order of the torsion part of H, (PN

As mentioned o Note 21 Poincard did not speak of homology groups, but of course
knowledge of Berth numbers and torsion invarfants 5 eguoivalent to knowing homology or

Loty

CoNGMOE Y Bron s

f,?q(f-)'} s @ {UJ/MJ; (&ﬁ .1...;.
HYpy ‘;’j ’an.’f,

Coroputations {(§ 4. 5"0%:;{*31‘-‘6 sives the Rettd sambers and torsion invanants of Ex-
aples 1,3, 4, and 5 of § 10 of “Analysis Siws” by dlagonalizing over 7 the incidence
matrices of the cedl ¢ umf.nlr.;,.xm' {50 z-‘;’i san be ngegers ather than 0, £ 1) given by the facet
conjugations {1 more sophisticated celt complex B was used later for the homologieat
computations of the Fourth Complement).

He abso compmmes the same for Heegaand's 1257 example, viz. the singudar ink of the
comples surface o7 = xyv. Curiously, theugh itis all bat apparent from the cell subdivision
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which he uses, he fails 1o notice that Heegaard's example iy actucdly the same as his own
Fxample 5 of “Analysis Sims”, 1.e. diffeomorphic to RP. (See Milnor [46] for more on
singular links of complex hvpersurfaces.)

Poinvard also computes his new invariants for the manifolds Mr of Example 6 (8 11 of
“ACKT). In moder terms he shows that £y 2 2G2/d0 T — IYEGE AT — Dyioand Hy =2
7P This time his method is to note (using § 13 of “A.87 that #; (s (), C2, Ca) mod the
relations

(o — Dy b v Oy
AL 4 (6 — DOy 2

and the result follows by reducing the coetficient matrix.

in & 5 (which perfecss Section X, and end of Section VI, of the First Complement) there
is @ direct combinatorial prood of the particular case by (F) == B, (F*) ol the nvariance
theoremn.

In § 6 itis shown that if the g-skeleron of F hos no “one-sided circrits™ in the sense
of & 8 of “Analysis Situs”, then ity (g~ 1y-th homology iy forsion’ free, This condition
amounis to sayving that if we eonsider any circoif, with some entries of the ¢-th incidence
matris as its vertices, and with edges alternatively horizontal and vertical, then the product
of 1ts vertices, if nonzero. s +1 or —1 depending on whether the fength of the circutt is,
respectively, & or 2 mod 4. {8ee Fig, 1)

From this Poincard deduces that all minors of &% must be O or 21 which of course
pplies that H, s Tree. (We note that the vanishing of a Sriefel-Whiney class us,., can
likewise be interpreted as a milder “orientability condition” on the g-skeleion.}

Poincaré ends by conjecturing that it Betti numbers and torsion invariants are all erivial
then the mamfold is a sphere. As is well known, he later disproved fus via the famous
example of the Fifth Comphement, but iLis 10 be noted that he already has at least examples
of orientable 3-manifolds having the same homology groups but different fundumental

oUps, ¢.8., take My with T - i angl =
groups, 5., take My =1y plmdly

- s
F e ]
U S0 S S
P
- -
L @]
-1
S —
! !
- e

Fig, 100 A ong-sided circuit.,
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3.3, The Third Complement
The Thind Complement computes 70, (V) of some Vs satisfying the polyromial equation
2% = Flx. v} (I {64) Poincaré mestions that he got mierested {n these surfaces becanse
of a probiem regarding pertarbation functions of cefestial mechanics.) It is assamed that,
bart for hniidy many stmgibar poimty {Ay, ... Ayt of ?w e mplm youphere, Py, vy =0
hag Zp -+ 2 distinet roots volyd, 2oy ), STURESD NIy
i‘mfmfmdzr VLS e constant 5= Ay, Dy Them 2% = Fx. v} gives a complex
enrve V oof gepus p, and the coordinates x Lmt?a z of its points are Fuchsion functions of
an awsiliory variable u = & 4 iy, ?mun? 3 &mi gian palveon R of the first gype wiih
zmg!e sutn 27, such that opposite ¢ ofits 4 p edges get weatitied vnder tiansformations
Spled e g (8 ny i (8, nh, LAl k€ 2p, genen amm the Fochsian group & admitied by
these functions, The curve belng Avperellipdc (it hay the dnvolution (r, v, o) = (X, ¥ —2))
one can choose an & which admits 2 cenmal symmenry {non-Buclidean, if p 2 2) and is
made up of two synmmetric halves B and 87 with £ being such that its Zp 4+ | vertices lie
above xo and the mid-points of s edges correspond 10 the reqaining rouls Xy, ..., L3l
of Fix. vy =0 Hach of these tiles R covers the comples. v sphwre with the two haives of
each of itg 2 p-+ | edges imaging onto the two "lips” of a cut going from g 80 Xy, ..., Apa
(the genus 7 surface is obtamed by identdfying two coples of thig cursphere), (See Fig. 11
Bach member of 7 (V) = &7 iz a product of an sven mamber of central sytometries 5
through points above vy {e.g., 8 = 51500000 These synumetries obey, besides s;f 2
Fuchsion relafion so5y -~ $3p40 7 L :

What happens (F we anow let v vary ond describe o simple (';fow’(ﬁ curve in 8\
(AL ., /i,;,}’ Owr Fuchsian group will vary o s continuous way, Bkewise the rouls
X0 Xi, .o Xapei, aid the Fuchsian p(ﬂw(m . Aditer v has deseribed Eiw sJosed curve,
the group mll vefurn o e originad &7, bur the points v will in genersl get permuted
amongst temselves, so that B might become a diffierent. but still equivalent polvgon Ry,
fe. sl generaring ¢

The three-dimensional vaviety ¥ defined by 25 == F(x, v}, with y.constrained on such a
closed curve is then analyzed via monodreny, 1.e, 29 y varies we shall make the Fuchsian
variahie i vary continuoushy in such a way that vertices of the original tiling go 1o vertices

of the new (hut homeomorphicy tiling, edges to edges, zz‘ami congruenl points go 1o congnent
poings. We Introduce theee real variables £, n. and £ the first two being the real 1 oand
imaginary parts of the tial v, and the last a Mnuwwfs adone which augments by | as we
= the closed curve, We can ther tepresent V (see “AS7, § 11 by the discontdnoous
avated by the Zp 4 1 subsiiitions

i

(€. 0 {8, my PedEa . §).
(g gy e P ) i ) g+ 1)

w’ha‘:m wy == HE Y 4 it {E, ) denotes final position of 1 = £ -+ iy (3o the 3-manifold
Vo is the muppbng torps of the diffeomorphism of the surface of gerus p induced by the
m(mndmtm wobe iy ) Note that (V) = {; contains a normal subgroup isomarphic o 7
which, together with the fast  substitution ¥, genecates i For the Boclidean case p o= 1 we
have

i, nh=af +fn, HE w = 8. where T o= ‘fj ﬁ" @ §142,
£
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el i

et B T

-~ B, o

1 we have again the vari-

ey My and the group Gy of Frample Gof “A 87, § 11

Lot us consides nexe the four-divmenvional variety V defined by 22w Fix, v), with y only
constreined fo be puteide g smoll cireles grording the singular poings (A0 Ay Tow
alyze ¥ we shall join s chesen ordinary point € of the complex. v splere to these points by
means of ¢ disjointouts O 4y, ..., OA, Indeed we shall think of y as a Fuchsian function
of a new auxiliary variable 2 -+ 7 € 24, iwvariant with respect fo a Fuchsian group £

gemerated by a Fucheian polvgon € of the second typos whose g cusps o corraspond o the
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Fig, 12, A Fuchsion tle of the second kind

singudar points A, while s remaining vertices f all correspond to the ordinary potnt O,
{See Fig. 12.) The sum of the tle’s angles is again 2o {the angle at each cusp being zero)
and the group 7, Le. the free rank ¢ — | fundamental group of S\ (g points). is generated
by ¢ mottons X which identity pairs of edges incident to the same cusp, and one has the

o gach pomt of V oassign four vasiables £, u, & and &7 of which & and » are the
real and imaginary parts of the wy above a base point ve obtained from o by monodromy
over any path from v 1oy which does not cross the cufs GA, This is independent
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of ihe path chosen, however, if y makes a loop around A4; resulting in the substitation
g, 8y = (e " k0 0 of B then the variables & and n can change, to say
B(&. iy and 90E. ). Ouwr variety is thas represented by the discontinuous group G of

3
d-space determined by the 2p -+ o subsiftions,

(o &8 = (& o & om. £, 87,
(&, 07 0"} o (GE ), G ) e ) k{2 7))

and this ¢ iy iis fundamental group (Poincard checks via the usual argument which iden-
tifies y with all covering transforrnatons of a simply connected cover), Note that jt
has G7 ag u pormal subgroup which generates 3t together with the lasi g substitutions
o= 16, (}i’, K. ;c: ) (That m (V) is an extension of G by the free groop [" can be seen
alse by using the homotopy sequence of ¥V oas a fibeation over 57\ {y poinis} having the
surface of genus pas iy fiber)

Geldting rid of the circles guarding the poins Ay and supposing that x and y con jake ar-
bitrary complex values we now consider the algebraic surface V defined by 1% = Fix. y).
fewilt be asswmed that 2s » approaches an A; some two of the roots, say x, (v ) and x (¥}
appreach @ common value x,,, but the other 2 p roots all remain distinet, so the (possible)
singularities of our Voare {x,4, 4;. 0) only, Poncard shows that V' iy simply conneciod
(s against Pleard who had shown bi{V ) == {} for s generic complex projective surtace V),
For this note that 7y (V) i a quotient of the above ¢ Also that, as y rmakes 2 small loop
arcund A;, while x remains constant, we geta smafl loopen V, 50 T; o2 1V With y moving
as before, now fet x akso make o small foop around both x, (v} and xz{v). This sugments
the angle of 27 == F{x, v} by dor, so giving us another small loop on V., this time around

Lasilv, let 'V be the nonsingulur part of the above complex sarfoee. Since we can no
Jonger deform past (v, A7, 0) we cannol conclude s, = sy iy the above mamer. We,
however, stilt have 77 22 IV so (VY is at most a quotient of &7 For p = 1, G ix
Abelian, so then Pleard’s result implies thal 2 (V) is finkte. Poincard shows this in general
by wrising down some more relations using the fact that, i (3}, the monodromy action
of T7 must become the identity.

We Hlusteate this for p o= 2, st 3 5, (v) and ag{v) interchange as v makes a smafl
laop around A;. Shown in Fig. 13 are the initial (full) and final (dotted) posisions of cuts,
fromn an ordinary point O, to these two roots; the other four culs do not change as ¥ makes
this loop. Now s (or just £ for shorn) corresponds (o o foop which bitersects only one
initial cut, viz. Ob. Observing in arder the fnal cuts which this foop wdersects we get
b o dabad. Likewise o = o, ¢ = docad. d > dad, ¢ 22 e, and f 22 FBo we again
have s, 2 54 deed (ng, A7 0) is o removable singudarity of V, Le. its ik is 5% this
follows hecause, near i, our surface is like 27 = y — x% near the osigin, I x, () and
x (VY remain distinet then the picture can be as in Fig, 140 The same method now gives
b oo dadabadad, o o daod, b dadabelad, o o daducadaed, J o dadad, e o oe and
oo fLBo we ondy oblain (305007 == 1, Now (v, A, O) is 2 conical singularity: near
it the swrface is Hike 2% = y2 o % (or Heagand's exanple * = vy) and the Hnk is RP7.
From these considerations i 1s easy 1o see thal

T .
or {2
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Fig. L3 Reswovable singulariiy,

Fig, 14, Comcal paint,

where n denotes the wamber of irveducible factors of Flx, ). Tndeed if the roots ¢ and b
belong to the same factor, then we can wdestify the comresponding symmetries 5, and g,
s otherwise ideniily ther up (o ao ambiguity of order two, with the Fuchsian relation
wiving one mors relation valess Al factors are of even degree.

34, The Pourth Complenteni

The Fourth Complement opens with a mention of the pionecting “beaux wravaus”™ of Picard,
and goes on to show how monodromy can be vsed 1o fnd all the Betti numbers of a smooth
comples two-dimensional variety ¥V (Potneard works over € but 1t ix asserted du [65] that
this method witl alse give the torsion Invarisnis), We shall suppose V' represented ag an

fined v ¢ Ay .. Ay our eguakion determines ¢ smooth complex curve S(v) © V of
constant genvs g, but the genws of the ¢ exceptional curves F1{x, A7, v} = G can be lower,

A cell subdivivion B oof V8§ 1 ihis projects, on the y-sphere, 1o a 2g-gon ¢ with
prirs of sides Fioy = Sy covering the twe lips of the outs OA; (see 3 pictuse above),
and tnduces, for cach fixed v g ST Jeuts €A a subdivision P oof SOy which ix pre-
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served by monodrony over paths not crossing the cuts, Ferther, as y approaches a point 4
on a cut G4 From s two sides, # cap approach two quite different subdivisions, M7
and (A 5, of the same Rlemann s i %(M’ we shall assume that now M iduces
the common refinement P of M P and (M P, Likewise, as v appronches O from within
any of the g sectors, P can tond 1o g different sy ..wd:"vswm,» of S(0Yy: now £ mduces the
cannmon refinement #7 of all g of these, Pinally, us M approaches 4; along O4;, MP
ard (M Py approach coincidence, and at the same tme some cells get identified, o give the
cells of 4 covering the lower gonus curve Fiv. Ay, z) = 0 The faces, vertices, and edges
of P (respectively P/, respoctively P7) are denoted F;. B, Cy (respectively 85 O
respectivety F', 87, O, and those of B by pre- rultiphying these with the wmammra
faces of .

Compuetation of Fa{Vy (8 23 We shewh below the argunent wiich is given to show
(in modern terms) tat H3{V Y8 isomaorphic o the subgprowy of H(5) which resnaing fived
1w (631 by Potncard), o, the image of the
menodroay nduced group bomomorphizsm (5" \ gpts) — AulH (5 = GL(2p, ).
(Adso. the parity of Ay(V) = b (V) Is always even, being double the beregalarity of V, as
was shown by Pleard wsing, lmmcmriemm mathods. ) ‘

Lt g == '2_‘ OB+ g Chitti B " he any %c“mh of H, then - ook at wrms of et
side of o = 0 involving cells with first ﬁmm 03 ey pep By mustbea f-cyele of £,
and i is mwhf sean that o 22 o implies §2 o0 327 Adso ~ émk at the remaming rerms of
Bew == 0% g Pt By - 2_{.} i BB isa f.}nundar} Vi, wililch implies, on intersecting
with S{M 1, {hat the coples of 52 in the subdivisions A7 and (M Py of S(M), M e O4;,
must be homologeus (s £ after subdivision). In other words the T-cvele £ of P is o
ariient (up 10 homology) under monadinmy. Further i £2 bounds then so must wn o see
this nate that now we can add 8 boundary to o to get a 3-cycle of the type ), | cuo B g,
but then it has 10 Be zero, for ofherwise, for some {, we are saying that the tundamen-
tal cycie of S{MY, M & QA;, goesio U as M approaches 4, Poincwd also checks that
every iavariant T-ovele S avises from a 3-oyele @ i the above way, Forthis parpose be
chooses on S(MY g region R bounded by 2 and T:(82) ~ here 1 denotes monodromy
about A; ~which approaches O as M approaches A,. Using this i follows that the bound-

o

it

wndler the action of the Pireard AN (a0 named |

This 2-ovele dor cannot cover all of S{OY and sor must be zevo. To see this note, because of
our chotee of B, that it covers the aiea of 5100 Mswopt out™ by & < 5y, monodromed
back 1o O, as v describes thee Hower staped contour of Fig, 15, Our monodromy {of. Third
Complement) s from the moverent of the branch poiats xp{v) — Le. the common
roots of f{x, v, 2} = 0= af /0z - with v, 50 our sweeper curve is 4t all times “fleeing”
away from these moving branch poiats, and thus de cannot cover ali of S(0),

As this sketch indicates the argament depends heavily on the nature of I above the
points A fn § 5 Poincard elaborates on this by giving two examples: in both cases the
wh(!iwi\;imw M E and (M Py ave exhibited. the tavartant L-oyele £2 and the aloremeniioned

vanishing region” & explicitly given, aad (o §8§ 3 and 4 this is assumed in general) 3t is
shown that a Loyele vadshing st 4, is necessanily of type 52~ 11452).

Computotion of Hp(V Y (& 35 Using arguments similar 0 those sketched above g come
plete st of homologieatly distinet Z-oyeles of H s displayed. Their number by (V) is given
{there are sone misprints here) in terms of the numbers of homelogically distinet nvariant
and vapishing cvcles of § and the rank of 2 cortaln matrix defined wsing monodromy {the




158 K8 Sarkaria

Fig. 15,

correet computation ~ see [, p. 40] - identified the Zewthen-Segre invariant of V with
ity Fisler characteristio). :

Compratarion of Hi{V)(§ 4. As Poincard points out b (V). bad already been computed
by Picard who had shown (in modern terms) thar 8y (V) iy isomorphic w Hy{5) mod the
subigroup generaied by the vandishing cveles §2 — T;(63) (ef. a similar resudt, sboutm) of
the smooth part of a surface, i the Third Corplement). Poincaré gives another proof of
this statement using arguments like those sketched above. Then, vsing the skewsymmet-
ric itersection form of the geans 2p Riemann surface §, he shows that she sum of the
numbers of homologically distinet invarians and vanishing cycles of § i 2p, thus verify-
ing Poincaré duality £ {V) == ba(V) for the orieatable smooth d-muanitold V. (In fact 2
“stronger Poincard duslity” holds Tor ¥, wiz. the so-catled hard Lefschetr theoveny [,
I 290 there exists a basis of Hy (8 vepresented by oveles which are either invariant or vas-
ishing. The argursents of Letschete’s book, which also containg generalizations for smooth
compley projective varieties V of arbifrary dimension, are ke those sketched above, Hovw-
ever - see Lamotke {39] - a complete topological proot of this stronger dusbity still rernains
elusive, the best proof being via Hodge theory, Incidentally - see [40] - these trapscenden-
tal methods were also pioneered by Picard and Potncard.)

AE, Fhe Fifth Complement

The Fifth Complement is mostly about 2- and S-manifolds but the method used (now called
Morse theery) is, as Poincard puts i1, “sans doute 4w wsage phas géndral™. (For example,
Morse [47] and Dusternik and Schowebmann {421 generalized this method fo path spaces,
furnishing the wol used by Bott {6] to compte m (U (n))Ye = 2n)

In & 2 Poincard sections any smooth {m -+ ¥ -dimensional manifold ¥V R into m-
dimensional subvariedes W(r) by means of a one-parameier family of real hypersurfaces
Aoy, ey = Lo general W) has no singuelavities, but for Onitely many values g
of 1 it is allowed o bave one sfegulay peiot. Poincard notes that the diffeamorphism type
of Wiey changes onlv when | crosses an exceprional value fp. I, near 1ts singular point,
the section W) fooks like say ¢ (.. ... Yt == O (we shali take ¢y = ¢ — @ (/o)
near the origin, then we can abways assune, afier perturbing ¢ slighely if need be, that the
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second degree teems of @y pive a nondegenerate quadratic form, Choosing coordinatey
which diagonalize this quadratic form. we see thus that near its singudarity Wir) ts, for
some £ 50 g < m 4 1, ke the bypersurface

B 2 i R
Ypopeeeoh Yo 7 g 7 M) 0,

this follows because (' is given by the sbove equation and 1y1* + -~ %+ fya” = L
{Mote that Poincard had used a similar method even in the last two Complements, viz.,
sectioning a complex variety by a pencit of hyperswrfaces dependiog on a complex param-
eter v, For ihis holfomorphic Morse theory a singular ok is given by the complex eguations
2t = 0and [ oz = 1oand thas is the fangers sphere bundle of o
sphere: see Lamotke [39, p, 374, for the réle which this fact plays in this theory.)

Bach W{) con have many components w; (1), Poipearé defines the sgueleite (a graph
in 3-space) of V by collapsing each wi{7) to a single point. I g = Oorm 4 1 then one
is on o enbdesne, aod i wy splifs oo two (oF vice versa) a8 we move past this £, on a
bifereation of the squelette. Tn genernl theve ave adso other singular vaftes of + which too
are marked appropriately on the squeletie.

SURFACES V. Now any singularity must be a cul-de-sac or'a bifurcation. To see this let
W have a singnlarity with ¢ = | ~so O consists of 4 points — agar which it 1s the union
of the intersecting ares 13 and 24, If 1 were associated to 3. e joinable to it in W)
without passing the singularity, then 2 must be associated to 4. Mow there is no bifurcation
(see Fig. 16 which shows a part of V., which we think of as a polygon with pairwise
conjugation of s boundary edges) but ¥V owounld be one-sided (for AB gets conjugated to

Fig. 16 A oue-sided stngedarity,
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Firg 17, Malt of o Fuchsian polvgon of the third kind.

ARy 8o 1 ean only be associated 1o 2 or 4. and so 3 4o 4 or 2, respectively, and in either
of these cases we gol a bifurcation of the sgueletis,

T § 3 this is used to sketch o Morse theory proaf of the classificaiion of surfaces. Choose
popoints on the squoletie whose removal would get rid of afl s cirenits bur keep it con-
nectad, From the above discussion one can deduce that 3 we cut V oalong the w(0)s
cortesponding to these p points then we would be leli with a planar region R bonnded by
Zp circles, The unigueness of this model follows becawse clearly p o= &) (V) One may
think of £ as one of infinitely many congruent Fachsian polygons of the third kind tling
the plane. with comjugations realized via elementis of the Puchsian group. (See Fig, 17.)
Another model of V is a normal polygon # (geomettically & Puchsian tile of the first
kind) of 4p gides: e, Yor p == 2 it is an octagon F2345678 with boundary idemtifications
giviag the sole equivalence €y + O — Oy £ T g e O Oy s O between the
fondamentad cveles Oy = 12, Oy = 2%, O3 = 56, Cp = 67 Por p == 2 {5ee Fig. 18)
omg can go (§ 4) from B to R by cutting the region botween DMD and — 82 and pasting
it o + 8. LAn algorithm for noemalizing any polvgonal representation of ¥ owas given by
Brabana [17): in many text books the classification of miangulated sorfaces is proved via
some soch algorithng. )

CRIENTABLE 3-MaXIFOLDS V. I () has a singudar poing other than a cul-de-sac, the
singudar Hok € 5 o union of two disjeint cireles. We nofe (see Fig. 19} that the throat
(ellipse de gorge™ K of w-he) shrinks {under the gradient How of the Morse function)
to the singularity & as 1 decreases 10 O and then disappears. In case the two circles of C aze
net in the same component of wi@) Y 0. then K disconnects W) and so is & boundary,
sow there is bifircation but wi-t-¢y and wil -~} have e same By In case the owe clrcles of
7 ave s the same component of w0\ O, theo there iy no Bifurcation but the by of W(+4e)
£ 2more than that of W(—g), A veduction by 1 ocours becanse the theoat X, which s pow
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T

Fig. 19, Theowm.

homologically nenirivial, disappears, ond by apother 1 because 2 oyele C of W{-+s) with
NGO, KDY 5 Oadso disappesrs. Thers s no farther reduction because 3f N {C), K) = ki and
Ny, K)o Ly, then b Oy & O ds homologous o a oyele aot catting £, and so cannot
disappear. (One obtains W(4-e) from W(—e) by doing a surgery of type A, or equivalently
W e from Wi —£3 by attaching a handle of index 20

Te motivage the gquestions which Poigcaré tackizs next in 8§ 3 and 4 swe note that i
§ 5 he ss going to fix {via the gradiest fow), for eack singular value £, a copy of s
throat on WV = 1, Thus ene weeds o look at systems of now self infersecting (non
bopelé™y eyeles K of Wiy which do not intersect each other. (1n highey dimensions oo,
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1o simplity a Movse function, one needs to analyse svstems of spherical eyeles, of ot most
hatf d.umm;im, on the geperic level surfaces, )

For example, he checks in § 3 that o b-oyele of a surfuce W iy homolopows 1o o
non self intersecting ovcle {F it is g combination, with relatively prime cogffic ;
the jundwmentol cycles, Le. W i represents a primsitive clement of (W) =
This s dedoced as a corollary of u theoremn which, In moders terms, says that the map
DItf( Wy Autp{E (WY, F e [, is sarjective. Here Autp (H) (W) consists of al)
avromorphisns of B OW) which proserve the infersection form. Fecall that any integral
skesvsyinnetric nurix having determinont 1 is congruent over L to

: oo
¥ diagd ., B
i 1;{ . [} o E }
Choesing such a basis AupUH (V)Y s same as Syap(2p, 23, Le all & & GL2p, &)
stich that AFA = . Poincacd lists some matrices over {1, G, 4 i.} Whluh Iy asserts — this

was vesified by Brahang [8] - senerate Symp(Zp, 2, The theorene 15 proved by a long
eutting and pasting argument which shows that these generators of Autp (R (W) arise
from: diffeomorplisms of W :

In § 4 Poincard deals with some analogous questions for equivalences, e.g., when &y ¢
givenr oyele of the surface equivalent fo one which is new self interseeting't Considering W
as A/ G, where ¢ = m 0W) 15 2 Fuchsian group of the firss kind, he Jifts the given cycle O
o an are of A going from say 8 w0 SM, 5 e G, and denotes by o, # & 8.4 the two fixed
points of this hyparbolic ansformation S, He shows that € iy dmproperly equivaleni to
non self inferseciing evele iff the non-Huclideo line wf does nof intersect the corvespond-
ing line o' 8 of any conjugare 8 of 5. Here improper equivalence A = R (imope) means
that base point can move (Lo, the foops are Breely homotopie). Poincard points oul that
A B Cm B O A Gmpr), so now ovelic reordering 15 allowed, as against equiv-
alences when no reordering may be valid, or as against homologies when all recrderings
are valid. ‘

Me also gives @ rde 1o cheok if o combination of the fundamental cycles of W is equiv-
alent o a non self iersecting oyele. The complicated details are written out only for
p o= 2 for which case it shows, e.g., that of all the combinations irvolving Oy and 3,
only Cp, Cao Oy 4 O and O 4 (.1 are equivilent to non self fntersecting oveles. (As
againgt this any «Cp 4 bCy with {0, 5) = 1 was homologous to a ron sell intersecting
ene; this apomaly between homologies and equivalences disappears when one uses Morse
theory in dimensions 2 5.)

The next § 5 examines an ovientable S-manifold ¥V (with boundary W ose W genee-
ater %hy conrected Wiry's, O < ¢ < 1, with p exceptional ;'s. at each of which &¢ increases
by 2. The g-th theoat fxes 2 non \di intersecting eyele &, o gach W with t » 1, and
these cyeles Ky of W) do not intersect eack other. As ¢ increases from 1, each Ky sweeps
out & ball B, avound the ¢-ih singoiarity, whose fingl position at § = 1 is calied A, Two
parallel disjoise 2-batls 8, and B (which approach coincidence as 7 approaches 1) are
then taken on either side ml B, and we denote by K and fq thelr mtersections with Wir).
We cut from W (1) the small area 5, between A7 &mt K@ ﬁmi praste to these two clreles
the 2-disks i‘% sned f‘” This new suiface Wi(6) n a Dosphiere for all ¢ bigger than O, To
see this note hdl wumt‘ out the 8, s from W (¢} gives a planar region B bounded by some
circles and by pasting the disks we have filled n sl the holes including that of the outer
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circle. The variety £F generated by W0 s s thus a 3-ball &7 with Zp scars (“cicairices™)
on its boundary. the 2 lips of the cal 4, which have to be identified it pairs to make V. I
follows that V i diffeomarphic to the genus p handlebody, e the region bounded by a
penus p surface embedded in 3-space, and that this is independent of the embedding of the
surface (i.e. that surfaces do not kot in 3-space).

Poincaré chocks that any cycle of ¥ is equivalent 1o one op W oand that any equivalence
of Vs aconsequence of Ky =0, ., A, = 0 (e that g (V) is the free group on p gen-
eratorsy. Also he checks that p non ‘»t‘ii intersecting cycles K, ..., K:, of W, which do
not ntersect cach other, can arise in the ahove way only if thw are equivalent (o a com-
bination of conjugates of the cycles Ky, &, (ulfermatively cutting along them shoald
Zive a phinar ra:vmn bounded by 2p f:if('lea

The Imdi 6 considers an grientabde 3-manifold Vogenerated by connected Wir)'s,

0 3 wnh 2 exceptional values of ¢ at the fizst p of these, which e in ¢4, 1 /2% &
increases by 2. and at the remaining p, which e is (172, D it docreases by 2, Qur V

thus du amposes inte twe handbebodies V' and V7, the iim aver 1, 1721, the other over
[1/2, 1] Fhe manifold is determined by the genus p surface W = W{E/2) rogether with
the two systems of priscipal eyeles K, . K Al fsix Ceas f\ of these handiebodies,
{Every 3-manifold admits such a Morse funcrion. L., 2 Heegaard domﬁmpmmm& HIED TWO
handiebodies of some genus p. The least such g s called is Heegaard genus, and a two-
dimensional deseripiion of the Kind mentioned a Heegaard diagram of Vosee [231 A man-
ifold has Heegaard genas [ HY it s one of the Ly’s of Notes 18 and 24, but clossification is
ik for any Heegaard genus 2 3.
Poincard shows that any aycle of this closed 3-mamifold V' ois eguivalent to one ly-
ing on Woand that any equivalence is a consequence of the obvious equivalences K7 =
CKL = 0and K =0, . K= 0 (this determines ary (V). Wiiting the principal
cycles as combinations of the Tundamental cyeles and reordering one gets the homologies

l( i o b sy, a,

mr“,( SRR = o Ty 2 U,

which determine the Betti mumber and torsion coefficients of V. So these are the swme
as & J-sphere, Lo, Vois a homology spheve, iff the 2p 0 2p determinant formed by the
above integer coefficients is =1, However, as the example below shows this need not be a
howmotopy sphere.

Poincard defines his homaology 3-sphere via o Heegaard diagram: p = 2 and W is
represented as a planas region R bounded by four circles, he takes K7 = ), K] = L'v

while K" and K are given, respectively, by the unions of the full und dotled wgmmts
(S{?L‘,}Jga 20 .

He computes nsing the above method fo see that 7 (V') 1s generated by O and Oy subject
to the sguivalences 4C; + Cl; e e Oy s Qand 20 — Oy + Ly — Oy = (1 The
correspomting homologies 3% 4 20y o O and 205 — Cy 22 O have determinant 1. On the
other hand 7 (V) is nonzero bf;zmm(, on adioining the first of the Yollowing equivaiences
one f1as

sy - Uy Oy =0 5 = 0, A0y =,
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Fig. M Bomeard’s homplog;

Jsphere.

which ave the defining relations of the leosahedral group. (This, and Example 3 of “Anal-
yuis Situs”, abready suggest what Kneser [36] later checked: V ocan be oblined by conju-
gating facets of o dodecahedron.}

Then comes e famoss guery, s i possible that the fundamental group of V reduces to
the idenlity stbstitntion, and yet V is notdiffecmorphicto a sphere T " Bul thiy geestion
witl drag ws too far” (Poincard’s conjecture still seems 1o be open. but we pote that
Poincars s methad, 1.e, Morse theory, did enable Smale {80 to show, in dimensions w3 5,
that any homowpy n-sphere 16 necessarily homeomaorphic to the n-sphere; by Mitnor [44]
it need not be diffeornorphic.}
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