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1.Introduction 

Let G be a connected I~ie group and W(G) its 1•we11 algebra '' 

<[1] and ~3 below ) .Let 1
wic W(G) denote the ideal generated by 
• 2\A/ '"l. i 

polynomia.ls ot degree >1. ; also let y '2i = W.?.\-i = Wi. It d de-

notes the diffe~ntial of the Wei1 algebra , one can check that 

d(1w,)~\viror all i • Hence d..C-wi) <; 2wi for all i. 'Ib.us we ha:va 

two "fil tered comple:x:es" which will be denoted by .tVV(G)and 2vv(Gi)• 
Let ~ be a smooth foliation of a smo~th manifold M. An 

invariant principal bundle (P_, g) over the foliated manifold (M_,J-') 
is a continous G-bundle P over M, equipped With a maximal family 

g ot "local tr1vializat1ons "~: 'Oi 'l< cq ~ ~ P\Ui such t.hat (a) {~} 
is an open cover of M and (b) the associated ntra.nsi tion funot

ions tt ~.: ui () lJj ___,,.Ci are smooth functions constant on the 
1J T.,... -r r t 

leaves ot the induced f'olia 'tion of' U1 I'\ Uj. Such a ~ is ca.lled 

an invariant structure on the oontinous bundle P. 

Given such a q there exists a unique smooth atructure J' 
on P such that (c) each </1 is a ditfeo~-m.orphismo In general this 

A. 

correspondence ~ ~ 4 is not one-one. 

We denote by f\.(P, ~)J or just i\(P), the algebra of J -smooth 

forma on P. Let..!\(~ the subspace spanned by all f'orms c.v 

which vanish when deg~-i+l ot the veotors pr6~eot ( on M to 

vectors tangent to .1 . If' d denotes the exterior derive:ti.ve, oue 

can check that cl(J\. 1 (~))c.J\({):rhus ;..'e ge~ anotb.er i'iJ.tered oom

plex whioh will be denoted by i\(i, ~), or jus-'G A c:vl> 
We reoall that both W(G) and .A.(P)aro graded-commutativa 

algebras equipped wi th "inner products 't_x_'t a.nd nLie derivatives Lx , 
with reapeot to each left invariant vector field X of G. A conn-

" eotion (or Weil map) f on (P> ~) ia a grad•8 d algebra homomorphiom 

W(G.) L J\(P) which commutes with the d:i.fferentials and all 



theae operations 'L.„ and Lv-. 
A .L '\. 

Such a t is entirely determined by its values on the lett 

invariant 1-forms Ai(G)CW(G). By using the trivializations ~ 

and the injection t:i~ q ~ ~ ')( (i given by E\(X)=(x,1), we get the 

map f = E~ ~t f: A1
(G,)-) 1\1(U). we say that f' is a Bott (or basic ) 

connection on (P, s) i:f', for all 1 ! the one f'orms lying in the 

image or r. vanish on vectors tangent to tb.a leaves or J. It :ru.r-
\ 

thermore these 1-forms are u1nvariant " (with respeet to all vec-

2 

tor 'rields tangent 'to':f), wo say that t is an invariant connection 

on (P, s). One can see that a Bott connection exists if' M is pa_ra

compaoto However invariant connections need not exist • one oan 

check that a Bott connection gi ves a " map or f'il tered complexes tt 

:f.W(~) ~ J\(1p) 1.e. f (iWi) C Ai(~ror all i. Similarly an 
.,_ f -

invariant connection givas a map W(G.) ~ A(~)or filtered com-

plexea. 

Two maps of' tiltered complexes are called k-chain homotopic 

if' they are related by a chain homotopy that disturbs the filtra

tion by at most k-1 units • Clearly this an equivalence relation 

and one can thus speak of k-chain homotop·y classes. 

~OREM. Let (P, S) be a principal bundle over the tolia.ted 

manifold (M, J). Then 

(A) all its Bott connections 

1-chain homotopy class, and 

(B) all its invariant eonneotion.S 
1

W(G\) ~ 1\(1., 4.2 lie in the p '• 
same 2-ohain hamotopy olasso 

These homotopy classes will ba denotad by (A] (4) and Lß J ( 4) 
respectively. 

For any two oonnections t , g on the smooth bundle P, we will 

detine the canonical ohain homotopy p{f ,g). It is a linear map 

p: W(Ct) ~ /\(P) vihich, besides satisfying dp+pd=g-f', has many othar 

pleasing propertieso For instance, if t and g are Bott ( resp. in- . 
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' . . ., 
\· 

\• 

variant ) connections then p(iW1)<;; 1\(~<resp. r(wi) c l\_
1 
(~)) ror 

all i. This veriti.co.tion will prove the theorem. 

Each tiltered complex has a "s:pectral sequence " (2} ; we will 

denote the spectre.l sequences of \~(f;J, 2w(Ct) and .L\(~by iEi(G), 2-E1(Cl) 
and tiC~)respectively. We recall (p. 321 of' [2]) that k-chain 

~o 

homotop:i c maps induce the sama s~ctral sequence homo[phisms from 

the kth term onward. Thus whenever (PJ ~) admi ts a Bott .--- resp. invar

iant--- conneotion. then we have homomorphisms A.l (g): iEi(cq)~Ei(~\i ~ l 
---resp. Bj (S): l.Ej(~) ~ Ej(lp),j ~ 2--- wh:tch depand only on tha in

Tariant structure 4 . 
]'Urther remarks and bibliographic comments will be made in 

no.4 below. 

2. The canonical chain homotopy 

Throughout we will use the words "graded al.gebra ", "derivation" 

• "bracket " eto. in their usual sense. (See 1 e .g. [~]) „ 
LGt 1\.(M)be the graded algebra of smooth skewsymmetrio covar

iant tensors-- or"forms"-- on M., wi th the multiplication being 

defined as in L7]. J!'or each veotor fiold X .on M one def'ines [/] the 

Lie derivative LX :l\.(M)~ /\(M)by 

(1) 

Here i is the local 1-parameter group of difteomorphisms--- or 

tha "flow " --- which corresponds to x. ~ne interior produot 

'l.1\. ~ A(M) ~ J\.(M) is the derivation whioh o~ 1-torms is ,_glven by 

'l-y;_W=c..:>Q<). 

When M is replaced by a Lie group G and X is a lcft invariant 

vector tield thereon than each ts is a right translation of G and 

thus Lx maps the subalgebra or lei't invariant forms A(G) c; L\(CVinto 

A{G). More generally given a smooth principal a-bundle P, right 

action by ts defines a flow on P; the oorresponding "oanonical 

vertical vactor field " cn r 1s ~lso deuoted by X. In this way we 
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have the maps 'LX , Lx : /\ (P) ~ /\(P). 

wa reoall (i) that a conneotion W (G;). ~ l\(P) restriets to 

a map f': A1
(C".1) ~ /\YP) such that 

1.xf C~) = o-(K) 
(2) 

a."'cl Lx5 C~) .-. f ( Lx~) _, 
ror all cr- E Al(G.); a.nd oonversely, ~ny map :r: Ai(~)...::, /\YP)obeying (2) 

extends in a unique way to a connection. 

Let \R denote tha real numbers. Now Px R is a principal G- . 

bunclle over Mx\R o we denote by ~-x. the vector r1a1d on PxlR whieh 

correaponds to the flow ~s(a.>Y)-::::(a.}Yt-s). Also we detine,f'or ·eaoh t EIR . ~ 

the map 'f-t ~ P ~ P x IR by <ft. ( a..) = ( a.> t) . 

Given two connections t,g : W(G)~/\(P) we defina a ma:p 

F: /~~) ~ f\1(Px IR) so that, 

F c~-) (~x) = o 
D..Ylcl ,1rFc~) = t.fc~) + Ci-t).dc~) > 

ror all ~ E AYG;;, t e: \R • ona can ·check that this m.ap F o1>&ys th.e 

conditions (2) and so extenda to a conneotion F: W(G} -:;;.J\(Px.\R). 

Next we define p (f' „g): \V{G) ~ /\.(P) by 

(3) 

t C.-) = r'J'~'l2- F (.,-) \ !R 1 . !41 
0 (l~ 

Here \IR\ denotes the Labesgue measure and ~ E W(~). 
LEMMA. p is a chain homotopy from t to g io.f3c. [d., f J = d- f · 

* ~ \ Proo:r. Since dtfi =Cfi d, dF = Fd and d.'l" + 'l cl = L'J we see 
t l tJ r.> -- - 0 

f'rom {4) that 1 ox. 0 " :x.. 

(elf +?d)(CT) - l Cf: L2 V(~) \IR\. ·-
() (}-,<. . 

Using (1) it tollows that *F ~} ~ 

a/"· LV C~) - ~ 'ft ("1") -9t <-.r-s vc~) . 
1t 1. - ~~6 • s 

~?l 

But ~5 'ft. -lft-.s • so the above ex:pression equals ;ll [g': PC<J""")J o Sub-

st1 tuting this into the integral we get 

~. (cl~ + \:>cl) c~) = f :-p (~) - r: F Co-) • 
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But (g't)* maps the canonioal vertical vector tield X ot p into the 

correspond1ng vector tield X of Px IR • so (9$ commutes wi th \?\_ and 

\ and the maps c:r:F~ W(G)~ J\(~are conna ctions. Sinoa, by (3) , ~~\:( 
~ it. . i. 
ooino:ldes with g on P\1...G)we have cp~f = g. Similarly fo*~r :::. r. 

3. The f'iltrations 

Let S(G) denote the algebra cf le.ft invariant symmetric oov

ariant tensors -- or "polynomials r. -- on the Lie group G. A tensor 

ot rank 1 is gi ven the grading 21 ; Wi th th.is convention s ·( G) ia 

graded-ocmmiutative. For eaoh lett invariant vector field X we detina 

Lx: S'(G)-") S(G) by uaing (1); on the other hand ~~ S(G)~SCC1)1s 
the derivation which Oll stq)1s given by ~(~) = 'V"(_X). 

A(G) (resp. S(G) ) will now be identified with the subalgebra 

A(G)® l (resp. l® S (G) ) of the graded tensor produot W(G) = A(G)@ S(G) 

we extend the rour derivations 'lX, Lx: A{§.)~L\(G) and 'lK) Lx : S(~) _,, SCG) 
to all ot W(G) by defining them to be zero on the remaining gen-

Thi 1 t1 -- ,,.. - i . A LA s erato:rs„ s g ves us , respec ve.ly, t.U.e o.er vat1ons 1..2\. , X , '\L\ 
and ~ in l'l(G}. We have the linear isomorphism h: A\~)_.,S1(G)given 
by hE..u©i)= i©w • We now extend h to a derivation or W(G), and also 

def'ine three more derivations of W(G), by 

hc_~) - . Ä h(X{)."-~-~, 
1. s l. 

k (~) =- LA~ .'ly .~ 
'\. ~1 ' 

dAC<:S> - '):"'x:. Lv i;:r-
L 1 L\.. ' s t s" 

a:ncl et Co-) -=- ~X~ . Lxi~ ) 
tor all u-eW(G). Here -x.; is a basis of A1l~nd 

(5) 

the dual basis of .. 
lef't invariant vector f'ields. It is clear tliat this definition does 

not depend on the choice of the basis X~. ·we recall [ i J tha t the $ 

derivations 1:x • Lx. d: W(G) _,,. W(G) a.N datined b:y 'ly,. ~ 1~. Lx = L~ +LX 
and d =h+ cL~/. It f'ollows immediately from {5) that the ideal !Wi , 

generated by polynol'!d.als of degree ~i, is mapped into itselt by d. 

The following relations are also proved j_n [i]: 



[ L1v 'Y 1=- 'l[X,Y] 

l 'lx, d J == Lx 

:0 

[J. >cl] -= 0 

(6) 

In particular, d is a differential$ so lW(~) and 2-W(G,) are filtered 

complexes. 

It 1 is a smooth :roliation ot M we denote by l\.iCf)the ideal 

ot A(M) ge11ara ted by those 1-f'orms ~ whicb vanish on vectors tangent 

to leaveso The fact that vector tields tangent to leaves form a 

sub Lie algebra oa.n be re-statod as d(AJJ))c !\(31 so it /i.1(3)de

notes tbe ith power of' 1\(Jl we have d(J\(J))~ 1\(~ror all 1; this 

f'iltered complex is denotad by /\(1). The given princi:pal invariant 

" bundle lP)~) over (M_,J) will be equippad with the 4-smooth 

roliation Sp whose leaves a:re the inverse images of' the leaves of' 
~ A~~ . 
J; tbis will give us the tiltered complexAof the introduction. 

.Again, tor eaob op~n set USM we have the induoed f'olia.tion 1ua.nd 

so the til ta1~d complax fl.('10~ 
Let W(G) ~ A(P) be any connect1on4' For ea.cb g t: G wa bave the 

right translations ~ o"f G and P. They induce automorphisms R'J~ in 

W(G) and J\(~. Since G is connectsd one can prove by using (1) that, 

tor all g~ G, 

J R; =- 'R; f . ( 7) 

Next we axamina how the c.hain :maps Ji. =~ qt f: W(G)~ .1\(~) are re-
~ ·' 

lated to eaoh other. If v ia · .a tangent vector at the point x o"f 

U A UJ·, and o-f. Ai(~' then ~ ~ ~ }* 
fCcr-)(v) = f.('R} ll'")(v) + '-Ji .. (~)(v). '· (8) 
J „ ":r··(x.) J 

To prav.,e this wa note tha't q,-'?j Ej ('><) = (x, 4ij (x)). Hence 

( 41~~J~{(v) : (R{,fx) E\)*(v) + (~j)*(v) 
where ~j\/v) denotes the eanonieal vertical vector corresponding 

to the lett invariant vector field or G which, at 4, .. Cx-)e.G, aquals 
lj 

the vector f / .) (v) • Using this, ( 7), and the f'act that for a can
'-Y1J * 

oni.cal vertical vector X, f(cr-)(A)-=1S'(xl we get (8) • . 

1 
1 

1 
1 

~ 

l 

1 
r 

l 
r . 

l 
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Conversely given ma.ps J1 ! Ai(G.) -~ /{(U1) aatisfying (8) WG oo.n. 

in an obvious way, def'ine t: K(~}~/\i(P) so th~t (2) holds. (see also 

(7], vol. r, p.66). Using this remark we prove that if' M is para

compaet, then there exiats a Bott conneotion on('P>~). Due to the 

paracompactness we know ( see, e.g. [7]) that a connection f' exists 0 

Let t be any smooth 1-! tensor on M such that t.4= t and, at each . ' 

point, kel{t) is p1"9cisely the tangent space of' the toliation. we 

det'ine f{: A1{~)~ A1tU,) by f/C~)(v) =f1(cr-)(tv). Since 

q .. :U/1 U --=, ~ . is oonstant on laaves, f_~rt:r) E. /\ fJ _) and is 
'J J <t\J l.: i\::U;nllj' 

intact invariant along leaveso so, because v-tvE.ker(t) is tangent 

to a leaf, wa see that ~-lJ(cy-)(v ): ~1I(cr-) (tv). Thus the equa tion (8) 

is true even if f. , L. are replaced by I.1 t 1 
• The resul tiug con-Ji Jj Ji'Jj 

I 
nection f is Bott. 

· Given a Bott connaotion t we now want to veri:ty that 1 t gi'9·e:s 

a map ~V~~)~ /\(Jp) ot t11tered complexes. Clearly it suffices 

{p check tlla t t maps S1t)1nto A/:Jp\ Each' element of StG) ls ot the form h !'.r" , 

~ E Ai(Gl). But 'lxJ (h.is-)= }(1~h~=O. So 1 t sut'f'ices to verify that aach 

i. :V~(~)-71\(~)maps S1cGi) into AlJaJ. No\v, by (5), 
Jt A i 

f,~.-) ; f;(c1...,--cl <>)_((- I f ( A \ (9) 

- == d.f,C~)- ZJ1\.XjJ i LX·\Jj „ 
tor each o-t AY !{). Sinca f i maps J A1C<:i) into AJJ0~ cl f \ (cr-) E 1\( J. ).,,hile 

A (:l \ · ,_l, LTi 
the seoond tel"m lies in 2\::. u/· ~ J 

Similar~~~- an invariant lconnection gives us a map W(G)-'7~{.J:p) 
ot tiltared complexes. To prove this vre hava to verify that eaoh 

r,_ maps SYG)1nto .A..
2
(10 ). But, tor any vec~or tield V al~mg the 

leaves,'l df. (~)=L f.(cr)=O; so df.(cr-) E 1\_(J.-r)and using (9) the 
V \ V 1. ' Vi 

resul t tollows. 

Let {~o<}~ ~ be suoh that {~} is an open oover of M. we ~ 
ark that a connaction t will be Bott (resp. invariant ) if, for 

all o< and all ~E A1Cc{;, Jo<.(cr-) is a form (resp. invariant form ) of 

1\.i(3rr)• Tbis tollows f'rom (8), 
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. iJ 2.1 
Proof of theorem. Let -- resp„ -- denote the foliation 

of M ><'-IR whose leaves are J ... )<.\R --resp. L_'i-{t} -- where L is any 

leaf of J. We equip the bundle P -,<.\R With the set "'"\-{~,} of local 

trivializations '}'h: (Di)<. IR)'i<. G--"?(Px IR)\Ui XIR, where ""h (?S tJ 6) 

~ ( 4i ( ?( J d)) t) ; olearly the associated transition funotions are 
i'/ 2_...-

oonstant on the leaves of J ( and so ot J ) • We oan enlarge 1 to 
i 2. J 

the maximal set ~ -- resp. l ..;_ to get a prinoipal invariant 

bundle{.fx\R)iv over lMIZ IR;7) -- resp. (f)(\R> 2..1) over (_M:KIR_, 2-J) • 
{A). If t and gare Bott connections .than the ccnnection F, 

detined in (3), is easily seen tobe a _Bott connection on~x.IR)l.V. 
To see this apply above ramark to the subset 11 c..i1. so F~ 1W(~)-7/\(3: J 

L PxlR 

is a map or tiltered complexes. In the definition (4) of p, the 
i 

veotor field 2- is tangent to ~ IR while Cft_·· P~ fx.\R ma:ps leavas + ""- 2.1 ')(. i Cl („ \ 
ot '-1> into those of p,r_JR' and so ot JpxlR Hence f Wi.(~)) c. !\, JpJ 

tor all io 

{B)e If r and gare invariant connections then the oonnection 

QD '2. ) F ia an invariant connection on I x\R_, l . so now we have the map 

F: ,_W(G.)-7 f\(2~x~of f'iltered complexes. Thia time the interior 

product 'l2- can disturb filtration by one uui t, becausa ~- is 
ox. 2'/ r2. ~ \\ (\ (i_\ ax 

not tangent to Jp"-\R • Hence r '- Wi,lG.J;c 1_1 ~ pJfor aJ.l i. 

4. Concluding Remarks 

(a). Let o(:J), or just 0 1 denote the codimension of the fol

iation 1. We oonstruct a contravariant functo; ·' (MJJ)-7 Q?(:f)_,~(.1)) 
trom the category of' f'oliated manifolds to the category of principal 

... 
invariant bu.ndles as .follows. ( The morphisms in the ti!to categories 

are detined in an obvious way) o P(.:f) is the principal GL{c ( 3) )
bundle associated to the bundle of 1-f'orms vanishing on the toliat

ion. Each pair (U,c.o )-- where U~M is an open set and eo== (w1 >c-v:z.>„ >wc.) 

a set of' linearly independent invariant 1-torms on u-- enables us to 

oonstruct a trivialization U Y- ~l.(c-):; P(±)\Uo ?(J')1s the set of all 

such trivializations. (P('.f) > ~(:fJ) ia called tha principal nonnal 



bundle of· (t1;:f) • Note that if' O < c ( 'J) < dim M then 4 (1J is by no 

means the only inYariant structure compu.tü~1e wi th the smooth 

structure ot P.(3). 
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(b). On the toliated manifold (M, 1) consider a smooth bundle 

P w1 th dif'feran·tiable struoture 1 . If' 1 t admi ts a connection f 

which is a map of ril tered complexes {W(Gl) LA(Jp;rl) then the:re 

1 
exists an invariant structure 4 on · p~-such that (i) ~ =1 a.nd -(U) f 

is a Bott connection on er>?) • One can prove this statement by def

~ning {i to be the loc..al trivializations given ·by sections or p 

which are· "parallel " · ovar each leat ot J'a.. Note tha t all such 
'\. 

connections lie in the same oo -homotopy class. Let us denote this, 

possibly emp~cy. class by [C](1V. 
(c). The canonical chain homotopy p(;1 g) commutes with all the 

operations 'l~ and Lx~ This f'ollows easily f'rom tormula (4). We nota 

that a Bott (resp. invariant ) conneotion has the vanishing property: 

~'"i c ke"' j lresp$ 
2

Wc+l C ke.y f } . ona co.ri check that if r and g : 

are Bott connections then p(f ,g) also has the vanishing property, 1 

These remarka enable one to construct a host ot ohain homotopy classes t 

; e.g. we will have aoo-homotopy olass [C]C1) ~ lw(c:,)/1wc+i~i\(Jp)l). ; 
(d)o To give another application we identify .L\(M)with the j 

1 

ot the algebra monomorphism 7t~: ß(M)-7 l\(P) .Here n-:P-7 M: . I' 
i 

1m.age 

denotes the projeotion map cf the prinaipal invaria~~ bundle t?_, ~). In 

this way .L\(~becomas the basic suboomplex Li] ot .A®; 1.e. the aet of 

elementa annihcllated by the operations ·1.K and .Lx.. On the o~~~r hand 

the basio subcomplex or W(G) is Is(~, the algabra of symmetric 

invariant polynomials equipped with tha zero differential. If M is 

paracompact we have the non-empty 1-chain homotopy cle.es [Al(4): \(~) --"'? J\(J) 
; one Ckus h= the maps At ( 4) : iI;i( G) -7 EJ1), i ::;:. l. If P admi ts an i 
invariant connaction we also have a non-ampty 2-chain ham.otopy class 1 

[ßl(~}\(~)_,, l\(J') ; one oan see that this ha:p:pans only if' the maps _ l 
J\ ( 4) nre trivial. In this case we have, f or j ';> 2 tha maps 13}{) :'~,i li)-'> ~ (~ l 



we note that tor i= J= 00 these maps depend only on the differen

tiable structure 4' of P. Further, if :f · is the foliation of M by 

:12oints then E2(1)== E=(f)=\-l(M)and the map B.2. is the well-known Chern

Weil homomorphism. Note that, in this case, every connection is an 

invariant oonneotion. 

(e). we note that in tha f'ormula (5) for the derivation ~ of 

\V(G) we do not have the f'actor t · of [i] , beoausa we are using tha 

'Other• def'inition of exterior m.ultiplication. one can easily verify 

that the derivation [d,k] ot W(G) multiplies eaoh tensor of W{G) 

with its rank. This implies that W(G) is acyclic. Infact (5) also 

shows that k (1-W1) c i.W1-i° So the second term of the spectral sequ

ence ot \v(CVis trivialfl Similarly ·i..E3((1) is also trivial 0 

(f). In the category of principal invariant bundles one has 

oifcourse a notion of equivalence. Equivalence classes ot principal 

G-bundles on Q:\J) form the cohomology set Hi.UV\_) Cls(-1.} Here Cis(J) 

denotes the shear or gerrn.s of smooth G-valued functions oll M which 

ara constant on leav-es. lt is a subsheaf of Gs , the sheaf ot gar.ms 

ot all smooth G·valusd tunctions. In this language the existence of 

an invariant structure determines a reduction of the structure sbeaf 

of the bundle \.:.4] from (i'
5 

to G\s(J/ ona should also note that the ohain 

homotopy classes [A1 and [B] depend, upto a natural equivalence, only 

on the equi valence olass of the invariant bundle (E ~) • 
(g). The results or this paper are taken ·~romJthesis ( {!o], ~19), 

done under the guidance of A.V.Phillips. On the other hand Molino L9] 
and Kamber and Tondeur L5][G] have investigated the coneept of a :. ' 

•foliatad bundle ' 1.e. ~ prinoipal bundle equipped with a 'partial 

tlat oonnection over the laaves 'o Clearly this is about the sama 

thing as an invariant bundle. It saems to me that the reduction of 

the structure sheaf is a more basic eoncept; so I hava put it in 

the forefront and also used my original term.inology "invariant 

bundle ". we point out that the 'CTP' connactions or Molino a.re the 
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invariant connections of this paper" We ref'er . the reader to his 

:paper ror example s of folia tions f or which P(J) doas not adnu t inv-

ariant connactions. Kamber and Tondeur also view connections as maps 

ot tiltered complexes and, in(<;], give so:me homotopy invariance 

results by using vary different and algebraical constructions. our 

approach is nearer to that in [7],~ vol.II, and the paper of ehern 

and Simons [3]. Various other chain homotopies are also considered in 

my 1ib.es1s and in r11J • . 
References 

~ ~ 

1. H.Cartan, "Oohomologie reetl.e d 'un espace t'ibre principal 

dif'ferentiabla „, seminaire Cartan_ , e:x:poses 19 et 20 ( 1949/1950) • 

2.H.Cartan and S.Eilenberg, Homological Algebra. (Princeton 
~~~~~~~-----.... 

University Press, 1956). 

3. s.s.Chern and J.Simons, "Some cohomology _classes in princi-

~a1 fibre bundles and their applications tc Rieman-n.ian gsometry ~~, 

Proc. Nato Acad. Sc. U.S.A., 68 (1971), PPo 791-794. - -
4. A.Grothendieck, A general theory 01' fibre spaces with str

ucture sheaf. (Report no.4, Kansas Univsrsity, 1955). ----
5. F .Kamber and Ph. Tondeur, "Characteristio invariants of f'ol.

iated bundles ", Manuscripta Mathematica, 11 (1974), pp.51-89. 

---do--- ,Foliated Bundles and Characteristic Class~s, 

(L9oture Notes in Mathematics, Springer-Verlag, 1975). 

7. s.Kobayashi. and K.Nomiz.u, Foundations ot Di:fterential Geo

metry, vols. I and II. (Interscience Publishers, New York, 1963). 

8 0 K.Kodiara and D„C.Spencer, "Multifoliate Structures ,. , 

Annals of Mathema.tics, '74 (1961), pp.52-100. 

9. P~Molino, ~Proprietes cohomologiques et proprietes topolo~ 

giques des feuilletages a oonne:>rion transverse projetable "' 

Topology, 12 (1973), pp~317-325. 

10. K.S.Sarkaria, The de Rham Cohomology of Foliated Manifolds. 



12 

(Thesis, State Universlty of New York at Stony Brook, 1974). 

11. --do-- ,nA finit.eness theorem for foliated manifolds"', 
• 

to appear in the Jour. Jau. Math. Sooo 

Dapartment of Mathematiosp 

Panjab University, 

Chandigarh-160014, INDIA. 


	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013

