
      

The fundamental problem of algebra 

 (translation of bIj gixq dw mUl mslw) 

          Theorem : all equations which we solved in school using the quadratic formula, they form a Möbius strip! 

          Proof.  Complex numbers came after school, but we learnt when and how any second degree equation ax2 + bx + c = 
0 can be solved : multiply by 4a and ‘complete squares’ to rewrite as (2ax + b)2 – (b2 – 4ac) = 0 which showed it factorizes 
over the reals if and only if  b2 – 4ac  ≥  0.  We had also memorized the two solutions : the quadratic formula ! Homogenous 
second degree equations ax2 + bxy + cy2 = 0 in two unknowns had also appeared briefly, and the same method or formula 
was used to describe all their solutions under the same necessary and sufficient condition b2 – 4ac  ≥ 0. 

          These homogenous second degree equations form the space RP2 of all 3-tuples (a,b,c) not all zero with multiples 
(at,bt,ct) deemed same, i.e., the space of all lines through the origin of the space R3 of all 3-tuples (a,b,c), i.e., the space of 
all pairs  ± P of points in which they cut S2 the surface defined by a2 + b2/2 + c2 =1.  So equations with b2 – 4ac ≥ 0 form the 
subspace of RP2 obtained from the shaded portion  – 1 ≤ a + c ≤ + 1 of S2 by identifying its pairs of antipodal points, i.e., 
the space obtained by glueing opposite edges of a strip of paper after a 180 degree twist. q.e.d. 

 

          The remaining equations form an open 2-cell -- the antipodal pairs of yellow points -- which attached to the boundary 
of this Möbius strip gives the RP2.  All degree one equations ux + vy = 0 form an RP1 which is homeomorphic to S1, so, the 
quadratic formula gives us a homeomorphism from the Möbius strip to the symmetric square S1 • S1  of a circle, i.e., the 
space of all unordered pairs of its points.  All quadratics ax2 + bx + c = 0 identify with the subset a ≠ 0 of RP2, which is 
homeomorphic to R2, and its subspace  b2 – 4ac  ≥ 0 is homeomorphic to a closed half plane, the quadratic formula gives us 
a homeomorphism of the same to the symmetric square R • R because all degree one equations ux + v = 0 identify with the 
subspace of RP1 defined by u ≠ 0 which is homeomorphic to R.   

          Many questions arise.  Is there a similar dissection of the space RPn of all homogenous degree n equations in two 
unknowns ? What is the symmetric nth power of a circle like ? Et cetera, but it is best to consider first such questions over 
the complex numbers C, for then not only the quadratic formula always works but there is also an amazing general theorem.  
Again, we’ll think of C as all degree one equations ux + v = 0, likewise all degree n equations a0xn + a1xn-1 + … + an = 0 is 
Cn, and, multiplying n degree one equations to make a degree n equation gives us a  continuous one-one map from the nth 
symmetric power  C • … • C → Cn : the fundamental theorem of algebra says it is a homeomorphism!  The map is simple in 
terms of the complex multiplication we equip R2 with to make C, and the conclusion so striking : at first sight the nth 
symmetric power R2 • … R2  seems to have lots of singularities, the theorem assures us it has none!  This in fact is the heart 
of the matter, the theorem is equivalent to this absence of singularities : for this and much more see notes (d – b).  This 
existence theorem comes with what I call the fundamental problem of algebra : describe the inverse homeomorphism as 
explicitly as possible for all n.  This has engaged mathematicians for centuries, and in principle at least it seems that 
Poincaré had solved this problem more than a hundred years ago, but to the best of my knowledge, no one has written out a 
clear description of the inverse homeomorphism for all and sundry. 

http://www.kssarkaria.org/docs/The%20fundamental%20theorem%20of%20algebra.pdf


           Briefly, Ruffini and Abel showed that quadratic-like formulae won’t work for n > 4, but such formulae were known  
for n ≤ 4, and could be written more simply using trigonometric, i.e., singly periodic functions.  Abel and Jacobi then 
explicated the inverse for n = 5 using elliptic, i.e., doubly periodic meromorphic functions on the plane. The euclidean 
geometry of the plane does not allow more than two independent periods.  The way out was to drop the infinitude of the 
plane, think of it as an open disk of radius c < ∞ -- see Plain Geometry & Relativity -- and admit all linear reflections which 
preserve the cone over it.  This gives us many more reflections than in the classical or euclidean limit c → ∞.   This 
relativistic plane admits equally nice functions having any given number of independent periods, and the inverse 
homeomorphism was understood by Poincaré in terms of these automorphic functions. 

           Considering this complexity of its inverse,  perhaps we should give up to some extent the direct homeomorphism, 
equivalently the complex multiplication on R2, and try to deform it in such a way that the inverse becomes simpler ?  This 
sounds like, but may or may not be, what Mochizuki has been doing recently  …  
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