
The prettiest composition, part five
(translation of s`B qoN ipAwrI r`cxw, Bwg pMjvW)

57. We have proved above a bit more than was needed. That is, G takes us
from any ordered triple of L̂ to any other, while we needed only to go from any
unordered triple to any other. This job is done even by the orientation preserving
subgroup G0 of G, which along with the other, orientation reversing component,
is like ♥3 topologically just an open solid torus; further, the baby action of G0

on it triple covers the swallowtail ♥3 :- we can write each transformation of G0

as a rotation, times a translation keeping ∞ fixed, times a homethety keeping
both 0 and ∞ fixed. Besides, there are only six elements of G that map any
ordered set (a, b, c) on its six permutations, of which three take us to the even
permutations that alone are in G0.�

Clearly just the baby group G and its simple subgroup G0 are natural, all
conjugates of the maximal compact or maximal abelian subgroup S1 of the
latter are equally worthy of our attention. So here’s a bit about the foliation of
♥n, n ≥ 3 under the action of G0 :- this action preserves the cyclic order of the
roots. The open solid 3-toral orbits are covered by the G0-action a divisor of n
times. Which divisor depends on which subgroup of the cyclic group Zn makes,
upto this G0 action, conv(z1, . . . zn) most regular.�

Not only for n = 3 but for n = 4 also, the divisor 1 is not possible in the
above covering result, the action of G0 on ♥4 covers one open solid toral leaf 4
times, and all others twice :- Applying to any equation a rotation and translation
we get an equation with roots {x1 < 0, x2 = 0, x3 > 0, x4 = ∞}, and then after
a homothety keeping 0 and ∞ fixed we can assume x1x3 = −4. Now regard the
points of S1 tied to them z1, z2 = T, z3, z4 = −T . The condition |x1|/2 = 2/x3
is telling us the chord z1z3 subtends an angle of ninety degrees on the centre
−T of the circular mirror. So z3 = −z1 are also antipodal. The first case occurs
if and only if the diameter z1z3 is vertical.�

So about this picture emerges, below each solid toral G0-orbit of ♥4 there is an
S1-orbit of the mobius strip ♥2 going at half the speed :- The angle 0 < θ ≤ π/2
between the diameters z1z3 and z2z4 determines the G0-orbit; below on S1-orbit
that quadratic to whose roots the tied points on S1 are z21 = z23 and z22 = z24 ;
between which the angle is 2θ, for the middle orbit π, and towards the boundary
of the strip almost zero.�

Even more partial is yet my understanding of this three-dimensional leaved
baby foliation for n > 4, but this much is clear that, each leaf of ♥n has an
equation with roots in order {0, 1, x3, . . . , xn−1,∞}:- apply to an equation of the
leaf whose roots in this cyclic order on circle L̂ are {y1, y2, . . . , yn} the unique
transformation of G0 such that y1 7→ 0, y2 7→ 1, yn 7→ ∞.�

This oner y 7→ x = y−y1

y2−y1
· yn−y2

yn−y is dubbed the cross-ratio of the 4-tuple
(y1, y2, y, yn), and from this definition is clearly invariant under G0-action. Note
for a segment or half-ray (y1, yn) the cayley distance separating any 2-tuple
(y2, y) on it was also the same ratio, but for a log etc in front to make it additive.
Based on which we defined, for any euclidean open set U not containing a full
line, a relativistic distance separating any 2-tuple. But if we don’t want to
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be constrained by any boundedness condition maybe giving up on 2-tuples we
ought to consider 4-tuples only : for any 4-tuple (P,Q,R, S) of a sphere Ê of any
dimension n we have the cross-ratio PR

PQ · QS
RS and the mobius transformations

of Ê are precisely all its bijections that preserving them.
Resuming, the total number of equations with roots {0, 1, x3, . . . , xn−1,∞} in

any leaf of ♥n seems to be a divisor of n :- The invariance of cross-ratio shows
our definition did not depend on which equation in the leaf we had started from,
but yes, it depended on which root y1 ∈ L̂ thereof we had deemed first on the
circle. So we can start from such an equation in the leaf for whose roots the
tied points of S1 have the maximum cyclic regularity.�

For example, each leaf of ♥4 has at most two with roots {0, 1, t or t
t−1 ,∞},

so the leaf space of this baby foliation is the quotient of (1,∞) under the in-
volution x → x

x−1 :- Our definition seems to give four equations with roots
{0, 1, ti,∞}, i ∈ Z/4Z where ti is the cross-ratio of a 4-tuple (yi, yi+1, yi+2, yi+3).
Which we can take, because of the invariance of cross-ratio, the first of these
equations too. With t1 = t this gives t2 = ∞−1

t−1 · 0−t
0−∞ = t

t−1 , t3 = 0−t
∞−t ·

1−∞
1−0 = t,

t0 = 1−∞
0−∞ · t−0

t−1 = t
t−1 .�

So the leaves of ♥4 are given by these t ∈ (1, 2] or those θ ∈ (0, π/2] and
tan θ

2 =
√
t− 1 :- Applying the translation x 7→ x− 1 roots {0, 1, t,∞} become

{−1, 0, t−1,∞}, then homothety x 7→ 2√
t−1

gives {− 2√
t−1

, 0, 2
√
t− 1,∞}, both

diagonals of whose quadrilateral in S1 are diameters. The angle θ between
them is twice the angle made with the horizontal by the line joining (−1, 0) and
(1, 2

√
t− 1).�

Seems with the usage of these special equations {0, 1, x3, . . . , xn−1,∞} and
some more effort we’ll understand the leaf space of any ♥n after all. But before
going down this road, let us recall – see (50.38-9) – that their half-turn tilings are
special too, from which it begins to dawn that for solving at least such equations
calculation of the periods of some hyperelliptic integral should suffice. Further
it is clear that instead of an equation of the affine (n − 3)-swallowtail we can
instead solve a special equation of the n-swallowtail.

In any G0 orbit of the swallowtail ♥5 there must be a quintic with roots
in order {0, 1, u, v,∞} and at most four more special equations obtained by
making some other three cyclically ordered roots (∞, 0, 1) respectively. Using
the same cross-ratio calculation these are, second {0, 1, u(v−1)

v(u−1) ,
u

u−1 ,∞}, third
{0, 1, v−1

v−u ,
u(v−1)
v−u ,∞}, fourth {0, 1, vu ,

v−1
u−1 ,∞} and fifth {0, 1, v

v−1 ,
v

v−u ,∞}. But
for one leaf, with all five special equations the same, these five special equations
in any leaf of ♥5 are all distinct :- If the first and second are the same, then
v = u

u−1 implies u = u(v−1)
v(u−1) = v − 1 = u

u−1 − 1 = 1
u−1 , that is u is the golden

ratio 1+
√
5

2 and v = 3+
√
5

2 . With some more like work you can check that in fact
any two equations are the same if and only if (u, v) = ( 1+

√
5

2 , 3+
√
5

2 ).� However,
in the following method of finishing off this proof the above extra work is not
necessary, and at the same time time it opens the way to understanding the leaf
space of any ♥n.
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The map (u, v) 7→ (u(v−1)
v(u−1) ,

u
u−1 ) gives an action of the order five cyclic group,

done twice we get ( v−1
v−u ,

u(v−1)
v−u ), three times ( vu ,

v−1
u−1 ), four times ( v

v−1 ,
v

v−u ) and
the fifth time once again (u, v). Therefore, since five is prime, either the five
2-tuples are all distinct, or all else all equal, with the latter case if and only if
u is the golden ratio and v one bigger.�

The map (u1, . . . , un−3) 7→ (u1(u2−1)
u2(u1−1) , . . . ,

u1(un−3−1)
un−3(u1−1) ,

u1

u1−1 ) is an order n

cyclic action on the infinite (n − 3)-simplex {(u1, . . . , un−3) : 1 < u1 < · · · <
un−3}, and its quotient the leaf space of ♥n, n > 4 :- If a special equation has
roots {0, 1, u1, . . . , un−3,∞}, or after a rotation {1, u1, . . . , un−3,∞, 0}, then the
unique element of G0 such that 1 7→ 0, u1 7→ 1, 0 7→ ∞, i.e., t 7→ t−1

u1−1 · 0−u1

0−t =
u1(t−1)
t(u1−1) gives the special equation {0, 1, u1(u2−1)

u2(u1−1) , . . . ,
u1(un−3−1)
un−3(u1−1) ,

u1

u1−1 ,∞}. The
same done n times makes all the special equations of the leaf before we return
to the one we started out with.�

About the Z/5Z action on the 2-simplex {(u, v) : 1 < u < v} :- From
the vertex (1, 1) the curve (u, u2), 1 < u < 1+

√
5

2 goes to the unique fixed
point ( 1+

√
5

2 , 3+
√
5

2 ). Applying to it the map (u, v) 7→ (u(v−1)
v(u−1) ,

u
u−1 ) repeatedly

gives in all five disjoint curves from the boundary to the fixed point. Not
this map, but its cube (u, v) 7→ ( vu ,

v−1
u−1 ) is what identifies each curve with

the clockwise next, for instance after the above parabolic curve is the segment
(u, u+1), 1 < u < 1+

√
5

2 . So the orbit space of the action–the leaf space of ♥5–is
a cone over the fixed point, topologically a plane.�

Just the inversion x→ x
x−1 has birthed all these cyclic actions, on all tuples

of numbers bigger than one! Besides, this definition is over Q, so over all the
rational 2-tuples of the picture we get this free Z/5Z-action. Which seems to be
true also for any n prime? But first, writing some Z/6Z-orbits of some 3-tuples
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(u, v, w), let us check that when n is not prime, then besides the central leaf the
orbit space has also some other singularities.

About the Z/6Z-action :- Now the map is (u, v, w) 7→ (u(v−1)
v(u−1) ,

u(w−1)
w(u−1) ,

u
u−1 ).

If (u, v, w) = (u(v−1)
v(u−1) ,

u(w−1)
w(u−1) ,

u
u−1 ), then v = u(w−1)

w(u−1) = w− 1 = u
u−1 − 1 = 1

u−1 ,
so u = u(v−1)

v(u−1) = u(2−u)
u−1 , so u = 3

2 , v = 2, w = 3, i.e., ( 32 , 2, 3) is the unique fixed
point, note unlike the case n = 5 it is rational. Now the map can also be order
two or three. The square of the map is (u, v, w) 7→ ( (w−u)(v−1)

(w−1)(v−u) ,
v−1
v−u ,

u(v−1)
v−u ). If

this is fixed then w = uv and u = uv−u
uv−1 v, so uv − 1 = (v − 1)v, so all points

on the curve u = v2−v+1
v , v > 1, w = v2 − v + 1 other than ( 32 , 2, 3) are all

the 3-tuples of order two. Similar effort shows that order three 3-tuples are all
points other than ( 32 , 2, 3) on the surface u(v − 1) = w(u − 1). Any ray in the
simplex from the beak (1, 1, 1) cuts it in just one other point, thus it is an open
2-cell dividing the 3-simplex into two parts. The order two curve starting from
the beak goes through the lower part to cut this surface in the fixed point and
carries on through the upper part towards (∞,∞,∞).

An example of an order two orbit is ( 73 , 3, 7) 7→ ( 76 ,
3
2 ,

7
4 ) 7→ ( 73 , 3, 7) and of

order three (2, 3, 4) 7→ ( 43 ,
3
2 , 2) 7→ ( 43 , 2, 4) 7→ (2, 3, 4). But the most common -

making the remaining open set of this 3-simplex - are orbits of full length six, for
example, (3, 4, 5) 7→ ( 98 ,

6
5 ,

3
2 ) 7→ ( 32 , 3, 9) 7→ (2, 83 , 3) 7→ ( 54 ,

4
3 , 2) 7→ ( 54 ,

5
2 , 5) 7→

(3, 4, 5), etc. So easy are these orbital calculations that one gets hooked on
them, but making now even a rough picture is not that easy!

Anyway, on a generic orbit one has alternately u(v − 1) ≶ w(u − 1), three
tuples in the lower part and rest in the upper; while all three of an order three
orbit are on the intervening cell; and of order two on the curve, one below the
fixed point one above. The orbit space is a closed solid cone on the fixed orbit.
The remaining cone boundary is order three orbits, quotient of the open 2-cell
under the order three cyclic action around the curve. And the curve itself folds
under the involution over the fixed point becoming a curved axis of the cone
consising of all order two orbits. The remaining interior points of the cone are
all the orbits of full length six. So topologically the leaf space of ♥6 is a three
dimensional closed half space.�

Each swallowtail has one and only one leaf with only one special equation,
meaning, any cyclic action above has just one fixed point. In fact, for any
continuous involution x 7→ x (think x := x

x−1 ) of numbers bigger than one, the
maps (x, u2, . . . , um) 7→ (x ÷ u2, . . . , x ÷ um, x) on increasing m-tuples of such
numbers have unique fixed points :- x 7→ x is a decreasing homeomorphism of
(1,∞), so the maps are well-defined. If (x, u2, . . . , um) = (x÷u2, . . . , x÷um, x)
then um = x, um−1 = x ÷ um = x ÷ x, um−2 = x ÷ um−1 = x ÷ (x÷ x),
um−3 = x÷ (x÷ (x÷ x)), and finally x = fm(x). Here f1(x) = x whose graph
above (1,∞) decreases from ∞ to 1, so cuts the line y = x in a unique point
(s1, s1). And inductively fi+1(x) = x÷fi(x) whose graph above (1, si) decreases
from ∞ to 1, so this also cuts the line y = x in just one point (si+1, si+1). So
for any m just one m-tuple is fixed.�

But, there are involutions whose map on 2-tuples has very long orbits:- Any
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decreasing order two bijection of a finite subset of (1,∞) can be extended to an
involution. And for example we can keep on lengthening the orbit of say (2, 3),
using such a bijection so defined that every new number has a generic valid
value. To locate valid values subdivide (1,∞) by all already used finitely many
numbers and note the sub-interval containing the new number is, and generic
means out of the infinitely many numbers between the values of its end points
omit all fractions of the already used numbers.�

This shows the inversion x := x
x−1 , on which we’ll stay focussed, is pretty

nice! We know not only that its induced maps on m-tuples have a unique fixed
point, but also that the length of any other orbit is a positive divisor of m+ 3.
And it seems for m ≥ 2 there is an orbit of each such length ?

The leaf space of the swallowtail ♥n for primes n > 5 :- This is the orbit
space of the infinite (n − 3)-simplex 1 < u1 < · · · < un−3 < ∞ under the
Z/nZ-action. The complement of the unique fixed point has the homotopy of
an (n − 4)-sphere, simply connected since n > 5. Further n is prime, so the
orbit of each point in it has length n, i.e., on it the Z/nZ-action is free and
the quotient map is an n-fold unbranched covering. So in the orbit space the
complement of the fixed orbit has fundamental group Z/nZ, and only near this
one point is this space not a manifold. In contrast to the case n = 5, when this
unique singularity was only geometric, now it is a topological singularity.

We can put on the infinite simplex a Z/nZ-invariant riemannian metric by
averaging any riemannian metric under this finite group action. The wavy level
surfaces of this distance function from the fixed points are topological spheres
Sn−4, and the gradient curves of this function normally cutting these surfaces
rays emanating from the fixed point. The quotient of any level surface under
this action is a closed manifold Mn−4 with fundamental group Z/nZ and the
leaf space is a cone of over Mn−4.�

Is this Mn−4 the quotient obtained if we limit the circle action of Hopf on
the odd sphere Sn−4 to an order n cyclic subgroup?

It remains, is the fixed point irrational for primes n > 5 also ? For n = 7

yes :- f1(x) = x
x−1 , f2(x) = 1

x−1 , f3(x) = x(2−x)
x−1 , f4(x) = x(−x2+x+1)

(x−1)(2x−x2) and
s1 = 2, s2 = ϕ, s3 = 3

2 , so s4 is between 1 and 3
2 a root of x = f4(x) that is a

root of x3 − 4x2 + 3x+ 1 = 0. Secondly, this polynomial has no root in Q, for
then – the lemma of Gauss – it would be in Z, which is easily checked to be
not correct. So s4, the first coordinate of the 4-tuple which is fixed under the
Z/7Z-action, is irrational.�

For some time using reals we have been confirming results that we had really
found by making L̂ in the extended plane into the unit circle S1. By means of
a reflection in a round mirror, so de facto using complex algebra. From now on
we’ll openly and unhesitatingly use complex numbers, for it is not wise to keep
ourselves away from the two-dimensional intuition that had shown us these one-
dimensional results. For instance, the leaf of ♥n having just one special equation
is that which has the equation whose roots seen in the unit circle are the nth
roots of 1. Using this, is quickly resolved the above hard problem!

Indeed, for any prime n ≥ 7 too the fixed point is irrational :- If ω = e2πi/n
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the nth roots of 1 are {1, ω, ω2, . . . , ωn−1} and from these we can calculate the
remaining n−3 roots 1 < ui <∞ of the unique central special equation of ♥n by
applying the complex mobius transformation such that ω 7→ ∞, ω2 7→ 0, ω3 7→ 1,
that is, z 7→ z−ω2

ω3−ω2 · ω−ω3

ω−z . For example, the image of 1 is un−3 = 1−ω2

ω3−ω2 · ω−ω3

ω−1 =
(1−ω2)2

ω(ω−1)2 = (1+ω)2

ω = 1
ω + 2 + ω = 2(1 + cos 2π/n). Because 1/ω = ωn−1 and ω

both satisfy zn − 1, a monic integral polynomial, un−3 also satisfies some such
polynomial. So – Gauss lemma – if it is in Q then it is in Z, but 2(1+ cos 2π/n)
lies in the interval (3, 4) for n ≥ 7.� So, for primes n ≥ 5 the Z/nZ-action is
free on the Q-points of the (n− 3)-simplex.

58. So keeping our full focus still on line R we’ll now be also taking shorts
cuts through plane C. Not forgetting that basic are the mobius manifolds of
extended line, plane, space, so on: all numbers and their addition, subtraction,
multiplication, division, calculus too, all are but means used by local observers
confined in their frames of reference seeking global truths! Invaluable from this
relativistic viewpoint are ideas and results allowing us to paste things local into
something global. As I’ve explained before, indefinite integration, thanks to the
change of variables formula, is exactly such an invaluable idea.

Our goal is to solve any given equation f(x) = 0 of ♥n. Which manifolds
are tied to its n or n− 1 unknown roots? At once R minus roots comes to mind
but it is not connected, so lets start with integral

∫ dz
f(z) on C minus roots. It

is uncanny how musing on this simple integral very quickly and naturally came
back to me memories, one after another, of many famous things :-

Thanks to change of variables, on a manifold an i-fold indefinite integral is
the same as a differential i-form. If it is closed, and only then, the value of the
integral on any trivial i-cycle is zero. So, the rank of the free abelian period
group formed by its values on all i-cycles is at most the betti number βi. And
“generically” this rank is equal to βi. For example,

On plane minus roots the 1-form dz
f(z) is closed :- If 1

f(z) = P (x, y)+ iQ(x, y),
ω = (P + iQ)(dx+ idy) = (Pdx−Qdy) + i(Qdx+ Pdy) has exterior derivative
dω = (−∂P

∂y − ∂Q
∂x )dx∧dy+i(−

∂Q
∂y + ∂P

∂x )dx∧dy = 0 because 1
f(z) is holomorphic,

i.e., Cauchy-Riemann equations ∂P
∂x = ∂Q

∂y ,
∂P
∂y = −∂Q

∂x hold.�
And, the fact that on any trivial 1-cycle the value of any holomorphic, so

closed, 1-form is zero was Cauchy’s theorem. So the rank of the period group of∫ dz
f(z) is at most β1 = deg(f). Further, Cauchy’s formula

∮ dz
z−a = 2πin, n ∈ Z,

gives the period group for deg(f) = 1.
But, when deg(f) ≥ 2, the rank of the period group of

∫ dz
f(z) is less than β1 :-

Consider
∮ dz
f(z) on a circle around the origin of a radius R so big that all roots

of f(z) are within it. Cauchy’s theorem tells us that its value does not change
as R → ∞. But the circumference of the circle is 2πR while the order of the
absolute value of the integrand is 1/R2. So the value of this definite integral is
zero.� A like argument gives the fundamental theorem of algebra :- if f(z) has
no root, then u(z) =

∫ z

0
dz
f(z) is a non-constant bounded holomorphic function on

C, which is not possible by a theorem of Liouville.� Further,
The full period group is

∮ dz
f(z) = 2πi

∑
j njAj where nj ∈ Z and Aj are
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the residues on the unknown roots aj of f(z) = 0 i.e., 1
f(z) =

∑
j

Aj

z−aj
, so

Aj =
∏

k ̸=j
1

aj−ak
. Obviously it has rank ≥ 1, and because of

∑
j Aj = 0 i.e., the

identity
∑

j(
∏

k ̸=j
1

aj−ak
) = 0, which is what we had proved presently using

integration (!) it is always ≤ β1 − 1. In fact,
Only for the case deg(f) = 1 is dz

f(z) singular at z = ∞ :- Excepting this case
the 1-form ϕ(w)dw obtained if we put z = 1

w and dz = −dw
w2 has w = 0 as an

ordinary point.� So for deg(f) ≥ 2 we should consider this 1-form on Ĉ, and
the first betti number of this complex manifold is one less than β1.

Returning to C minus roots aj , if we perturb the numerators Aj to make
them independent over Q, we get very close to dz

f(z) a holomorphic 1-form whose
rank is exactly β1. So we can calculate the betti numbers β0 = 1 and β1 of this
complex manifold by using instead of its de Rham complex Λ∗ d→ Λ∗+1 the basic
subcomplex E∗,0

1
d→ E∗+1,0

1 of holomorphic forms. On the other hand,
Extreme nondegeneracy is possible in this spectral sequence Ep,q

k of a complex
manifold (or of a foliated manifold). But, all n-dimensional manifolds, and quite
a few other simplicial complexes Kn too, are found embedded in 2n-space Cn.
Question: can we then calculate the betti numbers βi(Kn) from the neighbouring
holomorphic forms of Cn? Further, can for any such the Heawood inequality
αn(K

n) < (n + 2) · αn−1(K
n) be proved by just complexifying the arguments

of this linked paper? But yes, for any Km ⊂ Cn we can calculate the betti
numbers from the neighbouring smooth forms :- because it has arbitraily small
neighbourhoods U having the same homotopy type.�

In this context let us recall that Cn, and for C all, and for Cn, n > 1 some
open sets are Stein manifolds, and for these open compex manifolds it is even
true that Dolbeault cohomology Ep,q

1 is zero for q > 0, so only the holomorphic
forms E∗,0

1 survive. But, there are open sets of Cn, n > 1, that are not Stein :-
for example a tubular neighbouhood U of S3 ⊂ C2 has betti number β3(U) = 1
but U has no holomorphic 3-form.�

This Dolbeault vanishing, for Cn called Grothendieck lemma, even for our
simple manifold C minus points aj is not so simple. We do know that E2 term
is final with E0,1

2 = E1,1
2 = 0, so d1 : E0,1

1
∼= E1,1

1 , but why are they zero:-
Because the Cauchy-Riemann p.d.e. ∂g

∂z = f (for the notation used see below)
we can solve on any open set U of the plane, i.e., ∂

∂z : C∞(U) → C∞(U) is
surjective with kernel all holomorphic functions.

If f(z) is compactly supported then convolution g(ζ) = 1
2πi

∫ ∫ f(z)
z−ζ dz ∧ dz

is smooth on U and ∂g

∂ζ
= f(ζ). Its proof uses Stokes’ formula, whose proof in

turn uses, the fundamental theorem of calculus, i.e., d
dx : C∞→C∞ is surjective

on any open set of the line R with kernel all locally constant functions.
For each f ∈ C∞(U) and compact set Ki ⊂ U , there exist compactly sup-

ported functions fi which on Ki are equal to f , but the above gi such that
∂g
∂z = f , usually on the limit U of these sets Ki only give us a distribution
g ∈ D(U) solving ∂g

∂z = f .
But there exist also smooth solutions - the Mittag-Leffler theorem - which are
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the limit points of the subset {all functions gi plus holomorphic functions} in the
t.v.s.C∞(U). For more details see the first chapter of the book of Hörmander
on complex analysis.�

More on the notation : It is but the points (x, y) of the plane R2 = C
that are complex numbers z = x + iy, e.g., (0, 1) = i (when not an index!)
and the talk using these complex numbers is still about the mobius geometry
of the 2-sphere R̂2 = Ĉ, reflection in the flat mirror x-axis is conjugation z =
x− iy. Our functions and forms are all smooth and complex valued, so for any
function g on the plane we can write dg = ∂g

∂xdx + ∂g
∂ydy also in the new basis

dz = dx+ idy, dz = dx− idy of 1-forms, which gives dg = ∂g
∂zdz +

∂g
∂zdz, where

∂g
∂z := 1

2 (
∂g
∂x − i∂g∂y ) and ∂g

∂z := 1
2 (

∂g
∂x + i∂g∂y ). So if in real and imaginary parts

g(z) = P (x, y) + iQ(x, y) then ∂g
∂z = 1

2 ((
∂P
∂x − ∂Q

∂y ) + i(∂Q∂x + ∂P
∂y )) and indeed

∂g
∂z = 0 means g holomorphic.�

A complex manifold is covered by charts related holomorphically, so must
be even dimensional and orientable, and the key to many other conditions is its
Hodge bigrading : Ep,q

0 means all (p+ q)-forms which in charts (z1, . . . , zm) use
wedge of exactly p dzi and q dzj , so its rank is

(
m
p

)(
m
q

)
over all functions E0,0

0 .
On which dg = ∂g + ∂g where ∂g = ∂g

∂zdz and ∂g = ∂g
∂zdz. So on all forms is

available the C-linear splitting d = ∂ + ∂ into two maps of bidegree (1, 0) and
(0, 1), and d2 = 0 is equivalent to ∂2 = ∂∂ + ∂∂ = ∂

2
= 0.

So removing the first column p = 0 of E0, then the first two columns p =
0, 1, etc., gives a decreasing sequence of de Rham subcomplexes, and (Ek, dk)
above is the spectral sequence of this filtration (the spectral sequence defined
by removing rows is isomorphic under complex conjugation) so d0 = ∂.

For example, when m = 1, only E0,0
0 , E0,1

0 , E1,0
0 , E1,1

0 are nonzero in E0, all
four have rank one over functions, and g 7→ ∂g

∂z (g)dz, gdz 7→
∂g
∂zdz ∧ dz gives d0.

So indeed the result above was the same as saying that for any open set of C, it is
only E0,0

1 , E1,0
1 that are nonzero in E1, and contain respectively all holomorphic

functions and 1-forms. Further, because the homology E2 of this holomorphic
de Rham complex d1 = d : E0,0

1 → E1,0
1 is final, E0,0

2
∼= Cbo , E1,0

2
∼= Cb1 where

b0 and b1 are the Betti numbers of the open set, and d2 = 0. In fact, all this is
true also for any open Riemann surface, but if it is closed then just from b2 = 1
it is clearthat we don’t have Dolbeault vanishing.

Returning to
∫

dz
f(z) , where f has degree δ > 1, we had seen its period group

has rank not bigger than the betti number β1 = δ−1 of {Ĉ minus roots}, but it
remains to work out how it depends on the equation f = 0 of the swallowtail ♥δ.
Before this we recall that for degree even one way of compactifying this manifold
is to use its ‘double’ after δ

2 disjoint cuts. Which gives a closed riemann surface
of genus δ

2 − 1 and in the last section we’ll see that Jordan’s method of solving
equations is tied to this compactification and uses the periods of

∫
dz√
f(z)

, so this
now is a ‘warm-up’ by familiarizing ourselves with an easier integral! Note ♥δ

contains too affine degree δ−1 equations—those with one root infinity—so there
is no loss of generality in assuming degree is even.
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Similarly it seems for Cn if open set U is Stein – maybe of points nearby any
Kn ⊂ Cn? – then a ‘double’ will be a closed complex Kähler manifold? So its
homology – that should shine a light on the combinatorics of Kn, perhaps may
even give its Heawood inequalities? – would be very special : now Dolbeault
cohomology E1 is final and Poincaré-Serre duality Ep,q

1
∼= En−p,n−q

1
∼= En−q,n−p

1

is given by multiplications of a basic (1, 1) class, so again this hard Lefschetz
theorem will be used for combinatorics.

The roots of f = 0 give the periods of
∫

dz
f(z) , but conversely they can give at

most the differences of roots aj − ak, because periods were 2πi
∑

j njAj where
Aj =

∏
k ̸=j

1
aj−ak

; anyway all these differences suffice, for
∑

j aj we can at once
read from the equation f = 0. For degree two the job is easy, a1−a2 = 1

A1
, but

then for degree three some method for writing squares of differences only seems
at hand, for example :- square (a1 − a2)(a1 − a3)(a2 − a3)A1 = (a2 − a3) etc.,
writing the discriminant (a1 − a2)

2(a1 − a3)
2(a2 − a3)

2, a symmetric function
of the roots, in terms of the coefficients of f = 0.�

The field F generated by the coefficients of f = 0, has as smallest extension
containing all the differences aj−ak, the same as the one containing all the roots
aj , but it usually bigger than that with all Aj . How much bigger can be the
field F(aj) compared to the sub-field F(Aj)? For degree three we saw above it
is at most a quadratic extension, and for example for x3−5x = 0 the dimension
of F(aj) = Q(

√
5) over F(Aj) = Q is two. However, the sub-extension F(Aj)

is also preserved by permutations of roots :- aj ↔ ak induces the transposition
Aj ↔ Ak.� So the symmetric functions of Aj can also be written in terms of
the coefficients of f = 0, for example

∑
j Aj = 0 we proved already, and it is

easily checked that (−1)(
n
2)
∏

j
1
Aj

equals the discriminant d.
In möbius geometry however the ratios of differences are more natural, and,

for degree three A1

A2
= a2−a3

a1−a3
, for degree four A1A3

A2A4
= −(a2−a4

a1−a3
)2, for degree six

A1A3A5

A2A4A6
= etcetera, so one begins to hope that, we can write these ratios using

the surds of the periods? It seems always F(aj) is solvable over F(Aj), and it may
be that only compass and ruler suffice, that is, a chain of quadratic extensions
takes us from the smaller to the bigger field?

Generically the fixed field of F̃(ai)–where F̃ is the extension of F by the square
roots ±

√
d of the discriminant–under all the even permutations of a1, . . . , an

seems to be F̃, but for n > 4 this permutation group is simple, so F̃(Ai) = F̃(ai)?
That is to say, using addition subtraction multiplication division and one square
root we can write any root ai of the equation f = 0 in terms of its coefficients
and the integrals 1

2πi

∮
dz
f(z) . Explicitly, what are these formulas solving any

equation? Further, tied to f = 0 is a faux tiling – meaning with all vertices on
the boundary – of the open disk folding which gets made Ĉ \ {ai} and which is
associated to the aforementioned Cauchy periods ...

A natural true tiling – meaning with compact tiles – we have also tied to
any degree n > 4 equation f = 0 long ago–see part four, also notes 50–and the
next note in fact is an addendum written at about the same time.

59. In part four we made using half turns, starting from any n ≥ 4 points
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on the unit circle, an {n, n} tiling of concentric radius c > 1 – with c = ∞ only
for n = 4 – crystallographic with respect to its geometry. Meaning, all tiles
are congruent to the seed n-gon with the given n vertices inscribed in the unit
circle, and the union of any two tiles sharing an edge is symmetric around its
mid-point, and that there are n tiles on each vertex of the tiling.

Somewhat similarly we can make a spherically crystallographic tetrahedron
{3, 3} starting from any n = 3 points on the unit circle :- Consider a sphere of
radius r ≥ 1 through the unit circle with centre right above its centre. Join the
three points with its great circle ‘segments’. As r increases from 1 towards ∞,
the sum of the angles of this spherical triangle decrease continuously from 3π
towards π. Take that r for which it is 2π. Now apply around the mid-points of
the edges spherical half-turns, to get this tetrahedron.�

So triangles of our tetrahedon have area πr2, agreeing with (A+B+C−π)r2,
the area of a spherical triangle. Second note this r with angle-sum is 2π, depends
on the three points on the circle we started with. Being the smallest if the
distances between them are equal, when we get regular tetrahedron.

In this case all three angles are equal for all r, and when π/2 and 2π/5, we
get a regular octahedron and regular icosahedron, and then at limit r = ∞ a
regular tiling {3, 6} of the entire plane. In all other cases we’ll not run into any
other semi-deformed platonic solid, but at limit r = ∞ is a planar {3, 6} tiling
by half-turns starting from any triangle. From this tiling is obtained another
elliptic, meaning on C a doubly periodic meromorphic, function.

Notes : (a) All four triangles are spherical convex hulls of their vertices–see
figure–there being no antipodal pairs in them. The triangle DCB obtained by
rotating ABC by a half-turn about the midpoint α of its side BC is also in
the complement of the antipode −α and intersection of the two this side. From
this fact and area is firm the existence of ABCD. (b) This half-turn gives the
permutation DCBA, the side AD has the same length as BC, and the other end
−α of the axis its mid-point. (c) The three sides of its triangles being usually of
different lengths, its symmetry group has just four elements, identity and half
turns DCBA,CDAB and BADC. (d) On the other hand half turn motions
of the plane around the limiting flat ABC generate an infinite group and tiling
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{3, 6}, six triangular tiles at each vertex. (e) So now the compositions of the
three half turns are not identity, only their square is identity. The triangles of
the tiling generated by these three fold compositions are of double the size, in
each four smaller triangles, and folding the plane under this index four subgroup
gives again the same crystallographic tetrahedron.

60. Folding compact {n, n} tilings fully gives the 2-sphere Ĉ but if we divide
only by the index two subgroup of even compositions of the n half turns then
is obtained universal covering of a closed Riemann surface M2. The remaining
division gives a holomorphic double branched covering M2 → Ĉ. Full quotient
map is a, periodic under the group of all n half turns, meromorphic that is
holomorphic with values in Ĉ function. When n = 3, 4 the index two subgroup
is generated by two independent translations of the plane, so this is a doubly
periodic meromorphic that is an elliptic function z(u).

Does this z(u) invert the multi-valued function u(z) =
∫ z dz√

f(z)
given by

all path integrals of C \ {ai} starting from some base point till z? Since the
integrand is holomorphic the ambiguity of u(z) is limited to the periods

∮
dz√
f(z)

,
which make for each equation f = 0 of the 4-swallowtail a lattice of the plane C,
see Goursat volume 2 page 120. And before that from its page 114 and sequel
that for any equation f = 0 of any even n-swallowtail that, all periods

∮
dz√
f(z)

make a subgroup of C of rank ≤ n
2 .

For n > 4 we cannot hope for a plane lattice but, as for our warm-up case,
that theorem on page 380 of the Traité of 1870 of Jordan is telling us perhaps
that these periods of f = 0 give us for the same F̃ another Galois extension only
a bit smaller than F̃(ai) and generically the same? So again the same question:
in a clear manner what are these formulas giving for any equation its roots in
terms of the coefficients and hyperelliptic periods?

To return to the tiling we need to treat the two-fold ambiguity of the square
root correctly. For the warm-up one-form dz

f(z) the domain Ĉ \ {ai} is correct,
but not for dz√

f(z)
. To correctly define it, like Riemann we make n

2 disjoint cuts
joining pairs of roots, and then pasting this cut space with a copy double it.
We have got the same Riemann surface M2, and when we regard these cuts on
its universal space the same tiling. But only got till topology : geometry we’ll
get when and only when we would have understood conceptually the formulas
about which we have raised the question above.

Per Mumford’s Theta II, page xi, Umemura has appended to this book
“simple expressions” solving equations, that he has obtained by developing a
method of Jordan. Like music mathematics too is done in a variety of very
different moods! True, if fully changing gears we abruptly switch to a formal
mood, these fearsome formulas do slowly become simpler. But to fit in a natural
way this mathematics done in a different mood into our own evolving theory of
equations should obviously be our goal.

So without fully changing gears let me give a concise synopsis fairly different
from the above books. The story began with the trigonometric method of Vieta
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for solving cubics – see Notes 13, 14 – which is what is recalled by Jordan in 1870
in Note 505 of Traité :- Translate variable to make the second coefficient–sum
of roots–zero. If the third coefficient–sum of products of roots taken two at a
time–is not zero, scale variable to get cubic 4z3 − 3z + a = 0. The trisection of
a circular arc into three equal parts is tied to which, more precisely, if we put
a = sinu, the roots are z = sin u

3 , sin
u+2π

3 , sin u+4π
3 .�

Remarks : (a) Translation making some other coefficient zero requires effort,
to make constant zero a root itself of the equation. (A) Scaling to adjust the
third coefficient involves extraction of a square root, if we were to adjust the
fourth then a cube root, etc. (e) Scaling by positive square root is retraction of
that peacock feather of Khayyam on segment (4z3−3z+1 = 0, 4z3−3z−1 = 0),
the roots of the boundary points of which, {+ 1

2 ,−1,+ 1
2} and {− 1

2 ,+1,− 1
2} are

also given by these formulas; but all three don’t give the unique root 0 of its
cusp z3 = 0. (s) The method in full for all cubics is this : if post translation the
third coefficient is zero – this doesn’t occur on peacock feather, but consider for
instance z3 + a = 0 – then we take cube roots which can all three be complex;
and if not we use complex sine. (h) Namely, the periodic function z(u) inverting
the multivalued ‘function’ u(z) =

∫ z

0
dz√
1−z2

:- note dx√
1−x2

=
√
dx2 + dy2 if y =

√
1− x2, so its real integration from 0 to x ∈ (−1,+1) gives the circular arc

u ∈ (−π
2 ,+

π
2 ) such that sinu = x. The full domain of dz√

1−z2
is M2 made for

example by making the cut (−1,+1) on the plane with a scissors and then with
some glue pasting it to this cut of a copy. Starting from the base point, 0 of
first sheet, and avoiding (for the moment) ±1, all paths of M2 are used to find
these values u(z) of the 1-form. But, on all such trivial loops of this cylinder we
have

∮
dz√
1−z2

= 0. Because, we can replace such a loop of M2 going only around
−1 once, by a small loop formed by going over the same small circle around
it on the first sheet and then again on the second sheet. So the restriction
that the path avoid ±1 was not needed, in particular, on the non-trivial loop
of M2 formed by going on the cut from −1 to +1 on the first sheet and then
back from +1 to −1 on the second we have

∮
dz√
1−z2

= 2π, the perimeter of
the unit circle. So on any loop the integral is 2π times an integer, this inverse
function sin : C → M2 wraps the plane around the cyclider with periodicity
2π.� (k) Wrapping this method of Vieta in full in a single “simple formula” we
can using analytic extension check that for input any cubic equation � ∈ CP 3

its output shall be the (one, two or three complex) roots of �. (K) We have
no intention intend of dressing up such formulas, interesting is that the job of
inverting u =

∫ z dz√
f(z)

has now commenced, but instead of the given cubic we
are still talking in it only of a quadratic’s square root.

For a quadratic equation completing the square (discriminant’s square root)
suffices, nor do we learn anything about its roots from the periods

∮
dz√

z2+az+b
=

2πim,m ∈ Z :- thanks to analytic extension it is enough to check this when roots
are two real numbers, so it reduces to checking

∫ +r

−r
dx√

r2−x2
= π, which is true,

because the semi-circle y =
√
r2 − x2 of radius r has arc element

√
dx2 + dy2 =
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dx
√
1 + ( dydx )

2 = rdx√
r2−x2

.� (g) But the domain M2 of dz√
z2+az+b

does depend
on the roots α, β ∈ C z2 + az + b = 0, it is made again making a cut along
segment αβ and then pasting it to the same cut of a copy. Not only can we
check that its topology is that of a cylinder but also that, the loop integrals of
this 1-form over M2 have values 2πi times an integer. (G) In this degree(f) = 2
case the 1-form blows up at infinity, that’s why this domain is not compact,
but its points are equally smooth and we can choose any 0 ∈M2 as base point,
then inverting path integrals u(z) =

∫ z

0
dz√

z2+az+b
gives a holomorphic function

z(u) of C onto M2 such that z(u+2πi) = z(u) and z(0) = 0. (|) Consider these
integrals over loops in one copy, that is loops of C not going through cut αβ, as
β → α, this becomes the famous formula

∮
dz

z−α = 2πim,m ∈ Z of Cauchy. (c)
The pull-back in C of the loop αβα of M2 made from the cuts gives a line on
which the pre-images of α and β occur alternately at distance π, meaning, in
this case of two roots the seed tile is a 1-simplex α0β0 and we make that line
by repeated relections in its two facets. (C) However–note (50.02)–

dividing by all even compositions of the half-turns which restrict to these
reflections gives this universal covering C → M2, and if we divide by the full
group a further double covering M2 → C branched over α and β :- Betwee any
two parallel lines going through the ends α and β of the tile αβ is a fundamental
2-cell of the group, which folds these lines over α and β, so the quotient has
Euler number 2− 2+1 = 1, etc.� (j) The full map C →M2 → C is the square
of the ‘generalized sine function’ z(u) :- The images z(u) of the first map are the
points (z,±

√
z2 + az + b) of the double sheeted Riemann graph M2, and z2(u)

the points (z, z2 + az+ b) of a single valued graph over C.� (J) Only on which
root in which sheet we start depends the integral over the segment∫

αβ
dz√

z2+az+b
= ±πi :- The same

∫ +r

−r
dx√

r2−x2
≡ π and analytic extension tells

us that the integral is constant over the affine 2-swallowtail CΩ2, for example,
if we come back after making such a tour to the same equation � that its roots
{α, β} get interchanged, then at the same time that square root in the integrand–
which rotates at half speed–changes its sign.� (v@) If imprisoned in the line R
always distinct n particles remain in the same order, so real n-swallowtail RΩn

is an open n-cell, and over it the graph G of roots has n disjoint sheets. But
in the freedom of the plane C all n! permutations are possible, so not only is
G connected the group of its covering transformations has full order n!, and on
it surjects the fundamental group the complex affine n-swallowtail CΩn.� (t)
Any path of CΩn viewed in C × R shows the paricles weaving a braid with n
strands. so this fundamental group is the nth braid group of Artin, so its action
or monodromy on the covering space G births the generic Galois group of degree
n equations.� (T) The current n = 2 case, i.e.,

quadratic equations have very interesting topology! The graph G is now the
deleted square C2 minus diagonal, of all disjoint ordered pairs (α, β) and all
unordered {α, β} is CΩ2, both spaces are topologically (C \ 0) × C ' S1 and
the covering map (α, β) 7→ {α, β} is up to Z2-homotopy type the antipodal so
squaring map of S1.� (f) The swallowtail RPΩ2 of homogenous real quadratic
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equations with distinct extended real roots is an open Möbius strip :- After an
inversion of the same Möbius, along S1 instead of an R̂, we meet any antipodal
pair of roots again after a half, and the other pairs after a full trip (likewise
RPΩn’s topology, etc., but remains to do cyclic or S1-homology).� (F) The
closure of this strip is far smaller than the RP 2 formed by all homogenous real
quadratics but its magical that the school formula for the equations of the 2-
cell RΩ2 solves also any � ∈ CP 2 (and thanks to the same Möbius rigidity
or analytic extension it suffices to solve equations of RΩn ⊂ CPn, that from
the viewpoint of geometry we have almost done for all n > 2 using the periods
of meromorphic quotients tied to those n half turn tilings, but remain some
things and relation with formulas of Mumford et al).� (x) The swallowtail
CPΩ2 of homogenous quadratic complex equations ∼= the tangent bundle of
RP 2 :- After a Möbius inversion of R̂3 the roots become pairs of the round S2

instead of Ĉ, all antipodal making RP 2 and remain fixed under the fiber map,
which takes any other pair {α, β} to the ±γ on the unique great circle passing
through them normal to mid-point δ.� So CPΩ2 ' RP 2 the stable subspace of
all repelling pairs on the round S2 (but remains for n repelling particles this
compact deformation retract of CPΩn). (q) Our swallowtails are complementary
to those of Thom, these are all � with less roots that is discriminant = 0 : CPΩ2

is CP 2 minus quadratics az2 + bzw + cw2 = 0 such that b2 − 4ac = 0 whose
neighbourhood CP 2 minus an RP 2 is a bundle over an S2 :- The fiber of the
quadratic with both roots α ∈ Ĉ ∼= S2 contains all great circles through it minus
−α.� (Q) Whose pull-back under S2×S2 → S2∗S2

∼=→ CP 2 is ∼= tangent bundle
of S2 :- All normal pairs (α, β) make a T1(S2) ∼= RP 3 which in S2×S2 separates
its diagonal and stable 2-sphere, and below in S2 ∗S2 a T1(RP 2) separating the
diagonal S2 from the stable RP 2.� (d) Assessing old mathematics correctly is
beyond its ordinary historians, à la Arnol’d

S2 ∗ · · · ∗ S2
∼=→ CPn should be called Vieta’s theorem :- Sure in that olden

time leave alone manifolds, complex numbers were far in the future, but that
coefficients are the elementary symmetric functions of the roots was known to
this ancient! Taking S2 to be Ĉ this is the definiion of our map, and clearly it
is one-one and continuous from a closed pseudomanifold to a connected closed
manifold of the same dimension, so this map is also onto and the pseudomanifold
in fact a manifold.� (D) This F T A written in symmetric powers C∗· · ·∗C

∼=→ Cn

tells us that continuous functions of n distinct roots and continuous functions of
the coefficients are the same :- The composition of C×· · ·×C → C∗· · ·∗C and this
Vieta homeomorphism extends the principal n!-fold covering map associated to
the covering G→ CΩn of equations with n distinct roots.� (n) And this result
remains valid if instead of ‘continuous’ there is ‘rational’ or ‘polynomial’ :-
The complex analyticity etcetra of the covering map implies this over C that
is for all polynomials. But then, for any subfield F of C, we can take only all
those whose values on F-points are also in F.� (p) It is by a recollection of
this over Q purely al-jabric result—which by the time of Newton was firm—for
“quelconque” � ∈ CΩn starts the third Livre of the “Traité” of Jordan : ‘we
know that any (rational) symmetric function of the roots is a rational function
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of the coefficients ... ’
(P) From this Newton theorem is quickly defined for ‘chaque’ � ∈ CΩn that

permutation group of roots to which we now give the name of Galois (abstract
groups and the word field are far in the future, they are not in Traité) := the
smallest such that rational functions of coefficients and of roots invariant under
these permutations are the same.� (b) Wild it surely is but the Galois group
of � is of maximum order n! on a dense subset of CΩn :- Addition, subtrac-
tion, multiplication, division make only countably many rational functions of
roots, and any such non-symmetric can be a function of the coefficients—so
symmetric—only if there some al-jabric relation between the roots, so only on
a closed nowhere dense set.� The disjoint nonempty sets on which the order
of the Galois group is the same divisor of n!, are these all not only dense in
CΩn but also uncountable and non-measurable? (B) ‘Lemme III’ of Traité (in
today’s language that the splitting field can be generated by just one element) :
all roots of � can be written rationally in terms of the coefficients and just one
integral combination of the roots :-

“Lemme II : Almost all such combinations V1 =M1x1 +M2x2 + · · · have n!
distinct values Vα under the permutations α.’ So the degree (n − 1)! equation
in the unknown V with roots {Vα : α(x1) = x1} is unchanged under these
(n − 1)! permutations, and under any other becomes one with totally different
roots. Further its coefficients can be written (rationally) in terms of x1 and
the symmetric functions of x2, x3, . . ., so in terms of x1 and the coefficients
of F (x)

x−x1
= 0, so in terms of x1 and the coefficients of F (x) = 0. Now read

this rational identity f(V, x1) = 0 as f(V1, x) = 0 with x unknown. Only one
root, x1, of it is shared with F (x) = 0. Meaning x − x1 is their h.c.f. That
we can find using Euclid’s method, so we can write x1 rationally in terms of
V1 and the coefficients of F (x) = 0.’� (m) For any rational function V1 of the
roots, and any � ∈ CΩn on which it has n! distinct values Vα, is valid this
‘Théorème fondamental’ : the factorization on � of the degree n! equation of
Galois

∏
α(V − Vα) = 0 gives us all the orbits of its Galois group :-

‘The coefficients of this equation are symmetric, so in the field F of rational
functions of the coefficients of �, and we are speaking of full factorization over
F. Using ‘Lemme III’ we can write rational function of roots as a rational
function ψ(Vα) over R of any one root. The permutations interchanging the
Vβ in the factors of Vα make a group. If ψ(Vα) is invariant under it, that is
it is a symmetric rational over F in these Vβ , then using Newton’s therem over
F, it is a rational function over F of the coefficients of the factor. But the
coefficients of the factor are in F, so ψ(Vα) equals a function of F : because Vα
is a shared root of this equality and its irreducible factors over F, so–‘Lemme
I’–this equality holds as well for all Vβ of this factor.’� (X) Galois’s method for
understanding the subgroups of Galois(�) or “Galois theory” :- Over the fields
of coefficients and some adjoined numbers the irreducible factors of the above
equation of degree n! can be made smaller and smaller, the permutations of
their Vβ give all subgroups, etcetera.� (r) All Galois(�) for the equations of
any set K ⊂ CΩn generate the group Galois(K), so if one Galois(�) has order
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n! then Galois(K) contains all covering transformations. This ‘al-jabric group’
does not depend on how K is described by some parameters k, but,

transformations of Galois(K) which over the space of parameters k map any
sheet into the same component form a normal subgroup, and these ‘monodromy
subgroups’ are often smaller :- Example : quadratics with root-sum zero z2−k =
0, k 6= 0 make a punctured plane K ⊂ CΩ2 on which the graph of roots is
connected, so with this 1− 1 parameter k monodromy is full Galois(K) ∼= Z2;
but if we think of K as equations z2−k2 = 0, k 6= 0 then over the space of this 2-
1 parameter k there are two disjoint sheets of pulled back roots, so monodromy
is now trivial. The monodromy is always normal because any transformation g
of the n!-fold covering of the k-space maps components to components, so if h
preserves all components, then ghg−1 is also of the same kind.� (l) This simple
example of Traité generalizes all the way: the square root of the discriminant is a
connected 2-fold cover of CΩn over which the pulled back n!-fold covering space
has two components with sheets related by even permutations of the roots, so
under these parameters the monodromy subgroup has order n!/2 :-

These parameters are the coefficients of the varying � ∈ CΩn and a square
root of their function equal to the symmetric function of roots (

∏
(xi − xj))

2,
so now it is impossible that making a round will just interchange two roots
because with this sign of

∏
(xi − xj) also changes. For example for � ∈ CΩ2

the parameters are the coefficients b, c of these quadratics x2 + bx+ c = 0 and
±
√
b2 − 4c, but now, since the pulled back 2!-covering space is trivial, both roots

x1 and x2 stay put on the pull-back, so there is a rational formula for them in the
parameters. Likewise for any n to solve all equations � ∈ CΩn it is necessary
and sufficient : a trivial pull-back of its principal n!-fold covering space defined
using coefficients. Further for any n there is a beautiful determinant giving the
discriminant in terms of the coefficients, see Burnside Panton, and its square
root unfolds each top most stratum of the fundamental partition of RΩn to make
it from a half to a full n-space Rn.� (v) For example it was by further unfolding
by cube roots this double unfolding of all real cubics with root sum zero and
discriminant bigger than it, that the renaissance disciples of Khowarazmi made
that al-jabric Cardan formula of Note 11, on the second page only of this work,
but now from the prettiest composition of Khayyam, from which it was clear
also the shape of the full graph of real roots!

In this graph over those S making the peacock feather on the closure of the
double cover are circles and trisection of just one period, Note 13, gave a formula
applicable by analytic extension to all of CΩ3 ' S1, that is this 3-1 parameter
for the double cover makes the monodromy group A3 of Galois(CΩ3) ∼= S3 fully
trivial. For degree n = 4 equations too using the same means there is the formula
of Ferrari thanks to this special fact that only An, n = 4 has another normal
subgroup namely the Viergruppe of Klein :- The monodromy A4 after using the
square root of the discriminant becomes on a 3-1 cover Z/2 × Z/2 and at the
same time is solved the reducing cubic–see Burnside Panton–from the square
roots of whose roots gets made easily a 4-1 cover that makes the monodromy
fully trivial.� It remains the relationship of the method of Hachtroudi to this,
but clearly this method exploiting a special feature of A4 won’t generalize. (V) It
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was perhaps this realization that led Abel to search for doubly periodic functions,
which he found by inverting Legendre’s integrals.

In 506 of Traité is a method for degree four which directly makes monodromy
trivial from A4 using periods of elliptic functions of Jacobi :- It had served as
‘warm-up’ for Hermite before his using these periods to do degree five equations
(but is more natural than his and Kronecker’s n = 5 methods which turn around
the icosahedron nothing like which is there in n > 4 euclidean space). This is
somewhat like our four half turns method : on the 2-1 graph of the square root
of the discriminant the periods of the doubled tiling made from the roots of
each � are given by elliptic integrals from the coefficients, so their bisection
gives the roots of the equation.� For cubics with root-sum zero too we have a
doubly periodic parametrization by the ℘(z) of Weierstatass, but all becomes
clear moving ahead, for any degree n > 4 this method of n half turns works,
and of itself relativity arises :- This because to make a tiling from the roots
of � demands angle sum 2π, so sides become concave circular and this group
ranges on an open disk of a finite radius: ends the euclidean pretense of infinitely
extended plane! On the other hand the periods of the doubled tiling are given
by similar hyperelliptic integrals made from the coefficients, and so to speak
their bisection solves by analytic extension any � ∈ CΩn.�

Another orbit completed today taking God’s name I’m posting this part five,
but remain to elaborate the last remarks and to translate.

K S Sarkaria 11th April, 2020
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