
The prettiest composition, part two
(translation of sB qoN ipAwrI r`cxw, Bwg dUjw)

12. So, note 11 ties solving cubics outside the peacockfeather to ‘doubling’
the disjoint half-lines αO. Likewise, doubling for each k > 1

2 the projection map
(x, y, z) 7→ (x, y) of the shape S ⊂ G above the segment y = k ending on the red
curves, is tied to solving the cubics in it. This doubling triple-wraps a circle on
another circle :- both end-points of the segment also have now three pre-images,
because the pre-image in the interior has two copies.�

13. The thing is that real al jabr, with trisection of angles, suffices to solve
the cubics in the peacockfeather. For, the above arc S ⊂ G is described by
x = X cos 3t, y = k, z = Z cos t, where Z and −Z/2 are the two roots at the
right end (X, k) of our segment :- k = 1

2 + 3
8Z

2 and X = 1
8Z

3 by note 4, so the
point (Xf(t), k, Z cos t) is on the surface 2x + 2yz = z + z3 for all t iff f(t) =
4 cos3 t − 3 cos t, i.e., f(t) = cos 3t.� To solve cubics convert each sinusoidal
motion of amplitude X = X(k) to three sinusoidal motions of amplitude Z =

2X
1
3 , one third the frequency, and phase differences 120 degrees.
14. Algebra as we know it today began with Vieta’s analysis of Cardano’s al

jabric recipe of note 11, besides he gave the above non al jabric recipe for solving
the remaining cubics. Using the former, the endless whiskers of the shape S in
the section y = k of G have the formula z = Σ{x±

√
x2 −X2} 1

3 :- for, any cubic
⊙ = (−B

2 ,−
A−1
2 ) below the red curves has the root α = Σ{−B±

√
B2+4A3/27

2 } 1
3 ;

now put α = z,B = −2x,A = 1− 2k where k = 1
2 + 3

2X
2
3 .�

15. Calculations with ‘imaginaries’ were raging already, but it was about
two hundred years later, i.e., the same time ago, when Argand let out that these
‘unreal’ numbers C were in fact twice as real : R2 with addition of coordinates,
and a product that at once multiplies distances from the origin and adds angles.
If these complex numbers C are used the above al jabric formula solves all cubics
⊙ = (−B

2 ,−
A−1
2 ) ∈ C2 = R4 of any 2-plane y = k, with (±X, k) now the cubics

on it with two equal roots, and we sum those values of the two three-valued
complex surds which extend their solutions.

16. Reverting to R, we note that all points of G above x = 0, i.e. the line
0O of all ⊙ having one root 0, satisfy z = 0 or z = ±

√
2y − 1, two real al jabric

formulas. Further, over the half-line y ≥ 1
2 , x = 0, just the one al jabric formula

z = ±1
2

√
2y − 1 ± 1

2

√
2y − 1 suffices, which shows that G having three sheets

does not obstruct such a description. More generally, points of G above any αO,
i.e., the line 2x+2αy = α+α3, satisfy z−α = 0 or 2y = 1+ z2 +αz+α2, i.e.,
z = α or z = −1

2α ± 1
2

√
8y − 4− 3α2, both real al jabric formulas, at least if

α ∈ Q. But, for α ̸= 0, we cannot describe G over the half-line y ≥ 1
2 +

3
4α

2 of αO
by one real al jabric formula :- because there’s now, as in note 8, a topological
ess obstruction to this over a segment of this half-line.�

17. We used, if a real al jabric formula is not single-valued, its graph admits a
homeomorphism of order two preserving the projection map:- Multi-valuedness
can stem only from the two-valued surds ±( )

1
2n in the formula. Switching the
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values of any surd gives a continuous map of the graph on itself which preserves
its fibers. Since our formula has more than one output for some input, at least
one of these self-inverting maps is other than the identity.�

18. Also we used, only the identity homeomorphism of an ess preserves its
projection map:- More generally, if a projection map S → S′ folds a segment an
odd number of times, such a homeomorphism of S keeps both its ends fixed, so
by unique continuation above int(S′) it keeps all of S fixed.� It follows that:
only the identity homeomorphism of G preserves its projection map.

19. There is an ess of G over a given line only on the bridge if any between
the two red curves. So there is no ess over a parallel to the y-axis, while over a
parallel to the x-axis there is an ess iff it is above the cusp, and over any other
line there is an ess iff it is the parallel αO or separates it from the cusp. The two
bends of the ess above αO are the vertex of the parabola with axis z = −α/2 and
its intersection with the line z = α, the two curves whose union constitutes this
plane section of G – see notes 9, 16 – and the bridge under this ess consists of
all points of αO such that 1

2 + 3
4α

2 ≤ y ≤ 1
2 + 3

2α
2. We note that the second of

these two bends is not smooth, both bends are smooth only for the esses that
occur above the parallels to the x-axis.

20. My simple proof that G, which is the graph of an algebraic (multi-valued)
function, is not the graph over some segments of any al jabric—in the sense of
note 8—formula seems to be new. A quadratic-like formula for all cubics was
the dream of al qaidas or cookbooks, from Khwarizmi through Cardano, that is,
of al jabr, which was to slowly become algebra. The much finer work done by
Khayyam et al in the seven centuries separating these two was all but lost then.
Had this not been so, maybe Descartes a bit later, who had flirted with spaces
of equations, would have seen an impossibility result for cubics, and algebra
would have started differently ...

21. ... but all seemed possible with ‘imaginaries’, that is, with just the one
extra dimension of C = R2. Not only are all degree 3 equations solvable complex
al jabrically—note 15—this extra room magically (now obviously) ensures that,
complex surds ( )

1
n are n-valued, de Moivre. So, the hope became pervasive that

all degree n equations can be solved completely in C, and that too al jabrically.
The first part, the fundamental theorem of algebra, was proved by d’Alembert
et al in various different ways by reducing to xn−a = 0, but none could be honed
to get the second part, because of the very good reason that, the second part
is false for n > 4. One reason why Ruffini’s long impossibility proof remained
unread—however Cauchy thought it was correct—may have been that it came
when this hope was still alive; on the other hand, Abel’s clearer proof came
when this hope had all but died down.

22. To understand the involutions given by switching the values of a real
surd– note 17–we consider now an example z = ±

√
x2 + y2 − 1±

√
x2 + y2 − 1.

This formula is not defined in the unit circle, has just one value z = 0 on it,
and three distinct values z = {2

√
x2 + y2 − 1, 0,−2

√
x2 + y2 − 1} outside it.

The homeomorphisms of its graph preserving the projection map permute these

2



three sheets in any which way, but only the transposition of the first and the
third arises from its involution. So, the group of an al jabric formula, i.e., the
group generated by its involutions, can be smaller than the group of covering
transformations of its graph.

23. These involutions need not commute to make (Z/2)k but, for sure, the
group of a real al jabric formula is a twisted power of the group of two elements:-
The formula’s surds are nonzero on an open dense subset of its domain. On this
open set its graph is that of a finite set of single-valued real continuous functions
and its involutions bijections of this finite set. All such functions form a big
space closed under pointwise addition, subtraction, multiplication, and division
by a nowhere zero function. Also, there is a much smaller closed intermediate
function space on which interchanging the values of our surds defines automor-
phisms, i.e., bijections preserving these four operations. To construct this we
start with the functions x and y and all those made from them by using these
four operations, then at each step we take, the one or two functions given by a
surd not already made which is used next in our formula, and again make all
functions possible by using the four operations, and so on. The group arising
from the surds already included before each step preserves the function subspace
made, and is either equal to the new group after this step, or else is a subgroup
of index two, so a normal subgroup, of the new group.�

24. Even the restriction of G to an open set of the peacockfeather is not the
graph of any real al jabric formula :- If not, its three sheets form the above ‘finite
set’ of this formula, and these three and x, y generate a closed subspace of its
‘intermediate function space’. So, by the last note, the group of automorphisms
of this subspace over Q(x, y) would only have elements of orders 2k. On the other
hand – note 31 below – on any open set of the peacockfeather any permutation
of the sheets of G extends to an automorphism.�

25. That abstruse object which pops up in all algebra books in this context,
the general equation xn + un−1xn−1 + · · · + u1x + u0 = 0, we’ll visualize, by
identifying each particular equation with (u0, . . . , un−1), as Rn. Therefore, the
general equation with sum of the roots zero, being, the space of all degree n
equations with sum of the roots zero, is Rn−1, and the plumage of another bird,
a swallowtail, will denote, the open subset of Rn−1 formed by all equations
xn + un−2xn−2 + · · ·+ u1x + u0 = 0 with n distinct real roots. Its closure is all
such equations with roots all real but not necessarily distinct. The graph of the
(multi-valued) function which associates to an equation all its real roots hovers
above in one dimension more, denoting this variable by z, the graph above Rn−1

is given by zn + un−2z
n−2 + · · ·+ u1z + u0 = 0.

26. For n = 3 we had used u0 = B, u1 = A, so the swallowtail is the same
as the peacockfeather except for a change of coordinates, x = −u0

2 , y = −u1−1
2 ,

which had changed the equation of the line αO of cubics having one root α from
u0+αu1+α3 = 0 to 2x+2αy = α+α3, the perpendicular bisector of the segment
joining (0, 0) to (α, α2). Likewise, degree n equations with sum of roots zero and
one root α form a hyperplane αO of Rn−1, viz., u0+αu1+ · · ·+αn−2un−2+αn =
0, which, if we put y0 = −u0

2 , y1 = −u1−1
2 , . . . , yn−2 = −un−2−1

2 , becomes,
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2y0 + 2αy1 + · · · + 2αn−2yn−2 = α + α2 + · · · + αn−2 + αn. So again, αO is
perpendicular to the segment joining the origin to the point (α, α2, . . . , αn−1)
of a moment curve, but for n > 3 is not through its mid-point. On the other
hand, it bisects, but not perpendicularly for n > 3, the segment joining the
origin to the point (α, . . . , α, α2) of a parabola. So, maybe Khayyam’s method
extends to all n with a relativistic or cayley distance on Rn−1? That is, we
can solve any ⊙ ∈ Rn−1 by drawing around it the ellipsoid of all points at the
same cayley distance as an origin, and examining its cuts on a fixed moment
curve? We note that in peacock coordinates the graph G over Rn−1 is given by
2y0 + 2zy1 + · · ·+ 2zn−2yn−2 = z + z2 + · · ·+ zn−2 + zn.

27. A kissing circle of y = x2 is a khayyam circle only at (0, 0):- for it has a
contact of order 3 but the sum of the 3 roots is zero.� The cusp – note 2 – is
on the evolute y = 1

2 + 3
4 (2x)

2
3 —all centres of kissing circles—of the parabola,

but the two red curves—centres of all circles through (0, 0) which touch the
parabola at some other point—are above it. All lines tangent to the red curves
are αO, α ̸= 0 – note 4 – they are not all lines normal to the parabola.

28. There is a cusp and ‘red curves’ on the boundary of any swallowtail, viz.,
the equation with all n roots 0, and all those with a nonzero root α repeated n−1
times (for n > 3 there is also much else). These two curves are traced for α < 0
and α > 0 by the functions u0(α), . . . , un−2(α) defined by xn+un−2xn−2+ · · ·+
u1x+u0 ≡ (x−α)n−1(x+(n−1)α). The hyperplanes αO, α ̸= 0, are the osculating
planes of these curves :- for αO has a contact of order n− 1 with the curve at the
point (. . . , ui(α), . . .).� The real roots of any equation ⊙ ∈ Rn−1 are given by
the osculating planes through it, in particular, if ⊙ is in the swallowtail there are
n of these. This weak generalization of Khayyam’s method is not quite solving
equations, but shows again like note 5 that, graph G is the disjoint union of the
parallel (n − 2)-dimensional flats α∗ above αO at height α. This implies that G
is homeomorphic to Rn−1, but for n even, its projection—the complement of
the open set of these equations with no real root—is homeomorphic to a closed
(n− 1)-dimensional half space.

29. The point (0, 0) of y = x2 is really not all that special, in fact Khayyam’s
method works for all degree four equation x4 +Ax2 +Bx+C = 0, but we have
been looking only at the 2-plane 0O of these equations with 0 as a root, i.e., the
subspace C = 0 of ‘cubic equations’. Indeed, any four points (α, α2), (β, β2),
(γ, γ2), (δ, δ2) with α+β+γ+δ = 0 lie on a circle :- Rewrite α4+Aα2+Bα+C =
0, etc., as −C−Bα−(A−1)α2 = α2+α4, etc., so −B(β−α)−(A−1)(β2−α2) =
(β2−α2)+(β4−α4), etc., which shows that (−B

2 ,−
A−1
2 ) is on the right bisectors

2(β −α)x+2(β2 −α2)y = β2 −α2 + β4 −α4 of the segments joining (α, α2) to
(β, β2), etc.� So, if we think of ⊙ = (−B

2 ,−
A−1
2 ,−C

2 ) as the above equation,
it is on the line common to the right bisecting planes 2(β−α)x+2(β2−α2)y =
β2−α2+β4−α4, etc., of the segments joining the pairs of points (α, α2, 0) given
by its real roots. To solve the equation, draw with ⊙ as centre the 2-sphere with
diameter

√
B2 + (A− 1)2 + (C − 1)2 − 1 and look for all points (t, t2, 0) on it,

these values of t will give all the real roots.
30. Thom’s swallowtail, the subset of R3 given by all x4+Ax2+Bx+C = 0
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with a multiple real root—ours is a component of its complement, the other
two have all equations with no or two real roots—is the union of the tangent
lines of the ‘red curves’ :- for, the intersection of osculating planes uO∩αO is all
equations with u and α as roots, and approaches a tangent line when u → α.�
Similarly, the subset of Rn−1 of all xn + un−2xn−2 + · · ·+ u1x + u0 = 0 with a
multiple real root is the union of codimension two flats kissing the red curves,
and such flats of higher codimensions stratify this singularity. From Arnol’d’s
famous (save this I know little about it so far!) classification theorem it seems
that if our interest is only in the topology of singularities we can take many ui

to be zero. Khayyam’s method also works for degree n equations with many
ui = 0, but if n > 4 then for a complete solution we should perhaps use this
natural linear structure on the swallowtail?

31. Long before Thom, Cayley had seen his swallowtail arise in an ellipsoidal
wavefront, and some decades later Kronecker had fully described it. The latter
also opened an easier path to Ruffini-Abel by showing that any polynomial
splits in a ‘unique’ field—see Artin, Galois Theory, pages 29-32, and its pages
74-76 on applications by Milgram—which implies that any permutation of its n
roots extends to an automorphism. From note 25 it is evident that ‘a general
equation’ is a topological notion, so Ruffini and Abel were grappling with a
problem of topology from the outset (this point was made by Arnol’d in some
lectures but—alas!—he did not write their notes himself) and the argument
given on the cited pages is at heart topology. Making some obvious changes it
shows that – note 24 – on any open set of a swallowtail, any permutation of the
n sheets of G extends to an automorphism.

32. As in note 6, if we delete from the pull-back of the closed swallowtail
in G the points above its boundary there remain, n copies of our swallowtail,
all tied to it by (u0, . . . , un−2, z) 7→ (u0, . . . , un−2). Above the points of the
swallowtail with sums of the positive and negative roots ±1 they give the n
open top cells of a subdivided open (n− 2)-ball. Of their n! permutations very
few preserve the lower strata, but starting from a doubling as in note 12, maybe
even Vieta’s method of note 13 can be extended to all n-swallowtails ? [ Today
23/04/18 I still can’t say, but it is for sure that

33. Khayyam’s method extends to all n, using Euclid’s distance only, but
a broader notion of a moment curve :- This curve P of Rn−1 is made by the
mirror images in the hyperplanes αO of a fixed p ∈ Rn−1. In swallow coordinates
αO has equation αn + un−2α

n−2 + · · · + u1α + u0 = 0 and the line through
p = (p0, p1, ..., pn−2) perpendicular to it is u0 = p0+ t, u1 = p1+αt, . . . , un−2 =
pn−2+αn−2t. The value t(α) of the parameter t at their intersection is therefore
t(α) = −αn+pn−2α

n−2+···+p1α+p0

α2(n−2)+···+α2+1
and the mirror image of p in αO is P (α) =

(p0+2t(α), p1+α2t(α), . . . , pn−2+αn−22t(α)), α ∈ R. The ratio of the successive
coordinates of P (α)−p being all α, we can read the real roots α of any equation
⊙ ∈ Rn−1 from the cuts made on the curve P by the (n− 2)-sphere with centre
⊙ passing through p.� If n = 3 and p = (0, 1) then P is Khayyam’s own
parabola, and if n = 4 and p = (1, 0, 1) essentially that of note 29, etc. Can we
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get rid of this distortion t(α) by using a spherical metric to now solve all degree
n homogenous real equations unxn + un−1xn−1y + · · ·+ u1xyn−1 + u0yn = 0 in
the same manner ? But for this shortcoming, and yes but for complex roots,
it is very interesting that one solution of the fundamental problem of algebra is
obtained by simply extending Omar’s prettiest composition ! ]

A lot remains that I’d planned to say, but now this story shall continue—with
God’s grace—during my next orbit around our star. April 11, 2018.
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