
The prettiest composition, part four
(translation of s`B qoN ipAwrI r`cxw, Bwg cOQw)

51. In note 49 we had merely scratched at the geometry of the ‘baby action’
by linear substitutions on the space RPn of all homogenous degree n equations
in unknowns x and y. This acting baby group G is of all bijections of the space
RP 1 of all lines of R2 through its origin induced by the linear isomorphisms of
R2. So it is the quotient of the group GL(2,R) obtained by dividing out by
diagonal matrices with both entries same. So each element of our group G can
be identified with a pair ±A of 2× 2 matrices of determinant ±1. Hence, G is
three-dimensional, but in note 49 we had focused only on its one-dimensional
subgroup given by pairs ±A ∈ SO(2,R).

Its two fold cover G̃—which identifies with the group of all matrices A of
determinant ±1, or else the quotient of GL(2,R) obtained by dividing out only
by diagonal matrices with both entries same and positive—is the group of all
bijections of the space S1 of all rays of R2 from its origin, which are induced by
the linear isomorphisms of R2. This group G̃ acts by linear substitutions on the
two fold cover of the space RPn, viz., the space Sn of all homogenous degree n
inequations anxn + an−1xn−1y + · · · + a1xyn−1 + a0yn ≥ 0, where at least one
coefficient ai is nonzero, in unknowns x and y.

For n ≥ 2, the n-sphere Sn is simply connected and RPn is not, but S1 is
homeomorphic to RP 1. This is why it is only for manifolds of dimension two
that their symmetric powers are also manifolds, and FTA holds.

However, (S1, G̃) is not geometrically equivalent to (RP 1,G), i.e., no bijection
S1 → RP 1 induces an isomorphism of transformation groups G̃ and G :- possible
fixed points of transformations in the first geometry are designated pairs, a ray
and its opposite, but this is not the case for the second geometry.� We note
that we’ll sometimes use the word geometry, as we just did, in the formal sense
of Klein, for a set with some specified bijections forming a group.

In fact, though G̃ and G are topologically equivalent spaces, each with two
components which retract to circles, algebraically they are inequivalent :- the
component G0 of the identity of the baby group identifies with PSL(2,R) =
SL(2,R)/ ± I, which is known – next note – to be a simple group, so it is not
isomorphic to its covering group G̃0 = SL(2,R).�

On the other hand, its subgroup SO(2,R)/ ± I is isomorphic to its cover
SO(2,R) under A 7→ A2 :- for, squaring all matrices of SL(2,R) maps its abelian
subgroup SO(2,R) onto itself with kernel ±I.�

These remarks alert us that the full baby action will be subtler, but promises
to take us beyond the foliation by circles of note 49.

52. Regarding something we used above, it has been known for a hundred
years that, for n ≥ 2, and F any field, PSL(n,F) is a simple group, excepting
PSL(2,F2) ∼= S3 and PSL(2,F3) ∼= A4. An easy proof is given for example in a
recent paper of Conrad. And strikingly, the simplicity of not only PSL(2,F5) ∼=
A5, but of all PSL(2,Fp) for primes p > 3, goes back to Galois !

So PSL(2,R) has no nontrivial quotient group, but it has, besides PSL(2,Z)
etc., uncountably many discrete subgroups : of symmetries of relativistically
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regular tilings of a disk of radius c < ∞ ! And these infinite tilings often cover,
finite regular tilings {p, q} of closed surfaces. Where now – the reader is urged
to read and absorb the arguments given in Magic Carpet (2010) before going
further – any p ≥ 3 and q ≥ 3 is possible.

Thus, relativity destroys with a vengeance the dictum that there are only five
regular solids ! And, just like A5 arises from the icosahedron {3, 5}, hordes of
finite groups arise from these {p, q}’s, including, all finite simple groups ! For, it
is apparently (= I did not read these papers in full) a corollary of their alleged
(= no one has read these papers in full !) classification that, any finite simple
group can be generated by just two elements, and two-dimensional relativity
does give in this way, all finite groups with two generators.

It is moot how much of this was seen by Galois, but there is on page 380 in
the 1870 treatise of Jordan, a method of solving any equation using functions,
whose symmetries are those of a relativistic tiling.

Indeed, two-dimensional relativity is there in our theory of equations from its
very inception, because – next note – the relativistic geometry of a disk identifies
with the baby geometry G of its bounding circle !

53. We recall that the elements of RP 1 are the lines through the origin of
R2; cutting each with any line L not through the origin—say the line t = 1 as
in the figure, the unique parallel line through the origin ‘cuts’ L at ∞—gives,
an isomorphism of baby geometry (RP 1,G) with the möbius geometry of the
one-point compactification L̂ = L ∪∞ of a euclidean line L :-

For, if a transformation of G is induced by the linear isomorphism (x, t) 7→
(ax + bt, cx + dt) of R2, then the corresponding transformation of L̂ maps any
(x, 1) ∈ L to ∞ or (ax+b

cx+d , 1) depending on whether or not cx+d = 0, so ∞ to ∞
or (ac , 1) depending on whether or not c = 0. So it is a composition of euclidean
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isometries (x, 1) 7→ (±x+ λ, 1) and homotheties (x, 1) 7→ (µx, 1), µ > 0 keeping
∞ fixed, and the inversion (x, 1) ↔ ( 1x , 1) switching (0, 1) with ∞.�

Likewise, the möbius geometry of any compactified euclidean space Ê = E∪∞
is defined, by all compositions of isometries of E and homotheties x 7→ µx of
rays from a chosen origin keeping ∞ fixed, and the single inversion x ↔ 1

x of
these rays switching this origin with ∞.

Or, more elegantly, by all compositions of reflections in codimension one
flat or round mirrors :- For euclidean isometries flats suffice, translations being
compositions of reflections in two parallel flats. And compositions of reflections
in two concentric rounds are all homotheties. Any round mirror being the image
of a chosen unit sphere under a homothety followed by a translation, conjugates
of a single inversion give reflections in all rounds.�

Further, all mirrors—round of any positive radius or flat—are on the same
footing. Reflection in a round mirror makes spheres through its centre flats,
with those also tangent to it becoming its tangent flats. Plainly plane geometry
suffices to check such-like assertions : L̂ is reflected to the tangent unit circle
S1 of R2 by the round mirror of radius 2 around −T :-

Any spherical reflection switches points P, P ′ on rays from the centre C
of the mirror at distances x and 1

x times its radius, that is CP
CT = CT

CP ′ , i.e.,
∠CTP = ∠CP ′T . Therefore, P is on L, i.e., ∠CTP = 90◦, if and only if
∠CP ′T = 90◦, i.e., P ′ is on the circle with diameter CT .�

So there is nothing special about ∞, and just like the euclidean geometry of
E is generated by all mirrors through it, reflections in all mirrors through any
point gives us, a euclidean geometry in any point-complement ! For example, the
composition of two reflections in mirrors tangent at a point gives us a euclidean
translation in its complement, etc.

These euclidean distances on point-complements are not preserved by their
homotheties but möbius transformations preserve or reverse angles between
intersecting planar circles or lines. If one cut angle is zero, if not they cut twice
at equal but opposite angles, for two lines one of the cuts is at ∞.

Completing euclidean geometry in a natural way, möbius geometry remains
just as rigid. Meaning, Ê being a subset of a bigger dimensional F̂ fixes a möbius
subgroup of the latter which restricts bijectively to all möbius transformations
of the former :- any mirror of Ê, flat or round, is the intersection with Ê of one
and only one perpendicular mirror of F̂ .�

For example, the möbius group G of L̂ identifies with the möbius subgroup
of R̂2 generated by all reflections in mirrors perpendicular to L̂. Hence, by using
the reflection in the circle of radius 2 with centre −T , we can identify the baby
group G with the möbius subgroup of R̂2 generated by all reflections in circles
and lines perpendicular to the unit circle S1.

Likewise, the möbius geometry of any round n-sphere, sitting in any euclidean
m-space, m > n, is given by all its bijections that are restrictions of compositions
of reflections in mirrors perpendicular to it. This definition avoids the use of ∞
and displays the homogeneity of this geometry from the outset.

There are some more transformations of the ambient R̂m which preserve Sn
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but for m = n + 1 the quotient group is only Z2 and due to the reflection in
mirror Sn itself. The möbius geometry of Sn is thus given by all transformations
of R̂n+1 which preserve it as well as both components of its complement. The
identified möbius geometry of the open ball Bn+1 bounded by Sn is given by the
restrictions to it of these very transformations.

Finally, the möbius geometry of Sn identifies with the relativistic geometry
of Bn+1 :- For, a radial self-homeomorphism of this closed (n+ 1)-ball identity
on ∂Bn+1 = Sn—that we met in Hyperbolic manifolds (2012)—magically and
abruptly straightens all its curved mirrors cutting the boundary Sn normally,
such that, reflections in them become restrictions of linear isomorphisms of
(n+ 2)-space preserving the cone over the ball.�

So indeed the baby geometry G of S1 identifies with the relativistic geometry
of B2. Also plainly it suffices to construct the above self-homeomorphism for
this plane case. What all came out from a non-magical and non-abrupt way of
doing this we’ll consider in some notes below.

54. Trying to understand entails giving the same thing different names and
different things the same name. These constantly varying nuances require the
expressive power and informality of natural language to convey. But yes, now
and then, we need to define this or that more formally, and make a proof or two
to allay doubts. How far I have come so far in my attempt to (re)understand
things from scratch in a cartesian manner is of course for you to judge, but from
here on I plan to add remarks to clarify especially some seemingly odd usage
that I have slipped into during this journey.

The adjective relativistic signals a natural change in the euclidean geometry
of an open set that ought to be made if we are confined to it. The prototypical
example is the geometry above of an open n-ball B of radius c < ∞, which for
n = 3 along with a similar geometry of the cone over it is the one used in special
relativity, and which for any n is rather turgidly often called ‘the klein model
of n-dimensional hyperbolic geometry’.

But there are far more general examples too in PG&R (2013) and its sequels.
Let U be any connected open euclidean set such that any segment when extended
exits it on at least one side, so it has a definite cayley length, then the relativistic
distance between two points of U is the infimum of the cayley distance over all
paths joining them made from finitely many segments.

Returning to the homogenous ball geometry, in my opinion even the möbius
geometry of a microphysical B should be deemed relativistic. Maybe not for the
denizens of this microworld, but for a macro observer probing from outside. For
her that self-homeomorphism amounts to nothing, because it does not change
the möbius geometry of the spherical interface, so thanks to its rigidity, this
quantum physicist can now and then hear or see something of what is going on
in this microworld as a möbius tiling, etc.

It is uncanny how often Arnol’d had already said aloud what I was wondering
why no one had said before, but his ‘mathematics is a part of physics’ is fine
with me only because for me physics means cartesian physics.

It is worth mentioning again in this context how because of and within a
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cartesian motion can be seen all closed manifolds living various diverse lives,
and if this motion is relativistic they admit lipschitz charts, but it remains to
tell you how this birthing motion equips these closed manifolds as well with
smoothing operators, thanks to which the index formulas of Atiyah and others
also come within the purview of cartesian physics.

Amid the pervasive tosh about modern high standards of rigour, it was
refreshing to read Arnol’d saying drily, ‘As far as I know, the criteria of rigor
have not changed from the time of Euclid.’ Whose thirteen books are priceless
because what is in them is about all we know for sure about the mathematics
discovered till then by his predecessors. For example, his fifth and deepest book
recorded the ideas of Eudoxus, who was even more rigorous.

But alas! the focus of attention shifted soon from the invaluable substance of
these books to Euclid’s style, his axiomatic method. Even here, with a little less
focus, it would have dawned a lot sooner that, Euclid III.36 gives a homogenous
geometry not satisfying Euclid’s fifth postulate :-

Consider a circular arc in the open disk cutting its boundary normally. Its
centre O, the intersection of the tangents to the boundary at these two cuts, lies
outside the disk, and its radius r is the equal length of these two tangents from
O. The cited proposition of Euclid tells us that a line from O between these
tangents cuts the boundary of the disk in P and P ′ such that OP ·OP ′ = r2, i.e.,
OP/r = r/OP ′, i.e., the boundary and the disk are preserved by the reflection
in the round mirror with centre O and radius r.

These round reflections together with those in the diameters of the open disk
generate the ‘baby group’ G which acts transitively on all points of the open disk
as well as all these lines, viz., circular arcs normal to boundary and diameters.
In this geometry the parallel postulate is obviously false, but all arguments of
Euclid not depending on it still hold.�

In fact for any O at a distance R from the centre of our disk of radius c it is
true that OP ·OP ′ = R2 − c2 :- because the remaining case R < c follows from
the immediately preceding proposition Euclid III.35.�

A less stern account written at the same level would have given us a far better
idea of the mathematics of those times, for it is likely that many attractive facts
known to its author were ruthlessly excluded because of his axiomatic method
from Euclid’s treatise.

For example, repeated half turns around the midpoints of their sides will tile
the entire plane by congruent copies of any given quadrilateral :- experimentation
suggests this is so, because the sum of the angles of a quadrilateral is 2π, but
we need also the simple connnectivity of the plane.�

So, to each degree four homogenous equation with distinct extended real roots
is tied such a quadrilateral tiling of the plane, see figure :- the seed being the
quadrilateral inscribed in S1 whose vertices become, under reflection in the
round mirror with radius 2 and centre (−1, 0), these roots on L̂.�

If instead we reflect relativistically the seed quadrilateral—or any inscribed
polygon with three or more sides—in its sides and continue in this vein we can
‘tile’ the open unit disk B2 with relativistically congruent copies of the seed
minus its vertices, but these faux tiles are not compact.

5

http://www.kssarkaria.org/docs/A finiteness theorem for foliated manifolds.pdf


So, for any n ≥ 5 we’ll partially straighten the n sides of the inscribed curved
n-gon, with sides circular arcs normal to the boundary of the unit disk, so that
they now become circular arcs normal to the boundary of a bigger concentric
disk, of a radius c such that the sum of the angles of our new curved n-gon is
exactly 2π, and then use this as seed, to tile a bigger open disk of radius c by n
möbius half turns around the midpoints of its sides :-

55. Given n > 4 points on the unit circle, there exists a unique 1 < c < ∞
which makes the n angles sum to 2π, for, as we straighten its sides more and
more, the angle sum of the initial curved n-gon having these n points as vertices
increases continuously from 0 towards (n− 2)π > 2π.

We’ll stop at this c, but note as c → ∞ the concentric disks become the entire
plane, and the limit of an increasing sequence of radial self-homeomorphisms of
the closed unit disk straightens all its arcs.

This seed curved n-gon propagates to a crystallographic tiling in the möbius
geometry of this open disk of radius c by using möbius half turns—conjugates
of ordinary half turns around the centre—reversing one side of a laid tile. For,
there is no local fitting problem since the angle sum is 2π. 1 And, if thus laying
the tiles we reach a point along two different paths, the tile on it will be laid in
the same way, since the disk is simply connected.�

If we like we can now use the radial self-homeomorphism r 7→ r̃ of this disk
of radius c < ∞, which maps circular arcs perpendicular to its boundary on line
segments having the same end points, to change this tiling by curved n-gons to
one by n-gons. The straightened seed n-gon has all its vertices on a concentric
circle of a bigger radius 1̃, and this relativistic tiling sprouts from it by repeated
central symmetries in midpoints of sides, the only difference from the infinite
radius or euclidean or classical n = 4 case being that we are now talking of the
cayley distance of this open disk of radius c.�

But, no single 1 < c < ∞ works for all cardinality n subsets of the unit circle
if n > 4 :- For, the closed disk of radius one, which covers only a finite hyperbolic
area of this bigger open disk, has infinitely many such disjoint n-gons, which
would then all have the same positive hyperbolic area prescribed – see §16.4 of
my jail-book – by their angle defect from the euclidean case.�

Knowing someone’s jail-book is helpful! The reason why I was struggling to
understand some cutting-edge physics had dawned on me only after I learnt that
the marooned-on-an-island-book of one of its leading exponents was a handbook
on good old special functions.

The 2008 paper to which I just linked has, besides footnote 17 on this nick-
name for Coxeter’s Introduction to geometry (1969), many other lovely lulus,
for example this on the unity of mathematics on its page 10 : the tiniest living
bit of mathematics is enough to clone back the entire beast!

Not only that, from a specific and barely ‘living bit’—a wrong (!) formula for
1Neither is there any problem if the angle sum is 2π/j, so this usage of half turns associates

to each finite subset σ of the unit circle of cardinality n ≥ 3 an infinite discrete spectrum of
tilings! Tilings again of disks of radii cσ,j > 1, but for n = 3 note j ≥ 2. Except for cases
n = 3, j = 2 and n = 4, j = 1 this cσ,j is finite, and as j → ∞ it has limit one.
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the area of a quadrilateral room—had sprouted naturally many threads of ideas,
so fast and so diverse that, in my humble opinion, this criss-crossing cartesian
ideation, if continued, would create the ‘entire beast’.

Anyways, this was the cartesian genesis of at least Four Half Turns (2010),
a roof-top tiling then, re-born now from degree four equations, a new context
which has us seeing clearly in the same tiling, a doubly periodic holomorphic
function from the plane C to the riemann sphere S2 :-

We still won’t equip R2 with complex multiplication, for it suffices to make
only a cartoon—cf., nice (2002)—of this meromorphic function.

The group generated by half turns around the midpoints of sides acts simply
transitively on the tiling. Dividing the plane by its action gives S2 because
folding the four sides of a tile over midpoints gives 5 vertices, 4 edges and 1 cell,
so euler number is 5− 4+1 = 2. This quotient map R2 → S2 is one-to-one near
all points except these midpoints, near them it is two-to-one.

Further, we had observed that the roof-top tiling can also be laid by sliding
along the quadrilateral’s diagonals, so the quotient map R2 → S2 has these two
vectors as its periods. Also, a fundamental region—other than the hackneyed
parallelogram—exhibiting this double periodicity is drawn in the figure. 2 The
quotient factorizes R2 → T 2 → S2 into the usual unbranched infinite covering
of the torus followed by a two-fold covering of the sphere by the torus branched
four times, once over four of its five vertices.�

We’re strolling towards roughly this method for solving degree four (similarly
degree n > 4) equations :- from the equation we can write following Legendre
(or Jacobi for n > 4) a suitable line integral of a closed one-form, amongst
whose Cauchy periods around its singularities are the above two vectors, but
the unit circle has at most two chords equal to a vector, so up to this ambiguity
integration gives the seed quadrilateral and so the roots of the biquardatic, and
a little extra work should overcome this ambiguity too.

56. Swallowtail ♥ means space of all homogenous equations of degree n in x
and y with n distinct extended real roots. But to its affine subspace of degree n
equations in x was also given the same name. And before that for n = 3 the still
smaller yellow subspace of Khayyam where sum of roots is zero was morpankh,
partly because of shape, partly because it goes with his poetry.

But I did not like the word peacock-feather, so during translation I changed
the bird itself and started using swallowtail, even though I knew that Thom
had used it before, but for a related singularity. Of this change of usage I have
spoken before, it is somewhat like previously the common meaning of the word
ball was what is now its boundary.

Amending Thom’s ideas Arnol’d proved general classification theorems about
singularities and wrote a wonderful book Catastrophe theory (1984). In it too
swallowtails are various singular sets but it is clear—see pages 34, 37, 85, 89,

2Alas! the most natural fundamental region for this index two subgroup is not drawn, viz.,
union of two adjacent tiles! For n = 4 a hexagon whose opposite sides identified give a torus,
while for n ≥ 5 it gives similarly a factorization B2 → M2 → S2 of the quotient map into
the universal covering map of a surface of higher genus, followed by a two-fold covering of the
sphere branched once over n (if it is even) or n+ 1 points.
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90, 101, 109, and exercises 5, 6, 15, 41, 52, 69, 70 and especially 77 given at the
end of the 2004 English edition—that its author was aware of aspects of spaces
of equations on which we have said not a word so far.

But returning to our story, n-swallowtail ♥n surjects on the circle L̂ with
fiber (n−1)-ball and is not orientable for n even :- As projection we can take the
sum of the n distinct roots xi where if one of them is ∞ sum will be ∞. All pre-
images are topological (n−1)-balls, that of ∞ being all equations with one root
∞. Deleting this last fibre gives us the affine n-swallowtail, an n-ball, which we
can orient by the natural order of its finite real roots x1, . . . , xn−1, xn, but when
the biggest root crosses infinity it becomes the smallest, so if the swallowtail
were orientable its orientation should also be given by xn, x1, . . . , xn−1, but this
has a different parity for n even.� Indeed our story started two years ago with
this very möbius strip for n = 2 :-

The projection above, the sum of the roots xi, is preserved by the translations
of L keeping ∞ fixed; it does not show how the biggest root crosses infinity to
become the smallest. In möbius geometry ∞ is just like any other point of the
circle L̂, so it is better to think of L̂ after reflection in that round mirror of
R2 as the unit circle S1, and further, identify as usual the rotation subgroup
of the baby group G acting on it with S1 itself. So we have on S1, thanks
to this baby subgroup, a baby product—serious mathematicians call it complex
multiplication!—and we’ll now use as projection from the n-swallowtail, the baby
product of the points zi of S1, corresponding to the n roots. This surjection is
tied to and enables us to see the foliation by circles :-

The projection
∏

zi covers the circle after angle 2π/n but only one S1-orbit
of the swallowtail closes so quickly, others may go as many times round as any
divisor of n; how many circuits an orbit makes before closing depends on how
regular is the n-gon with vertices zi; one round sufficing iff this n-gon is fully
regular, these equations being on one orbit which we’ll call central; for example,
if n is prime all other orbits go n times around the central orbit.�

Even the case n = 3 of cubics considered since Khayyam is interesting from
the viewpoint of this topology, the S1-orbits on the boundary of the 3-swallowtail
are type {3, 2} torus knots :- If z1 and z2 are tied respectively to a simple and a
double root the periodicity of the projection (z1z

2
2 , z1z2) on S1×S1 is (2π/3, π).

From what we saw before in the limit in the first direction the orbit will go
around three times, in the other direction two rounds are needed, even when z1
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and z2 are antipodal, because after rotation by π the multiplicities switch. On
cubics with a triple root z, that is on the cuspidal orbit, the limit projection
(z3, z2) is again type {3, 2}.�

Zeeman’s The umbilic bracelet and the double-cusp catastrophe (1976) treats
a related geometry on the double cover S3 – the action being now by matrices
A ∈ SO(2,R) rather than by pairs ±A – of the space RP 3 of all cubic equations;
the torus knots lift to bracelet unknots {3, 1}; and this catastrophe is close to
the graph G on RP 3 defined by the real roots of the cubics.

The theory of equations – yes, polynomial equations – that I am developing
from the beginning in a novel way is of equations in one unknown x only. True
to the adage, a spade should be called a spade, I have seeing this context been
talking unhesitatingly from the outset of this or that space of equations, but
I don’t know why, all people whose work seemed close, I have found them all
shirking from this natural usage!

Language becomes simpler without the explicit mention of the dual unknown
y (or time t). The thing is that instead of equations of degree n it is more natural
to consider equations of all degrees ≤ n. Then, provided we don’t forget the
unique equation of degree zero, these spaces are compact. For starters, the space
of equations of degree one is a line – because we have these real numbers only
so far – L, but those of degree ≤ 1 make a circle L̂, and proceeding onwards,
we saw all of degree ≤ n make RPn.

But for n ≥ 2 our focus is limited to an n-dimensional submanifold-with-
boundary of RPn, the closed n-swallowtail ♥n, the space of all equations in x of
degrees 0 ≤ j ≤ n with all j roots real. We can deem its equations homogenously
of degree n, saying that the remaining n−j roots have gone to ∞. For example,
the degree 0 equation 1 = 0 has 0 real roots, but as an element of the closed
n-swallowtail, it has ∞ as a root of multiplicity n.

So the n-swallowtail ♥n is the space of all equations in x with n distinct
extended real roots, meaning, of degree n or n−1 with roots distinct reals. The
closure of the first open n-cell Σn is ♥n and of the second (n− 1)-cell Σn−1 its
subset ♥n−1 ⊂ ♥n. This inclusion is not preserved by the baby action, but the
infinite increasing union gives the space ♥∞ of all equations in x with all roots
real, which is contractible. In our opinion—see notes 50—the cyclic baby action
on n-swallowtails should suffice for many results that have been proved by first
complexifying it to the Picard-Lefschetz action.

Were we to use the dual unknown the n-swallowtail ♥n would stay put but
the cells Σn and Σn−1 of which it is a disjoint union would change. For, one gets
the dual of any equation by changing x to 1/x and clearing denominators. That
is, it is the equation with reciprocal roots from school. Similarly we changed
the sign of all roots by changng x to −x, subtracted the same number a from
all roots by x to x + a, and divided all roots by the same nonzero number b by
x to bx. So, from school algebra it is clear that in the context of equations we
should augment numbers by ∞ and use möbius or baby geometry G.

The homogeneity of baby geometry on the extended number line became
clear when, using a round reflection of the extended plane, we started considering
it as a geometry on the unit circle. And this gave us as well a subgroup of

9

http://www.kssarkaria.org/docs/notes 50.pdf


rotations S1 ⊂ G. Whose baby—i.e., by above substitutions from school—
action is what foliates the swallowtail into circles. Each S1-orbit of ♥n cuts the
open (n− 1)-cell Σn−1, and can cut it as many times as any divisor of n :- for
example, Σ1 is cut by the central orbit z1 = −z2 of the möbius strip ♥2 just
once, and twice by all other orbits; likewise for any n how often an orbit cuts
depends on how regular is the n-gon conv(z1, . . . , zn).�

The circle ♥1 ⊂ ♥2 meets the boundary of the latter in only the equation of
degree zero, their union is thus a figure eight. The union of such a figure eight
on the boundary of the solid torus ♥3 and the 2-cell Σ2 in its interior makes
the closed möbius strip ♥2 ⊂ ♥3. Any given point of the swallowtail ♥3 is the
intersection of three such möbius strips :- the cell Σ2 comprised all cubics with
one root ∞; take the three like cells of all cubics with one root a, b or c where
these are the three distinct roots of the given cubic.�

The same game is played in the n-swallowtail ♥n. For each extended real
number a there is the (n− 1)-cell comprising equations having a as a root. As
against the pairwise disjoint (n− 1)-cells arising as the fibers of the projection
map z1 · · · zn, this family of cells is only (n+ 1)-wise disjoint, but each point of
♥n is the intersection of n such cells. Further, the baby group G acts transitively
on the family of all intersections of triples of these (n−1)-cells, so if n ≤ 3 then
♥n is a single G-orbit :- any one of three numbers can be mapped to ∞ by an
inversion, keeping ∞ fixed we can then use an isometry of the line to map any
one of the other two on 0 such that the third is positive, finally a homothety
keeping ∞ and 0 fixed maps this third to 1.�

I am very grateful to the Creator for his blessings, and if it so pleases him
will try to push this story a bit further.

K S Sarkaria 11-30 April, 2019
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