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l.Introduction

let G be a connected Lie group and W(G) its "Weil algebra
([1]and §3 below ).let i
polynomials of degree >1 ; also let 2\% —-—‘l\)'\{,.i_jL = iWi. If 4 de~-
notes the differential of the Weil algebra , cne can check that
d(‘Wi)QJWiror all i , Hence d(zW{)éz\’\/i for all i. Thus we have

i ;
two "filtered complexes™ which will be denoted by W(G)and 1\‘\/@1‘).

wig_W(G) denote the ideal generated by

let ér be a smooth foliation of a smooth manifold M. An
invariant principal bundle (P,é) over the foliated manifold (MJ;?" )

is a continous G-bundle P over M, equipped with a maximal family
(f of "local trivializations "‘(‘i :UiXQEBP\Ui guch that (a) {U;}
is an open cover of M and (b) 1I1':.m3 agsociated "transition funct-
ions ® é:Uinq = G{ are smooth functions constant on the

leaves olr the induced foliation of Ui!'\ﬂq;-. Such a L_: is called

an invariant structure on the continous bundle P.

Given such a 5 there exists a unique smooth structure g
on P such that (¢) eaﬁh g’{ is a diffeormorphism. In general this
correspondence gé -’?cf is not one-one. "

We denote by A(P, g), or just /\(B) the algebra of (; -8mooth
forms on P. let Ai(%)ne the subspace spanned by all forms @
which vanish when degw-i+l of the vectors project ( on M ) to
vectors tangent to } « If d denotes the exterior derivative, ons
can check that d(ﬁi(%))gﬂi(%):l‘hus o gat another flltered com-
plex which will be denoted by A(%, ?(,), or -Jus‘o A(@.

We recall that both W(¢) and /\(P) are graded~commtative
algebras equipped with "inner products 'L.K“ and "Lie derivatives L){‘ .
with respect to each left invariant vector field X of G. A conn-

~
ection (or Weil map) f on (P ‘ é) is a gradsd algebra homomorphism
wW@G) _.JC_;. A(P) which commutes with the differentials and ell



these operations ’lxand L

Such a f is antirely determined by its values on the left
invariant l-forms A (G)E W(G). By using the trivializations é
and the injection e‘.lU;‘%U; % G} given by ei(x).—_(x,l), wa got the
nap](- —e*éhf' F\i(G)ﬁAl(U) We say that f is a Bott (or basic )
connection on (P, &) if, for all 1 , the one forms lying in the

imags of t vanish on vectors tangent to the leaves of?: If fur-
thermore these l-forms are "invariant " (with respect to all vec-

tor fields tangent 'to‘}) , We say that f is an invariant connection

on (P, é). One can see that a Bott connection exists if M is para-
compact, Howaver invariant connections need not exist . One can
check t.hat. a Bott connection gives a " map of filtered complexes ™
1W(Gl> i [\.(3: ) i.e. f( W) < A (@for all i, Similarly an
{nvariant connection gives a map W(G\) —ﬁA(@ of filtered com-
plexes.

Two maps of filtered complexes are called k-chain homotopic

if they are related by a chain homotopy that disturbs the filira-
tion by at most k-1 units . Clearly this an equivalence relation

and one can thus speak of k-chain homotopy classes.

THEOREM. Let (P «E) be a principal bundle over the foliated
manifora (M, ':TT) Then
(A) all its Bott connections W(Gl) =y A(':T é) lie in the same

l-chain homotopy c¢lass, and
(B) all its inveriant connections W(G\) ————)[\(% é) 1ie in the

game 2-chain homotopy class.

These homotopy classes will be denoted by [A] (tf) and [B] (é)
respectively.

For any two connections f , g on the smooth bundle P, we will
define the cenonical chain homotopy p(f,z). It is a linear map
p: WG)— A(P) which, besides satisfying dpipd-g-f, has many other
pleasing properties. For instance, if f and g are Bott ( resp. in-




3

variant ) connections then \)(iWi)Q—' f\i(@(m. ‘,(zw,;)_c_ /\M(%\) for
all i, This verification will prove the theorem.,

Each filtered complex has a "spectral sequ;.mce " [2] ; we will
denote the spectral sequences of i'%I\I(G'.),IW(G) and [\(%)by jLE;t(G). lEI(G)
and Ei(%)raspectively. We recall (p. 321 o:E'[Z]) that k-chain
homotopjc maps induce the same spactral sequence hmnrc;jgphisms from
the kth term onward. Thus whenever(P) ;) admits a Bott --- resp. invar-
iant--- connection then we have homemorphisms Ai@):iEi(G)éEi(fQ.i?l
===TOSDe B,j ( f)lEJ(G) —2y Ej(}rlp).jba-- which depend only on the in-
variant structure § .

Further remarks and bibliographic comments will be made in
no.4 below,

2. The canonical chain homotopy

Throughout we will use the words "graded algebra ", "derivation
, "bracket ™ etc. in their usual sense. (See, ©.g. ).
let A(M)be the graded algebra of smooth skewsymmetric covar-
jant tensors-- or"forms"e- on M, with the multiplication being
defined as in [7]. For each vector field X on M one defines [7] the
Lie derivative LK : A(M) - AM) vy
s "

S—>0

Here \ 4is the locel l-parameter group of diffeomorphisms=<- or
the "flow " =-- Which corresponds to X. The interior product
Ay A(M) —> A(M) is the derivation which on l-forms is given by
Lyoen e

When M is replaced by a Lie group G and X is a left invariant
vector field thereon then each ; is a right translation of G and
thus Lxmaps the subalgebra of left invariant forms A(G) € AG)inte
A(G). More generally given a smooth principal G-bundle P, right
action by § defines a flow on P; the corresponding "canonical
vertical vector field ™ cn P 1s also deuoted by X. In this wey we



have the maps 1. , L : AP) — AP,
we recall |I) that a connection W(G) = A(P) restricts to
a map £ A(G)——y/\L(P) such that
'fo(ﬂ') = o(X)
and L f® = F(Lge) e
for all oe A (G\), and conversely, any map f: A(G\)-—‘-? /\(P)obeying (2)
extends in a unique way to a connaction.

Let R denote the real numbers. Now CXR is a principal G-
bundle over MxR , we denote by % the vector field on PxIR which
corresponds to the flow 4 @,‘f)= (a,w S) o Also we define,for each t ¢ |R,
the map : P ->PxR vy (ﬁ_(ﬂ) = (a,t).

Given two connections f,g : W(G)-—*/\(?) we define a map
F: AG) — AP*R) so that,

F&@) =
and. F'((w)) - t.fE + (-1 .96, ol
for all we A(Ly, t e R , one can check that this map F obeys the
conditions (2) and so extends to a connsction F: W(G) -—}A(PKR).
Next we define p(f,g): W(G)—> A(P) by

3
P& =S *q F(«)llR\. (4)

© 'Bx

Hara“R] denotes the lebesgue measure and o € WCG)
LEMMA. p is a chain homotopy from f to g 1.8, [ci \3] i f

Proof, since dg'-¢'d, aF=rd and di, +1,d = )., we see

'3
from (4) that ?" '3* &

@p +pNE j CP:LQ_ (o IR).

Using (1) it follows that
* Lx Fe = Lo, 2% F(u-) qJ|:¢ F‘G")

= . %0

'bx

But { ;‘-}’E Cft o So the above expression eq_ua]_s T [cj,:‘ F‘(.,.)] . Sub-

stituting this into the integral we get
*

G pd® = FFE - g FE.



But @Q* maps the canonical vertical vector field X of P into the
corresponding vector field X of xR ., so @S commites with .. and
annd the maps q:F"»W(G)—’/\(@are connactions, Sihce, by (3) , qJ:F‘
coincides with g on Ai(G)we have anF = g Similarly f*F' P

' 3, The filtrations

let S(G) denote the algebra of left invariant symmetric cov-
ariant tensors -- or "polynomials " -= on the Lie group G. A tensor
of rank i1 is given the grading 2i ; with this convention S(G) is
graded-cammtative, ‘For each left invariant vector field X we define
LX:S(G)% S(G) by using (1); on the other hand '1%: S(G)“’S(G)ia
the derivation which on Si(G)ia given by ’LK(\T) = w@()_

A({G) (resp. S(G) ) will now be identified with the subalgebra
A(G)® 1 (resp. 1®3(G) ) of the graded tensor product W(G)=A(G)® S(G)
We extend the four derivations 'LK,LK:A@)-#-\(G) and 1 ’LK : S(G)- S(G)
to all of W(G) by defining them to be zero on the remaining gen-
erators, This gives us , respectively, the derivations 1; 4 L; ,'ti
and Li in W(G). We have the linear isomorphism h: Ai(G)—vS‘(G)siven
by h@c'@i)g 1®co « We now extend h to a derivation of W(G), and also

define three more derivations of W(G), by
.
“L(cr) = Zl'\.(x;).’tx_ﬁ‘ -
. 1
& _ 8B
e o (5)
d- CW) ad ZX‘. . Lx.“- 5 b
1 T
and. L6y = @X: L.Sxp- ;
y 1
for all veW(G). Here Xi is a basis of Ai(G)and Xi the dual basis of
left invariant vector fields. It is clear that this definition does
/
not depend on the cholice of the basis Xi- We recall [i] that the & g
derivations ‘l.x, L)‘i’ d: W(G) > W(G) ere defined by 1)&:1?. . LX=LX+L?§
and d——-\n.+clﬁwl8; It follows immediately from (5) that the ideal W, ,
gensrated by polynomials of degree >i is mapped into itself by d.

The following relations are alsc proved in [i]:



U"X’r\“‘:l L[X,‘f'] [LK'AY]: oY) U‘X’ d) =0
[ixy] = © odl=ly ° [4d] -0

L 2
In particular, 4 is a differential, So W(G) and W(G) are filtered

complexes,

(6)

It ? is a smooth foliation of M we denote by Ai(af)the ideal
of A(M) generated by those l-forms which vanish on vectors tangent
to leaves. The fact that vector fields targent to leaves form a
sub Lie algebra can be re-stated as d(A (¥))< /\i@. So if _/\_.LGF)de-
notes the ith power of A 3), we have ci(f\ G)) A, (591'01' all 1; this
filtered complex is denoted by A(&r) The given principal invariant
pundle (P,&) over (M,F) will ve equipped with the gf ~smooth
foliation S’rP whogse leaves are the .'u:verse .tmages of the leaves of
? this will give us the filtered complex ot? the introduction.
Again, for each open set USM we have the induced follation Jyemnd
g0 the filtered complex A(?U).

let W(G)LA(P) be any connection. For each gc G we have the
right trenslations ‘R‘g of G and P. They induce automorphisms Rj in
W(G) and A®. Since G is connected one can prove by using (1) that,
for all ge G,

SR = R (7)
Next we examine how the chain maps j: Elé J( W(G)—>A(U)are re-
lated to each other, If v is a tangent vector at the point x of

U(\U and c-eA(@), then

5 =)(v) } (Ré s u-) (V) - ¢ IO N (8)
To prove this we note that é 'gt (%) = (x,é (x)). Hence

(4 é )00 = (Ré o T ) s E,J v)

where ( (v) denotes the canonical vertical vector corresponding
to the 131'1'. invariant vector field of G which, at cf, () eG, equals
the vector @() (v) « Using this, (7), and the fact that for a can-
onical vertical vector X, Jc(rr)(l() s(X) we get (8).

e




to check
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Conversely given maps . A@G) — /\L(U.;.) satisfying (8) we cen
in an obvious way, define f: A‘(G)—a/\!(P) g0 that (2) holds, (See also
['7], vol., I, p.66). Using this remark we prove that if M is para-
compact, then there exists a Boit connection on(?,cg). Due to the

paracompactness we know ( see, @.g. [7]) that a connection £ exists.
Let * be any smooth 1«1 tensor on M such that f':t and, at each
point, kext) is precisely the tangent space of the foliation., We
define {f A(Gu)—:v /\L(U) by J(f(tr)(v) f(u-)(’cv) . Since

¢ UnU —>(3 1is constant on leaves, &' e A( and is

UnU
inract invariant along leaves. So, heoause v-tveker(t) is tangent

to a leaf, we see that q‘ @)= c,s @-)(tv). Thus the equation (8)
is true even if f f are replaced by :E S « The resulting con-
nection £ is Bott.

Given a Bott connection £ we now want to verify that it gives
a map W(G)——) [\(’3: ) of filtered complexes., Clearly it suffices
it o aipe SGltass AGP\ Rach element or S (G) 1s' or*atle forh b,
s e AQ). But 1, f(he)=f(xhe)-0.50 1t surrices to verify that each
5 (Gi)a[\(U)maps Si(G) into A( ). Now, by (5),

Lo = fi@ds-d"

- dfie>— ZHED (yg <), i
for each crcA(G). Since f maps A(G) into N\ (}), clf (u-)e A(CT )whila
the second term lies in A C-Tr \

Similarﬁy an invariant connect.ion gives us a map LW(G)—B’A(SKP)
of filtered complexes. To prove this we havo to verify that each
1‘ maps S‘(G)intoAG: ) But, for any vector field V along the
leaves, 1, OLS:(G') L f(q‘) =03 so df (cr)eA (3 )and using (9) the
result follows.
Let {é,(}gé be such that {U;} is an open cover of M. We rem-
ark that a connection £ will be Bott (resp. 1nvar1aqt ) £, fent

all «< and all o€ Al(ﬁ), JL_((G') is a form (resp. invariant form ) of
Ai(:}'ﬁ). Thies follows from (8).



A= ~

Proof of theorem. Lot 3’--— Ie8p. ] -- denote the foliation

of MXR whose leaves are L XR «--resp, L x{}} -- where L is any
leaf of 5( We equip the bundle P XIR with the ‘set Tl‘“{rl\} of local
trivializations 7 : : ([T x RY% G —(Px \R)\U XIR', where =;(t, 9)
"(‘5 (x59)s i) ; clearly the associated transition functions are
constent on the 1aaves of EF ( and so of 1} )e We can enlarge rl to
the maximal set 'r\ == IGS8Pe 171 -- to get a principal invariant
bundle(fxtk,i'o over LMXIR,L}') == TeSD. @K‘R,LTD overCMxiR,l}) .

(A). If £ and g are Bott connections .then the ccnnection F,
defined in (3), is easily seen to be a Bott connection on @&R )
To see this apply above remark to the subset e ’1 so F': W(G)-—?/\(j 'R)
is a map of filtered complexes. In the definition (4) of p, the

i

veotor field 2 is tangent to 3‘; g Maile g, P> DxR naps 1eaves

of %into thos: of e Br® nd so of :7C ;¢ Hence P(LWi(G))C_: A‘(}P)
for all 1. j

(B). If £ and g are invariant connections then the connection
I is an invariant connection onQ)X(R,z"O o So now we have the map
F:ZW(G)—}» A(z.%:m)or filtered complexes. This time the interior
product 1, can disturb filtration by one unit, because 3 is

—

p.
not tangent o | =k ), Hense ECWLGHE Aii(E)rer a1r1,
PxiR -1V P
' 4, Concluding Remarks

(a)s Let c(:}r), or just ¢, denote the codimension of the fol-
jation 3(. We construct a contravariant functor CM, 3":)-—% (P(;),é(}a ))
from the category of foliated menifolds to the category of principal

inveriant bundles as follows. ( The morphisms in the tvro categories

are defined in an obvious way). P(EF) is the prinecipal GL(c(Sr) )=

pundle sssociated to the bundle of l-forms vanishing on the foliat-

jon, Each pair (U,w )-- where UcM is an open set and co= (w,_,w;,-- »69)

a set of linearly independent imvariant l-forms on U-- enables us to
oconstruct a trivialization Ux GLES P(?)\Uu (ff(}jis the set of all (
such trivializations. (P(:f) . @({)) is celled the principal normal ‘




k-

bunale of (M,F). Note that 1f 0<c(F)<aim u then £(F) 1s by no

means the only invariant structure compntih'le with the smooth

structure of PC‘.F).

(b). On the foliated manifold (M,J) consider a smooth bundle

P with differentiable structure Y]_ e IT 1t admits a connection f

which is a map of filtered complexes LW(GO —i)f\(}?,fl) then there

- )
 exists an invariant structure C} on P such that (i) cf;:vl and (ii) ¢

is a Bott connection on (P, Cf«) o« One can prove this statement by def-

ining éi to be the local trivializations given by sections of P

which are "parallel " over each leaf of jU' Note that all such
i

connections 1ieh in the same o ~homotopy class. Let us denote this,

possibly empty, class by [G]("D.

(¢). The canonical chain homotopy p(f,e) commutes with all the

operations 1R and L « This follows easily from formula (4). We note

that a Bott (resp., invariant ) conneotion has the vanishing property: ‘.

2 '.
4\(\{:*, Q.keff (reap. Wcﬂ < kﬂf }Je On& caun check that if f and g :

e

are Bott connections then p(f,g) also has the vanishing property. l

These remarks enable one to construct a host of chain hamotopy classes
; ©.8, Wwe will have a eco-homotopy class [C] ("[) : LW@)/iWcuA?A(}Pﬂ). |

(d)» To give another application we identify A(M)with the
image of the algebra monomorphism s A(M)—-? A(P) JHere n:P—> M
.denotes the projection map of the principal invariant bundle (B é). In f
this way A(Mvecomes the basic subcomplex [1-] ot B, i.e. the set or |
elements amnihdlated by the operations 1y and 'LX' On the other hand

the basic subcomplex of W(G) is IS(G), the algebra of symmetric |
invariant polynomials equipped with the zero differential. If M is
paracompact we have the non-empty l-chain homotopy class [ﬂ](&)ﬁs(ﬁ)—?ﬁ(;)
{ one tkus'kas the maps Ai(é):ils(G)—a E.'.LG"), i>1. If P admits an
invariant connection we also have a non-empty 2-chain homotopy class
[B]@)ts@l)“? f\.(:‘o ; one can see that this happens only if the mg.ps

Al(é) are trivial, In this case we have, for j>2 the maps BJ@) Ifg(q)""%@l




e N

We note that for i= j=oo these maps depend only on the differen-

N
tiable structure & of P. Further, if T is thd toliatton o M by
potnts then E,(F)= E(F=HMana the map B, is the well-known Chern-

Well homomorphism. Note that, in this case, every connection is an

invariant connection.

(e). We note that in the formula (5) for the derivation c@or
W(G) we do not have the factor 3 of [i] , because we are using the
‘othert definition of exterior multiplication. One can easily verifry
that the derivation [d,k] of W(G) multiplies each tensor of W(G)

with its rank. This mplias that W(G) is acyclic. Infact (5) also

shows that k( W;)e W 4+ So the second term of the spectral sequ-
ence of ‘WfG)is trivial, Similarly 3(6) is also trivial,

(f)s In the category of principal invariant bundles one has
og/course a notion of equivalence, Equivalence classes of prineipal
G-bundles on Q‘/‘)}) form the cohomology set HL(M) G\s@g). Here Gscg:)

denotes the sheaf of germs of smooth G-valued ruanctvions onm M which

are constant on leaves, It is a subsheaf of G, » the sheaf of germs
of all smooth G-valued functions. In this language the existence of

an invariant structure determines a reduction of the structure sheaf

of the bundle {4] from G, to G . Ome should also note that the chain

homotopy classes [A] and [B] depend, upto & natural equivalence, only
on the equivalence class of the invariant bundlg (P)é) .

(g) . The results of this paper are taken ‘fromTthesis (E-OJ 819),
done under the guidance of A,V.Phillips. On the other hand Molino [q]
and Kamber and Tondeur [5][6] have investigated the concept of a .
tfoliated bundle ' i.e., a principal bundle equipped with a 'partial
flat connection over the leaves ', Clearly this is about the same
thing as an invarient bundle, It seems to me that the reduction of
the strucﬁure sheaf is a more basic concept; so I have put it in
the forefront and also used my original terminology "invariant
bundle ", We point out that the *CTP* connections of Molino are the



|

&

invariant connections of this paper. We refer the reader to his
paper for examples of foliations for whidhfPCf)does not a&mit inv-
ariant connections, Kamber and Tondeur also view connections as maps
of filtered complexes and, in |G), give some homotopy invariance
results by using very different and algebraical constructions. Our
approach is nearer to that in rﬂ;-vol.II, and the paper of Chern
and Simons[?ﬂ. Various other chain homotopies are also considered in
my thesis and :l.nﬂ.].
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