
The fundamental theorem of algebra

This installment of parallel notes is around an aside 1 that arose in the last
installment of PG&R. All books of algebra are replete with homomorphisms
but homeomorphisms and manifolds are taboo! Yet, the fundamental theorem
of algebra is all about a homeomorphism and a property special to manifolds 2 of
dimension two : their symmetric powers are also manifolds. Once this, at first
sight surprising, property is in our hands, the theorem follows easily, as we’ll
show in the very next paragraph. Then we’ll directly work out the links in the
symmetric powers of all manifolds. The method we use is tied to many diverse
topics, and gives rise to many natural questions ...

(d) That the symmetric powers of two dimensional manifolds are
manifolds implies, and is implied by, the fundamental theorem of algebra :-
We note that the closed 2n-manifold CPn is the space of all degree n equations
a0x

n + a1x
n−1y + · · · + any

n = 0 over C, so S2 = C ∪∞ = CP 1 is all degree
one equations lx+my = 0. Multiplying n such equations gives us an injective
map Ψ : S2 ⋆ · · · ⋆ S2 → CPn from its symmetric power; so, if we know this
power is a closed 2n-manifold, Ψ is a homeomorphism. The restriction of
Ψ to all unordered n-tuples of the subspace C of S2 defined by l ̸= 0 is the
fundamental homeomorphism C⋆ · · ·⋆C → C×· · ·×C of algebra with all its
ordered n-tuples or Cn the subspace of CPn defined by a0 ̸= 0. Conversely, any
even dimensional manifold is locally like Cn, so this homeomorphism implies
the symmetric powers of 2-manifolds are manifolds. �

Likewise the open 2n-manifold Cn is the space of all degree n equations
a0x

n + a1x
n−1 + · · ·+ an = 0, so C is all degree one equations lx+m = 0, and

multiplying n of them gives the injective map Ψ : C ∗ · · · ∗C → C× · · · ×C. To
show its surjectivity we had homogenized it above, which is what enabled us to
make use of the fact that, between closed manifolds of the same dimension there
are no proper inclusion relations; besides, it showed us that the nth symmetric
power of S2 is homeomorphic to CPn.

(D) A symmetric power of Rm is a manifold iff m = 2 :- All sequences
(x1, .., xn), n ≥ 2, from Rm form Rm × · · · × Rm; transpositions xi ↔ xj define
a binary relation on it, the generated equivalence classes π(x1, .., xn) together
with their open unions form the quotient space Rm ⋆ · · · ⋆ Rm.

If the xi ∈ Rm are distinct there exist n closed m-balls Bi around them
that are disjoint, so the restriction π : B1 × · · · × Bn → π(B1 × · · · × Bn) is
injective, therefore a homeomorphism, which shows such points π(x1, .., xn) of
Rm ⋆ · · · ⋆ Rm form an open mn-dimensional manifold.

If, but for x1 = x2 = 0, the xi are distinct, choose n−1 disjoint closed balls Bi

around them with B1 = B2 = B, then the restriction π : B×B×B3 · · ·×Bn →
π(B×B×B3 · · ·×Bn) is such that π(y1, y2, y3, . . . , yn) = π(z1, z2, z3, . . . , zn) iff
{y1, y2} = {z1, z2} and yi = zi∀i ≥ 3. Using (y, z) 7→ ((y+z

2 , y+z
2 ), (y−z

2 , z−y
2 )),

1See Aliens and invisibility, fn.20, also bIj gixq dw mUl mslw.
2Connected sans boundary, closed means compact, open if not.
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a homeomorphism of B ×B with ∆×∆⊥, where ∆ = {(y, z) ∈ B ×B : y = z}
and ∆⊥ = {(y, z) ∈ B × B : y + z = 0}, we see the link of π(0, 0, x3, .., xn) in
Rm ⋆ · · · ⋆Rm is Snm−m−1 ·RPm−1, viz., the join of ∂(∆×B3 × · · · ×Bn) and
∂∆⊥ mod its antipodal action : since RPm−1 is homeomorphic to Sm−1 iff
m = 2, it follows that for m ̸= 2 these are singular points. �

(n) The link of π(x1, x2, x3, .., xn) in Rm ⋆ · · ·⋆Rm—we’ll push the above
direct method to verify 3 this—is the join Snm−1 of n spheres Sm−1 if
the xi are distinct, otherwise replace Σx(nx − 1) of these Sm−1 by
RPm−1 where nx denotes the number of xi = x. This follows by an easy
induction on n – for we can separate these distinct values x of the xi by small
neighbourhoods as above – provided we can prove : all points of Rm ⋆ · · ·⋆Rm

below the diagonal x1 = · · · = xn of Rm×· · ·×Rm have as their links the join
of one sphere Sm−1 and n− 1 projective spaces RPm−1.

(p) Case m = 1 :- Since each equivalence class π(x1, . . . , xn) has a unique
non-decreasing sequence, π maps W, the chamber x1 ≤ . . . ≤ xn of R× · · ·×R,
homeomorphically onto R ⋆ · · · ⋆ R. All inequalities strict give its interior, just
one equality xi = xi+1 its n − 1 walls, more its lower dimensional faces, and
x1 = · · · = xn the diagonal in which they all intersect. Any diagonal point
O is at distance ϵ > 0 from two other points—an S0—on it, but from only
one point—an RP 0—on the normal Ri through it in the two-dimensional face
x1 = · · · = xi ≤ xi+1 = · · · = xn. Since W is the convex hull of these n − 1
faces, the link of O is the join of an S0 and n− 1 points RP 0. �

Taking O as origin (0, . . . , 0) these n − 1 rays Ri have as convex hull the
cone C in which W intersects x1 + · · · + xn = 0. The union W̃ = W ∪ −W of
lines through the full cone C̃ = C ∪ −C parallel to the diagonal consists of all
monotonic sequences, and identifying antipodal points of each normal-to-the-
diagonal section of this gives back W ∼= R ⋆ · · · ⋆ R.

The link of O in each full line R̃i is S0, in C̃ a subset of their join, in C join
of as many RP 0s, more generally, the link of any point P has as many RP 0s

3This gives links of the symmetric powers of any m-manifold, and for m = 2 this direct
verification of no singularities proves (d) fundamental theorem of algebra.
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in it as the number of parallels R̃i,P through it which end at P , and we’ll
describe now how this simple picture extends to all m ≥ 1 :-

(P) We’ll write any z ∈ Rm as (x, y) ∈ R × Rm−1, and let W (m) be all
sequences (z1, . . . zn) ∈ Rm × · · · × Rm with first coordinates non-decreasing,
x1 ≤ . . . ≤ xn, and C(m) its intersection with the codimension m subspace
z1 + · · · + zn = 0. Each equivalence class π(z1, . . . , zn) has one member in
W (m), and only one if in interior, but for m > 1 can have more if on boundary,
so identifications need to be made here to get Rm ⋆ · · · ⋆ Rm.

For each i the extra constraints z1 = · · · = zi and zi+1 = · · · = zn give
an m-dimensional subspace R̃

(m)
i of z1 + · · · + zn = 0. These n − 1 subspaces

intersect in the origin, and have closed halves R(m)
i , given by xi ≤ xi+1, of which

C(m) is the convex hull. The identifications above each P ∈ C are determined
by the n − 1 parallel flats R̃

(m)
i,P = P + R̃

(m)
i : we need to identify pairs of

points antipodal with respect to P in each R̃
(m)
i,P iff R̃i,P ends at P , i.e., iff the

parallel R̃i,P does not remain in C on both sides of P . Indeed, if P is in a wall
x1 < · · · < xi = xi+1 < · · · < xn only zi ↔ zi+1 matters, it keeps fixed all
points above P with yi = yi+1, and is antipodal on the complementary flat with
yi+yi+1 = 0 and all other yj = 0, i.e., points above P in R̃

(m)
i,P . This gives us all

identifications above a P in a wall. Otherwise, P is incident to some walls, and
we need to identify above it all pairs of points which occur as limits of identified
points above a Q → P in any of these incident walls.

Let C(m)
P be all points of C(m) lying in the flat with center P spanned by all

R̃
(m)
i,P such that R̃i,P ends at P , and C̃

(m)
P its symmetrization with respect to P .

The link – all points at distance ϵ > 0 – of P in each of these R̃
(m)
i,P s is an Sm−1,

but only a subset of their join is in C̃
(m)
P . Identifying antipodally with respect

to P gives as many RPm−1s but some pairs of points in distinct RPm−1s are
joined by not one but two segments. That is because so far we have only made
identifications above P , identifications above all points in a neighbourhod of P
identify such segments : the link of P in the identification space Rm ⋆ · · · ⋆ Rm

is the join of a sphere and all these RPm−1s, so none if P is an interior point,
and maximum n− 1 if P = O when C

(m)
O = C(m). �

Briefly we married the idea, first coordinates non-decreasing, which reduces
us to the n−1 transpositions, z1 ↔ z2, . . . , zn−1 ↔ zn, with (D), which gives all
identifications on the corresponding walls. Their continuous extensions suffice:
e.g., above O any (y1, . . . , yi, yi+1, . . . yn) = (y1, . . . ,

yi+yi+1

2 , yi+yi+1

2 . . . , yn) +

(0, . . . , yi−yi+1

2 , yi+1−yi

2 , . . . , 0) is the limit of the corresponding point above a Q
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in the wall xi = xi+1, but this we identified to (y1, . . . ,
yi+yi+1

2 , yi+yi+1

2 , . . . , yn)+

(0, . . . , −yi+yi+1

2 , −yi+1+yi

2 , . . . , 0) = (y1, . . . , yi+1, yi, . . . yn). So above O too
the points (y1, . . . , yi, yi+1, . . . yn) and (y1, . . . , yi+1, yi, . . . yn) get identified, and
since any transposition is a composition of these n−1, we have identified above
O all the n! permutations of this sequence.

We note that, Rm ⋆ · · ·⋆Rm is homeomorphic to the diagonal times the union
C(X) of coincident rays through the link X of O in C(m). That this X splits as
a join of n− 1 projective spaces of dimension m− 1 can be laid to the remark
above regarding continuous extensions. Likewise if a point lies in a codimension
t face of C its link has t projective spaces. Then t =

∑
x(nx − 1) of (n), which

also gives the number of projective spaces in the links of points of C(m) not in
C that have some zi same. This number is less than n−1 because no such point
has all zi same. For m = 2, and only for m = 2, these singularities are illusory,
they disappear because RP 1 is homeomorphic to S1.

(b[ A conversation with Keerti was crucial ... it took us back to the 1990s
and a striking result of topology—the nth symmetric power of S2 is CPn—that
apparently was in print only as its second-last exercise in Shafarevich, Basic
Algebraic Geometry (1977) ... but amazingly, all that we had needed to do
it was the fundamental theorem of algebra. It did not take long to recollect
this argument (d) but then I thought, why not also work out the links directly,
and, since I so wanted that peculiar ‘fun’ we mathematicians get by tormenting
ourselves with beautiful riddles, I made only a cursory browsing of the usual
suspects before I went full-tilt. The browsing had given nothing, save that idea
of defining a chamber using a total order, from the beautiful book of Adams,
Lectures on Lie Groups (1969). My hunch is that, if and when I do make a
detailed search of the literature, nothing given above, except the possible errors,
will turn out to be really new : at best I would have yet again made something
‘well-known’ 4 a little more well-known!

I’ll conclude with a quick and random miscellany from the numerous thoughts
that came to me during this quixotic adventure :-

1) The fundamental homeomorphism of algebra R2 ⋆ · · ·⋆R2 → R2×· · ·×R2

is explicit only in this direction; as for its inverse, Brahmagupta’s formula can be
pushed only till n ≤ 4, elliptic functions work for 5 and 6, and using automorphic
functions Poincaré finally got it for all n. All this is ‘well-known’ – as it should
be since this is work done more than a 100 years ago – but alas, so far I’ve not
been able to understand this ‘folklore’ to my satisfaction.

2) In view of the above, it may be useful to – say by using a one parameter
family of homeomorphisms RP 1 → S1 starting from doubling the angle – seek
deformations of the fundamental homeomorphism with simpler inverses : one
can construe this as deforming the complex multiplication on R2, so this idea
has a Mochizuki-like ring to it.

3) Figuring out the topology of the symmetric powers of Rm can be construed
to be a generalization of the fundamental theorem of algebra which is only the
case m = 2, and maybe for m = 4 it can be tied to the algebra of quaternions,

4In the sense of, How I learnt some well-known folklore (2010).
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but it seems unrelated to Eilenberg and Niven, The “fundamental theorem of
algebra” for quaternions (1944).

4) That any point π(x1, . . . , xn) of the nth symmetric power M2 ⋆ · · · ⋆ M2

of any 2-manifold is nonsingular follows from the FTA because we can find a
cell U ∼= R2 of M2 containing its at most n points {x1, . . . , xn}, so our point is
in U ⋆ · · · ⋆ U ∼= U × · · · × U . Thus, besides CPn, which arises from S2, there
is a host of 2n-dimensional closed manifolds, and it should be ‘fun’ to work out
their cohomology rings and other invariants.

5) This will show how many of these closed 4-manifolds M2 ⋆ M2 pass the
‘numerological’ criteria of Atiyah and Manton (2016) and so are associated in
their sense to say the elements in Mendeleev’s periodic table! In the mid-
1970s I myself was enthralled with the idea of modelling microphysics by closed
manifolds, but now I think it is more natural to understand first the cartesian
creation and evolution of all closed manifolds, and only later narrow down to
those that have been, or are likely to be, observed in an experiment.

6) In our choice of the fundamental domain C(m) priority was given to first
coordinates, more even-handed would be to use the tilted prism of sequences
(x1, . . . , xn) with the sum of the m coordinates non-decreasing, tr(x1) ≤ . . . ≤
tr(xn). Also note that our arguments were affine, we worked only with parallels
to the faces of the domain, and the distance invoked once can be cayley distance.
Therefore this method should extend not only to all finite euclidean reflection
groups, but also to their cocompact relativistic brethren preserving a light cone.
Any M2 is a quotient of a finite index subgroup of such a group (in many ways,
and automorphic functions are those that are well behaved with respect to such
groups) and this affine construction can likely be kept equivariant : this would
give even a discrete geometrical, so essentially combinatorial, understanding of
the above 2n-manifolds M2 ⋆ · · · ⋆ M2.

7) For example a 10-vertex triangulation of S2 ⋆ S2 starts a series triangu-
lating the symmetric powers of S2, but is there a special reflection group from
which only CP 2

9 is born? One hint that this may be so is that the deleted joins
of RP 2

6 , CP 2
9 and two (?) other simplicial complexes are spheres, but not of the

highest possible dimension, for which case there is a classification.
8) The argument (D) for n = 2 is basic for deleted products and joins, its

extension here to n > 2, by marrying it with the idea of non-decreasing first
coordinates, should have a bearing on tverberg theory, both continuous, which
has reached a best possible result, and affine linear, where I think there should
be an index formula counting the tverberg points.

9) For m = 2 the mirror of a reflection is of codimension 2, using coordinates
we can complexify or double the dimension of (this can also be done simplex by
simplex) the cone of PG&R, but would then have a two dimensional time, with
the technical advantage of losing the boundary.

10) In one installment of PG&R there is a figure showing how cayley balls
give rise to deleted joins, that also ties up with the construction here ...

K S Sarkaria April 9, 2017
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